北师大版文科三轮冲刺数学练习:函数概念与基本初等函数

文档属性

名称 北师大版文科三轮冲刺数学练习:函数概念与基本初等函数
格式 zip
文件大小 661.2KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2017-04-21 09:53:48

文档简介

第二章
函数概念与基本初等函数Ⅰ
第1讲 函数及其表示
基础巩固题组
(建议用时:30分钟)                   
一、选择题
1.(2017·宜春质检)函数f(x)=log2(x2+2x-3)的定义域是
(  )
A.[-3,1]
B.(-3,1)
C.(-∞,-3]∪[1,+∞)
D.(-∞,-3)∪(1,+∞)
解析 使函数f(x)有意义需满足x2+2x-3>0,解得x>1或x<-3,所以f(x)的定义域为(-∞,-3)∪(1,+∞).
答案 D
2.(2017·衡水中学月考)设f,g都是由A到A的映射,其对应法则如下:
映射f的对应法则
x
1
2
3
4
f(x)
3
4
2
1
21世纪教育网21世纪教育网映射g的对应法则
x
1
2
3
4
g(x)
4
3
1
2
则f[g(1)]的值为
(  )
A.1
B.2
C.3
D.4解析 由映射g的对应法则,可知g(1)=4,
由映射f的对应法则,知f(4)=1,故f[g(1)]=1.
答案 A
3.已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=
(  )
A.x+1
B.2x-1
C.-x+1
D.x+1或-x-1
解析 设f(x)=kx+b(k≠0),又f[f(x)]=x+2,
得k(kx+b)+b=x+2,即k2x+kb+b=x+2.
∴k2=1,且kb+b=2,解得k=b=1.
答案 A
4.(2017·衡阳八中一模)f(x)=则f=
(  )
A.-2
B.-3
C.9
D.-9
解析 ∵f=log3=-2,
∴f=f(-2)=-2=9.
答案 C
5.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为
(  )
A.y=
B.y=
C.y=
D.y=
解析 取特殊值法,若x=56,则y=5,排除C,D;若x=57,则y=6,排除A,选B.
答案 B
6.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y=10lg
x的定义域和值域相同的是
(  )
A.y=x
B.y=lg
x
C.y=2x
D.y=
解析 函数y=10lg
x的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R,排除A,C;y=lg
x的值域为R,排除B,故选D.
答案 D
7.(2016·江苏卷)设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=其中a∈R.
若f=f,则f(5a)的值是
(  )
A.
B.
C.-
D.
解析 由题意f=f=-+a,
f=f==,
∴-+a=,则a=,
故f(5a)=f(3)=f(-1)=-1+=-.
答案 C
8.(2017·铜陵一模)设P(x0,y0)是函数f(x)图像上任意一点,且y≥x,则f(x)的解析式可以是
(  )
A.f(x)=x-
B.f(x)=ex-1
C.f(x)=x+
D.f(x)=tan
x
解析 对于A项,当x=1,f(1)=0,此时02≥12不成立.对于B项,取x=-1,f(-1)=-1,此时2≥(-1)2不成立.在D项中,f=tanπ=1,此时12≥2不成立.∴A,B,D均不正确.选C.事实上,在C项中,对任意x0∈R,y=2有y-x=+8>0,有y≥x成立.
答案 C
二、填空题
9.(2016·江苏卷)函数y=的定义域是________.
解析 要使函数有意义,则3-2x-x2≥0,∴x2+2x-3≤0,解之得-3≤x≤1.答案 [-3,1]
10.已知函数f(x)=则f=________.
解析 ∵f=-tan=-1.
∴f=f(-1)=2×(-1)3=-2.
答案 -2
11.已知函数f(x)满足f=log2,则f(x)的解析式是________.
解析 根据题意知x>0,所以f=log2x,则f(x)=log2=-log2x.
答案 f(x)=-log2
x
12.设函数f(x)=则使f(x)=的x的集合为________.
解析 由题意知,若x≤0,则2x=,解得x=-1;若x>0,则|log2x|=,解得x=2或x=2-,故x的集合为.
答案 
能力提升题组
(建议用时:15分钟)
13.(2015·湖北卷)设x∈R,定义符号函数sgn
x=则
(  )
A.|x|=x|sgn
x|
B.|x|=xsgn|x|
C.|x|=|x|sgn
x
D.|x|=xsgn
x
解析 当x>0时,|x|=x,sgn
x=1,则|x|=xsgn
x;
当x<0时,|x|=-x,sgn
x=-1,则|x|=xsgn
x;
当x=0时,|x|=x=0,sgn
x=0,则|x|=xsgn
x.
答案 D
14.设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围是
(  )
A.
B.[0,1]
C.
D.[1,+∞)
解析 由f(f(a))=2f(a)得,f(a)≥1.
当a<1时,有3a-1≥1,∴a≥,∴≤a<1.
当a≥1时,有2a≥1,∴a≥0,∴a≥1.
综上,a≥.
答案 C
15.函数f(x)=ln+的定义域为________.
解析 要使函数f(x)有意义,则 0答案 (0,1]
16.(2015·浙江卷)已知函数f(x)=则f(f(-3))=________,f(x)的最小值是________.
解析 ∵f(-3)=lg[(-3)2+1]=lg
10=1,
∴f(f(-3))=f(1)=0,
当x≥1时,f(x)=x+-3≥2-3,当且仅当x=时,取等号,此时f(x)min=2-3<0;
当x<1时,f(x)=lg(x2+1)≥lg
1=0,当且仅当x=0时,取等号,此时f(x)min=0.∴f(x)的最小值为2-3.
答案 0 2-3第3讲 函数的奇偶性与周期性
基础巩固题组
(建议用时:40分钟)                   
一、选择题
1.(2017·肇庆三模)在函数y=xcos
x,y=ex+x2,y=lg,y=xsin
x中,偶函数的个数是
(  )
A.3
B.2
C.1
D.0
解析 y=xcos
x为奇函数,y=ex+x2为非奇非偶函数,y=lg与y=xsin
x为偶函数.
答案 B
2.(2015·湖南卷)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是
(  )
A.奇函数,且在(0,1)内是增函数
B.奇函数,且在(0,1)内是减函数
C.偶函数,且在(0,1)内是增函数
D.偶函数,且在(0,1)内是减函数
解析 易知f(x)的定义域为(-1,1),且f(-x)=ln(1-x)-ln(1+x)=-f(x),则y=f(x)为奇函数,
又y=ln(1+x)与y=-ln(1-x)在(0,1)上是增函数,
所以f(x)=ln(1+x)-ln(1-x)在(0,1)上是增函数.
答案 A
3.已知函数f(x)=x,若f(x1)(  )
A.x1>x2
B.x1+x2=0
C.x1D.x解析 ∵f(-x)=-x=f(x).
∴f(x)在R上为偶函数,f′(x)=ex-+x,
∴x>0时,f′(x)>0,∴f(x)在[0,+∞)上为增函数,
由f(x1)∴|x1|<|x2|,∴x答案 D
4.已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于
(  )
A.4
B.3
C.2
D.1
解析 由已知得f(-1)=-f(1),g(-1)=g(1),则有解得g(1)=3.
答案 B
5.(2017·西安一模)奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=2,则f(4)+f(5)的值为
(  )
A.2
B.1
C.-1
D.-2
解析 ∵f(x+1)为偶函数,
∴f(-x+1)=f(x+1),则f(-x)=f(x+2),
又y=f(x)为奇函数,则f(-x)=-f(x)=f(x+2),且f(0)=0.
从而f(x+4)=-f(x+2)=f(x),y=f(x)的周期为4.
∴f(4)+f(5)=f(0)+f(1)=0+2=2.
答案 A
二、填空题
6.若f(x)=ln(e3x+1)+ax是偶函数,则a=________.
解析 由于f(-x)=f(x),
∴ln(e-3x+1)-ax=ln(e3x+1)+ax,
化简得2ax+3x=0(x∈R),则2a+3=0,
∴a=-.
答案 -
7.(2017·合肥质检)若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=则f+f=________.
解析 由于函数f(x)是周期为4的奇函数,所以f+f=f+f=f+f=-f-f=-+sin
=.
答案 
8.定义在R上的奇函数y=f(x)在(0,+∞)上递增,且f=0,则满足f(x)>0的x的集合为________.
解析 由奇函数y=f(x)在(0,+∞)上递增,且f=0,得函数y=f(x)在(-∞,0)上递增,且f=0,
∴f(x)>0时,x>或-答案 
三、解答题
9.设f(x)是定义域为R的周期函数,最小正周期为2,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.
(1)判定f(x)的奇偶性;
(2)试求出函数f(x)在区间[-1,2]上的表达式.
解 (1)∵f(1+x)=f(1-x),∴f(-x)=f(2+x).
又f(x+2)=f(x),∴f(-x)=f(x).
又f(x)的定义域为R,
∴f(x)是偶函数.
(2)当x∈[0,1]时,-x∈[-1,0],
则f(x)=f(-x)=x;
进而当1≤x≤2时,-1≤x-2≤0,
f(x)=f(x-2)=-(x-2)=-x+2.
故f(x)=
10.已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
解 (1)设x<0,则-x>0,
所以f(-x)=-(-x)2+2(-x)=-x2-2x.
又f(x)为奇函数,所以f(-x)=-f(x).
于是x<0时,f(x)=x2+2x=x2+mx,
所以m=2.
(2)要使f(x)在[-1,a-2]上单调递增,
结合f(x)的图像知所以1故实数a的取值范围是(1,3].
能力提升题组
(建议用时:20分钟)
11.(2017·南昌一模)已知f(x)是定义在R上的以3为周期的偶函数,若f(1)<1,f(5)=,则实数a的取值范围为
(  )
A.(-1,4)
B.(-2,0)
C.(-1,0)
D.(-1,2)
解析 ∵f(x)是定义在R上的周期为3的偶函数,
∴f(5)=f(5-6)=f(-1)=f(1),
∵f(1)<1,f(5)=,∴<1,即<0,
解得-1答案 A
12.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图像关于x=1对称,且f(0)=2,则f(2
015)+f(2
016)=
(  )
A.0
B.2
C.3
D.4
解析 y=f(x-1)的图像关于x=1对称,则函数y=f(x)的图像关于x=0对称,即函数f(x)是偶函数,
令x=-1,则f(-1+2)-f(-1)=2f(1),
∴f(1)-f(1)=2f(1)=0,即f(1)=0,
则f(x+2)-f(x)=2f(1)=0,
即f(x+2)=f(x),
则函数的周期是2,又f(0)=2,
则f(2
015)+f(2
016)=f(1)+f(0)=0+2=2.
答案 B
13.(2017·东北四市联考)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图像在区间[0,6]上与x轴的交点个数为________.
解析 因为当0≤x<2时,f(x)=x3-x.又f(x)是R上最小正周期为2的周期函数,且f(0)=0,
则f(6)=f(4)=f(2)=f(0)=0.
又f(1)=0,
∴f(3)=f(5)=f(1)=0,
故函数y=f(x)的图像在区间[0,6]上与x轴的交点有7个.
答案 7
14.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图像与x轴所围成图形的面积.
解 (1)由f(x+2)=-f(x)得,
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4为周期的周期函数,
所以f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函数且f(x+2)=-f(x),
得f[(x-1)+2]=-f(x-1)=f[-(x-1)],
即f(1+x)=f(1-x).
故知函数y=f(x)的图像关于直线x=1对称.
又当0≤x≤1时,f(x)=x,且f(x)的图像关于原点成中心对称,则f(x)的图像如下图所示.
当-4≤x≤4时,f(x)的图像与x轴围成的图形面积为S,则S=4S△OAB=4×=4.第2讲 函数的单调性与最大(小)值
基础巩固题组
(建议用时:40分钟)                   
一、选择题
1.若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a的值为
(  )
A.-2
B.2
C.-6
D.6
解析 由图像易知函数f(x)=|2x+a|的单调增区间是[-,+∞),令-=3,∴a=-6.
答案 C
2.(2016·北京卷)下列函数中,在区间(-1,1)上为减函数的是
(  )
A.y=
B.y=cos
x
C.y=ln(x+1)
D.y=2-x
解析 ∵y=与y=ln(x+1)在(-1,1)上为增函数,且y=cos
x在(-1,1)上不具备单调性.∴A,B,C不满足题意.只有y=2-x=x在(-1,1)上是减函数.
答案 D
3.定义新运算“ ”:当a≥b时,a b=a2;当a(  )
A.-1
B.1
C.6
D.12
解析 由已知得当-2≤x≤1时,f(x)=x-2,当1∵f(x)=x-2,f(x)=x3-2在定义域内都为增函数.
∴f(x)的最大值为f(2)=23-2=6.
答案 C
4.已知函数y=f(x)的图像关于x=1对称,且在(1,+∞)上单调递增,设a=f,b=f(2),c=f(3),则a,b,c的大小关系为
(  )
A.cB.bC.bD.a解析 ∵函数图像关于x=1对称,∴a=f=f,又y=f(x)在(1,+∞)上单调递增,
∴f(2)答案 B
5.f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x-8)≤2时,x的取值范围是
(  )
A.(8,+∞)
B.(8,9]
C.[8,9]
D.(0,8)
解析 2=1+1=f(3)+f(3)=f(9),由f(x)+f(x-8)≤2,可得f[x(x-8)]≤f(9),因为f(x)是定义在(0,+∞)上的增函数,所以有解得8答案 B
二、填空题
6.(2017·郑州模拟)设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是________.
解析 由题意知g(x)=
函数的图像如图所示的实线部分,根据图像,g(x)的减区间是[0,1).
答案 [0,1)
7.(2017·南昌调研)函数f(x)=x-log2(x+2)在区间[-1,1]上的最大值为________.
解析 由于y=x在R上递减,y=log2(x+2)在[-1,1]上递增,所以f(x)在[-1,1]上单调递减,故f(x)在[-1,1]上的最大值为f(-1)=3.
答案 3
8.(2017·潍坊模拟)设函数f(x)=若函数y=f(x)在区间(a,a+1)上单调递增,则实数a的取值范围是________.
解析 作出函数f(x)的图像如图所示,由图像可知f(x)在(a,a+1)上单调递增,需满足a≥4或a+1≤2,即a≤1或a≥4.
答案 (-∞,1]∪[4,+∞)
三、解答题
9.已知函数f(x)=-(a>0,x>0).
(1)求证:f(x)在(0,+∞)上是增函数;
(2)若f(x)在上的值域是,求a的值.
(1)证明 设x2>x1>0,则x2-x1>0,x1x2>0,
∵f(x2)-f(x1)=-=-=>0,
∴f(x2)>f(x1),∴f(x)在(0,+∞)上是增函数.
(2)解 ∵f(x)在上的值域是,又由(1)得f(x)在上是单调增函数,
∴f=,f(2)=2,易知a=.
10.已知函数f(x)=2x-的定义域为(0,1](a为实数).
(1)当a=1时,求函数y=f(x)的值域;
(2)求函数y=f(x)在区间(0,1]上的最大值及最小值,并求出当函数f(x)取得最值时x的值.
解 (1)当a=1时,f(x)=2x-,任取1≥x1>x2>0,则f(x1)-f(x2)=2(x1-x2)-
=(x1-x2).
∵1≥x1>x2>0,∴x1-x2>0,x1x2>0.
∴f(x1)>f(x2),∴f(x)在(0,1]上单调递增,无最小值,当x=1时取得最大值1,所以f(x)的值域为(-∞,1].
(2)当a≥0时,y=f(x)在(0,1]上单调递增,无最小值,当x=1时取得最大值2-a;
当a<0时,f(x)=2x+,
当≥1,即a∈(-∞,-2]时,y=f(x)在(0,1]上单调递减,无最大值,当x=1时取得最小值2-a;
当<1,即a∈(-2,0)时,y=f(x)在上单调递减,在上单调递增,无最大值,当x=时取得最小值2.
能力提升题组
(建议用时:20分钟)
11.(2017·郑州质检)若函数f(x)=ax(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)在[0,+∞)上是增函数,则a=
(  )
A.4
B.2
C.
D.
解析 当a>1,则y=ax为增函数,有a2=4,a-1=m,此时a=2,m=,
此时g(x)=-在[0,+∞)上为减函数,不合题意.
当0有a-1=4,a2=m,此时a=,m=.
此时g(x)=在[0,+∞)上是增函数.故a=.
答案 D
12.(2017·枣阳第一中学模拟)已知函数f(x)=ex-1,g(x)=-x2+4x-3,若存在f(a)=g(b),则实数b的取值范围为
(  )
A.[0,3]
B.(1,3)
C.[2-,2+]
D.(2-,2+)
解析 由题可知f(x)=ex-1>-1,g(x)=-x2+4x-3=-(x-2)2+1≤1,
若f(a)=g(b),则g(b)∈(-1,1],
即-b2+4b-3>-1,即b2-4b+2<0,
解得2-所以实数b的取值范围为(2-,2+).
答案 D
13.对于任意实数a,b,定义min{a,b}=设函数f(x)=-x+3,g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是________.
解析 依题意,h(x)=
当0当x>2时,h(x)=3-x是减函数,
∴h(x)在x=2时,取得最大值h(2)=1.
答案 1
14.已知函数f(x)=lg(x+-2),其中a是大于0的常数.
(1)求函数f(x)的定义域;
(2)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;
(3)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.
解 (1)由x+-2>0,得>0,
当a>1时,x2-2x+a>0恒成立,定义域为(0,+∞),
当a=1时,定义域为{x|x>0且x≠1},
当0<a<1时,定义域为{x|0<x<1-或x>1+}.
(2)设g(x)=x+-2,当a∈(1,4),x∈[2,+∞)时,
∴g′(x)=1-=>0.
因此g(x)在[2,+∞)上是增函数,
∴f(x)在[2,+∞)上是增函数.
则f(x)min=f(2)=ln.
(3)对任意x∈[2,+∞),恒有f(x)>0.
即x+-2>1对x∈[2,+∞)恒成立.
∴a>3x-x2.
令h(x)=3x-x2,x∈[2,+∞).
由于h(x)=-2+在[2,+∞)上是减函数,
∴h(x)max=h(2)=2.
故a>2时,恒有f(x)>0.
因此实数a的取值范围为(2,+∞).第4讲 二次函数的再研究与幂函数
基础巩固题组(建议用时:40分钟)                   
一、选择题
1.(2017·郑州外国语学校期中)已知α∈{-1,1,2,3},则使函数y=xα的值域为R,且为奇函数的所有α的值为
(  )
A.1,3
B.-1,1
C.-1,3
D.-1,1,3
解析 因为函数y=xα为奇函数,故α的可能值为-1,1,3.又y=x-1的值域为{y|y≠0},函数y=x,y=x3的值域都为R.所以符合要求的α的值为1,3.
答案 A
2.已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则
(  )
A.a>0,4a+b=0
B.a<0,4a+b=0
C.a>0,2a+b=0
D.a<0,2a+b=0
解析 因为f(0)=f(4)>f(1),所以函数图像应开口向上,即a>0,且其对称轴为x=2,即-=2,所以4a+b=0.
答案 A
3.在同一坐标系内,函数y=xa(a≠0)和y=ax+的图像可能是
(  )
解析 若a<0,由y=xa的图像知排除C,D选项,由y=ax+的图像知应选B;若a>0,y=xa的图像知排除A,B选项,但y=ax+的图像均不适合,综上选B.
答案 B
4.若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于
(  )
A.-1
B.1
C.2
D.-2
解析 ∵函数f(x)=x2-ax-a的图像为开口向上的抛物线,
∴函数的最大值在区间的端点取得,
∵f(0)=-a,f(2)=4-3a,
∴或解得a=1.
答案 B
5.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是
(  )
A.(-∞,-2)
B.(-2,+∞)
C.(-6,+∞)
D.(-∞,-6)
解析 不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max,
令f(x)=x2-4x-2,x∈(1,4),
所以f(x)答案 A
二、填空题
6.已知P=,Q=3,R=3,则P,Q,R的大小关系是________.
解析 P==3,根据函数y=x3是R上的增函数,且>>,得3>3>3,即P>R>Q.
答案 P>R>Q
7.若f(x)=-x2+2ax与g(x)=在区间[1,2]上都是减函数,则a的取值范围是________.
解析 由f(x)=-x2+2ax在[1,2]上是减函数可得[1,2] [a,+∞),∴a≤1.
∵y=在(-1,+∞)上为减函数,
∴由g(x)=在[1,2]上是减函数可得a>0,
故0答案 (0,1]
8.已知函数y=f(x)是偶函数,当x>0时,f(x)=(x-1)2,若当x∈时,n≤f(x)≤m恒成立,则m-n的最小值为________.
解析 当x<0时,-x>0,f(x)=f(-x)=(x+1)2,
∵x∈,
∴f(x)min=f(-1)=0,f(x)max=f(-2)=1,
∴m≥1,n≤0,m-n≥1.∴m-n的最小值是1.
答案 1
三、解答题
9.已知幂函数f(x)=x(m2+m)-1(m∈N+)的图像经过点(2,),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.
解 幂函数f(x)的图像经过点(2,),
∴=2(m2+m)-1,即=2(m2+m)-1.
∴m2+m=2.解得m=1或m=-2.
又∵m∈N+,∴m=1.∴f(x)=,
则函数的定义域为[0,+∞),并且在定义域上为增函数.
由f(2-a)>f(a-1)得
解得1≤a<.∴a的取值范围为.
10.已知函数f(x)=x2+(2a-1)x-3.
(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;
(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.
解 (1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],
对称轴x=-∈[-2,3],
∴f(x)min=f=--3=-,
f(x)max=f(3)=15,∴值域为.
(2)对称轴为x=-.
①当-≤1,即a≥-时,
f(x)max=f(3)=6a+3,
∴6a+3=1,即a=-满足题意;
②当->1,即a<-时,
f(x)max=f(-1)=-2a-1,
∴-2a-1=1,即a=-1满足题意.综上可知,a=-或-1.
能力提升题组
(建议用时:20分钟)
11.(2016·浙江卷)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的
(  )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件解析 ∵f(x)=x2+bx=2-,当x=-时,f(x)min=-.
又f(f(x))=(f(x))2+bf(x)=2-,当f(x)=-时,f(f(x))min=-,当-≥-时,f(f(x))可以取到最小值-,即b2-2b≥0,解得b≤0或b≥2,故“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分不必要条件.
答案 A
12.(2017·合肥期中测试)函数f(x)=(m2-m-1)x4m9-m5-1是幂函数,对任意的x1,x2∈(0,+∞),且x1≠x2,满足>0,若a,b∈R,且a+b>0,则f(a)+f(b)的值
(  )
A.恒大于0
B.恒小于0
C.等于0
D.无法判断
解析 依题意,幂函数f(x)在(0,+∞)上是增函数,
∴解得m=2,则f(x)=x2
015.
∴函数f(x)=x2
015在R上是奇函数,且为增函数.
由a+b>0,得a>-b,
∴f(a)>f(-b),则f(a)+f(b)>0.
答案 A
13.已知函数f(x)=若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是______.
解析 
作出函数y=f(x)的图像如图.则当0答案 (0,1)
14.已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函数f(x)的最小值是f(-1)=0,且c=1,
F(x)=求F(2)+F(-2)的值;
(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.
解 (1)由已知c=1,a-b+c=0,且-=-1,
解得a=1,b=2,∴f(x)=(x+1)2.
∴F(x)=
∴F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8.
(2)由a=1,c=0,得f(x)=x2+bx,
从而|f(x)|≤1在区间(0,1]上恒成立等价于-1≤x2+bx≤1在区间(0,1]上恒成立,
即b≤-x且b≥--x在(0,1]上恒成立.
又-x的最小值为0,--x的最大值为-2.
∴-2≤b≤0.故b的取值范围是[-2,0].
同课章节目录