2017-2018学年高二数学人教A版选修2-2章末综合测评3 数系的扩充与复数的引入

文档属性

名称 2017-2018学年高二数学人教A版选修2-2章末综合测评3 数系的扩充与复数的引入
格式 zip
文件大小 132.4KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2017-06-13 17:44:07

图片预览

文档简介

章末综合测评(三) 数系的扩充与复数的引入
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知a,b∈C,下列命题正确的是(  )
A.3i<5i
B.a=0 |a|=0C.若|a|=|b|,则a=±b
D.a2≥0
【解析】 A选项中,虚数不能比较大小;B选项正确;C选项中,当a,b∈R时,结论成立,但在复数集中不一定成立,如|i|=,但i≠-+i或-i;D选项中,当a∈R时结论成立,但在复数集中不一定成立,如i2=-1<0.
【答案】 B
2.i是虚数单位,则的虚部是(  )
A.i
B.-i
C.
D.-
【解析】 ===+i.
【答案】 C
3.=(  )
A.2
B.2
C.
D.1
【解析】 由===1-i,
∴=|1-i|=.故选C.
【答案】 C
4.是z的共轭复数.若z+=2,(z-)i=2(i为虚数单位),则z=(  )
A.1+i
B.-1-iC.-1+i
D.1-i
【解析】 法一:设z=a+bi,a,b为实数,则=a-bi,∵z+=2a=2,∴a=1.又(z-)i=2bi2=-2b=2,∴b=-1.故z=1-i.
法二:∵(z-)i=2,∴z-==-2i.又z+=2,
∴(z-)+(z+)=-2i+2,∴2z=-2i+2,
∴z=1-i.
【答案】 D
5.复数的共轭复数为(  )
A.-+i
B.+i
C.-i
D.--i
【解析】 ∵===-+i,
∴其共轭复数为--i.故选D.
【答案】 D
6.下面是关于复数z=的四个命题:
p1:|z|=2;
p2:z2=2i;p3:z的共轭复数为1+i;
p4:z的虚部为-1.
其中的真命题为(  )
A.p2,p3
B.p1,p2
C.p2,p4
D.p3,p4
【解析】 ∵z==-1-i,
∴|z|==,
∴p1是假命题;
∵z2=(-1-i)2=2i,∴p2是真命题;
∵=-1+i,∴p3是假命题;
∵z的虚部为-1,∴p4是真命题.
其中的真命题为p2,p4.
【答案】 C
7.复平面上平行四边形ABCD的四个顶点中,A,B,C所对应的复数分别为2+3i,3+2i,-2-3i,则D点对应的复数是(  )
A.-2+3i
B.-3-2i
C.2-3i
D.3-2i
【解析】 设D(x,y),由平行四边形对角线互相平分得∴
∴D(-3,-2),∴对应复数为-3-2i.
【答案】 B
8.若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则(  )
A.a=-1
B.a≠-1且a≠2
C.a≠-1
D.a≠2
【解析】 要使复数不是纯虚数,则有
∴解得a≠-1.
【答案】 C
9.若a,b∈R,则复数(a2-6a+10)+(-b2+4b-5)i对应的点在(  )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【解析】 复数对应点的坐标为(a2-6a+10,-b2+4b-5),
又∵a2-6a+10=(a-3)2+1>0,
-b2+4b-5=-(b-2)2-1<0.
所以复数对应的点在第四象限.故选D.
【答案】 D
10.如果复数z=3+ai满足条件|z-2|<2,那么实数a的取值范围是(  )
A.(-2,2)
B.(-2,2)
C.(-1,1)
D.(-,
)
【解析】 因为|z-2|=|3+ai-2|=|1+ai|=<2,所以a2+1<4,所以a2<3,即-【答案】 D
11.若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则(  )
A.b=2,c=3
B.b=-2,c=3
C.b=-2,c=-1
D.b=2,c=-1
【解析】 因为1+i是实系数方程的一个复数根,所以1-i也是方程的根,则1+i+1-i=2=-b,(1+i)(1-i)=3=c,解得b=-2,c=3.
【答案】 B
12.设z是复数,则下列命题中的假命题是(  )
A.若z2≥0,则z是实数
B.若z2<0,则z是虚数
C.若z是虚数,则z2≥0
D.若z是纯虚数,则z2<0【解析】 设z=a+bi(a,b∈R),选项A,z2=(a+bi)2=a2-b2+2abi≥0,则故b=0或a,b都为0,即z为实数,正确.
选项B,z2=(a+bi)2=a2-b2+2abi<0,则则故z一定为虚数,正确.
选项C,若z为虚数,则b≠0,z2=(a+bi)2=a2-b2+2abi,
由于a的值不确定,故z2无法与0比较大小,错误.
选项D,若z为纯虚数,则则z2=-b2<0,正确.
【答案】 C
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)
13.已知i是虚数单位,计算=________.
【解析】 =====--i.
【答案】 --i
14.a为正实数,i为虚数单位,=2,则a=__________.
【解析】 ==1-ai,
则=|1-ai|==2,所以a2=3.
又a为正实数,所以a=.
【答案】 
15.设a,b∈R,a+bi=(i为虚数单位),则a+b的值为__________.
【解析】 a+bi====5+3i,依据复数相等的充要条件可得a=5,b=3.
从而a+b=8.
【答案】 8
16.若复数z满足|z-i|≤(i为虚数单位),则z在复平面内所对应的图形的面积为________.
【解析】 设z=x+yi(x,y∈R),则由|z-i|≤可得≤,即x2+(y-1)2≤2,它表示以点(0,1)为圆心,为半径的圆及其内部,所以z在复平面内所对应的图形的面积为2π.
【答案】 2π
三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分10分)计算:
(1)(+i)2(4+5i);
(2)+.
【解】 (1)(+i)2(4+5i)=2(1+i)2(4+5i)
=4i(4+5i)=-20+16i.
(2)+
=+
=i(1+i)+
=-1+i+(-i)1
008
=-1+i+1
=i.
18.(本小题满分12分)已知关于x,y的方程组有实数解,求实数a,b的值.
【解】 由①得解得
将x,y代入②得(5+4a)-(6+b)i=9-8i,
所以
所以a=1,b=2.
19.(本小题满分12分)实数k为何值时,复数z=(k2-3k-4)+(k2-5k-6)i是:
(1)实数;(2)虚数;(3)纯虚数;(4)0.
【解】 (1)当k2-5k-6=0,即k=6或k=-1时,z是实数.
(2)当k2-5k-6≠0,即k≠6且k≠-1时,z是虚数.
(3)当即k=4时,z是纯虚数.
(4)当即k=-1时,z是0.
20.(本小题满分12分)已知复数z满足|z|=,z2的虚部是2.
(1)求复数z;
(2)设z,z2,z-z2在复平面上的对应点分别为A,B,C,求△ABC的面积.
【解】 (1)设z=a+bi(a,b∈R),则z2=a2-b2+2abi,由题意得a2+b2=2且2ab=2,解得a=b=1或a=b=-1,所以z=1+i或z=-1-i.
(2)当z=1+i时,z2=2i,z-z2=1-i,所以A(1,1),B(0,2),C(1,-1),所以S△ABC=1.
当z=-1-i时,z2=2i,z-z2=-1-3i,所以A(-1,-1),B(0,2),C(-1,-3),所以S△ABC=1.
21.(本小题满分12分)已知复数z1=i,z2=-i,z3=2-i,z4=-在复平面上对应的点分别是A,B,C,D.
(1)求证:A,B,C,D四点共圆;
(2)已知=2
,求点P对应的复数.
【解】 (1)∵|z1|=|z2|=|z3|=|z4|=,
即|OA|=|OB|=|OC|=|OD|,
∴A,B,C,D四点都在圆x2+y2=5上,即A,B,C,D四点共圆.
(2)∵A(0,),B(,-),
∴=(,--).
设P(x,y),则=(x,y-),
若=2
,那么(,--)=(2x,2y-2),

解得
∴点P对应的复数为+i.
22.(本小题满分12分)设O为坐标原点,已知向量1,2分别对应复数z1,z2,且z1=+(10-a2)i,z2=+(2a-5)i,a∈R.若1+z2可以与任意实数比较大小,求1·2的值.
【解】 由题意,得1=-(10-a2)i,
则1+z2=-(10-a2)i++(2a-5)i
=+(a2+2a-15)i.
因为1+z2可以与任意实数比较大小,
所以1+z2是实数,
所以a2+2a-15=0,解得a=-5或a=3.
又因为a+5≠0,所以a=3,所以z1=+i,z2=-1+i.
所以1=,2=(-1,1).
所以1·2=×(-1)+1×1=.