北师大版三轮冲刺文科数学练习:圆锥曲线与方程(打包 4)

文档属性

名称 北师大版三轮冲刺文科数学练习:圆锥曲线与方程(打包 4)
格式 zip
文件大小 748.1KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2017-04-21 11:04:52

文档简介

第5讲 椭 圆
基础巩固题组
(建议用时:40分钟)                   
一、选择题
1.椭圆+=1的焦距为2,则m的值等于
(  )
A.5
B.3
C.5或3
D.8
解析 当m>4时,m-4=1,∴m=5;当0答案 C
2.“2(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 若+=1表示椭圆.
则有∴2故“2答案 B
3.设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为
(  )
A.
B.
C.
D.
解析 在Rt△PF2F1中,令|PF2|=1,因为∠PF1F2=30°,所以|PF1|=2,|F1F2|=.故e===.故选D.
答案 D
4.(2015·全国Ⅰ卷)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=
(  )
A.3
B.6
C.9
D.12
解析 抛物线C:y2=8x的焦点坐标为(2,0),准线方程为x=-2.从而椭圆E的半焦距c=2.可设椭圆E的方程为+=1(a>b>0),因为离心率e==,所以a=4,所以b2=a2-c2=12.由题意知|AB|==2×=6.故选B.
答案 B
5.(2016·江西师大附中模拟)椭圆ax2+by2=1(a>0,b>0)与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为,则的值为
(  )
A.
B.
C.
D.
解析 设A(x1,y1),B(x2,y2),
则ax+by=1,ax+by=1,
即ax-ax=-(by-by),=-1,
=-1,∴×(-1)×=-1,
∴=,故选B.
答案 B
二、填空题
6.焦距是8,离心率等于0.8的椭圆的标准方程为________.
解析 由题意知解得
又b2=a2-c2,∴b2=9,∴b=3.
当焦点在x轴上时,椭圆方程为+=1,
当焦点在y轴上时,椭圆方程为+=1.
答案 +=1或+=1
7.(2017·南昌质检)椭圆+=1上的一点P到两焦点的距离的乘积为m,当m取最大值时,点P的坐标是________.
解析 记椭圆的两个焦点分别为F1,F2,有|PF1|+|PF2|=2a=10.
则m=|PF1|·|PF2|≤2=25,当且仅当|PF1|=|PF2|=5,即点P位于椭圆的短轴的顶点处时,m取得最大值25.
∴点P的坐标为(-3,0)或(3,0).
答案 (-3,0)或(3,0)
8.(2017·乌鲁木齐调研)已知F1(-c,0),F2(c,0)为椭圆+=1(a>b>0)的两个焦点,P为椭圆上一点,且·=c2,则此椭圆离心率的取值范围是________.
解析 设P(x,y),则·=(-c-x,-y)·(c-x,-y)=x2-c2+y2=c2,①
将y2=b2-x2代入①式解得
x2==,
又x2∈[0,a2],∴2c2≤a2≤3c2,
∴e=∈.
答案 
三、解答题
9.设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.
解 (1)根据c=及题设知M,2b2=3ac.
将b2=a2-c2代入2b2=3ac,解得=或=-2(舍去).故C的离心率为.
(2)由题意,知原点O为F1F2的中点,MF2∥y轴,
所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,
故=4,即b2=4a.①
由|MN|=5|F1N|,得|DF1|=2|F1N|.
设N(x1,y1),由题意知y1<0,则

代入C的方程,得+=1.②
将①及c=代入②得+=1.
解得a=7,b2=4a=28,
故a=7,b=2
.
10.(2017·宝鸡月考)已知点M(,)在椭圆C:+=1(a>b>0)上,且椭圆的离心率为.
(1)求椭圆C的方程;(2)若斜率为1的直线l与椭圆C交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2),求△PAB的面积.
解 (1)由已知得
解得
故椭圆C的方程为+=1.
(2)设直线l的方程为y=x+m,A(x1,y1),B(x2,y2),AB的中点为D(x0,y0).
由消去y,整理得4x2+6mx+3m2-12=0,
则x0==-m,y0=x0+m=m,
即D.
因为AB是等腰三角形PAB的底边,所以PD⊥AB,
即PD的斜率k==-1,解得m=2.
此时x1+x2=-3,x1x2=0,
则|AB|=|x1-x2|=·=3,
又点P到直线l:x-y+2=0的距离为d=,
所以△PAB的面积为S=|AB|·d=.
能力提升题组
(建议用时:25分钟)
11.(2016·高安模拟)椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为
(  )
A.
B.
C.
D.-1
解析 设F(-c,0)关于直线x+y=0的对称点A(m,n),
则∴m=,n=c,
代入椭圆方程可得+=1,并把b2=a2-c2代入,
化简可得e4-8e2+4=0,解得e2=4±2,又0<e<1,∴e=-1,故选D.
答案 D
12.(2017·海沧实验中学模拟)已知直线l:y=kx+2过椭圆+=1(a>b>0)的上顶点B和左焦点F,且被圆x2+y2=4截得的弦长为L,若L≥,则椭圆离心率e的取值范围是
(  )
A.
B.
C.
D.
解析 依题意,知b=2,kc=2.
设圆心到直线l的距离为d,则L=2≥,
解得d2≤.又因为d=,所以≤,
解得k2≥.
于是e2===,所以0<e2≤,解得0<e≤.故选B.
答案 B
13.椭圆+y2=1的左、右焦点分别为F1,F2,点P为椭圆上一动点,若∠F1PF2为钝角,则点P的横坐标的取值范围是________.
解析 设椭圆上一点P的坐标为(x,y),
则=(x+,y),=(x-,y).
∵∠F1PF2为钝角,∴·<0,
即x2-3+y2<0,①
∵y2=1-,代入①得x2-3+1-<0,
即x2<2,∴x2<.
解得-答案 
14.(2017·西安质监)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,且|F1F2|=6,直线y=kx与椭圆交于A,B两点.
(1)若△AF1F2的周长为16,求椭圆的标准方程;
(2)若k=,且A,B,F1,F2四点共圆,求椭圆离心率e的值;
(3)在(2)的条件下,设P(x0,y0)为椭圆上一点,且直线PA的斜率k1∈(-2,-1),试求直线PB的斜率k2的取值范围.
解 (1)由题意得c=3,根据2a+2c=16,得a=5.
结合a2=b2+c2,解得a2=25,b2=16.
所以椭圆的标准方程为+=1.
(2)法一 由得x2-a2b2=0.
设A(x1,y1),B(x2,y2),
所以x1+x2=0,x1x2=,
由AB,F1F2互相平分且共圆,易知,AF2⊥BF2,
因为=(x1-3,y1),=(x2-3,y2),
所以·=(x1-3)(x2-3)+y1y2=x1x2+9=0.即x1x2=-8,所以有=-8,
结合b2+9=a2,解得a2=12,∴e=.
法二 设A(x1,y1),又AB,F1F2互相平分且共圆,所以AB,F1F2是圆的直径,所以x+y=9,
又由椭圆及直线方程综合可得
由前两个方程解得x=8,y=1,
将其代入第三个方程并结合b2=a2-c2=a2-9,
解得a2=12,故e=.
(3)由(2)的结论知,椭圆方程为+=1,
由题可设A(x1,y1),B(-x1,-y1),k1=,k2=,所以k1k2=,
又==-.
即k2=-,
由-2<k1<-1可知,<k2<.
故直线PB的斜率k2的取值范围是.第8讲 圆锥曲线的综合问题
第1课时 直线与圆锥曲线
基础巩固题组
(建议用时:40分钟)                   
一、选择题
1.过抛物线y2=2x的焦点作一条直线与抛物线交于A,B两点,它们的横坐标之和等于2,则这样的直线
(  )
A.有且只有一条
B.有且只有两条
C.有且只有三条
D.有且只有四条
解析 ∵通径2p=2,又|AB|=x1+x2+p,∴|AB|=3>2p,故这样的直线有且只有两条.
答案 B
2.直线y=x+3与双曲线-=1(a>0,b>0)的交点个数是
(  )
A.1
B.2
C.1或2
D.0
解析 因为直线y=x+3与双曲线的渐近线y=x平行,所以它与双曲线只有1个交点.
答案 A
3.经过椭圆+y2=1的一个焦点作倾斜角为45°的直线l,交椭圆于A,B两点,设O为坐标原点,则·等于
(  )
A.-3
B.-
C.-或-3
D.±
解析 依题意,当直线l经过椭圆的右焦点(1,0)时,其方程为y-0=tan
45°(x-1),即y=x-1,代入椭圆方程+y2=1并整理得3x2-4x=0,解得x=0或x=,所以两个交点坐标分别为(0,-1),,∴·=-,同理,直线l经过椭圆的左焦点时,也可得·=-.
答案 B
4.抛物线y=x2到直线x-y-2=0的最短距离为
(  )
A.
B.
C.2
D.
解析 设抛物线上一点的坐标为(x,y),则d===,
∴x=时,
dmin=.
答案 B
5.已知A,B,P是双曲线-=1(a>0,b>0)上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPA·kPB=,则该双曲线的离心率为
(  )
A.
B.
C.
D.
解析 设A(x1,y1),P(x2,y2)根据对称性,得B点坐标为
(-x1,-y1),因为A,P在双曲线上,
所以两式相减,得kPAkPB==,
所以e2==,故e=.
答案 D
二、填空题
6.(2017·西安调研)已知椭圆C:+=1(a>b>0),F(,0)为其右焦点,过F且垂直于x轴的直线与椭圆相交所得的弦长为2.则椭圆C的方程为________.
解析 由题意得解得∴椭圆C的方程为+=1.
答案 +=1
7.已知抛物线y=ax2(a>0)的焦点到准线的距离为2,则直线y=x+1截抛物线所得的弦长等于________.
解析 由题设知p==2,∴a=.
抛物线方程为y=x2,焦点为F(0,1),准线为y=-1.
联立消去x,
整理得y2-6y+1=0,∴y1+y2=6,∵直线过焦点F,
∴所得弦|AB|=|AF|+|BF|=y1+1+y2+1=8.
答案 8
8.过椭圆+=1内一点P(3,1),且被这点平分的弦所在直线的方程是________.
解析 设直线与椭圆交于A(x1,y1),B(x2,y2)两点,
由于A,B两点均在椭圆上,
故+=1,+=1,
两式相减得
+=0.
又∵P是A,B的中点,∴x1+x2=6,y1+y2=2,
∴kAB==-.
∴直线AB的方程为y-1=-(x-3).
即3x+4y-13=0.
答案 3x+4y-13=0
三、解答题
9.设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过F1且斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求E的离心率;(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.
解 (1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,
又2|AB|=|AF2|+|BF2|,得|AB|=a,
l的方程为y=x+c,其中c=.
设A(x1,y1),B(x2,y2),则A,B两点的坐标满足方程组消去y,化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,则x1+x2=,x1x2=.
因为直线AB的斜率为1,所以|AB|=|x2-x1|=,即a=,故a2=2b2,
所以E的离心率e===.
(2)设AB的中点为N(x0,y0),由(1)知
x0===-,y0=x0+c=.
由|PA|=|PB|,得kPN=-1,即=-1,
得c=3,从而a=3,b=3.
故椭圆E的方程为+=1.
10.已知椭圆C:+=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;(2)当△AMN的面积为时,求k的值.
解 (1)由题意得
解得b=,所以椭圆C的方程为+=1.
(2)由得(1+2k2)x2-4k2x+2k2-4=0.
设点M,N的坐标分别为(x1,y1),(x2,y2),
则y1=k(x1-1),y2=k(x2-1),
x1+x2=,x1x2=,
所以|MN|=


又因为点A(2,0)到直线y=k(x-1)的距离d=,
所以△AMN的面积为S=|MN|·d=,由=,解得k=±1.
能力提升题组
(建议用时:25分钟)
11.已知椭圆+=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为5,则b的值是
(  )
A.1
B.
C.
D.
解析 由椭圆的方程,可知长半轴长为a=2,由椭圆的定义,可知|AF2|+|BF2|+|AB|=4a=8,
所以|AB|=8-(|AF2|+|BF2|)≥3.
由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即=3,可求得b2=3,即b=.
答案 D
12.抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=
(  )
A.
B.
C.
D.
解析 
∵双曲线C2:-y2=1,
∴右焦点为F(2,0),渐近线方程为y=±x.
抛物线C1:y=x2(p>0),焦点为F′.设M(x0,y0),则y0=x.
∵kMF′=kFF′,∴=.①
又∵y′=x,∴y′|x=x0=x0=.②
由①②得p=.
答案 D
13.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|=________.
解析 直线AF的方程为y=-(x-2),联立得y=4,所以P(6,4).
由抛物线的性质可知|PF|=6+2=8.
答案 8
14.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.
(1)求C的方程;
(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.
解 (1)设Q(x0,4),代入y2=2px得x0=.
所以|PQ|=,|QF|=+x0=+.
由题设得+=×,
解得p=-2(舍去)或p=2.所以C的方程为y2=4x.
(2)依题意知l与坐标轴不垂直,故可设l的方程为x=my+1(m≠0).
代入y2=4x得y2-4my-4=0.
设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4.
故AB的中点为D(2m2+1,2m),|AB|=|y1-y2|=4(m2+1).
又l′的斜率为-m,所以l′的方程为x=-y+2m2+3.
将上式代入y2=4x,并整理得y2+y-4(2m2+3)=0.
设M(x3,y3),N(x4,y4),则y3+y4=-,
y3y4=-4(2m2+3).
故MN的中点为E,
|MN|=|y3-y4|=.
由于MN垂直平分AB,
故A,M,B,N四点在同一圆上等价于|AE|=|BE|=|MN|,从而|AB|2+|DE|2=|MN|2,
即4(m2+1)2+2+2=
.
化简得m2-1=0,解得m=1或m=-1.
所求直线l的方程为x-y-1=0或x+y-1=0.第6讲 抛物线
基础巩固题组
(建议用时:40分钟)                   
一、选择题
1.(2016·全国Ⅱ卷)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=
(  )
A.
B.1
C.
D.2
解析 由题可知抛物线的焦点坐标为(1,0),由PF⊥x轴知,|PF|=2,所以P点的坐标为(1,2),代入曲线y=(k>0)得k=2,故选D.
答案 D
2.点M(5,3)到抛物线y=ax2(a≠0)的准线的距离为6,那么抛物线的方程是(  )
A.y=12x2
B.y=12x2或y=-36x2
C.y=-36x2
D.y=x2或y=-x2
解析 分两类a>0,a<0可得y=x2,y=-x2.
答案 D
3.(2017·宜春诊断)过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|=
(  )
A.9
B.8C.7
D.6
解析 抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.故选B.答案 B
4.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若=4,则|QF|等于
(  )
A.
B.
C.3
D.2
解析 
∵=4,
∴||=4||,∴=.
如图,过Q作QQ′⊥l,垂足为Q′,
设l与x轴的交点为A,
则|AF|=4,∴==,
∴|QQ′|=3,根据抛物线定义可知|QQ′|=|QF|=3,故选C.
答案 C
5.(2017·衡水金卷)已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y+y的最小值为
(  )
A.12
B.24
C.16
D.32
解析 当直线的斜率不存在时,其方程为x=4,由得y1=-4,y2=4,∴y+y=32.当直线的斜率存在时,设其方程为y=k(x-4),由得ky2-4y-16k=0,∴y1+y2=,y1y2=-16,∴y+y=(y1+y2)2-2y1y2=+32>32,综上可知,y+y≥32.∴y+y的最小值为32.故选D.
答案 D
二、填空题
6.(2016·兰州诊断)抛物线y2=-12x的准线与双曲线-=1的两条渐近线所围成的三角形的面积等于________.
解析 由图可知弦长|AB|=2,三角形的高为3,
∴面积为S=×2×3=3.
答案 3
7.(2017·安徽四校三联)过抛物线y2=4x的焦点F作倾斜角为45°的直线交抛物线于A,B两点,则弦长|AB|为________.
解析 设A(x1,y1),B(x2,y2).易得抛物线的焦点是F(1,0),所以直线AB的方程是y=x-1,联立消去y得x2-6x+1=0,所以x1+x2=6,所以|AB|=x1+x2+p=6+2=8.
答案 8
8.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.
解析 
建立如图平面直角坐标系,设抛物方程为x2=-2py(p>0).
由题意将点A(2,-2)代入x2=-2py,得p=1,故x2=-2y.设B(x,-3),代入x2=-2y中,得x=,故水面宽为2米.
答案 2
三、解答题
9.(2016·江苏卷)如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).
(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证:线段PQ的中点坐标为(2-p,-p);
②求p的取值范围.
(1)解 ∵l:x-y-2=0,∴l与x轴的交点坐标为(2,0).
即抛物线的焦点为(2,0),∴=2,∴p=4.
∴抛物线C的方程为y2=8x.
(2)①证明 设点P(x1,y1),Q(x2,y2).
则则
∴kPQ==,
又∵P,Q关于l对称.∴kPQ=-1,即y1+y2=-2p,
∴=-p,又∵PQ的中点一定在l上,
∴=+2=2-p.
∴线段PQ的中点坐标为(2-p,-p).
②解 ∵PQ的中点为(2-p,-p),

即∴
即关于y的方程y2+2py+4p2-4p=0,有两个不等实根.∴Δ>0.
即(2p)2-4(4p2-4p)>0,解得0<p<,
故所求p的范围为.
10.已知抛物线y2=2px(p>0)的焦点为F,A(x1,y1),B(x2,y2)是过F的直线与抛物线的两个交点,求证:
(1)y1y2=-p2,x1x2=;
(2)+为定值;
(3)以AB为直径的圆与抛物线的准线相切.
证明 (1)由已知得抛物线焦点坐标为(,0).
由题意可设直线方程为x=my+,代入y2=2px,
得y2=2p(my+),即y2-2pmy-p2=0.(
)
则y1,y2是方程(
)的两个实数根,
所以y1y2=-p2.
因为y=2px1,y=2px2,所以yy=4p2x1x2,
所以x1x2===.
(2)+=+
=.
因为x1x2=,x1+x2=|AB|-p,代入上式,
得+==(定值).
(3)
设AB的中点为M(x0,y0),分别过A,B作准线的垂线,垂足为C,D,过M作准线的垂线,垂足为N,
则|MN|=(|AC|+|BD|)=
(|AF|+|BF|)=|AB|.
所以以AB为直径的圆与抛物线的准线相切.
能力提升题组
(建议用时:25分钟)
11.(2017·汉中模拟)已知抛物线y2=2px(p>0)的焦点弦AB的两端点坐标分别为A(x1,y1),B(x2,y2),则的值一定等于
(  )
A.-4
B.4
C.p2
D.-p2
解析 ①若焦点弦AB⊥x轴,则x1=x2=,则x1x2=;
②若焦点弦AB不垂直于x轴,可设AB:y=k(x-),
联立y2=2px得k2x2-(k2p+2p)x+=0,
则x1x2=.又y=2px1,y=2px2,
∴yy=4p2x1x2=p4,又∵y1y2<0,∴y1y2=-p2.
故=-4.
答案 A
12.(2016·四川卷)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为
(  )
A.
B.
C.
D.1
解析 如图,
由题可知F,设P点坐标为(y0>0),则=+=+=+(-)=+=,kOM==≤=,当且仅当y=2p2等号成立.故选C.
答案 C
13.(2016·湖北七校联考)已知抛物线方程为y2=-4x,直线l的方程为2x+y-4=0,在抛物线上有一动点A,点A到y轴的距离为m,到直线l的距离为n,则m+n的最小值为________.
解析 如图,过A作AH⊥l,AN垂直于抛物线的准线,则|AH|+|AN|=m+n+1,连接AF,则|AF|+|AH|=m+n+1,由平面几何知识,知当A,F,H三点共线时,|AF|+|AH|=m+n+1取得最小值,最小值为F到直线l的距离,即=,即m+n的最小值为-1.
答案 -1
14.(2017·南昌模拟)已知抛物线C1:y2=4x和C2:x2=2py(p>0)的焦点分别为F1,F2,点P(-1,-1),且F1F2⊥OP(O为坐标原点).
(1)求抛物线C2的方程;
(2)过点O的直线交C1的下半部分于点M,交C2的左半部分于点N,求△PMN面积的最小值.
解 (1)由题意知F1(1,0),F2,
∴=,∵F1F2⊥OP,∴·=·(-1,-1)=1-=0,
∴p=2,∴抛物线C2的方程为x2=4y.
(2)设过点O的直线为y=kx(k<0),
联立得M,
联立得N(4k,4k2),
从而|MN|==,
又点P到直线MN的距离d=,
进而S△PMN=···=
2·=
=2,
令t=k+(t≤-2),则有S△PMN=2(t-2)(t+1),
当t=-2时,此时k=-1,S△PMN取得最小值.即当过点O的直线为y=-x时,△PMN面积的最小值为8.第7讲 双曲线
基础巩固题组
(建议用时:40分钟)                   
一、选择题
1.(2017·郑州模拟)设双曲线-=1(a>0,b>0)的虚轴长为2,焦距为2,则双曲线的渐近线方程为
(  )
A.y=±x
B.y=±x
C.y=±x
D.y=±2x
解析 因为2b=2,所以b=1,因为2c=2,所以c=,所以a==,所以双曲线的渐近线方程为y=±x=±x,故选B.
答案 B
2.(2015·广东卷)已知双曲线C:-=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为
(  )
A.-=1
B.-=1
C.-=1
D.-=1
解析 因为所求双曲线的右焦点为F2(5,0)且离心率为e==,所以c=5,a=4,b2=c2-a2=9,所以所求双曲线方程为-=1,故选C.
答案 C
3.(2017·山西省四校联考)已知双曲线C:-=1(a>0,b>0),右焦点F到渐近线的距离为2,点F到原点的距离为3,则双曲线C的离心率e为(  )
A.
B.
C.
D.
解析 ∵右焦点F到渐近线的距离为2,∴F(c,0)到y=x的距离为2,即=2,又b>0,c>0,a2+b2=c2,∴=b=2,又∵点F到原点的距离为3,∴c=3,∴a==,∴离心率e===.
答案 B
4.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos
∠F1PF2=
(  )
A.
B.
C.
D.
解析 由x2-y2=2,知a=b=,c=2.由双曲线定义,|PF1|-|PF2|=2a=2,
又|PF1|=2|PF2|,
∴|PF1|=4,|PF2|=2,
在△PF1F2中,|F1F2|=2c=4,由余弦定理,得
cos
∠F1PF2==.
答案 C
5.(2017·成都诊断)过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|=
(  )
A.
B.2
C.6
D.4
解析 由题意知,双曲线x2-=1的渐近线方程为y=±x,将x=c=2代入得y=±2,即A,B两点的坐标分别为(2,2),(2,-2),所以|AB|=4.
答案 D
二、填空题
6.(2016·江苏卷)在平面直角坐标系xOy中,双曲线-=1的焦距是________.
解析 由已知,得a2=7,b2=3,则c2=7+3=10,故焦距为2c=2.
答案 2
7.(2016·北京卷)双曲线-=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则a=________.
解析 
取B为双曲线右焦点,如图所示.∵四边形OABC为正方形且边长为2,∴c=|OB|=2,
又∠AOB=,
∴=tan=1,即a=b.
又a2+b2=c2=8,∴a=2.
答案 2
8.(2016·山东卷)已知双曲线E:-=1(a>0,b>0).若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是________.
解析 由已知得|AB|=,|BC|=2c,∴2×=3×2c.
又∵b2=c2-a2,整理得:2c2-3ac-2a2=0,两边同除以a2得22-3-2=0,即2e2-3e-2=0,解得e=2或e=-1(舍去).
答案 2
三、解答题
9.(2017·安徽江南十校联考)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,-).
(1)求双曲线的方程;
(2)若点M(3,m)在双曲线上,求证:·=0.
(1)解 ∵e=,
∴可设双曲线的方程为x2-y2=λ(λ≠0).
∵双曲线过点(4,-),∴16-10=λ,即λ=6.
∴双曲线的方程为x2-y2=6.
(2)证明 法一 由(1)可知,a=b=,
∴c=2,∴F1(-2,0),F2(2,0),
∴kMF1=,kMF2=,
kMF1·kMF2==-.
∵点M(3,m)在双曲线上,∴9-m2=6,m2=3,
故kMF1·kMF2=-1,∴MF1⊥MF2.∴·=0.
法二 由(1)可知,a=b=,∴c=2,
∴F1(-2,0),F2(2,0),
=(-2-3,-m),=(2-3,-m),
∴·=(3+2)×(3-2)+m2=-3+m2,
∵点M(3,0)在双曲线上,∴9-m2=6,即m2-3=0,
∴·=0.
10.已知椭圆C1的方程为+y2=1,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+与双曲线C2恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.
解 (1)设双曲线C2的方程为-=1(a>0,b>0),
则a2=3,c2=4,再由a2+b2=c2,得b2=1.
故C2的方程为-y2=1.
(2)将y=kx+代入-y2=1,
得(1-3k2)x2-6kx-9=0.
由直线l与双曲线C2交于不同的两点,得
∴k2≠且k2<1.①
设A(x1,y1),B(x2,y2),
则x1+x2=,x1x2=-.
∴x1x2+y1y2=x1x2+(kx1+)(kx2+)
=(k2+1)x1x2+k(x1+x2)+2=.
又∵·>2,得x1x2+y1y2>2,
∴>2,即>0,解得<k2<3.②
由①②得<k2<1,
故k的取值范围为∪.
能力提升题组
(建议用时:20分钟)
11.过双曲线C:-=1(a>0,b>0)的右顶点作x轴的垂线,与C的一条渐近线相交于点A.若以C的右焦点为圆心、半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为
(  )
A.-=1
B.-=1
C.-=1
D.-=1
解析 由双曲线方程知右顶点为(a,0),不妨设其中一条渐近线方程为y=x,因此可得点A的坐标为(a,b).
设右焦点为F(c,0),由已知可知c=4,且|AF|=4,即(c-a)2+b2=16,所以有(c-a)2+b2=c2,又c2=a2+b2,则c=2a,即a==2,所以b2=c2-a2=42-22=12.故双曲线的方程为-=1,故选A.
答案 A
12.若双曲线-=1(a>0,b>0)上存在一点P满足以|OP|为边长的正方形的面积等于2ab(其中O为坐标原点),则双曲线的离心率的取值范围是
(  )
A.
B.
C.
D.
解析 由条件,得|OP|2=2ab,又P为双曲线上一点,从而|OP|≥a,∴2ab≥a2,∴2b≥a,又∵c2=a2+b2≥a2+=a2,∴e=≥.
答案 C
13.(2016·浙江卷)设双曲线x2-=1的左、右焦点分别为F1,F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是________.
解析 
如图,由已知可得a=1,b=,c=2,从而|F1F2|=4,由对称性不妨设点P在右支上,设|PF2|=m,则|PF1|=m+2a=m+2,
由于△PF1F2为锐角三角形,
结合实际意义需满足
解得-1+<m<3,
又|PF1|+|PF2|=2m+2,
∴2<2m+2<8.
答案 (2,8)
14.已知双曲线-=1(a>0,b>0)的一条渐近线方程为2x+y=0,且顶点到渐近线的距离为.
(1)求此双曲线的方程;
(2)设P为双曲线上一点,A,B两点在双曲线的渐近线上,且分别位于第一、二象限,若A=P,求△AOB的面积.
解 (1)依题意得解得
故双曲线的方程为-x2=1.
(2)由(1)知双曲线的渐近线方程为y=±2x,设A(m,2m),B(-n,2n),其中m>0,n>0,由A=P得点P的坐标为.
将点P的坐标代入-x2=1,
整理得mn=1.
设∠AOB=2θ,∵tan=2,
则tan
θ=,从而sin
2θ=.
又|OA|=m,|OB|=n,
∴S△AOB=|OA||OB|sin
2θ=2mn=2.
同课章节目录