第二章四边形单元测试

文档属性

名称 第二章四边形单元测试
格式 zip
文件大小 456.7KB
资源类型 试卷
版本资源 湘教版
科目 数学
更新时间 2017-03-07 17:16:23

图片预览

文档简介

湘教版八年级下册数学第二章四边形单元检测试题
一、选择题(本大题共10小题)
1. 下列命题是假命题的是(  )
A.四个角相等的四边形是矩形
B.对角线相等的平行四边形是矩形
C.对角线垂直的四边形是菱形
D.对角线垂直的平行四边形是菱形
2. 四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是(  )
A.AB=CD B.AC=BD C.AB=BC D.AD=BC
3. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为(  )

A.16 B.17 C.18 D.19
4. 如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是(  )

A.S1>S2 B.S1=S2 C.S1<S2 D.3S1=2S2
5. 菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为(  )
A.8 B.20 C.8或20 D.10
6. 如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为(  )

A. B.2 C. +1 D.2+1
7. 如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是(  )

A.12 B.16 C.20 D.24
8. 如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为(  )

A. B. C. D.3
9. 如图,正方形ABCD边长为2,点P是线段CD边上的动点(与点C,D不重合),∠PBQ=45°,过点A作AE∥BP,交BQ于点E,则下列结论正确的是(  )

A.BP?BE=2 B.BP?BE=4 C. = D. =
10. 如图,矩形ABCD的面积为1cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B…;依此类推,则平行四边形AO2014C2015B的面积为(  )

A. B. C. D.
二、填空题(本大题共8小题)
11. 在菱形ABCD中,如果∠B=110°,那么∠D的度数是 .
12. 如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于   度.

13. 将一张长方形纸条ABCD沿EF折叠后,ED与BF交于G点,若∠EFG=54°,则∠BGE的度数为   .

14. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是 。

15. 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=  度.

16. 如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为  .

17. 如图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为  .

18. 如图,直线l是矩形ABCD的一条对称轴,点P是直线l上一点,且使得△PAB和△PBC均为等腰三角形,则满足条件的点P共有   个.

三、计算题(本大题共6小题)
19. 把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.

20. 在?ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.

21. 已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.
(1)求证:AP=BQ;
(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.

22. 如图6所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:D是BC的中点;
(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.

23. 如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.

24. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;
(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.

 
参考答案:
一、选择题(本大题共10小题)
1. C
分析:根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.
解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;
B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;
C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;
D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.
故选:C.
2. B
分析:四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.
解:可添加AC=BD,
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,
∴四边形ABCD是矩形.
故选:B.
3. B
分析:由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.
解:如图,
设正方形S1的边长为x,
∵△ABC和△CDE都为等腰直角三角形,
∴AB=BC,DE=DC,∠ABC=∠D=90°,
∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,
∴AC=BC=2CD,
又∵AD=AC+CD=6,
∴CD==2,
∴EC2=22+22,即EC=2;
∴S1的面积为EC2=2×2=8;
∵∠MAO=∠MOA=45°,
∴AM=MO,
∵MO=MN,
∴AM=MN,
∴M为AN的中点,
∴S2的边长为3,
∴S2的面积为3×3=9,
∴S1+S2=8+9=17.
故选B.

4. B
分析:由于矩形ABCD的面积等于2个△ABC的面积,而△ABC的面积又等于矩形AEFC的一半,所以可得两个矩形的面积关系.
解:矩形ABCD的面积S=2S△ABC,而S△ABC=S矩形AEFC,即S1=S2,
故选B.
5. B
分析:边AB的长是方程y2﹣7y+10=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.
解:∵解方程y2﹣7y+10=0得:y=2或5
∵对角线长为6,2+2<6,不能构成三角形;
∴菱形的边长为5.
∴菱形ABCD的周长为4×5=20.
故选B.
6. B
分析:由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.
解:∵正方形ABCD的面积为1,
∴BC=CD==1,∠BCD=90°,
∵E、F分别是BC、CD的中点,
∴CE=BC=,CF=CD=,
∴CE=CF,
∴△CEF是等腰直角三角形,
∴EF=CE=,
∴正方形EFGH的周长=4EF=4×=2;
故选:B.
7. 根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.
解:∵E、F分别是AB、AC的中点,
∴EF是△ABC的中位线,
∴BC=2EF=2×3=6,
∴菱形ABCD的周长=4BC=4×6=24.
故选:D.
8. B
分析:由正方形纸片ABCD的边长为3,可得∠C=90°,BC=CD=3,由根据折叠的性质得:EG=BE=1,GF=DF,然后设DF=x,在Rt△EFC中,由勾股定理EF2=EC2+FC2,即可得方程,解方程即可求得答案.
解:∵正方形纸片ABCD的边长为3,
∴∠C=90°,BC=CD=3,
根据折叠的性质得:EG=BE=1,GF=DF,
设DF=x,
则EF=EG+GF=1+x,FC=DC﹣DF=3﹣x,EC=BC﹣BE=3﹣1=2,
在Rt△EFC中,EF2=EC2+FC2,
即(x+1)2=22+(3﹣x)2,
解得:x=,
∴DF=,EF=1+=.
故选B.
9. B
分析:连接AP,作EM⊥PB于M,根据S△PBE=S△ABP=S正方形ABCD=2即可解决问题.
解:如图,连接AP,作EM⊥PB于M.
∵AE∥PB,
∴S△PBE=S△ABP=S正方形ABCD=2,
∴?PB?EM=2,
∵∠EBM=45°,∠EMB=90°,
∴EM=BE,
∴?PB?BE=2,
∴PB?BE=4.
故选B.

10. C
分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.
解:∵O1为矩形ABCD的对角线的交点,
∴平行四边形AOC1B底边AB上的高等于BC的,
∴平行四边形AOC1B的面积=×1=,
∵平行四边形AO1C2B的对角线交于点O2,
∴平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,
∴平行四边形ABC3O2的面积=××1=,
…,
依此类推,平行四边形ABC2014O2015的面积=cm2.
故选:C.
二、填空题(本大题共8小题)
11. 分析:根据菱形的对角相等即可求解.
解:∵四边形ABCD是菱形,
∴∠D=∠B,
∵∠B=110°,
∴∠D=110°.
故选C.

12. 分析:根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE全等,再利用三角形的内角和解答即可.
解:∵正方形ABCD,
∴AB=AD,∠BAE=∠DAE,
在△ABE与△ADE中,
,
∴△ABE≌△ADE(SAS),
∴∠AEB=∠AED,∠ABE=∠ADE,
∵∠CBF=20°,
∴∠ABE=70°,
∴∠AED=∠AEB=180°﹣45°﹣70°=65°,
故答案为:65
13. 分析:利用翻折的性质,得∠DEF=∠GEF;然后根据两直线平行,内错角相等,求得∠BGE=∠DEG,∠DEF=∠EFG;最后由等量代换求得∠BGE的度数.
解:根据翻折的性质,得
∠DEF=∠GEF;
∵AD∥BC,
∴∠DEF=∠EFG(两直线平行,内错角相等);
∠BGE=∠DEG(两直线平行,内错角相等);
∵∠EFG=54°,
∴∠BGE=2∠EFG=108°.
故答案为:108°.
14. 分析:根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.
解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,
∵BE:EC=2:1,
∴CE=BC=3cm
∴在Rt△ECH中,EH2=EC2+CH2,
即(9﹣x)2=32+x2,
解得:x=4,即CH=4cm.

15. 分析:首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.
解:∵四边形ABCD是矩形,
∴AC=BD,OA=OC,OB=OD,
∴OA=OB═OC,[来源:学&科&网Z&X&X&K]
∴∠OAC=∠ODA,∠OAB=∠OBA,
∴∠AOE=∠OAC+∠OCA=2∠OAC,
∵∠EAC=2∠CAD,
∴∠EAO=∠AOE,
∵AE⊥BD,
∴∠AEO=90°,
∴∠AOE=45°,
∴∠OAB=∠OBA==67.5°,
∴∠BAE=∠OAB﹣∠OAE=22.5°.
故答案为22.5°.

16. 需要分类讨论:PB=PC和PB=BC两种情况.
解:如图,在矩形ABCD中,AB=CD=4,BC=AD=6.
如图1,当PB=PC时,点P是BC的中垂线与AD的交点,则AP=DP=AD=3.
在Rt△ABP中,由勾股定理得 PB===5;
如图2,当BP=BC=6时,△BPC也是以PB为腰的等腰三角形.
综上所述,PB的长度是5或6.
故答案为:5或6.

17. 分析:过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.
解:如图,过点B作BH⊥AC于H,交GF于K,
∵△ABC是等边三角形,
∴∠A=∠ABC=60°,
∵BD=BE,
∴△BDE是等边三角形,
∴∠BDE=60°,
∴∠A=∠BDE,
∴AC∥DE,
∵四边形DEFG是正方形,GF=6,
∴DE∥GF,
∴AC∥DE∥GF,
∴KH=18×﹣6×﹣6=9﹣3﹣6=6﹣6,
∴F点到AC的距离为6﹣6.
故答案为:6﹣6.

18. 分析:利用分类讨论的思想,此题共可找到5个符合条件的点:一是作AB或DC的垂直平分线交l于P;二是在长方形内部
在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB;三是如图,在长方形外l上作点P,使AB=BP,DC=PC,同理,在长方形外l上作点P,使AP=AB,PD=DC.
解:如图,作AB或DC的垂直平分线交l于P,

如图,在l上作点P,使PA=AB,PD=DC,
同理,在l上作点P,使PC=DC,AB=PB,

如图,在长方形外l上作点P,使AB=AP,DC=PD,
同理,在长方形外l上作点P,使AP=AB,PD=DC,

故答案为5.
三、计算题(本大题共6小题)
19. 分析:要证明HG与HB是否相等,可以把线段放在两个三角形中证明这两个三角形全等,或放在一个三角形中证明这个三角形是等腰三角形,而图中没有这样的三角形,因此需要作辅助线,构造三角形.
证明:HG=HB,
证法1:连接AH,
∵四边形ABCD,AEFG都是正方形,
∴∠B=∠G=90°,
由题意知AG=AB,又AH=AH,
∴Rt△AGH≌Rt△ABH(HL),
∴HG=HB.
证法2:连接GB,
∵四边形ABCD,AEFG都是正方形,
∴∠ABC=∠AGF=90°,
由题意知AB=AG,
∴∠AGB=∠ABG,
∴∠HGB=∠HBG,
∴HG=HB.

20. 分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.
解:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)解:∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC===5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
21. 分析:(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.
解:(1)∵正方形ABCD
∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°
∵DP⊥AQ
∴∠ADP+∠DAP=90°
∴∠BAQ=∠ADP
∵AQ⊥BE于点Q,DP⊥AQ于点P
∴∠AQB=∠DPA=90°
∴△AQB≌△DPA(AAS)
∴AP=BQ
(2)①AQ﹣AP=PQ
②AQ﹣BQ=PQ
③DP﹣AP=PQ
④DP﹣BQ=PQ

22.分析:三角形例行,特殊四边形的性质与判定。
解:(1)证明:∵点E是AD的中点,∴AE=DE.
∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.
∴△EAF≌△EDC.
∴AF=DC.
∵AF=BD,
∴BD=DC,即D是BC的中点.
(2)四边形AFBD是矩形.证明如下:
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形.
∵AB=AC,又由(1)可知D是BC的中点,
∴AD⊥BC.
∴□AFBD是矩形.
23. 分析:(1)结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可.
(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题.
解:(1)四边形EBGD是菱形.
理由:∵EG垂直平分BD,
∴EB=ED,GB=GD,
∴∠EBD=∠EDB,
∵∠EBD=∠DBC,
∴∠EDF=∠GBF,
在△EFD和△GFB中,
,
∴△EFD≌△GFB,
∴ED=BG,
∴BE=ED=DG=GB,
∴四边形EBGD是菱形.
(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,
在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,
∴EM=BE=,
∵DE∥BC,EM⊥BC,DN⊥BC,
∴EM∥DN,EM=DN=,MN=DE=2,
在RT△DNC中,∵∠DNC=90°,∠DCN=45°,
∴∠NDC=∠NCD=45°,
∴DN=NC=,
∴MC=3,
在RT△EMC中,∵∠EMC=90°,EM=.MC=3,
∴EC===10.
∵HG+HC=EH+HC=EC,
∴HG+HC的最小值为10.

24. 分析:(1)由已知条件可得RT△CDF中∠C=30°,即可知DF=CD=AE=2t;
(2)由(1)知DF∥AE且DF=AE,即四边形ADFE是平行四边形,若构成菱形,则邻边相等即AD=AE,可得关于t的方程,求解即可知;
(3)四边形BEDF不为正方形,若该四边形是正方形即∠EDF=90°,即DE∥AB,此时AD=2AE=4t,根据AD+CD=AC求得t的值,继而可得DF≠BF,可得答案.
解:(1)∵RT△ABC中,∠B=90°,∠A=60°,
∴∠C=90°﹣∠A=30°.
又∵在RT△CDF中,∠C=30°,CD=4t
∴DF=CD=2t,
∴DF=AE;
(2)∵DF∥AB,DF=AE,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,
即60﹣4t=2t,解得:t=10,
即当t=10时,四边形AEFD是菱形;
(3)四边形BEDF不能为正方形,理由如下:
当∠EDF=90°时,DE∥BC.
∴∠ADE=∠C=30°
∴AD=2AE
∵CD=4t,
∴DF=2t=AE,
∴AD=4t,
∴4t+4t=60,
∴t=时,∠EDF=90°
但BF≠DF,
∴四边形BEDF不可能为正方形.