章末综合测评(一) 导数及其应用
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),则的值为( )
A.f′(x0)
B.2f′(x0)
C.-2f′(x0)
D.0
【解析】
=2
=2f′(x0),故选B.
【答案】 B
2.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=( )
A.1 B.
C.- D.-1
【解析】 y′=2ax,于是切线斜率k=y′|x=1=2a,由题意知2a=2,∴a=1.
【答案】 A
3.下列各式正确的是( )
A.(sin
a)′=cos
a(a为常数)
B.(cos
x)′=sin
x
C.(sin
x)′=cos
x
D.(x-5)′=-x-6
【解析】 由导数公式知选项A中(sin
a)′=0;选项B中(cos
x)′=-sin
x;选项D中(x-5)′=-5x-6.
【答案】 C
4.函数f(x)=(x-3)ex的单调递增区间是( )
A.(-∞,2)
B.(0,3)
C.(1,4)
D.(2,+∞)
【解析】 f′(x)=(x-2)ex,由f′(x)>0,得x>2,所以函数f(x)的单调递增区间是(2,+∞).
【答案】 D
5.若函数f(x)=x3-f′(1)·x2-x,则f′(1)的值为( )
A.0
B.2
C.1 D.-1
【解析】 f′(x)=x2-2f′(1)·x-1,则f′(1)=12-2f′(1)·1-1,解得f′(1)=0.
【答案】 A
6.如图1所示,图中曲线方程为y=x2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )
图1
A.
B.(x2-1)dx
C.|x2-1|dx
D.(x2-1)dx-(x2-1)dx
【解析】 S=[-(x2-1)]dx+(x2-1)dx=|x2-1|dx.
【答案】 C7.函数f(x)=x3+3x2+3x-a的极值点的个数是( )
A.2
B.1
C.0
D.由a确定
【解析】 f′(x)=3x2+6x+3=3(x2+2x+1)=3(x+1)2≥0,∴函数f(x)在R上单调递增,无极值.故选C.
【答案】 C
8.若函数f(x)=-x3+3x2+9x+a在区间[-2,-1]上的最大值为2,则它在该区间上的最小值为( )
A.-5
B.7
C.10
D.-19
【解析】 ∵f(x)′=-3x2+6x+9=-3(x+1)(x-3),
所以函数在[-2,-1]内单调递减,
所以最大值为f(-2)=2+a=2.
∴a=0,最小值f(-1)=a-5=-5.
【答案】 A
9.已知y=f(x)是定义在R上的函数,且f(1)=1,f′(x)>1,则f(x)>x的解集是( )
A.(0,1)
B.(-1,0)∪(0,1)
C.(1,+∞)
D.(-∞,-1)∪(1,+∞)
【解析】 不等式f(x)>x可化为f(x)-x>0,
设g(x)=f(x)-x,则g′(x)=f′(x)-1,
由题意g′(x)=f′(x)-1>0,
∴函数g(x)在R上单调递增,又g(1)=f(1)-1=0,
∴原不等式 g(x)>0 g(x)>g(1).
∴x>1,故选C.
【答案】 C
10.已知函数f(x)=x2+2x+alnx,若函数f(x)在(0,1)上单调,则实数a的取值范围是( )
A.a≥0
B.a<-4
C.a≥0或a≤-4
D.a>0或a<-4
【解析】 f′(x)=2x+2+,x∈(0,1),
∵f(x)在(0,1)上单调,
∴f′(x)≥0或f′(x)≤0在(0,1)上恒成立,
∴2x+2+≥0或2x+2+≤0在(0,1)上恒成立,
即a≥-2x2-2x或a≤-2x2-2x在(0,1)上恒成立.
设g(x)=-2x2-2x=-2+,则g(x)在(0,1)上单调递减,
∴g(x)max=g(0)=0,g(x)min=g(1)=-4.
∴a≥g(x)max=0或a≤g(x)min=-4.
【答案】 C
11.曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离为( )
A.
B.2
C.3
D.2
【解析】 设曲线上的点A(x0,ln(2x0-1))到直线2x-y+3=0的距离最短,
则曲线上过点A的切线与直线2x-y+3=0平行.
因为y′=·(2x-1)′=,
所以y′|==2,解得x0=1.
所以点A的坐标为(1,0).
所以点A到直线2x-y+3=0的距离为d===.
【答案】 A
12.已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,且对于任意实数x,有f(x)≥0,则的最小值为( )
A.3
B.
C.2
D.
【解析】 由题意,得f′(x)=2ax+b.
由对任意实数x,有f(x)≥0,知图象开口向上,所以a>0,且Δ=b2-4ac≤0,所以ac≥.
因为f′(0)>0,所以b>0,且在x=0处函数递增.
由此知f(0)=c>0.
所以=≥≥=2.
【答案】 C
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)
13.
(3x+sin
x)dx=__________.
【解析】
(3x+sin
x)dx==-(0-cos
0)=+1.
【答案】 +1
14.若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标是________.
【解析】 设P(x0,y0),∵y=e-x,∴y′=-e-x,
∴点P处的切线斜率为k=-e-x0=-2,
∴-x0=ln
2,∴x0=-ln
2,
∴y0=eln
2=2,
∴点P的坐标为(-ln
2,2).
【答案】 (-ln
2,2)
15.直线y=a与函数f(x)=x3-3x的图象有三个相异的公共点,则a的取值范围是__________.
【解析】 令f′(x)=3x2-3=0,得x=±1,
可求得f(x)的极大值为f(-1)=2,
极小值为f(1)=-2,
如图所示,-2
【答案】 (-2,2)
16.周长为20
cm的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________cm3.
【解析】 设矩形的长为x,则宽为10-x(0∴V′(x)=20πx-3πx2.
由V′(x)=0,得x=0(舍去),x=,
且当x∈时,V′(x)>0,
当x∈时,V′(x)<0,
∴当x=时,V(x)取得最大值为π
cm3.
【答案】 π
三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分10分)已知曲线y=x3+x-2在点P0处的切线l1平行于直线4x-y-1=0,且点P0在第三象限,
(1)求P0的坐标;
(2)若直线l⊥l1,且l也过切点P0,求直线l的方程.【解】 (1)由y=x3+x-2,得y′=3x2+1,
由已知得3x2+1=4,解得x=±1.
当x=1时,y=0;当x=-1时,y=-4.
又因为点P0在第三象限,
所以切点P0的坐标为(-1,-4).
(2)因为直线l⊥l1,l1的斜率为4,
所以直线l的斜率为-,
因为l过切点P0,点P0的坐标为(-1,-4),
所以直线l的方程为y+4=-(x+1),即x+4y+17=0.
18.(本小题满分12分)已知函数f(x)=aln(x+1)+x2-ax+1(a>0).
(1)求函数y=f(x)在点(0,f(0))处的切线方程;
(2)当a>1时,求函数y=f(x)的单调区间和极值.
【解】 (1)f(0)=1,f′(x)=+x-a=,f′(0)=0,所以函数y=f(x)在点(0,f(0))处的切线方程为y=1.
(2)函数的定义域为(-1,+∞),令f′(x)=0,
即=0.
解得x=0或x=a-1.
当a>1时,f(x),f′(x)随x变化的变化情况为
x
(-1,0)
0
(0,a-1)
a-1
(a-1,+∞)
f′(x)
+
0
-
0
+
f(x)
单调递增↗
极大值
单调递减↘
极小值
单调递增↗
21世纪教育网21世纪教育网可知f(x)的单调减区间是(0,a-1),单调增区间是(-1,0)和(a-1,+∞),极大值为f(0)=1,极小值为f(a-1)=aln
a-a2+.
19.(本小题满分12分)已知函数f(x)=x2-mln
x,h(x)=x2-x+a,
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在区间[1,3]上恰有两个不同零点,求实数a的取值范围.
【解】 (1)由f(x)≥h(x)在(1,+∞)上恒成立,
得m≤在(1,+∞)上恒成立,
令g(x)=,则g′(x)=,故g′(e)=0,
当x∈(1,e)时,g′(x)<0;
x∈(e,+∞)时,g′(x)>0.故g(x)在(1,e)上单调递减,在(e,+∞)上单调递增,
故当x=e时,g(x)的最小值为g(e)=e.
所以m≤e.
(2)由已知可知k(x)=x-2ln
x-a,函数k(x)在[1,3]上恰有两个不同零点,相当于函数φ(x)=x-2ln
x与直线y=a有两个不同的交点,
φ′(x)=1-=,故φ′(2)=0,
所以当x∈[1,2)时,φ′(x)<0,所以φ(x)单调递减,
当x∈(2,3]时,φ′(x)>0,所以φ(x)单调递增.
所以φ(1)=1,φ(3)=3-2ln
3,φ(2)=2-2ln
2,
且φ(1)>φ(3)>φ(2)>0,
所以2-2ln
23.
所以实数a的取值范围为(2-2ln
2,3-2ln
3].
20.(本小题满分12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V
m3.假设建造成本仅与表面积有关,侧面的建造成本为100元/m2,底面的建造成本为160元/m2,该蓄水池的总建造成本为12
000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
【解】 (1)因为蓄水池侧面的总成本为100·2πrh=200πrh(元),
底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.
又根据题意200πrh+160πr2=12
000π,
所以h=(300-4r2),从而
V(r)=πr2h=(300r-4r3).
因为r>0,又由h>0可得r<5,
故函数V(r)的定义域为(0,5).
(2)因为V(r)=(300r-4r3),
所以V′(r)=(300-12r2).
令V′(r)=0,解得r1=5,r2=-5(因为r2=-5不在定义域内,舍去).
当r∈(0,5)时,V′(r)>0,故V(r)在(0,5)上为增函数;
当r∈(5,5)时,V′(r)<0,故V(r)在(5,5)上为减函数.
由此可知,V(r)在r=5处取得最大值,此时h=8.
即当r=5,h=8时,该蓄水池的体积最大.
21.(本小题满分12分)抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a,b值,并求S的最大值.
【解】 由题设可知抛物线为凸形,它与x轴交点的横坐标分别为x1=0,x2=-,
所以S=
(ax2+bx)dx=b3,
①
又直线x+y=4与抛物线y=ax2+bx相切,即它们有唯一的公共点,
由方程组得
ax2+(b+1)x-4=0,其判别式Δ=0,
即(b+1)2+16a=0.
于是a=-(b+1)2,代入①式得:
S(b)=(b>0),S′(b)=;
令S′(b)=0,得b=3,且当00;
当b>3时,S′(b)<0.
故在b=3时,S(b)取得极大值,也是最大值,
即a=-1,b=3时,S取得最大值,且Smax=.
22.(本小题满分12分)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.
(1)求a,b的值;
(2)求证:当x>0,且x≠1时,f(x)>.
【解】 (1)f′(x)=-,
由于直线x+2y-3=0的斜率为-,且过点(1,1),
故即解得
(2)证明:由(1)知,f(x)=+,
所以f(x)-=.
设函数h(x)=2ln
x-(x>0),
则h′(x)=-=-.
所以当x≠1时,h′(x)<0,而h(1)=0,
所以当x∈(0,1)时,h(x)>0,得f(x)>;
当x∈(1,+∞)时,h(x)<0,得f(x)>.
故当x>0,且x≠1时,f(x)>.