课件19张PPT。4.5 利用三角形全等测距离第四章 三角形1.复习并归纳三角形全等的判定及性质;
2.能够根据三角形全等测定两点间的距离,并解
决实际问题.(重点,难点) 学习目标1.要证明两个三角形全等应有哪些必要条件?(1)“SSS”:三边对应相等的两个三角形全等.(2)“ASA”:两角和它们的夹边对应相等的两个
三角形全等.(3)“AAS”:两角和其中一角的对边对应相等的
两个三角形全等.(4)“SAS”:两边和它们的夹角对应相等的两个
三角形全等.导入新课复习引入2.两个全等的三角形有哪些性质?(1)全等三角形的对应边相等;(2)全等三角形的对应角相等.一位经历过战争的老人讲述
过这样一个故事:在抗日战争期间,
为了炸毁与我军阵地隔河
相望的日本鬼子的碉堡,需要
测出我军阵地到鬼子碉堡的距离.
由于没有任何测量工具,我八路军战士
为此绞尽脑汁,这时一位聪明的八路军
战士想出了一个办法,为成功炸毁碉堡
立了一功.讲授新课 这位聪明的八路军战士的方法如下: 战士面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部;然后,他转过一个角度,保持刚才的姿势,这时,视线落在了自己所在岸的某一点上;接着,他用步测的办法量出自己与那个点的距离,这个距离就是他与碉堡的距离.从战士的作法中你能发现哪些相等的量?ACBD你能用所学的数学知识说明BC=DC吗?ABD如何求未知线段?途径:利用全等三角形的性质关键:构造全等三角形例 如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,你能帮小明设计一个方案,解决此问题吗?1.说出你的设计方案; 2.你能用所学知识说明你设计方案的
理由是什么吗?典例精析 先在地上取一个可以直接到达点A和B的点C,连接AC并延长到D,使AC=CD,连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,测得DE的长度就是A、B 间的距离.CDE···1.你能设计出其他的方案来吗?(构建全等三角形)2.已知条件是什么?结论又是什么?3.你能说明设计出方案的理由吗?B···CDE在△ABC与△DEC中,已知:AB⊥BE,DE⊥BE,BE=EC,结论:AB=DE.例2 把等腰直角三角形ABC,按如图所示立在桌上,顶点A顶着桌面,若另两个顶点距离桌面5 cm和3 cm,则过另外两个顶点向桌面作垂线,则垂足之间的距离DE的长为( )
A.4 cm B.6 cm
C.8 cm D.求不出来C解析:选C.
因为∠CEA=∠ADB=∠CAB=90°,
所以∠ECA+∠EAC=∠EAC+∠DAB
=∠DAB+∠DBA=90°,
∠ECA=∠DAB,∠EAC=∠DBA,
又AC=AB,所以△AEC ≌△BDA,
所以AE=BD,AD=CE,
所以DE=AE+AD=BD+CE=3+5=8 (cm).如图要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长.判定△EDC≌△ABC的理由是( )
A.SSS B.ASA C.AAS D.SASB当堂练习2.山脚下有A、B两点,要测出A、B两点间的距离.
在地上取一个可以直接到达A、B点的点O,连接
AO并延长到C,使AO=CO;连接BO并延长到D,
使BO=DO,连接CD.可以证△ABO≌△CDO,得
CD=AB,因此,测得CD的长就是AB的长.判定
△ABO≌△CDO的理由是( )
A.SSS
B.ASA
C.AAS
D.SASD3.如图所示小明设计了一种测工件内径AB的卡钳,问:在卡钳的设计中,AO、BO、CO、DO 应满足下列的哪个条件?( )
A.AO=CO
B.BO=DO
C.AC=BD
D.AO=CO且BO=DOD4.如图所示,已知AC=DB,AO=DO,CD=100 m,则A,B两点间的距离( )
A.大于100 m B.等于100 m
C.小于100 m D.无法确定C5.如图,公园里有一条“Z”字型道路ABCD,其中AB∥CD,在AB,BC,CD三段道路旁各有一只小石凳E,M,F,M恰为BC的中点,且E,M,F在同一直线上,在BE道路上停放着一排小汽车,从而无法直接测量B,E之间的距离,你能想出解决的方法吗?请说明其中的道理.解:因为AB∥CD,所以∠B=∠C.
在△BME和△CMF中,
∠B=∠C,BM=CM,∠BME=∠CMF,
所以△BME≌△CMF(ASA),所以BE=CF.
故只要测量CF即可得B,E之间的距离.1.知识:
利用三角形全等测距离的目的:变不可测距离为可测
距离.
依据:全等三角形的性质.
关键:构造全等三角形.
2.方法:
(1)延长法构造全等三角形;
(2)垂直法构造全等三角形.
3.数学思想:
树立用三角形全等构建数学模型解决实际问题的思想.课堂小结