21.2.1
学习目标:
1、初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如 =p(p≥0)或(mx+n) =p(p≥ 0)的方程21世纪教育网版权所有
2、理解一元二次方程解法的基本思想及其与一元一次方程的联系,体会两者之间相互比较和转化的思想方法;
3、能根据具体问题的实际意义检验结果的合理性。
重点:掌握用直接开平方法解一元二次方程的步骤。
难点:理解并应用直接开平方法 解特殊的一元二次方程。
导学流程:
自主探索
自学P30问题1、及思考完成下列各题:
解下列方程:
(1)x2-2=0; (2)16x2-25=0.
(3)(x+1)2-4=0; (4)12(2-x)2-9=0.
?
总结归纳
如果方程能化成 =p或(mx+n) =p(p≥ 0)形式,那么可得
巩固提高
仿例完成P31页练习
课堂小结
你今天学会了解怎样的一元二次方程?步骤是什么?
达标测评
1、解下列方程:
(1)x2=169; (2)45-x2=0;
?
(3)x2-12=0 (4)x2-2 =0
?
?
?
(9)x2+2x+1=0 (10)x2+4x+4=0
?
(11)x2-6x+9=0 (12)x2+x+ =0
22.2.1 配方法
第1课时 直接开平方法
教学内容
运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.
教学目标
理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.21cnjy.com
重难点关键
1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.
2.难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.21·cn·jy·com
教学过程
一、复习引入
学生活动:请同学们完成下列各题
问题1.填空
(1)x2-8x+____=(x-___)2;(2)9x2+12x+_____=(3x+___)2;
(3)x2+px+_____=(x+______)2.
问题2.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?www.21-cn-jy.com
老师点评:
问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .
问题2:设x秒后△PBQ的面积等于8cm2
则PB=x,BQ=2x
依题意,得:x·2x=8 x2=8
根据平方根的意义,得x=±2 即x1=2,x2=-2
可以验证,2和-2都是方程x·2x=8的两根,但是移动时间不能是负值.
所以2秒后△PBQ的面积等于8cm2.
二、探索新知
上面我们已经讲了x2=8,根据平方根的意义,直接开平方得x=±2,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?2·1·c·n·j·y
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±2
即2t+1=2,2t+1=-2
方程的两根为t1=-,t2=--
例1:解方程:x2+4x+4=1
分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
解:由已知,得:(x+2)2=1
直接开平方,得:x+2=±1
即x+2=1,x+2=-1
所以,方程的两根x1=-1,x2=-3
例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.21世纪教育网版权所有
分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.【来源:21·世纪·教育·网】
三、巩固练习
教材P36 练习.
四、应用拓展
例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?21·世纪*教育网
分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.
解:设该公司二、三月份营业额平均增长率为x.
那么1+(1+x)+(1+x)2=3.31
把(1+x)当成一个数,配方得:
(1+x+)2=2.56,即(x+)2=2.56
x+=±1.6,即x+=1.6,x+=-1.6
方程的根为x1=10%,x2=-3.1
因为增长率为正数,
所以该公司二、三月份营业额平均增长率为10%.
五、归纳小结
本节课应掌握:
由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.
六、布置作业
1.教材P45 复习巩固1、2.
2.选用作业设计:
一、选择题
1.若x2-4x+p=(x+q)2,那么p、q的值分别是( ).
A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2
2.方程3x2+9=0的根为( ).
A.3 B.-3 C.±3 D.无实数根
3.用配方法解方程x2-x+1=0正确的解法是( ).
A.(x-)2=,x=±
B.(x-)2=-,原方程无解
C.(x-)2=,x1=+,x2=
D.(x-)2=1,x1=,x2=-
二、填空题
1.若8x2-16=0,则x的值是_________.
2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.
3.如果a、b为实数,满足+b2-12b+36=0,那么ab的值是_______.
三、综合提高题
1.解关于x的方程(x+m)2=n.
2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m.21教育网
(1)鸡场的面积能达到180m2吗?能达到200m吗?
(2)鸡场的面积能达到210m2吗?
3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,并说明你制作的理由吗?
21.2.1 配方法
第1课时 直接开平方法
1.学会根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.
2.运用开平方法解形如(x+m)2=n的方程.
3.体验类比、转化、降次的数学思想方法,增强学习数学的兴趣.
一、情境导入
一个正方形花坛的面积为10,若设其边长为x,根据正方形的面积可列出怎样的方程?用怎样的方法可以求出所列方程的解呢?www.21-cn-jy.com
二、合作探究
探究点:直接开平方法
【类型一】用直接开平方法解一元二次方程
运用开平方法解下列方程:
(1)4x2=9;
(2)(x+3)2-2=0.
解析:(1)先把方程化为x2=a(a≥0)的形式;(2)原方程可变形为(x+3)2=2,则x+3是2的平方根,从而可以运用开平方法求解.21世纪教育网版权所有
解:(1)由4x2=9,得x2=,两边直接开平方,得x=±,∴原方程的解是x1=,x2=-.21教育网
(2)移项,得(x+3)2=2.两边直接开平方,得x+3=±.∴x+3=或x+3=-.∴原方程的解是x1=-3,x2=--3.【来源:21·世纪·教育·网】
方法总结:由上面的解法可以看出,一元二次方程是通过降次,把一元二次方程转化为一元一次方程求解的,这是解一元二次方程的基本思想;一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义,可解得x1=,x2=-.21·世纪*教育网
【类型二】直接开平方法的应用
(2014·山东济宁中考)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m-4,则=________.21cnjy.com
解析:∵ax2=b,∴x=±,∴方程的两个根互为相反数,∴m+1+2m-4=0,解得m=1,∴一元二次方程ax2=b(ab>0)的两个根分别是2与-2,∴=2,∴=4,故答案为4.www-2-1-cnjy-com
【类型三】直接开平方法与方程的解的综合应用
若一元二次方程(a+2)x2-ax+a2-4=0的一个根为0,则a=________.
解析:∵一元二次方程(a+2)x2-ax+a2-4=0的一个根为0,∴a+2≠0且a2-4=0,∴a=2.故答案为2.2-1-c-n-j-y
【类型四】直接开平方法的实际应用
有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,边长应为多少厘米?2·1·c·n·j·y
分析:要求新正方形的边长,可先求出原正方形和矩形的面积之和,然后再用开平方计算.
解:设新正方形的边长为xcm,根据题意得x2=112+13×8,即x2=225,解得x=±15.因为边长为正,所以x=-15不合题意,舍去,所以只取x=15.答:新正方形的边长应为15cm.21·cn·jy·com
方法总结:在解决与平方根有关的实际问题时,除了根据题意解题外,有时还要结合实际,把平方根中不符合实际情况的负值舍去.【来源:21cnj*y.co*m】
三、板书设计
教学过程中,强调利用开平方法解一元二次方程的本质是求一个数的平方根的过程.同时体会到解一元二次方程过程就是一个“降次”的过程.21*cnjy*com
21.2.1 配方法
第1课时 直接开平方法
教学内容
运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.
教学目标
理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.21教育网
重难点关键
1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.
2.难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.【来源:21·世纪·教育·网】
教学过程
一、复习引入
学生活动:请同学们完成下列各题
问题1.填空
(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.2·1·c·n·j·y
问题2.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?21·世纪*教育网
老师点评:
问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .
问题2:设x秒后△PBQ的面积等于8cm2
则PB=x,BQ=2x
依题意,得:x·2x=8
x2=8
根据平方根的意义,得x=±2
即x1=2,x2=-2
可以验证,2和-2都是方程x·2x=8的两根,但是移动时间不能是负值.
所以2秒后△PBQ的面积等于8cm2.
二、探索新知
上面我们已经讲了x2=8,根据平方根的意义,直接开平方得x=±2,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?www-2-1-cnjy-com
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±2
即2t+1=2,2t+1=-2
方程的两根为t1=-,t2=--
例1:解方程:x2+4x+4=1
分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
解:由已知,得:(x+2)2=1
直接开平方,得:x+2=±1
即x+2=1,x+2=-1
所以,方程的两根x1=-1,x2=-3
例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.21cnjy.com
分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.21·cn·jy·com
三、巩固练习
教材P36 练习.
四、应用拓展
例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?www.21-cn-jy.com
分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.
解:设该公司二、三月份营业额平均增长率为x.
那么1+(1+x)+(1+x)2=3.31
把(1+x)当成一个数,配方得:
(1+x+)2=2.56,即(x+)2=2.56
x+=±1.6,即x+=1.6,x+=-1.6
方程的根为x1=10%,x2=-3.1
因为增长率为正数,
所以该公司二、三月份营业额平均增长率为10%.
五、归纳小结
本节课应掌握:
由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.
六、布置作业
1.教材P45 复习巩固1、2.
2.选用作业设计:
一、选择题
1.若x2-4x+p=(x+q)2,那么p、q的值分别是( ).
A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2
2.方程3x2+9=0的根为( ).
A.3 B.-3 C.±3 D.无实数根
3.用配方法解方程x2-x+1=0正确的解法是( ).
A.(x-)2=,x=±
B.(x-)2=-,原方程无解
C.(x-)2=,x1=+,x2=
D.(x-)2=1,x1=,x2=-
二、填空题
1.若8x2-16=0,则x的值是_________.
2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.
3.如果a、b为实数,满足+b2-12b+36=0,那么ab的值是_______.
三、综合提高题
1.解关于x的方程(x+m)2=n.
2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m.21世纪教育网版权所有
(1)鸡场的面积能达到180m2吗?能达到200m吗?
(2)鸡场的面积能达到210m2吗?
3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,并说明你制作的理由吗?
答案:
一、1.B 2.D 3.B
二、1.± 2.9或-3 3.-8
三、1.当n≥0时,x+m=±,x1=-m,x2=--m.当n<0时,无解
2.(1)都能达到.设宽为x,则长为40-2x,
依题意,得:x(40-2x)=180
整理,得:x2-20x+90=0,x1=10+,x2=10-;
同理x(40-2x)=200,x1=x2=10,长为40-20=20.
(2)不能达到.同理x(40-2x)=210,x2-20x+105=0,
b2-4ac=400-410=-10<0,无解,即不能达到.
3.因要制矩形方框,面积尽可能大,
所以,应是正方形,即每边长为1米的正方形.
课件18张PPT。21.2.1 配方法第二十一章 一元二次方程导入新课讲授新课当堂练习课堂小结第1课时 直接开平方法1.会把一元二次方程降次转化为两个一元一次方程.(难点)
2.运用开平方法解形如x2=p或(x+n)2=p (p≥0)的方程.(重点)导入新课复习引入平方根1.如果 x2=a,则x叫做a的 .2.如果 x2=a(a ≥0),则x= .3.如果 x2=64 ,则x= .±84.任何数都可以作为被开方数吗?负数不可以作为被开方数.讲授新课 问题1 一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗? 解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,根据一桶油漆可刷的面积,列出方程10×6x2=1500,由此可得x2=25根据平方根的意义,得即x1=5,x2=-5. 可以验证,5和-5是方程 ① 的两根,但是棱长不能是负值,所以正方体的棱长为5dm.①x=±5,试一试 解下列方程,并说明你所用的方法,与同伴交流.(1) x2=4(2) x2=0(3) x2+1=0解:根据平方根的意义,得
x1=2,x2=-2.解:根据平方根的意义,得
x1=x2=0.解:根据平方根的意义,得
x2=-1,
因为负数没有平方根,所以原方程无解.(2)当p=0 时,方程(I)有两个相等的实数根 =0;(3)当p<0 时,因为任何实数x,都有x2≥0 ,所以方程(I)无实数根.探究归纳 如果我们把x2=4, x2=0, x2+1=0变形为x2 = p 呢?一般的,对于方程 x2 = p, (I) (1)当p>0 时,根据平方根的意义,方程(I)有两个不等
的实数根 , ; 例1 利用直接开平方法解下列方程:解:(1) x2=6,直接开平方,得(2)移项,得x2=900.直接开平方,得x=±30,∴x1=30, x2=-30.典例精析在解方程(I)时,由方程x2=25得x=±5.由此想到:
(x+3)2=5 , ②
得对照上面解方程(I)的方法,你认为怎样解方程(x+3)2=5探究交流于是,方程(x+3)2=5的两个根为
上面的解法中 ,由方程②得到③,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程②转化为我们会解的方程了.解题归纳例2 解下列方程:
⑴ (x+1)2= 2 ; 典例精析 解析:第1小题中只要将(x+1)看成是一个整体,就可以运用直接开平方法求解.解:(1)∵x+1是2的平方根,解析:第2小题先将-4移到方程的右边,再同第1小题一样地解.例2 解下列方程:
(2)(x-1)2-4 = 0;即x1=3,x2=-1.解:(2)移项,得(x-1)2=4.∵x-1是4的平方根,∴x-1=±2.典例精析例2 解下列方程:
(3) 12(3-2x)2-3 = 0.典例精析解析:第3小题先将-3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可. 解:(3)移项,得12(3-2x)2=3,两边都除以12,得(3-2x)2=0.25.∵3-2x是0.25的平方根,∴3-2x=±0.5.即3-2x=0.5,3-2x=-0.5 首先将一元二次方程化为左边是含有未知数的一个完全平方式,右边是非负数的形式,然后用平方根的概念求解.1.能用直接开平方法解的一元二次方程有什么特点? 如果一个一元二次方程具有x2=p或(x+n)2= p(p≥0)的形式,那么就可以用直接开平方法求解.2.用直接开平方法解一元二次方程的一般步骤是什么?3.任意一个一元二次方程都能用直接开平方法求解吗?请举例说明.探讨交流当堂练习(D) (2x+3)2=25,解方程,得2x+3=±5, x1= 1;x2=-4 1、下列解方程的过程中,正确的是( )(B) (x-2)2=4,解方程,得x-2=2,x=4 D(1)方程x2=0.25的根是 .
(2)方程2x2=18的根是 .
(3)方程(2x-1)2=9的根是 .3. 解下列方程:
(1)x2-81=0; (2)2x2=50;
(3)(x+1)2=4 . x1=0.5,x2=-0.5x1=3,x2=-3x1=2,x2=-12.填空:解:x1=9,x2=-9;解:x1=5,x2=-5;解:x1=1,x2=-3. 4.(请你当小老师)下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.①②③④解:能力拓展:
方程x2+6x+4=0可以用直接开平方法解吗?如果不能,那么请你思考能否将其转化成平方形式?课堂小结直接开平方法概念步骤基本思路利用平方根的定义求方程的根的方法关键要把方程化成x2=p(p ≥0)或(x+n)2=p(p ≥0).一元二次方程两个一元一次方程降次直接开平方法21.2.1 配方法(2)
学习目标:
1、掌握用配方法解数字系数的一元二次方程;
2、理解解方程中的程序化,体会化归思想。
重点:用配方法解数字系数的一元二次方程;
难点:配方的过程。
导学流程
自主学习
自学P31-32问题2,完成P33思考。
精讲点拨
上面,我们把方程x2+6x-16=0变形为(x+3)2=25,它的左边是一个含有未知数的________式,右边是一个______常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法.2·1·c·n·j·y
练一练 :配方.填空:
(1)x2+6x+( )=(x+ )2;
(2)x2-8x+( )=(x- )2;
(3)x2+ x+( )=(x+ )2;
从这些练习中你发现了什么特点?
(1)__________ ________________________________
(2)________________________________________________21cnjy.com
合作交流
用配方法解下列方程:
(1)x2-6x-7=0; (2)x2+3x+1=0.
解(1)移项,得x2-6x=____.
方程左边配方,得x2-2·x·3+__2=7+___,
即 (______)2=____.
所以 x-3=____.
原方程的解是 x1=_____,x2=_____.
(2)移项,得x2+3x=-1.
方程左边配方,得x2+3x+( )2=-1+____,
即 _____________________
所以 ___________________
原方程的解是: x1=______________x2=___________
总结规律
用配方法解二次项系数是1的一元二次方程?有哪些步骤?
?
?
?
巩固提高:完成P34页练习
课堂小结
你今天学会了用怎样的方法解一元二次方程?有哪些步骤?
达标测评
用配方法解方程:
1、x2+8x-2=0 2、x2-5x-6=0. 3、2x2-x=6
?
?
4、x2+px+q=0(p2-4q≥0). 5、 x2-2x-3=0
?
6、 2x2+12x+10=0 7、x2-4x+3=0 8、9x2-6x-8=0 21世纪教育网版权所有
?
9、x2+12x-15=0 10、 2x2+1=3x 11、 3x2+6x-4=0 21教育网
?
12、 4x2-6x-3=0 13. x2+4x-9=2x-11 14. x(x+4)=8x+1221·cn·jy·com
?
拓展提高
已知代数式x2-5x+7,先用配方法说明,不论x取何值,这个代数式的值总是正数;再求出当x取何值时,这个代数式的值最小,最小值是多少?www.21-cn-jy.com
第2课时 配方法
1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.
2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.
一、情境导入
李老师让学生解一元二次方程x2-6x-5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?21cnjy.com
二、合作探究
探究点:配方法
【类型一】配方
用配方法解一元二次方程x2-4x=5时,此方程可变形为( )
A.(x+2)2=1 B.(x-2)2=1
C.(x+2)2=9 D.(x-2)2=9
解析:由于方程左边关于x的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x=5,所以x2-4x+4=5+4,所以(x-2)2=9.故选D.21教育网
方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.21·cn·jy·com
【类型二】利用配方法解一元二次方程
用配方法解方程:x2-4x+1=0.
解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.
解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=±.∴x1=2+,x2=2-.www.21-cn-jy.com
方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.
【类型三】用配方解决求值问题
已知:x2+4x+y2-6y+13=0,求的值.
解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0且(y-3)2=0,∴x=-2且y=3,∴原式==-.2·1·c·n·j·y
【类型四】用配方解决证明问题
(1)用配方法证明2x2-4x+7的值恒大于零;
(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.
证明:(1)2x2-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)2-2+7=2(x-1)2+5.∵2(x-1)2≥0,∴2(x-1)2+5≥5,即2x2-4x+7≥5,故2x2-4x+7的值恒大于零.
(2)x2-2x+3;2x2-2x+5;3x2+6x+8等.
【类型五】配方法与不等式知识的综合应用
证明关于x的方程(m2-8m+17)x2+2mx+1=0不论m为何值时,都是一元二次方程.
解析:要证明“不论m为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m+17的值不等于0.21世纪教育网版权所有
证明:∵二次项系数m2-8m+17=m2-8m+16+1=(m-4)2+1,又∵(m-4)2≥0,∴(m-4)2+1>0,即m2-8m+17>0.∴不论m为何值时,原方程都是一元二次方程.
三、板书设计
教学过程中,强调配方法解方程就是将方程左边配成完全平方式的过程.因此需熟练掌握完全平方式的形式.
21.2.1 配方法
内容:配方法解一元二次方程
课型:新授
学习目标:1.会用开平方法解形如(x十m)=n(n0)的方程.
2.理解一元二次方程的解法——配方法.
教学重点: 利用配方法解一元二次方程
教学难点: 把一元二次方程通过配方转化为(x十m)=n(n0)的形式.
一.学前准备
1用直接开平方法解方程
2--8=0 --9=0
2完全平方公式是什么?
3填上适当的数,使下列等式成立:
(1)x2+12x+ = (x+6)2
(2)x2―12x+ = (x― )2
(3)x2+8x+ = (x+ )2
(4)x2+x+ = (x+ )2
(5)x2+px+ = (x+ )2
观察并思考填的数与一次项的系数有怎样的关系?
二、探究活动
问题:下列方程能否用直接开平方法解?
x2+8x―9=0 x一l0x十25=7;
是否先把它变成(x+m)2=n (n≥0)的形式再用直接开平方法求解?
问题: 要使一块矩形场地的长比宽多6m,并且面积为16m2, 场地的长和宽应各是多少?
解:设场地宽为X米,则长为(x+6)米,根据题意得:( )
整理得( )
怎样解方程X2+6X-16 = 0自学教材32页
1什么叫配方法?
例1: 用配方法解下列方程
x2--8x+1=0 2x2+1=3x
总结用配方法解方程的一般步骤.
(1)化二次项系数为1,即方程两边同时除以二次项系数.
(2)移项,使方程左边为二次项和一次项,右边为常数项.
(3)要在方程两边各加上一次项系数一半的平方.(注:一次项系数是带符号的)
(4)方程变形为(x+m)2=n的形式.
(5)如果右边是非负实数,就用直接开平方法解这个一元二次方程;如果右边是一个负数,则方程在实数范围内无解.21世纪教育网版权所有
三.自我测试
1配方:填上适当的数,使下列等式成立:
(1)x2+12x+ =(x+6)2
(2)x2―12x+ =(x― )2
(3)x2+8x+ =(x+ )2
2解下列方程
3x2+3x―3=0 3x2 -9x+2=0 2x2+6=7x 21cnjy.com
3.将二次三项式x2-4x+1配方后得( ). A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-321·cn·jy·com
4.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ). A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-11
5.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于( ).www.21-cn-jy.com
A.1 B.-1 C.1或9 D.-1或9
6.下列方程中,一定有实数解的是( ) A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(x-a)2=a2·1·c·n·j·y
7.方程x2+4x-5=0的解是________.
8.代数式的值为0,则x的值为________.
9.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,所以求出z的值即为x+y的值,所以x+y的值为___【来源:21·世纪·教育·网】
10已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.
11.如果x2-4x+y2+6y++13=0,求(xy)z的值.
12.新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?
四 学习体会
本节课你有什么收获?还有什么疑问?
五 应用与拓展
1.已知:x2+4x+y2-6y+13=0,求的值.
2.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半.21教育网
课件18张PPT。21.2.1 配方法第二十一章 一元二次方程导入新课讲授新课当堂练习课堂小结第2课时 配方法1.了解配方的概念.
2.掌握用配方法解一元二次方程及解决有关问题.(重点)
3.探索直接开平方法和配方法之间的区别和联系.(难点)导入新课复习引入(1) 9x2=1 ;(2) (x-2)2=2.想一想:
2.下列方程能用直接开平方法来解吗?练一练:
1.用直接开平方法解下列方程:(1) x2+6x+9 =5;(2)x2+6x+4=0.把两题转化成(x+n)2=p(p≥0)的
形式,再利用开平方讲授新课问题1.你还记得吗?填一填下列完全平方公式.(1) a2+2ab+b2=( )2;(2) a2-2ab+b2=( )2.a+ba-b探究交流问题2.填上适当的数或式,使下列各等式成立.(1)x2+4x+ = ( x + )2(2)x2-6x+ = ( x- )2(3)x2+8x+ = ( x+ )2(4)x2- x+ = ( x- )2你发现了什么规律?探究交流222323424二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.归纳总结想一想:
x2+px+( )2=(x+ )2配方的方法探究交流怎样解方程(2)x2+6x+4=0问题1 方程(2)怎样变成(x+n)2=p的形式呢?解:x2+6x+4=0 x2+6x=-4移项 x2+6x+9=-4+9两边都加上9二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.方法归纳在方程两边都加上一次项系数一半的平方.注意是在二次项系数为1的前提下进行的.问题2 为什么在方程x2+6x=-4的两边加上9?加其他数行吗?不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x2+2bx+b2的形式.方程配方的方法:要点归纳像这样通过配成完全平方式来解一元二次方程,叫做配方法.配方法的定义配方法解方程的基本思路把方程化为(x+n)2=p的形式,将一元二次方程降次,转化为一元一次方程求解.配方法解方程的基本步骤典例精析例1 解下列方程:解:(1)移项,得x2-8x=-1,配方,得x2-8x+42=-1+42 ,( x-4)2=15由此可得即配方,得由此可得二次项系数化为1,得解:移项,得2x2-3x=-1, 方程的二次项系
数不是1时,为便于
配方,可以将方程
各项的系数除以二
次项系数.
即移项和二次项系数化为1这两个步骤能不能交换一下呢?
配方,得 因为实数的平方不会是负数,所以x取任何实数时,(x-1)2都是非负数,即上式都不成立,所以原方程无实数根.解:移项,得二次项系数化为1,得为什么方程两边都加12?即典例精析例2.试用配方法说明:不论k取何实数,多项式k2-4k+5的值必定大于零.解:k2-4k+5=k2-4k+4+1=(k-2)2+1因为(k-2)2≥0,所以(k-2)2+1≥1.所以k2-4k+5的值必定大于零.归纳总结配方法的应用1.求最值或
证明代数式
的值为恒正
(或负)对于一个关于x的二次多项式通过配方成a(x+m)2
+n的形式后,(x+m)2≥0,n为常数,当a>0时,可知其最小值;当a<0时,可知其最大值.2.完全平方式中的配方如:已知x2-2mx+16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=±4.3.利用配方构成非负数和的形式对于含有多个未知数的二次式的等式,求未知数的值,解题突破口往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,即a=0,b=2.当堂练习1.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12;
(3)4x2-6x-3=0; (4) 3x2+6x-9=0.解:x2+2x+2=0,(x+1)2=-1.此方程无解;解:x2-4x-12=0,(x-2)2=16.x1=6,x2=-2;解:x2+2x-3=0,(x+1)2=4.x1=-3,x2=1.2.如图,在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少??解:设道路的宽为xm, 根据题意得(35-x)(26-x)=850,整理得x2-61x+60=0.解得x1=60(不合题意,舍去),x2=1.答:道路的宽为1m.3.应用配方法求最值.
(1) 2x2 - 4x+5的最小值;
(2) -3x2 + 5x +1的最大值.解:(1) 2x2 - 4x +5 = 2(x - 1)2 +3
当x =1时有最小值3
(2) -3x2 + 12x - 16 = -3(x - 2)2 - 4
当x =2时有最大值-4课堂小结配方法定义通过配成完全平方形式解一元二次方程的方法.方法步骤特别提醒:
在使用配方法解方程之前先把方程化为x2+px+q=0的形式.应用求代数式的最值或证明