17.2勾股定理的逆定理练习

文档属性

名称 17.2勾股定理的逆定理练习
格式 zip
文件大小 60.0KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2017-03-10 16:26:42

图片预览

文档简介

《勾股定理的逆定理》练习
一、选择——基础知识运用
1.在△ABC中,AB=,BC=,AC=,则(  )
A.∠A=90° B.∠B=90° C.∠C=90° D.∠A=∠B
2.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是(  )
A.如果∠A-∠B=∠C,那么△ABC是直角三角形
B.如果a2=b2-c2,那么△ABC是直角三角形且∠C=90°
C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形
D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形
3.下列四组线段中,能组成直角三角形的是(  )
A.a=1,b=2,c=3 B.a=4,b=2,c=3
C.a=4,b=2,c=5 D.a=4,b=5,c=3
4.已知四个三角形分别满足下列条件:①三角形的三边之比为1:1:;②三角形的三边分别是9、40、41;③三角形三内角之比为1:2:3;④三角形一边上的中线等于这边的一半。其中直角三角形有(  )个。21教育网
A.4 B.3 C.2 D.1
5.由下列条件不能判定△ABC为直角三角形的是(  )
A.∠A+∠C=∠B
B.a=,b=,c=
C.(b+a)(b-a)=c2
D.∠A:∠B:∠C=5:3:2
二、解答——知识提高运用
6.一个三角形三条边的比为5:12:13,且周长为60cm,求它的面积。
7.已知△ABC的三边长分别是a,b,c,其中a=3,c=5,且关于x的一元二次方程x2-4x+b=0有两个相等的实数根,判断△ABC的形状。21世纪教育网版权所有
8.如图所示,在四边形ABCD中,AB=2,BC=2,CD=1,AD=5,且∠C=90°,求四边形ABCD的面积。21cnjy.com
9.一个零件的形状如图1所示,按规定这个零件中∠A和∠DBC都应为直角。工人师傅量得这个零件各边长如图2所示。21·cn·jy·com
(1)你认为这个零件符合要求吗?为什么?
(2)求这个零件的面积。
10.如图所示,如果只给你一把带有刻度的直尺,你是否能检验∠MPN是不是直角?简述你的作法,并说明理由。www.21-cn-jy.com
11.龙梅和玉荣是草原上的好朋友,可是有一次经过一场争吵之后,两人不欢而散,龙梅的速度是米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和龙梅成直角,她的速度是米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距200米,那么她走的方向是否成直角?如果她们现在想讲和,那么原来的速度相向而行,多长时间后能相遇?。2·1·c·n·j·y
12.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿那个方向航行吗?【来源:21·世纪·教育·网】
参考答案
一、选择——基础知识运用
1.【答案】A
【解析】∵AB2=()2=2,BC2=()2=5,AC2=()2=3,
∴AB2+AC2=BC2,
∴BC边是斜边,
∴∠A=90°。
故选A.
2.【答案】B
【解析】如果∠A-∠B=∠C,那么△ABC是直角三角形,A正确;如果a2=b2-c2,那么△ABC是直角三角形且∠B=90°,B错误;如果∠A:∠B:∠C=1:3:2,设∠A=x,则∠B=2x,∠C=3x,则x+3x+2x=180°,解得,x=30°,则3x=90°,那么△ABC是直角三角形,C正确;如果a2:b2:c2=9:16:25,则如果a2+b2=c2,那么△ABC是直角三角形,D正确;故选:B。
3.【答案】D
【解析】A、因为1+2=3,所以三条线段不能组成三角形,一定不能组成直角三角形;
B、因为22+32≠42,所以三条线段不能组成直角三角形;
C、因为22+42≠52,所以三条线段不能组成直角三角形;
D、因为42+32=52,所以三条线段能组成直角三角形。
故选:D。
4.【答案】A
【解析】①因为12+12=()2三边符合勾股定理的逆定理,故是直角三角形;
②因为92+402=412三边符合勾股定理的逆定理,故是直角三角形;
③设最小的角为x,则x+2x+3x=180°,则三角分别为30°,60°,90°,故是直角三角形;
④因为符合直角三角形的判定,故是直角三角形。
所以有4个直角三角形。
故选:A。
5.【答案】B
【解析】A、∵∠A+∠C=∠B,∴∠B=90°,故是直角三角形,正确;
B、设a=20k,则b=15k,c=12k,
∵(12k)2+(15k)2≠(20k)2,
故不能判定是直角三角形;
C、∵(b+a)(b-a)=c2,
∴b2-a2=c2,
即a2+c2=b2,
故是直角三角形,正确;
D、∵∠A:∠B:∠C=5:3:2,
∴∠A=×180°=90°,
故是直角三角形,正确.
故选:B。
二、解答——知识提高运用
6.【答案】120cm2
【解析】设该三角形的三边是5k,12k,13k.
因为(5k)2+(12k)2=(13k)2,
所以根据勾股定理的逆定理,得该三角形是直角三角形.
根据题意,得5k+12k+13k=60,
解得k=2,
则5k=10,12k=24,
则该直角三角形的面积是120。
故答案为:120cm2
7.【答案】∵关于x的一元二次方程x2-4x+b=0有两个相等的实数根,
∴b2-4ac=16-4b=0
解得:b=4,
∵a=3,c=5,
∴32+42=52,
∴△ABC为直角三角形.。
8.【答案】连接BD,
∵∠C=90°,
∴△BCD为直角三角形,
∵BD2=BC2+CD2=22+12=()2,
∵BD>0,
∴BD=,
在△ABD中,
∵AB2+BD2=20+5=25,AD2=52=25,
∴AB2+BD2=AD2,
∴△ABD为直角三角形,且∠ABD=90°,
∴S四边形ABCD=S△ABD+S△BCD=×2×+×2×1=6.
故四边形ABCD的面积是6。
9.【答案】(1)∵AD=4,AB=3,BD=5,DC=13,BC=12,
∴AB2+AD2=BD2,
BD2+BC2=DC2,
∴△ABD、△BDC是直角三角形,
∴∠A=90°,∠DBC=90°,
故这个零件符合要求。
(2)这个零件的面积=△ABD的面积+△BDC的面积
=3×4÷2+5×12÷2
=6+30
=36.
故这个零件的面积是36。
10.【答案】能检查。
作法:如图所示,
(1)在射线PM上量取PA=3cm,确定A点,在射线PN上量取PB=4cm,确定点B。
(2)连接AB得△PAB。
(3)用刻度尺量取AB的长度,如果AB恰好等于5cm,则说明∠P是直角,否则∠P就不是直角。
理由:∵PA=3cm,PB=4cm,PA2+PB2=32+42=52.
若AB=5cm,则PA2+PB2=AB2,
根据勾股定理的逆定理可得△PAB是直角三角形,即∠P是直角。
11.【答案】龙梅走的路程:×4×60=120(米),
玉荣走的路程:×4×60=160(米),
∵1202+1602=2002,
∴她们走的方向成直角,
以原来的速度相向而行相遇的时间:200÷(+)=200÷ = =171(秒);
答:她们走的方向成直角,如果她们想讲和,按原来的速度相向而行,171秒后能相遇.
12.【答案】BM=8×2=16海里,
BP=15×2=30海里,
在△BMP中,BM2+BP2=256+900=1156,PM2=1156,
BM2+BP2=PM2,
∴∠MBP=90°,
180°-90°-60°=30°,
故乙船沿南偏东30°方向航行。