8.2.1 幂的乘方
基础训练
1.计算(-a2)3的结果是( )
A.a5 B.-a5 C.a6 D.-a6
2.下列运算正确的是( )
A.(a2)5=a7 B.a2·a4=a6 C.3a2b-3ab2=0 D.=
3.(1)计算:(a3)2+a5=__________;
(2)已知 ab=4,那么a2b=__________.
4.计算:
(1)(a2)n·a3;
(2)(a3)m·(am+1)2.
培优提升
1.下列运算正确的是( )
A.4m-m=3 B.2m2·m3=2m5 C.(-m3)2=m9 D.-(m+2n)=-m+2n
2.计算(-a2)3·(-a3)2的结果是( )
A.a12 B.-a12 C.-a10 D.-a36
3.计算(an+1)2·(a2)n-1等于( )
A.a4n+3 B.a4n+1 C.a4n-1 D.a4n
4.已知a=8130,b=2741,c=961,则a,b,c的大小关系是( )
A.a>b>c B.a>c>b C.ac>a
5.计算:(-x2)3+x2·x4=___________.
6.根据你学习的数学知识,写出一个运算结果为a6的算
式: .?
7.如果am=p,an=q(m,n是正整数),那么
a3m=___________,a2n=___________,a3m+2n=___________.
8.计算:
(1)(a2)6-(a3)4;
(2)(xn-1)2·(-x3)·(-xn);
(3)(x-y)5[(y-x)4]3;
(4)x2·x3·x4+(x3)3-(-x4)2·x.
9.已知3×9m×27m=321,求m的值.
10.若2x+5y=3,求4x·32y的值.
参考答案
【基础训练】
1.【答案】D
2.【答案】B
3.【答案】(1)a6+a5 (2)16
解:(1)(a3)2+a5=a3×2+a5=a6+a5;(2)a2b=(ab)2=42=16.
4.解:(1)原式=a2n·a3=a2n+3.
(2)原式=a3m·a2m+2=a5m+2.
【培优提升】
1.【答案】B 2.【答案】B 3.【答案】D
4.【答案】D
解:a=8130=(34)30=3120;
b=2741=(33)41=3123;
c=961=(32)61=3122.
则b>c>a.故选D.
5.【答案】0
解:(-x2)3+x2·x4=-x6+x6=0.
6.【答案】(a2)3=a6
解:答案不唯一.
7.【答案】p3;q2;p3q2
解:a3m=(am)3=p3;
a2n=(an)2=q2;a3m+2n=a3m·a2n=p3q2.
8.解:(1)原式=a2×6-a3×4=a12-a12=0.
(2)原式=x2n-2·x3·xn=x2n-2+3+n=x3n+1.
(3)(x-y)5[(y-x)4]3=(x-y)5[(x-y)4]3=(x-y)5·(x-y)12=(x-y)17.
(4)x2·x3·x4+(x3)3-(-x4)2·x
=x9+x9-x8·x
=x9+x9-x9
=x9.
9.解:3×9m×27m=3×(32)m×(33)m=3×32m×33m=31+2m+3m=35m+1=321,可得
5m+1=21,解得m=4.
10.解:4x·32y=(22)x·(25)y=22x·25y=22x+5y.因为2x+5y=3,所以,原式=23=8.