北师大版数学七年级上册3.1 字母表示数(课件+教案)

文档属性

名称 北师大版数学七年级上册3.1 字母表示数(课件+教案)
格式 zip
文件大小 460.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2017-04-28 21:57:12

文档简介

课题:3.1
字母表示数
课型:新授课
年级:七年级
教学目标:
1.经历探索规律并用代数式表示规律的过程.
2.能用字母和代数式表示以前学过的运算律和计算公式.
3.体会字母表示数的意义,形成初步的符号感.
教学重点与难点
重点:通过操作思考,由特殊归纳一般规律,并用字母表示规律.理解字母表示数的意义,建立符号感.
难点:多角度认识搭建的正方形图形.
教学准备:多媒体课件,学生准备一盒火柴棒.
教学过程:
一、创设情境,导入新课
问题1:生活中我们经常碰到字母,那么它们都代表什么意义呢?
1.啊N在看一本名叫《啊P正传》的书,这里的N、P表示什么?
2.从A地到B地需要走30千米,这里的A、B表示什么?
3.扑克牌中的“A”“K”表示什么?
问题2:大家喜欢的唱儿歌吗?我们一起唱
一只青蛙一张嘴,两只眼睛,四条腿,一声扑通跳下水;
两只青蛙两张嘴,
四只眼睛,八条腿,两声扑通跳下水;
三只青蛙____嘴,
__只眼睛,__条腿,__声扑通跳下水;
四只青蛙____嘴,
__只眼睛,__条腿,__声扑通跳下水”


这是一首永远也唱不完的儿歌《数青蛙》,它有一定的规律,你能用一句话把它清楚的表达出来吗?
处理方式:问题1让学生自己回答,了解学生对字母的理解程度,引出字母可以表示数,问题2让学生先一起接着唱歌,然后有学生会提出这是一首永远也唱不完的歌,老师适当引导学生如何用字母来表达这个规律,引起学生的思考,从而引入新课.
设计意图:激发学生学习的兴趣,从生活中熟悉的事情引入字母表示,然后以唱儿歌的形式激发学生学习数学的热情,并能激起学生探讨新课的好奇心,从而导入新课.
二、自主学习,探索规律
探究活动:下面我们做个游戏,请同学们取出课前准备的火柴棒,动手拼以下图形,并同时思考以下几个问题.
问题1:(1)按上图的方式,搭2个正方形需要几根火柴?搭3个正方形需要几根火柴?
(2)搭10个这样的正方形需要多少根火柴?
(3)100个这样的正方形需要多少根火柴?你是怎样得到的?
(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流.
处理方式:学生由简单问题入手,先回答前两个问题,然后通过小组活动,通过操作实践,探究交流,学生从多角度去思考,再去发现规律.教师也参与讨论并寻找发现各组的不同方法.然后找不同方法的小组展示,让学生互相对比,学习.
设计意图:摆火柴活动,让学生真正动手摆一摆,动脑想一想,这样既能激发学习热情,又能提高学生的动手能力,分析问题的能力.鼓励学生大胆发言,积极思考.本活动涉及的知识主要是运用字母表示规律,但其中蕴涵丰富的教育价值.此过程可以使学生经历运用数学符号描述变化规律的过程
,发展了符号感和抽象思维.通过与同伴交流,学生将体验解决问题策略的多样性,学会合理清晰地阐述自己的观点.学生必将获得良好的数学活动经验.
问题2:
根据你的计算方法,搭200个这样的正方形需要______根火柴棒;
搭1000个这样的正方形需要_______根火柴棒.
处理方式:让学生使用刚刚归纳的规律计算,并说出具体的算法.
设计意图:让学生熟悉总结的规律,并学会应用解决问题,体会字母表示数的简洁和方便.
问题3:我们在上述问题中用字母表示了正方形的个数和火材棒的根数之间的关系.你以前的学习中哪些地方用到了字母?这些字母都表示了什么?
题组1:奇数组各选派一名代表到黑板上写,比一比哪个小组在规定时间内写出的运算律、计算公式又快、又多、又对.
题组2:字母还可以表示什么?大家会用字母表示这些图形的计算公式吗?
处理方式:引导学生回忆,并让学生主动上黑板,互相补充,互相竞争,激发学生学习热情,塑造良好的学习氛围.
设计意图:用字母表示以前学过的运算律、公式、法则,起到了温故知新的作用,把以学知识纳入知识体系,让学生有一个重新认识的过程.
三、强化练习,巩固提高
1.小明步行上学,速度为v米/秒,亮亮骑自行车上学,速度是小明的3倍,
则亮亮的速度可以表示为_______米/秒.
2.如图,
用字母表示图中,阴影部分的面积是_________.
3.天气预报,我国钓鱼岛今天温度由t℃下降2℃后是


℃.
4.某商店上月收入为a元,本月的收入比上月2倍还多10元,老板拟将本月收入捐献国防海军,则老板将捐赠

元.
5.美国唐人街举行了保钓游行活动,他们用t分走了s米,则他们游行的速度为
米/分.
处理方式:让学生先独立完成,体会用字母可以简明的表达问题中的数量关系,然后互相纠错,师生共同总结.
设计意图:学生不但能练习列代数式,而且能明白字母与字母相乘、字母与数字相乘的格式,知道填空题的做题要求之一:空后有单位,前面是和的形式时,要加括号.
四、师生互动,回顾概括
师:通过一节课的学习,同学们一定有许多感想与收获,能把自己的感想与收获说出来与大家分享一下吗?
设计意图:让学生畅谈自己的收获,互相补充,使学生学会反思和总结,教师适当引导,纳入知识体系,并通过鼓励激发学生的学习热情.
五、达标检测,当堂评价
1.某城市市区人口a万人,市区绿地面积b万m2,则平均每人拥有绿地________
m2.
2.某城市5年前人均年收入为n元,预计今年人均年收入是5年前的2倍多500元,那么今年人均年收入将达________元.
3.如图,这个长方体的体积是________,表面积是________.
4.正方形的边长是a,当边长增加b时,它的周长是________,面积是________.
处理方式:学生认真独立完成,通过对比答案找到自己的错误并改正,教师对于表现好的学生给予鼓励表扬.
设计意图:通过检测了解学生的本节课知识掌握情况,知道本节课的教学效果,并为课下辅导及下一步的教学做好准备.
六、布置作业,课堂延伸
必做题:课本
79页
习题3.1
第1题.
选做题:课本
79页
习题3.1
第3题.
设计意图:通过不同层次的作业,让各个层面的学生都能得到充分发展,进一步锻炼学生的综合能力.
板书设计:
§3.1
字母表示数
引入做一做
探究活动议一议
q
m
n
p
b
c
a
学生板演区(共24张PPT)
第三章
整式及其加减
思考:生活中我们经常碰到字母,那么它们都代表什么意义呢?
1、啊N在看一本名叫《啊P正传》的书,这里的N、P表示什么?
2、从A地到B地需要走30千米,这里的A、B表示什么?
3、扑克牌中的“A”、“K”表示什么?
小红在唱一首永远也唱不完的儿歌《数青蛙》。
1只青蛙1张嘴,2只眼睛
4条腿,扑通1声跳下水;
只青蛙
张嘴,
只眼睛
条腿,扑通
声跳下水;
只青蛙
张嘴,
只眼睛
条腿,扑通
声跳下水;
只青蛙
张嘴,
只眼睛
条腿,扑通
声跳下水。
你能用字母表示这首儿歌吗?(一句话)
2
2
4
8
2
3
3
3
6
12
……
4+3
1+30
10+10+10+1
4-1
我们按如图的摆法搭一行正方形。记录你所搭的正方形的个数和所用的火柴棒的根数,探索其中的规律。
摆一摆
如图,搭一个正方形需要4根火柴棒.
按上面的方式,搭2个正方形需要____根火柴,
搭3个正方形需要____根火柴.
(2)
搭7个这样的正方形需要_____根火柴.
7
10
22
想一想
如图所示,搭一个正方形需要4根火柴棒.
(3)搭100个这样的正方形需要多少根火柴,
怎样
得到的
(4)
如果用n表示所搭正方形的个数,
那么搭n个
这样的正方形需要多少根火柴
4+3(n-1)
(用火柴棒拼n个正方形)
……
(n-1)个
4根
3(n-1)根
(用火柴棒拼n个正方形)
1+3n
……
n个
1根
3n根
4n-(n-1)
(用火柴棒拼n个正方形)
……
n个
(n-1)个
4n根
n+n+(n+1)
(用火柴棒拼n个正方形)
……
……
……
n根
n根
n根
1根
做一做
如图所示,搭一个正方形需要4根火柴棒.
根据你的计算方法,搭200个这样的正方形需要______根火柴棒;
搭1000个这样的正方形需要_______根火柴棒;
601
3001
议一议
你能否举出一些字母表示数和数量关系的例子
1、用字母表示数的运算律
2、用字母表示公式与法则
题组一:
1、请用字母表示学过的运算律:
运算定律




加法交换律
加法结合律
乘法交换律
乘法结合律
乘法分配律
a
+
b
=
b
+
a
(a
+
b)
+c=
a
+(b
+
c)
ab
=
ba
(ab)c
=
a(bc)
(a
+
b)
c
=
ac+bc
a
a
a
b
a
h
a
h
a
h
b
S
=
a2
S
=
ab
S
=
ah
S
=
ah÷2
S
=(a
+
b)h÷2
πr2
a3
.
r
a
abc
a
b
c
面积
周长
2πr
体积
体积
表面积
6a2
练一练
小明步行上学,速度为v米/秒,亮亮骑自行车上学,速度是小明的3倍,则亮亮的速度可以表示为_______米/秒.
如图,
用字母表示图中
阴影部分的面积是_________。
m
n
p
q
3.天气预报,我国钓鱼岛今天温度由t℃下降2℃后是


℃;
4.
某商店上月收入为a元,本月的收入比上月2倍还多10元,老板拟将本月收入捐献国防海军,则老板将捐赠

元;
5.美国唐人街举行了保钓游行活动,他们用t分走了s米,则他们游行的速度为
米/分.
体会:
用字母表示数的意义:能使数量之间的关系更加简明,更具有普遍意义。
注意:
1、字母与字母相乘,字母与数字相乘,
“×”号通常省略不写或写成“
”,但数字与数字相乘,仍用“
×”。
2、字母和数字相乘时,数字写在字母的前面。
例:1138
×a=1138
a=1138a
23
×4=234

×
例如:a
×
2b=a2b
×
a
×2b=2ab

小红在唱一首永远也唱不完的儿歌《数青蛙》。
1只青蛙1张嘴,2只眼睛
4条腿,扑通1声跳下水;
只青蛙
张嘴,
只眼睛
条腿,扑通
声跳下水;
只青蛙
张嘴,
只眼睛
条腿,扑通
声跳下水;
你能用字母表示这首儿歌吗?(一句话)
只青蛙
张嘴,
只眼睛
条腿,扑通
声跳下水。
2
2
4
8
2
3
3
3
6
12
n
n
2n
4n
n
本节课你有哪些收获
这节课你学习了什么?有什么收获?
1.字母表示数的意义
(1)给运算带来方便.
(2)可以把数或数量关系简明地表示出来.
(3)是代数知识中的一个重要内容.
2.在用字母表示数时,要注意以下几下约定:
(1)数与字母相乘或字母与字母相乘时,乘号“×”一般写成“·”,或省略不写,而且数字因数一般写在字母因数的前面.
(2)相同字母的积,如a·a,一般写

3)除法运算的结果一般写成分数形式。
(4)在同一问题中,不同意义的量要用不
同的字母表示。
a2
达标检测

1.某城市市区人口a万人,市区绿地面积b万m2,则平均每人拥有绿地________
m2.
2.某城市5年前人均年收入为n元,预计今年人均年收入是5年前的2倍多500元,那么今年人均年收入将达________元.
3.如图,这个长方体的体积是________,表面积是________.
4.正方形的边长是a,当边长增加b时,它的周长是________,面积是________.
b
c
a
必做题:课本 P79 习题3.1
第1题.
选做题:课本 P80 习题3.1
第3题.
布置作业