《3.6
直线与圆的位置关系》强化训练
一、选择题
1.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为( )
A.相离
B.相切
C.相交
D.无法确定
2.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为( )
第2小题图
第4小题图
第5小题图
A.20°
B.25°
C.40°
D.50°
3.在Rt△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是( )
A.相交
B.相切
C.相离
D.不能确定
4.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是( )
A.10
B.8
C.4
D.2
5.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )
A.70°
B.35°
C.20°
D.40°
6.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( )
第6小题图
第7小题图
第8小题图
A.25°
B.40°
C.50°
D.65°
7.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为( )
A.
B.
C.
D.
8.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为( )
A.
B.
C.
D.2
9.如图,AP为☉O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PDC=60°,则∠OBC等于( )
第9小题图
第10小题图
A.55°
B.65°
C.70°
D.75°
10.如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD相交于点Q,已知AD=4,BC=9,以下结论:①⊙O的半径为;②OD∥BE;
③PB=;④tan∠CEP=.
其中正确结论有( )
A.1个
B.2个
C.3个
D.4个
二、填空题
11.如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD交直线OA于点E,若∠B=30°,则线段AE的长为
.
第11小题图
第12小题图
第14小题图
12.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为
.
13.在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD之间的距离为18,则弦CD的长为
.
14.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为
.
15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为
.
第15小题图
第16小题图
第17小题图
16.如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为 .
17.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=
度.
18.如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=
°.
第18小题图
第19小题图
第20小题图
19.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为
.
20.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为
.
三、解答题
21.如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.
(1)求证:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半径.
22.如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.
(1)判断BD与⊙O的位置关系,并说明理由;
(2)若CD=15,BE=10,tanA=,求⊙O的直径.
23.如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.
(1)判断DE与⊙O的位置关系,并证明你的结论;
(2)若OF=4,求AC的长度.
24.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
25.如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若AD=2,AC=,求AB的长.
参考答案
1.
C.2.
B.3.
A.4.
D.5.
D.6.
B.7.
A.8.
A.9.
B.10.
B.
11.
12.
13.24
14.
15.2
16.
115°
17.45
18.125
19.122
20.4
21.(1)证明:∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠ADO+∠BDO=90°,
∵AC为⊙O的切线,
∴OA⊥AC,
∴∠OAD+∠CAD=90°,
∵OA=OD,
∴∠OAD=∠ODA,
∵∠1=∠BDO,
∴∠1=∠CAD;
(2)∵∠1=∠CAD,∠C=∠C,
∴△CAD∽△CDE,
∴CD:CA=CE:CD,
∴CD2=CA CE,
∵AE=EC=2,
∴AC=AE+EC=4,
∴CD=2,
设⊙O的半径为x,则OA=OD=x,
则Rt△AOC中,OA2+AC2=OC2,
∴x2+42=(2+x)2,
解得:x=.
∴⊙O的半径为.
22.
(1)证明:连接OB,
∵OB=OA,DE=DB,
∴∠A=∠OBA,∠DEB=∠ABD,
又∵CD⊥OA,
∴∠A+∠AEC=∠A+∠DEB=90°,
∴∠OBA+∠ABD=90°,
∴OB⊥BD,
∴BD是⊙O的切线;
(2)如图,过点D作DG⊥BE于G,
∵DE=DB,
∴EG=BE=5,
∵∠ACE=∠DGE=90°,∠AEC=∠GED,
∴∠GDE=∠A,
∴△ACE∽△DGE,
∴sin∠EDG=sinA=,即DE=13,
在Rt△ECG中,
∵DG=,
∵CD=15,DE=13,
∴CE=2,
∵△ACE∽△DGE,
∴,
∴AC=,
∴⊙O的直径2OA=4AC=.
23.(1)DE与⊙O相切.
证明:连接OD、AD,
∵点D是的中点,
∴,
∴∠DAO=∠DAC,
∵OA=OD,
∴∠DAO=∠ODA,
∴∠DAC=∠ODA,
∴OD∥AE,
∵DE⊥AC,
∴DE⊥OD,
∴DE与⊙O相切.
(2)连接BC交OD于H,延长DF交⊙O于G,
由垂径定理可得:OH⊥BC,,
∴,
∴DG=BC,
∴弦心距OH=OF=4,
∵AB是直径,
∴BC⊥AC,
∴OH∥AC,
∴OH是△ABC的中位线,
∴AC=2OH=8.
24.(1)直线DE与⊙O相切,理由如下:
连接OD,
∵OD=OA,
∴∠A=∠ODA,
∵EF是BD的垂直平分线,
∴EB=ED,
∴∠B=∠EDB,
∵∠C=90°,
∴∠A+∠B=90°,
∴∠ODA+∠EDB=90°,
∴∠ODE=180°﹣90°=90°,
∴直线DE与⊙O相切;
(2)连接OE,
设DE=x,则EB=ED=x,CE=8﹣x,
∵∠C=∠ODE=90°,
∴OC2+CE2=OE2=OD2+DE2,
∴42+(8﹣x)2=22+x2,
解得:x=4.75,
则DE=4.75.
25.(1)相切,连接OC,
∵C为的中点,
∴∠1=∠2,
∵OA=OC,
∴∠1=∠ACO,
∴∠2=∠ACO,
∴AD∥OC,
∵CD⊥AD,
∴OC⊥CD,
∴直线CD与⊙O相切;
(2)连接CE,
∵AD=2,AC=,
∵∠ADC=90°,
∴CD=,
∵CD是⊙O的切线,
∴CD2=AD DE,
∴DE=1,
∴CE=,
∵C为的中点,
∴BC=CE=,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴AB==3.