《图形与几何》教案
教学目标:
1.经历复习“图形的认识”有关知识的过程
( http: / / www.21cnjy.com )。知道长度、面积、体积单位及其进率,掌握平面图形、立体图形的有关计算公式,并能利用公式计算。经历复习与整理“图形与变换”知识的过程。
2.了解简单几何体和平面图形的基本特征及相关图形间的关系。
3.
能利用比例尺、量角器等解决平面图中的问题,能用数对表示位置。
教学重难点:
了解简单几何体和平面图形的基本特征。
教学过程:
一、空间与图形
(一)线
1.复习学过的直线、射线和线段,并说一说它们有什么相同点和不同点。
2.观察书中的图,回答问题。
3.提出“说一说”的三个问题,让学生思考。使学生认识到在同一平面内,两条直线的位置关系。
让学生一个一个说一说。
助理:你学过哪些图形?
2.总结并交流锐角、直角、钝角、平角、周角的特征及大小关系。
(二)几何图形
1.复习学过哪些平面图形,并说出每种图形的特征。
2.复习学过的立体图形,并说出每种图形的特征。
(三)议一议
1.提出书中的两个问题,先让学生同桌或小组讨论,然后全班交流。使学生学会从正方形、长方形和平行四边形的特征出发进行思考。
2.让学生试着用图表示正方形、长方形和平行四边形之间的关系。
组四:观察图形
让学生根据从正面、左面看到的图形,想
到新知。
象立体的样子,必要的话,可以用小正方体学具实际摆一摆。
二、测量和整理
(一)测量单位
1.我们学过哪些长度、面积、体积单位?自己整理并完成书中的表格。
2.提出“议一议”的问题,让学生讨论。
(二)选择单位
提出书中的要求后,鼓励学生选择测量单位描述身边的事物。
(三)平面图形
1.先让学生看书,说一说表中图形上的字母表示什么,再提出整理周长、面积公式的要求,完成书中的表格,最后交流填的结果。
2.你能用自己的语言说一说上面图形的面积计算公式是怎样推导出来的吗
(四)立体图形
1.先让学生说一说表中图形上字母表示什么,再提出整理表面积和体积公式的要求。让学生完成书中的表格,然后交流填的结果。
2.用自己的语言说一说上面图形体积公式的推导过程,让学生用自己的语言说一说图形体积公式的推导过程。
三、图形与变换
(一)运动现象、生活中简单图形的变换过程演示
1.让学生看图或播放课件,说一说发现了哪些对称、平移、旋转现象。重点说一说判断的理由。
2.让学生说一说生活中还有哪些对称、平移、旋转现象。
(二)按要求画图(探索图形变换的方法)
1.提出画图的问题,让学生按要求在书中完成三个画图。
2.交流、展示学生画的图形,说一说是怎样画的。
3.分别提出“说一说”中的两个问题,
(1)图1向哪个方向平移了几个格?
(2)图2绕哪个点向哪个方向旋转了90°?
让学生按照自己画图的情况进行交流。重点说一说是怎样做的。
4.让学生按要求在书中的方格纸上完成问题(1)和问题(2),然后交流画图的过程和结果。重点交流按比例放大或缩小的方法。
5、展示生活中常见的一些图案,体会它们是如何变换得来的
6、学生在教师的指导下和同学交流归纳,总结得出图形变换的整体规律和性质。
四、图形与位置
(一)用数对表示点
先让学生说一说每个字母中的数对表示什么意思
( http: / / www.21cnjy.com ),再在书中的坐标纸上描出A、B、C、D、E各点的位置。交流时,重点说一说是怎样根据数对确定五个点的位置的。
准确地确定物体的位置,除了用数对的方法标出所在的列和行,还可以把方向和距离结合起来表示,怎样表示
教师投影一幅野生动物园的示意图,学生用方向和距离结合起来描述各个景点的具体位置。(图略)
刚才我们复习了把方向和距离结合起来表示物体的准确位置,这里的距离都是已知的,但有的时候需要我们计算,这时又需要用到什么知识 (比例尺)
补充:以校门为观测点,根据下面提供的信息完成图示。(出示线段比例尺:1厘米表示40米)
(1)校门正北40米处是一个喷水池。
(2)教学楼在校门西北,与正西成40°夹角,离校门60米。
(3)市少年宫在校门南偏东35°方向,离校门80米。
学生根据信息独立画出示意图,展示学生作业时重点讲评第2、3两小题中不同的位置描述,及时纠正学生的错误。
五、练习
六、小结
今天主要讲的是什么内容?你是如何理解的?
巩固学生的学习情况。(共16张PPT)
图形与几何
绿色圃中学资源网http://cz.Lspjy.com
绿色圃中学资源网http://cz.Lspjy.com
绿色圃中学资源网http://cz.Lspjy.com
(二)长度、面积、体积单位及同类量之间的进率
1.长度单位:常见的长度单位:千米(km)、米(m)、分米(dm)、毫米(mm);
1千米=
米;1米=
分米;1分米=
厘米;1厘米=
分米
2.面积单位:常见的面积单位:平方千米、公顷、平方米、平方分米、平方厘米。
1平方千米=
公顷;1公顷=
平方米;1平方米=
平方分米;1平方分米=
平方厘米。
1000
10
10
10
100
10000
100
100
3.体积单位
常见的体积单位:立方米、立方分米、立方厘米、立方毫米、升、毫升。
1立方米=
立方分米;1立方分米=
立方厘米;
1立方厘米=
立方毫米;1立方分米=
升;1升=
毫升;
(二)质量单位和它们之间的进率
1吨=
千克;千克=
克。
1000
1000
1
1
1000
1000
1000
(一)时间单位和它们之间的进率
常见的时间单位:世纪、年、月、日、时、分、秒、季度、旬、星期等。
1.年
年按照天数可以分为平年和闰年;平年365天;闰年366天。
两者差在2月,平年的二月有28天,闰年的2月有29天。
一年可以分为四个季度,1、2、3月为第一季度,4、5、6月为第二季度,7、8、9月为第三季度,10、11、12为第四季度。
一、常见的计量单位及其进率
2.月的分类
分类
特点
月份
大月
31天
1、3、5、7、8、10、12月
小月
30天
4、6、9、11月
2月
28或者29天
注意:2月既不是大月又不是小月
1.
2.每月可以分为上旬:(1—10日);中旬:(11—20日);下旬(21—月底)。
练习:2008年,第29届奥运会在北京举行,那一年的第一季度有
天。
91
问题1:想一想,我们都学过哪些图形呀?你能对学过的这些图形
分分类吗?
(教师要等待,此时学生独立思考的时间。)
问题2:谁来说说,你是怎么分类的?
(在生生交流、师生交流中,完善并板书出图形的分类,
剥离出平面图形和立体图形。)
板书:图形
平面图形
立体图形:长方体
正方体
圆柱
圆锥
封闭图形:长方形
正方形
平行四边形
三角形
梯形
圆
不封闭图形:直线
射线
线段
角
平行线
相交线
绿色圃中学资源网http://cz.Lspjy.com
绿色圃中学资源网http://cz.Lspjy.com
PPT模板:www./moban/
PPT素材:www./sucai/
PPT背景:www./beijing/
PPT图表:www./tubiao/
PPT下载:www./xiazai/
PPT教程:
www./powerpoint/
资料下载:www./ziliao/
范文下载:www./fanwen/
试卷下载:www./shiti/
教案下载:www./jiaoan/
PPT论坛:www.
PPT课件:www./kejian/
语文课件:www./kejian/yuwen/
数学课件:www./kejian/shuxue/
英语课件:www./kejian/yingyu/
美术课件:www./kejian/meishu/
科学课件:www./kejian/kexue/
物理课件:www./kejian/wuli/
化学课件:www./kejian/huaxue/
生物课件:www./kejian/shengwu/
地理课件:www./kejian/dili/
历史课件:www./kejian/lishi/
复习平面图形的特点及关系
反馈:谁来说说你们组的想法?(实物投影展示学生整理的作品)
针对第(1)(2)两个问题监控:
提问1:我们学过的封闭图形中有“平行”和“垂直”的现象吗?(教
师适时在学生作品上板书,形成网络)
线段
射线
直线
角
垂直
平行
平行四边形的高
梯形的高
长方形
正方形
平行四边形
梯形
五种角
复习平面图形的特点及关系
提问2:关于三角形、平行四边形和圆你还有什么补充吗?
重点监控:三角形按角分类、三边关系及内角和
平行四边形与四边形的关系
圆是曲线图形
(实物投影展示学生整理的作品,教师适时完善板书,形成网络。重点是四边形的梳理。)
四边形
平行四边形
长方形
正方形
梯形
复习平面图形的计算公式
提问1:刚才,有的同学还提到了这些图形的周长和面积,那你能举例说
说什么是周长?什么是面积吗?(学生自由发言,教师适时点拨)
提问2:你还记得这些平面图形的公式吗?那好,请你在这些平面图形
上面写出它们的周长和面积公式,看谁写得又对又快!写完的
同学,继续思考一下:这些公式是怎么推导出来的呀?
C=2πr=πd
S=πr
C=2(a+b)
S=ab
S=ah÷2
S=ah
S=(a+b)h÷2
C=4a
S=a
复习平面图形的计算公式
提问3:你们都说它们之间面积是有联系的,那你能借助这些学具,
把它们之间的这种联系想办法摆一摆,使人一眼就能看出它
们之间的这种联系吗?
根据学生的实际情况,教师可以适时提示:
想一想,我们最早研究的是哪个图形的面积?
(教师行间巡视并进行指导)
预设:
提问1:你能读懂他们组的想法吗?
绿色圃中学资源网http://cz.Lspjy.com
绿色圃中学资源网http://cz.Lspjy.com
复习平面图形的计算公式
提问2:还看这幅图,换个角度,想象一下,你觉得这幅图像什么?
这棵大树的树根是哪个图形?(长方形)
小结:通过刚才的学习,你有什么想和大家交流的吗?
监控:1.长方形的面积是研究其他图形面积的基础。
2.利用割补、转化的方法来推导图形的面积公式。
复习立体图形的特征、联系及公式
立体图形
棱长总和
表面积
体积(容积)
长方体
正方体
圆柱
圆锥
复习立体图形的特征、联系及公式
提问7:谁愿意到前面来填写?其他学生想一想:这些公式是怎么推
导出来的呀?它们之间有联系吗?
监控:他们写得对吗?赶快看一看!
(根据实际情况及时修正与评价)
提问8:这些公式之间有没有什么内在联系呢?自己想一想,然后和
小伙伴说说你的想法。
课件出示:
(正方体和圆柱的体积公式都是在长方体体积公式的基础上推导出来的。)
复习立体图形的特征、联系及公式
提问9:这些图形有没有一个共同的体积计算公式呢?
课件出示:
V=abh
V=a3
V=Sh
V=
Sh
3
1
(长方体、正方体和圆柱的体积都可以用底面积乘高,圆锥的体积再乘
即可。)
3
1
沟通梳理
构建联系
提升认识:通过刚才的梳理和回顾,你有什么感受?
监控:1.
图形之间是可以相互转化的。
追问:我们是怎样把这些图形相互转化的?
(通过平移、旋转、割补、拼摆、化曲为直等方法来进行转化的。)
监控:2.
我们在运用转化的方法解决问题的过程中有什么共同点?
师小结:其实学习就是一个不断转化的过程,所以我们要把每一个知
识点学扎实,这样才能为后续的学习打下坚实的基础。
(把新问题转化成熟悉的或者已经学过的旧问题。)
1.
求涂色部分的面积。(单位:cm)
提问1:要求涂色部分的面积,你会做吗?请你先试着做一做,看看你
都能想到哪些不同的方法?
4
4
8
预设1:梯形面积―三角形面积
(4+12)×4÷2-4×4÷2
预设2:大梯形面积
(4+8)×4÷2
预设3:小三角形面积+大三角形面积
4×4÷2+8×4÷2
提问2:你能读懂他们的想法吗?指名解读同伴的想法。