沪科版八年级下册数学17.4一元二次方程的根与系数同步练习
一、选择题(本大题共6小题)
1. 若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=( )
A.﹣4 B.3 C. D.
2. 若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为( )
A.﹣1 B.0 C.2 D.3
3. 小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为( )
A.x2﹣3x+6=0 B.x2﹣3x﹣6=0 C.x2+3x﹣6=0 D.x2+3x+6=0
4. 设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是( )
A.2 B.1 C.﹣2 D.﹣1
5. 若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是( )
A.3 B.﹣3 C.5 D.﹣5
6. 定义运算:a?b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b?b﹣a?a的值为( )
A.0 B.1 C.2 D.与m有关
二、填空题(本大题共4小题)
7. 设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n= .
8. 设x1,x2是一元二次方程x2+5x﹣3=0的两根,且2x1(x22+6x2﹣3)+a=4,则a= .
9. 设x1、x2是方程5x2﹣3x﹣2=0的两个实数根,则+的值为 .
10. 关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是 .
11. 设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)= .
三、计算题(本大题共4小题)
12. 若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程。
13. 已知关于x的一元二次方程x2-2x+m-1=0有两个实数根x1,x2.
(1)求m的取值范围;
(2)当x12+x22=6x1x2时,求m的值.
14. 已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.
(1)求m的取值范围;
(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.
15. 关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.
参考答案:
一、选择题(本大题共6小题)
1. D
分析:由方程的各系数结合根与系数的关系可得出“x1+x2=”,由此即可得出结论.
解:∵方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,
∴x1+x2=﹣=
故选D.
2. D
分析:由根与系数的关系得出“x1+x2=2,x1?x2=﹣1”,将代数式x12﹣x1+x2变形为x12﹣2x1﹣1+x1+1+x2,套入数据即可得出结论.
解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,
∴x1+x2=﹣=2,x1?x2==﹣1.
x12﹣x1+x2=x12﹣2x1﹣1+x1+1+x2=1+x1+x2=1+2=3.
故选D.
3. 小B
分析:利用根与系数的关系分别建立等式解答即可。
解:小明看错一次项系数,解得两根为2,﹣3,两根之积正确;小华看错常数项,解错两根为﹣2,5,两根之和正确,
故设这个一元二次方程的两根是α、β,可得:α?β=﹣6,α+β=﹣3,
那么以α、β为两根的一元二次方程就是x2﹣3x﹣6=0,
故选:B.
4. D
分析:根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.
解:∵α、β是一元二次方程x2+2x﹣1=0的两个根,
∴αβ==,
故选D.
5. D
分析:根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将+变形成﹣2,代入数据即可得出结论.
解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,
∴a+b=3,ab=p,
∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,
∴p=﹣3.
当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,
∴p=﹣3符合题意.
+===﹣2=﹣2=﹣5.
故选D.
6. A
分析:由根与系数的关系可找出a+b=1,ab=m,根据新运算,找出b?b﹣a?a=b(1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.
解:∵a,b是方程x2﹣x+m=0(m<0)的两根,
∴a+b=1,ab=m.
∴b?b﹣a?a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.
故选A.
二、填空题(本大题共6小题)
7.分析:根据根与系数的关系可知m+n=﹣2,又知m是方程的根,所以可得m2+2m﹣7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案.
解:∵设m、n是一元二次方程x2+2x﹣7=0的两个根,
∴m+n=﹣2,
∵m是原方程的根,
∴m2+2m﹣7=0,即m2+2m=7,
∴m2+3m+n=m2+2m+m+n=7﹣2=5,
故答案为:5.
8.分析:利用根与系数之间的关系得到x1+x2和x1?x2再把x2+5x﹣3=0变形整体代入即可得到答案。
解:∵x2是一元二次方程x2+5x﹣3=0的根,
∴x22+5x2﹣3=0,
∴x22+5x2=3,
∵2x1(x22+6x2﹣3)+a=4,
∴2x1?x2+a=4,
∵x1,x2是一元二次方程x2+5x﹣3=0的两根,
∴x1x2=﹣3,
∴2×(﹣3)+a=4,
∴a=10.
9.分析:根据根与系数的关系得到x1+x2、x1?x2的值,然后将所求的代数式进行变形并代入计算即可.
解:∵方程x1、x2是方程5x2﹣3x﹣2=0的两个实数根,
∴x1+x2=,x1x2=﹣,
∴+===﹣.
故答案为:﹣.
10.分析:设x1、x2为方程x2+2x﹣2m+1=0的两个实数根.由方程有实数根以及两根之积为负可得出关于m的一元一次不等式组,解不等式组即可得出结论.
解:设x1、x2为方程x2+2x﹣2m+1=0的两个实数根,
由已知得:,即
解得:m>.
故答案为:m>.
11. 分析:由题意可知x22﹣3x2=1,代入原式得到x1+x2,根据根与系数关系即可解决问题.
解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,
∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3,
∴x22﹣3x2=1,
∴x1+x2(x22﹣3x2)=x1+x2=3,
故答案为3.
三、计算题(本大题共4小题)
12.分析:根据S△ABC=3,得出两根之积,进而根据根与系数的关系写出一个符合要求的一元二次方程即可.
解:∵一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,
∴一元二次方程的两个根的乘积为:3×2=6,
∴此方程可以为:x2﹣5x+6=0,
故答案为:x2﹣5x+6=0(答案不唯一).
13. 解:(1)∵原方程有两个实数根,
∴△=(-2)2-4(m-1)≥0,
整理得:4-4m+4≥0,
解得:m≤2;
(2)∵x1+x2=2,x1?x2=m-1,x12+x22=6x1x2,
∴(x1+x2)2-2x1?x2=6x1?x2,
即4=8(m-1),
解得:m=.
∵m=<2,
∴符合条件的m的值为.
14. 分析:(1)根据判别式的意义得到△=(﹣6)2﹣4(2m+1)≥0,然后解不等式即可;
(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.
解:(1)根据题意得△=(﹣6)2﹣4(2m+1)≥0,
解得m≤4;
(2)根据题意得x1+x2=6,x1x2=2m+1,
而2x1x2+x1+x2≥20,
所以2(2m+1)+6≥20,解得m≥3,
而m≤4,
所以m的范围为3≤m≤4.
15. 分析:(1)根据方程根的个数结合根的判别式,可得出关于m的一元一次不等式,解不等式即可得出结论;
(2)根据方程的解析式结合根与系数的关系找出x1+x2=﹣2,x1?x2=2m,再结合完全平方公式可得出x12+x22=﹣2x1?x2,代入数据即可得出关于关于m的一元一次方程,解方程即可求出m的值,经验值m=﹣1符合题意,此题得解.
解:(1)∵一元二次方程x2+2x+2m=0有两个不相等的实数根,
∴△=22﹣4×1×2m=4﹣8m>0,
解得:m<.
∴m的取值范围为m<.
(2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,
∴x1+x2=﹣2,x1?x2=2m,
∴x12+x22=﹣2x1?x2=4﹣4m=8,
解得:m=﹣1.
当m=﹣1时,△=4﹣8m=12>0.
∴m的值为﹣1.