【学练优】(贵州专用)2017秋九年级数学上册全一册教案(打包82套)(新版)北师大版

文档属性

名称 【学练优】(贵州专用)2017秋九年级数学上册全一册教案(打包82套)(新版)北师大版
格式 zip
文件大小 15.6MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2017-07-04 17:41:58

文档简介

2.5 一元二次方程的根与系数的关系
1.掌握一元二次方程的根与系数的关系;(重点)
2.会利用根与系数的关系解决有关的问题.(难点)
                   
一、情景导入
解下列方程,将得到的解填入下面的表格中,你发现表格中两个解的和与积和原来的方程有什么联系?
(1)x2-2x=0;
(2)x2+3x-4=0;
(3)x2-5x+6=0.
方程
x1
x2
x1+x2
x1·x2
二、合作探究
探究点一:一元二次方程的根与系数的关系
利用根与系数的关系,求方程3x2+6x-1=0的两根之和、两根之积.
解析:由一元二次方程根与系数的关系可求得.
解:这里a=3,b=6,c=-1.
Δ=b2-4ac=62-4×3×(-1)=36+12=48>0,
∴方程有两个实数根.
设方程的两个实数根是x1,x2,
那么x1+x2=-2,x1·x2=-.
方法总结:如果方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=-,x1x2=.
探究点二:一元二次方程的根与系数的关系的应用
【类型一】
利用根与系数的关系求代数式的值
设x1,x2是方程2x2+4x-3=0的两个根,利用根与系数的关系,求下列各式的值:
(1)(x1+2)(x2+2);  (2)+.
解析:先确定a,b,c的值,再求出x1+x2与x1x2的值,最后将所求式子做适当变形,把x1+x2与x1x2的值整体代入求解即可.
解:根据根与系数的关系,得x1+x2=-2,x1x2=-.
(1)(x1+2)(x2+2)=x1x2+2(x1+x2)+4=-+2×(-2)+4=-;
(2)+====-.
方法总结:先确定a,b,c的值,再求出x1+x2与x1x2的值,最后将所求式子做适当的变形,把x1+x2与x1x2的值整体代入求解即可.
【类型二】
已知方程一根,利用根与系数的关系求方程的另一根
已知方程5x2+kx-6=0的一个根为2,求它的另一个根及k的值.
解析:由方程5x2+kx-6=0可知二次项系数和常数项,所以可根据两根之积求出方程另一个根,然后根据两根之和求出k的值.
解:设方程的另一个根是x1,则2x1=-,
∴x1=-.又∵x1+2=-,
∴-+2=-,∴k=-7.
方法总结:对于一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0),当已知二次项系数和常数项时,可求得方程的两根之积;当已知二次项系数和一次项系数时,可求得方程的两根之和.
【类型三】
判别式及根与系数关系的综合应用
已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=-1,求m的值.
解析:利用韦达定理表示出α+β,αβ,再由+=-1建立方程,求解m的值.
解:∵α、β是方程的两个不相等的实数根,
∴α+β=-(2m+3),αβ=m2.
又∵+===-1,
化简整理,得m2-2m-3=0.
解得m=3或m=-1.
当m=-1时,方程为x2+x+1=0,
此时Δ=12-4<0,方程无解,
∴m=-1应舍去.
当m=3时,方程为x2+9x+9=0,
此时Δ=92-4×9>0,
方程有两个不相等的实数根.
综上所述,m=3.
易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.
三、板书设计
让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考
的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.6.3 反比例函数的应用
1.会根据实际问题中变量之间的关系,建立反比例函数模型;(重点)
2.能利用反比例函数解决实际问题.(难点)
                   
一、情景导入
我们都知道,气球内可以充满一定质量的气体.
如果在温度不变的情况下,气球内气体的气压p(kPa)与气体体积V(m3)之间有怎样的关系?你想知道气球在什么条件下会爆炸吗?
二、合作探究
探究点一:实际问题与反比例函数
做拉面的过程中,渗透着反比例函数的知识.一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示:
(1)写出y与S之间的函数表达式;
(2)当面条的横截面积为1.6mm2时,面条的总长度是多少米?
(3)要使面条的横截面积不多于1.28mm2,面条的总长度至少是多少米?
解析:由题意可设y与S之间的函数表达式为y=,而P(32,4)为函数图象上一点,所以把对应的S,y的值代入函数表达式即可求出比例系数,从而得出反比例函数的表达式,最后根据反比例函数的图象和性质解题.
解:(1)由题意可设y与S之间的函数关系式为y=.∵点P(4,32)在图象上,
∴32=,∴k=128.
∴y与S之间的函数表达式为y=(S>0);
(2)把S=1.6代入y=中,得y==80.
∴当面条的横截面积为1.6mm2时,面条的总长度是80m;
(3)把S=1.28代入y=,得y=100.
由图象可知,要使面条的横截面积不多于1.28mm2,面条的总长度至少应为100m.
  方法总结:解决实际问题的关键是认真阅读,理解题意,明确基本数量关系(即题中的变量与常量之间的关系),抽象出实际问题中的反比例函数模型,由此建立反比例函数,再利用反比例函数的图象与性质解决问题.
探究点二:反比例函数与其他学科知识的综合
某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干木块,构筑成一条临时近道.木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.
(1)请直接写出这一函数表达式和自变量的取值范围;
(2)当木板面积为0.2m2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板的面积至少要多大?
解析:由于木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,而图象经过点A,于是可以利用待定系数法求得反比例函数的关系式,进而可以进一步求解.
解:(1)设木板对地面的压强p(Pa)与木板面积S(m2)的反比例函数关系式为p=(S>0).
因为反比例函数的图象经过点A(1.5,400),所以有k=600.
所以反比例函数的关系式为p=(S>0);
(2)当S=0.2时,p==3000,即压强是3000Pa;
(3)由题意知≤6000,所以S≥0.1,即木板面积至少要有0.1m2.
  方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p=,当压力F一定时,p与S成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.
三、板书设计
经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.第2课时
比例的性质
【教学目标】
1、(理解)
能熟记比例的基本性质.
2、(掌握)
能够运用比例的性质进行简单的计算和证明.
【教学重点】
比例的基本性质及其应用.
【教学过程】
知识链接:
1、小学里已经学过了比例的有关知识,下面请同学们口答下列问题:
(1)如果a与b的比值和c与d的比值相等,应记为:

(2)已知2:3=4:x,则x=

2、上节课教学了两条线段的比,成比例线段
(1)比例线段及其相关概念
“成比例线段”的概念:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做

(2)
“成比例线段”和“线段的比”这两个概念有什么区别?
线段的比是指
条线段的比的关系,成比例线段是指
条线段之间的关系。
(3)注意:概念的有序性
线段的比有顺序性,a:b和b:a相等吗?请举例说明。
成比例线段也有顺序性,如能说成是b、a、c、d成比例吗?请举例说明。
预习交流:
比例的基本性质是:

请写出推理过程:
∵,在两边同乘以bd得,
=

=
合比性质:如果,那么
请写出推理过程:
∵,在两边同时加上1得,
+
=+
.
两边分别通分得:
思考:请仿照上面的方法,证明“如果,那么”.
等比性质:
猜想(),与相等吗?能否证明你的猜想?(引导学生从上述实例中找出证明方法)
等比性质:如果(),那么=.
思考:等比性质中,为什么要这个条件?
巩固练习:
1.在相同时刻的物高与影长成比例,如果一建筑在地面上影长为50米,高为1.5米的测竿的影长为2.5米,那么,该建筑的高是多少米?
2.若则
3.若,则
本课小结:
1.比例的基本性质:a:b=c:d

2.
合比性质:如果,那么

3.
等比性质:如果(),
布置作业:
课本习题4.2特殊平行四边形
菱形的性质与判定
第1课时
菱形的性质




1、会归纳菱形的特性并进行证明;
2、能运用菱形的性质定理进行简单的计算与证明;
3、在进行探索、猜想、证明过程中,进一步发展推理论证的能力,体会证明的必要性.
重点:菱形的性质定理证明
难点:菱形的性质定理证明、运用
,生活数学与理论数学的相互转化.
知识链接:
平行四边形的性质与判定

、课前预习:1.复习平行四边形的性质.边:
角:
对角线:
对称性:
2.菱形的定义是什么? ___
____
菱形是不是中心对称图形
,对称中心是___
__
3.请动手制作一个菱形,折—折,观察并填空.
菱形是不是轴对称图形
,对称轴有几条 _______,分别是
___
____
二、探索活动:探索活动(一):菱形是一种特殊的平行四边形,具有平行四边形的所有性质。菱形特有的性质是(性质定理):菱形的四条边_______
______;菱形的对角线____
_________。探索活动(二):试证明上述定理已知:_____________________________________。求证:(1)__________________________;(2)__________________________。探索活动(三):已知菱形ABCD的两条对角线AC、BD相交于点O,图中存在特殊的三角形吗?如果菱形的两条对角线长分别为6和8,由此你能获得有关这个菱形的哪些结论?(可得到边长为
;周长为
面积为
)你认为菱形的面积与菱形的两条对角线的长有关吗?如果有关,怎样根据菱形的对角线的计算它的面积?由此可得:菱形的面积__________________________________.由此得到菱形的两种面积计算方法:1.
_____________________________________________2.
_____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为
4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是(
).
(A)1个
(B)2个
(C)3个
(D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积五、学习体会:一元二次方程的根与系数的关系
【学习目标】
1、在已有的一元二次方程解法的基础上,探索出一元二次方程根与系数的关系,及其此关系的运用。
2、通过观察、实践、讨论等活动,经历发现问题,发现关系的过程。
【学习重点】观察数字系数的一元二次方程的两个根之和,及两个根之积与原方程系数之间的关系
【学习难点】对根与系数这一性质进行应用。
【课标要求】能根据具体问题的实际意义,检验结果是否合理
【提出问题】
解下列方程,将得到的解填入下面的表格中,你发现表格中两个解的和与积和原来的方程有什么联系?
(1)x2-2x=0;
(2)x2+3x-4=0;
(3)x2-5x+6=0
【尝试探索,发现规律】
1、完成如上表格。
2、猜想一元二次方程的两个根的和与积和原来的方程有什么联系?小组交流。
3、一般地,对于关于方程为已知常数,,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1 x2的值,你能得出什么结果?与上面发现的现象是否一致。
【知识应用】
1、(1)不解方程,求方程两根的和两根的积:


(2)已知方程的一个根是2,求它的另一个根及的值。
(3)不解方程,求一元二次方程两个根的①平方和;②倒数和。
(4)求一元二次方程,使它的两个根是。
【归纳小结】
【作业】
1、已知方程的一个根是1,求它的另一个根及的值。
2、设是方程的两个根,不解方程,求下列各式的值。
①;②
3、求一个一元次方程,使它的两个根分别为:
①;②
4、下列方程两根的和与两根的积各是多少?
①;
②;
③;
④;4.6
利用相似三角形测高
教学目标:
1、知识与技能:使学生掌握和综合运用三角形相似的判定条件和性质.
2、过程与方法:通过测量旗杆的高度,使学生运用所学知识解决问题,以课后分组合作活动的方法进行实践以及进行全班交流,进一步积累数学活动经验.
3、情感与态度:通过问题情境的设置,培养学生积极的进取精神,增强学生数学学习的自信心.实现学生之间的交流合作,体现数学知识解决实际问题的价值.
重点、难点
重点:综合运用相似三角形判定、性质解决实际问题
难点:解决学生在操作过程中如何与课本中有关知识相联系.
关键:抓住测量方法,结合所学,进行问题的解决.
第一环节
自学互助
活动内容:学生课前预习、教师课堂引导、学生课上讨论,归纳总结出测量一些不能直接测量的物体的高度的方法:
1.利用阳光下的影子来测量旗杆的高度,如图1:
图1
操作方法:一名学生在直立于旗杆影子的顶端处测出该同学的影长和此时旗杆的影长.
点拨:把太阳的光线看成是平行的.
图2
∵太阳的光线是平行的,∴AE∥CB,∴∠AEB=∠CBD,
∵人与旗杆是垂直于地面的,∴∠ABE=∠CDB,∴△ABE∽△CBD

即CD=
因此,只要测量出人的影长BE,旗杆的影长DB,再知道人的身高AB,就可以求出旗杆CD的高度了.
2.利用标杆测量旗杆的高度
操作方法:选一名学生为观测者,在他和旗杆之间的地面上直立一根高度已知的标杆,观测者前后调整自己的位置,使旗杆顶部、标杆顶部与眼睛恰好在同一直线上时,分别测出他的脚与旗杆底部,以及标杆底部的距离即可求出旗杆的高度.
如图,过点A作AN⊥DC于N,交EF于M.
图3
点拨:∵人、标杆和旗杆都垂直于地面,∴∠ABF=∠EFD=∠CDH=90°
∴人、标杆和旗杆是互相平行的.
∵EF∥CN,∴∠1=∠2,∵∠3=∠3,△AME∽△ANC,∴
∵人与标杆的距离、人与旗杆的距离,标杆与人的身高的差EM都已测量出,
∴能求出CN,∵∠ABF=∠CDF=∠AND=90°,∴四边形ABND为矩形.
∴DN=AB,∴能求出旗杆CD的长度.
3.利用镜子的反射
操作方法:选一名学生作为观测者.在他与旗杆之间的地面上平放一面镜子,固定镜子的位置,观测者看着镜子来回调整自己的位置,使自己能够通过镜子看到旗杆项端.测出此时他的脚与镜子的距离、旗杆底部与镜子的距离就能求出旗杆的高度.
点拨:入射角=反射角
图4
∵入射角=反射角
∴∠AEB=∠CED
∵人、旗杆都垂直于地面
∴∠B=∠D=90°∴
因此,测量出人与镜子的距离BE,旗杆与镜子的距离DE,再知道人的身高AB,就可以求出旗杆CD的高度.
活动目的:本节课的主要任务是通过测量某些不能直接测量的物体的高度,培养学生学数学的兴趣和用数学的意识.因此首先要明确测量方法.
活动的注意事项:
1、对学生在讨论中的可能的想法要及时予以点评、指导.
2、在总结测量方法时要注意以下几点:
运用方法1时可以把太阳光近似地看成平行光线,计算时还要用到观测者的身高.
运用方法2时观测者的眼睛必须与标杆的顶端和旗杆的顶端“三点共线”,标杆与地面要垂直,在计算时还要用到观测者的眼睛离地面的高度.
运用方法3时应注意向学生解释光线的入射角等于反射角的现象.
第二环节
展示点拔
活动内容:将全班学生分成五人小组,选出组长,分头进行户外自行寻找测量对象进行实际测量,被测物不一定是旗杆,也可以选择楼房、树等进行测量.
第三环节
巩固提高
活动内容:
通过以下问题的解决,充分发挥学生的聪明才智.
[想一想]同学们经历了上述三种方法,你还能想出哪些测量旗杆高度的方法?你认为最优化的方法是哪种?
思路点拔:1、如果旗杆周围有足够地空地使旗杆在太阳光照射下影子都在平地上,并能测出影子的长度,那么,可以在平地垂直树一根小棒,等到小棒的影子恰好等于棒高时,再量旗杆的影子,此时旗杆的影子长度就是这个旗杆的高度.2、可以采用立一个已知长度的参照物在旗杆旁照相后量出照片中旗杆与参照物的长度根据线段成比例来进行计算.3、拿一根知道长度的直棒,手臂伸直,不断调整自己的位置,使直棒刚好完全挡住旗杆,量出此时人到旗杆的距离、人手臂的长度和棒长,就可以利用三角形相似来进行计算.等等.
第四环节
课堂小结
1、本节课你学到了哪些知识?
2、在运用科学知识进行实践过程中,你是否想到最优的方法?
3、在与同伴合作交流中,你对自己的表现满意吗?
第五环节
布置作业,反思提炼第2课时 一元二次方程的解及其估算
1.经历一元二次方程的解或近似解的探索过程,增进对方程解的认识;(重点)
2.会用“夹逼法”估算方程的解,培养学生的估算意识和能力.(难点)
                   
一、情景导入
在上一课时情境导入中,苗圃的宽满足方程x(x+2)=120,你能求出该方程的解吗?
二、合作探究
探究点一:一元二次方程的解
下列哪些数是方程x2-6x+8=0的根?
0,1,2,3,4,5,6,7,8,9,10.
解析:把0,1,2,3,4,5,6,7,8,9,10分别代入方程x2-6x+8=0中,发现当x=2和x=4时,方程x2-6x+8=0成立,所以x=2,x=4是方程x2-6x+8=0的根.
解:2,4是方程x2-6x+8=0的根.
方法总结:(1)使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫一元二次方程的根.
(2)判断一个数是否为某个一元二次方程的根,我们只需要将这个数当作未知数的值分别代入原方程的左右两边,看左右两边代数式的值是否相等,若相等,则这个数是一元二次方程的根;若不相等,则这个数不是一元二次方程的根.
探究点二:估算一元二次方程的近似解
请求出一元二次方程x2-2x-1=0的正数根(精确到0.1).
解析:先列表取值,初步确定正数根x在哪两个整数之间,然后再用类似的方法逐步确定出x的近似正数根.
解:(1)列表,依次取x=0,1,2,3,…
x
0
1
2
3

x2-2x-1
-1
-2
-1
2

  由上表可发现,当2<x<3时,-1<x2-2x-1<2;
(2)继续列表,依次取x=2.1,2.2,2.3,2.4,2.5,…
x
2.1
2.2
2.3
2.4
2.5

x2-2x-1
-0.79
-0.56
-0.31
-0.04
0.25

  由上表可发现,当2.4<x<2.5时,-0.04<x2-2x-1<0.25;
(3)取x=2.45,则x2-2x-1≈0.1025.
∴2.4<x<2.45,∴x≈2.4.
方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.
(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.
三、板书设计
一元二次方程的解的估算,采用“夹逼法”:
(1)先根据实际问题确定其解的大致范围;
(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.
“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.第4课时
黄金分割
教学目标
(一)教学知识点
1.知道黄金分割的定义.
2.会找一条线段的黄金分割点.
3.会判断某一点是否为一条线段的黄金分割点.
(二)能力训练要求
通过找一条线段的黄金分割点,培养学生的理解与动手能力.
(三)情感与价值观要求
理解黄金分割的意义,并能动手找到和制作黄金分割点和图形,让学生认识数学与人类生活的密切联系对人类历史发展的作用.
教学重点
了解黄金分割的意义,并能运用.
教学难点
找黄金分割点和画黄金矩形.
教学过程
Ⅰ.创设问题情境,引入新课
[师]生活中我们见到过许许多多的图形,形态各异,美观大方.那么这些漂亮的图形你能画出来吗?比如,右图是一个五角星图案,如何找点C把AB分成两段AC和BC,使得画出的图形匀称美观呢?本节课就研究这个问题.
Ⅱ.讲授新课
[师]在五角星图案中,大家用刻度尺分别度量线段AC、BC的长度,然后计算、,它们的值相等吗?
[生]相等.
[师]所以.
1.黄金分割的定义
一般地,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割(golden
section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中≈0.618.
2.
计算黄金比.
解:由=
,得∴AC2=AB·BC.
设AB=1,AC=x,则BC=1-
x.
∴x2=1×(1-x)
∴x2+
x
-1=0
解这个方程,得
x1=或x2=(不合题意,舍去),
所以,黄金比=≈0.618。
3.作一条线段的黄金分割点.
如图,已知线段AB,按照如下方法作图:
(1)经过点B作BD⊥AB,使BD=AB.
(2)连接DA,在DA上截取DE=DB.
(3)在AB上截取AC=AE.则点C为线段AB的黄金分割点.
[师]你知道为什么吗?
若点C为线段AB的黄金分割点,则点C分线段AB所成的两条线段AC、BC间须满足.下面请大家进行验证.自己有困难时可以互相交流.为了计算方便,可设AB=1.
证明:∵AB=1,AC=x,BD=AB=
∴AD=x+
在Rt△ABD中,由勾股定理,得
(x+)2=12+()2
∴x2+x+=1+
∴x2=1-x
∴x2=1·(1-x)
∴AC2=AB·BC
即:
即点C是线段AB的一个黄金分割点,
在x2=1-x中
整理,得x2+x-1=0
∴x=
∵AC为线段长,只能取正
∴AC=≈0.618
∴≈0.618
∴黄金比约为0.618.
3.想一想
古希腊时期的巴台农神庙(Parthenom
Temple).把它的正面放在一个矩形ABCD中,以矩形ABCD的宽AD为边在其内部作正方形AEFD,那么我们可以惊奇地发现,,点E是AB的黄金分割点吗?矩形ABCD的宽与长的比是黄金比吗?
[师]请大家互相交流.
[生]因为四边形AEFD是正方形,所以AD=BC=AE,又因为,所以,即,因此点E是AB的黄金分割点,矩形ABCD宽与长的比是黄金比.
[师]在上面这个矩形中,宽与长的比是黄金比,这个矩形叫做黄金矩形.你学会作了吗?
Ⅲ.课时小结
本节课学习了:1.黄金分割点的定义及黄金比.
2.如何找一条线段的黄金分割点,以及会画黄金矩形.
3.能根据定义判断某一点是否为一条线段的黄金分割点.
Ⅳ.课后作业
习题4.8
Ⅴ.活动与探究
要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最合适,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB的黄金分割点C作为第一个试验点,C点的数值可以算是1000+(2000-1000)×0.618=1618.试验的结果,如果按1618倍,水兑得过多,稀释效果不理想,可以进行第二次试验.这次的试验点应该选AC的黄金分割点D,D的位置是1000+(1618-1000)×0.618,约等于1382,如果D点还不理想,可以按黄金分割的方法继续试验下去.如果太浓,可以选DC之间的黄金分割点;如果太稀,可以选AD之间的黄金分割点,用这样的方法,可以较快地找到合适的浓度数据.
这种方法叫做“黄金分割法”.用这样的方法进行科学试验,可以用最少的试验次数找到最佳的数据,既节省了时间,也节约了原材料.
●板书设计2.3
用公式法求解一元二次方程
第1课时
用公式法求解一元二次方程
教学内容
1.一元二次方程求根公式的推导过程;
2.公式法的概念;
3.利用公式法解一元二次方程.
教学目标
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.
重难点关键
1.重点:求根公式的推导和公式法的应用.
2.难点与关键:一元二次方程求根公式法的推导.
教学过程
一、复习引入
(学生活动)用配方法解下列方程
(1)6x2-7x+1=0
(2)4x2-3x=52
(老师点评)
(1)移项,得:6x2-7x=-1
二次项系数化为1,得:x2-x=-
配方,得:x2-x+()2=-+()2
(x-)2=
x-=±
x1=+==1
x2=-+==
(2)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)移项;
(2)化二次项系数为1;
(3)方程两边都加上一次项系数的一半的平方;
(4)原方程变形为(x+m)2=n的形式;
(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.
二、探索新知
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1=,x2=
分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+x=-
配方,得:x2+x+()2=-+()2
即(x+)2=
∵b2-4ac≥0且4a2>0
∴≥0
直接开平方,得:x+=±
即x=
∴x1=,x2=
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x=就得到方程的根.
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1.用公式法解下列方程.
(1)2x2-4x-1=0
(2)5x+2=3x2
(3)(x-2)(3x-5)=0
(4)4x2-3x+1=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
解:(1)a=2,b=-4,c=-1
b2-4ac=(-4)2-4×2×(-1)=24>0
x=
∴x1=,x2=
(2)将方程化为一般形式
3x2-5x-2=0
a=3,b=-5,c=-2
b2-4ac=(-5)2-4×3×(-2)=49>0
x=
x1=2,x2=-
(3)将方程化为一般形式
3x2-11x+9=0
a=3,b=-11,c=9
b2-4ac=(-11)2-4×3×9=13>0
∴x=
∴x1=,x2=
(3)a=4,b=-3,c=1
b2-4ac=(-3)2-4×4×1=-7<0
因为在实数范围内,负数不能开平方,所以方程无实数根.
三、巩固练习
教材P43
随堂练习
四、应用拓展
例.某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.
(2)若使方程为一元二次方程m是否存在?若存在,请求出.
你能解决这个问题吗?
分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足:
①或②或③
解:(1)存在.根据题意,得:m2+1=2
m2=1
m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1时,方程为2x2-1-x=0
a=2,b=-1,c=-1
b2-4ac=(-1)2-4×2×(-1)=1+8=9
x=
x1=,x2=-
因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-.
(2)存在.根据题意,得:①m2+1=1,m2=0,m=0
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m2+1=0,m不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-.
五、归纳小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程;
(4)初步了解一元二次方程根的情况.
六、布置作业
1.教材P43
习题2.5
1、2
2.选用作业设计:
一、选择题
1.用公式法解方程4x2-12x=3,得到(
).
A.x=
B.x=
C.x=
D.x=
2.方程x2+4x+6=0的根是(
).
A.x1=,x2=;B.x1=6,x2=;C.x1=2,x2=;D.x1=x2=-
3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是(
).
A.4
B.-2
C.4或-2
D.-4或2
二、填空题
1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.
2.当x=______时,代数式x2-8x+12的值是-4.
3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.
三、综合提高题
1.用公式法解关于x的方程:x2-2ax-b2+a2=0.
2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-,x1·x2=;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.
3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时元收费.
(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)
(2)下表是这户居民3月、4月的用电情况和交费情况
月份
用电量(千瓦时)
交电费总金额(元)
3
80
25
4
45
10
根据上表数据,求电厂规定的A值为多少?第3课时 利用三边判定三角形相似
1.掌握相似三角形的判定定理3;(重点)
2.能熟练运用相似三角形的判定定理3.(难点)
                   
一、情景导入
如图,如果要判定△ABC与△A′B′C′相似,是不是一定需要一一验证所有的对应角和对应边的关系?
可否用类似于判定三角形全等的SSS方法,通过一个三角形的三条边与另一个三角形的三条边对应的比相等,来判定两个三角形相似呢?任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?
二、合作探究
探究点一:三边成比例的两个三角形相似
已知△ABC的三边长分别为1,,,△DEF的三边长分别为,,2,试判断△ABC与△DEF是否相似.
解析:因为已知两个三角形的三边长,所以可以考虑根据三边之间的比例关系来判定两个三角形是否相似.
解:因为==,
所以△ABC与△DEF相似.
  方法总结:已知两个三角形三边的大小,要判断它们是否相似,关键是通过计算来说明三边是否对应成比例.在相似三角形中,最短(长)边与最短(长)边是对应边,所以在判定两个三角形的三边是否成比例时,应先确定边的大小,以便找准对应关系.
探究点二:相似三角形的判定定理3的应用
如图所示,在△ABC中,点D、E分别是△ABC的边AB,AC上的点,AD=3,AE=6,DE=5,BD=15,CE=3,BC=15.根据以上条件,你认为∠B=∠AED吗?并说明理由.
解析:要说明∠B=∠AED,只需要得到△ABC∽△AED,根据三边成比例的两个三角形相似可证得△ABC∽△AED.
  解:∠B=∠AED.
理由如下:由题意,得
AB=AD+BD=3+15=18,
AC=AE+CE=6+3=9,
==3,==3,==3,
所以==,故△ABC∽△AED,
所以∠B=∠AED.
  方法总结:证明两角相等,可通过证明对应的两个三角形相似而得到,给出的已知条件以边为主时,首先考虑使用“三边成比例”的判定条件.
如图甲,小正方形的边长均为1,则乙图中的三角形(阴影部分)与△ABC相似的是哪一个图形?
解析:图中的三角形均为格点三角形,可根据勾股定理求出各边的长,然后根据三角形三边是否对应成比例来判断乙图中的三角形与△ABC是否相似.
解:由甲图可知AC==,BC=2,AB==.
同理,图①中,三角形的三边长分别为1,,2;
同理,图②中,三角形的三边长分别为1,,;
同理,图③中,三角形的三边长分别为,,3;
同理,图④中,三角形的三边长分别为2,,.
∵===,
∴图②中的三角形与△ABC相似.
  方法总结:(1)各个图形中的三角形均为格点三角形,可以根据勾股定理求出各边的长,然后根据三角形三边的长度是否成比例来判断两个三角形是否相似;(2)判断三边是否成比例,可以将三角形的三边长按大小顺序排列,然后分别计算他们对应边的比,最后由比值是否相等来确定两个三角形是否相似.
三、板书设计
相似三角形的判定定理3:三边成比例的两个三角形相似.
从学生已学的知识入手,通过设置问题,引导学生进行计算、推理和归纳,提高分析问题和解决问题的能力.感受两个三角形相似的判定定理3与全等三角形判定定理(SSS)的区别与联系,体会事物间一般到特殊、特殊到一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生与他人交流、合作的意识和品质.2.1 认识一元二次方程
第1课时 一元二次方程
1.了解一元二次方程的概念;(重点)
2.掌握一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0),能分清二次项、一次项与常数项以及二次项系数、一次项系数等,会把一元二次方程化成一般形式;(重点)
3.能根据具体问题的数量关系,建立方程的模型.(难点)
                   
一、情景导入
一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?
设苗圃的宽为xm,则长为(x+2)m.
根据题意,得x(x+2)=120.
所列方程是否为一元一次方程?
(这个方程便是即将学习的一元二次方程.)
二、合作探究
探究点一:一元二次方程的概念
【类型一】
判定一元二次方程
下列方程中,是一元二次方程的是________(填入序号即可).
①-y=0;②2x2-x-3=0;③=3;
④x2=2+3x;⑤x3-x+4=0;⑥t2=2;
⑦x2+3x-=0;⑧=2.
解析:由一元二次方程的定义知③⑤⑦⑧不是,答案为①②④⑥.
方法总结:判断一个方程是不是一元二次方程,先看它是不是整式方程,若是,再对它进行整理,若能整理为ax2+bx+c=0(a,b,c为常数,a≠0)的形式,则这个方程就是一元二次方程.
【类型二】
根据一元二次方程的概念求字母的值
a为何值时,下列方程为一元二次方程?
(1)ax2-x=2x2-ax-3;
(2)(a-1)x|a|+1+2x-7=0.
解析:(1)将方程转化为一般形式,得(a-2)x2+(a-1)x+3=0,所以当a-2≠0,即a≠2时,原方程是一元二次方程;(2)由|a|+1=2,且a-1≠0知,当a=-1时,原方程是一元二次方程.
解:(1)当a≠2时,方程ax2-x=2x2-ax-3为一元二次方程;
(2)因为|a|+1=2,所以a=±1.当a=1时,a-1=0,不合题意,舍去.所以当a=-1时,原方程为一元二次方程.
方法总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的值.
【类型三】
一元二次方程的一般形式
把下列方程转化成一元二次方程的一般形式,并指出二次项系数、一次项系数和常数项:
(1)x(x-2)=4x2-3x;
(2)-=;
(3)关于x的方程mx2-nx+mx+nx2=q-p(m+n≠0).
解析:首先对上述三个方程进行整理,通过“去分母,去括号,移项,合并同类项”等步骤将它们化为一般形式,再分别指出二次项系数、一次项系数和常数项.
解:(1)去括号,得x2-2x=4x2-3x.移项、合并同类项,得3x2-x=0.二次项系数为3,一次项系数为-1,常数项为0;
(2)去分母,得2x2-3(x+1)=3(-x-1).去括号、移项、合并同类项,得2x2=0.二次项系数为2,一次项系数为0,常数项为0;
(3)移项、合并同类项,得(m+n)x2+(m-n)x+p-q=0.二次项系数为m+n,一次项系数为m-n,常数项为p-q.
方法总结:(1)在确定一元二次方程各项系数时,首先把一元二次方程转化成一般形式,如果在一般形式中二次项系数为负,那么最好在方程左右两边同乘-1,使二次项系数变为正数;
(2)指出一元二次方程的各项系数时,一定要带上前面的符号;
(3)一元二次方程转化为一般形式后,若没有出现一次项bx,则b=0;若没有出现常数项c,则c=0.
探究点二:建立一元二次方程模型
如图,现有一张长为19cm,宽15cm的长方形纸片,需要在四个顶角处剪去边长是多少的小正方形,才能将其做成底面积为81cm2的无盖长方体纸盒?请根据题意列出方程.
解析:小正方形的边长即为纸盒的高,中间虚线部分则为纸盒底面,设出未知数,利用长方形面积公式可列出方程.
解:设需要剪去的小正方形边长为xcm,则纸盒底面的长方形的长为(19-2x)cm,宽为(15-2x)cm.
根据题意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<).
方法总结:列方程最重要的是审题,只有理解题意,才能恰当地设出未知数,准确地找出已知量和未知量之间的等量关系,正确地列出方程.在列出方程后,还应根据实际需求,注明自变量的取值范围.
三、板书设计
一元二次方程
本课通过丰富的实例,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想.通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效数学模型,初步培养学生的数学来源于实践又反过来作用于实践的辩证唯物主义观点,激发学生学习数学的兴趣.4.8 图形的位似
第1课时 位似多边形及其性质
1.了解位似多边形及其有关概念,了解位似与相似的联系和区别;(重点)
2.掌握位似图形的性质,会画位似图形;(重点)
3.会利用位似将一个图形放大或缩小.(难点)
                   
一、情景导入
生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.观察下图,图中有相似的多边形吗?如果有,那么这种相似有什么共同的特征?
二、合作探究
探究点一:位似多边形
如图所示,指出下列各图中两个图形是否是位似图形?若是,请指出位似中心.
解:(1)(2)(4)三图中的两图形都是位似图形,位似中心分别为A,P,P.
  方法总结:解决此类题的关键是首先要判断两个图形是不是相似图形,然后再找出对应点,作出几对对应点所在的直线,观察是否经过同一个点.若两个图形是相似图形,且所作的直线经过同一个点,则这两个图形是位似图形,据此可判断(1)(2)(4)是位似图形,(3)不是位似图形.
探究点二:位似多边形的性质
如图所示,△ABC与△A′B′C′关于点O位似,BO=3,B′O=6.
(1)若AC=5,求A′C′的长;
(2)若△ABC的面积为7,求△A′B′C′的面积.
  解:(1)因为△ABC与△A′B′C′是位似图形,位似比为OB:OB′=3:6=1:2,
所以=,即=,所以A′C′=10;
(2)根据题意,得=()2=,
即=,所以S△A′B′C′=7×4=28.
  方法总结:位似多边形是一种特殊的相似图形,图形上任意一对对应点到位似中心的距离之比都等于相似比,可利用相似三角形的性质解决有关问题.
探究点三:位似多边形的画法
(1)如图甲,在位似中心点O的异侧,作出已知四边形ABCD的位似图形A′B′C′D′,使四边形A′B′C′D′与四边形ABCD的相似比为2:3;
(2)如图乙,已知五边形ABCDE,在位似中心点O的同侧作五边形ABCDE的位似图形A′B′C′D′E′,使五边形A′B′C′D′E′与五边形ABCDE的相似比为1:3;
(3)如图丙,已知六边形ABCDEF,位似中心点O在AB边上,在点O的另一侧作位似图形A′B′C′D′E′F′,使六边形A′B′C′D′E′F′与六边形ABCDEF的相似比为1:2.
  解:(1)画法如下:
①分别连接OA,OB,OC,OD并反向延长;
②分别在AO,BO,CO,DO的延长线上截取OA′,OB′,OC′,OD′,使====;
③顺次连接A′B′,B′C′,C′D′,D′A′.
四边形A′B′C′D′就是所求作的四边形;
(2)画法如下:
①分别连接OA,OB,OC,OD,OE;
②分别在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使=====;
③顺次连接A′B′,B′C′,C′D′,D′E′,E′A′.
五边形A′B′C′D′E′就是所求作的五边形;
(3)画法如下:
①分别连接AO,BO,CO,DO,EO,FO并延长;
②分别在AO,BO,CO,DO,EO,FO的延长线上截取OA′,OB′,OC′,OD′,OE′,OF′,使======;
③顺次连接A′B′,B′C′,C′D′,D′E′,E′F′,F′A′.
六边形A′B′C′D′E′F′就是所求作的六边形.
  方法总结:(1)画位似图形时,要注意相似比,即分清楚是已知原图与新图的相似比,还是新图与原图的相似比.(2)画位似图形的关键是画出图形中顶点的对应点.画图的方法大致有两种:一是每对对应点都在位似中心的同侧;二是每对对应点都在位似中心的两侧.(3)若没有指定位似中心的位置,则画图时位似中心的取法有多种,对画图而言,以多边形的一个顶点为位似中心时,画图最简便.
三、板书设计
位似是相似图形的延伸和深化.经历位似图形的探索过程,进一步发展学生的探究、交流能力,培养学生动手操作的能力,体验学习的乐趣.位似图形在实际生产和生活中有着广泛的应用,通过现实情境,进一步发展学生从数学角度提出问题、分析问题、解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的联系.第2课时 相似三角形的周长和面积之比
1.理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方;(重点)
2.掌握相似三角形的周长比、面积比在实际中的应用.(难点)
                   
一、情景导入
如图所示是一个三角形的花坛,要在上面种满花草,园丁沿与AB平行的方向画一条直线,将花坛分割出一片三角形地块,测出△CDE的面积为10平方米,CD长为4m,BD长为6m.根据所测得的数据,请你计算出整个花坛△ABC的面积.
二、合作探究
探究点一:相似三角形的周长比
已知△ABC∽△A′B′C′,AD是△ABC的中线,A′D′是△A′B′C′的中线,若=,且△A′B′C′的周长为20cm,求△ABC的周长.
解:因为△ABC∽△A′B′C′,所以它们周长的比等于它们的相似比,对应边中线的比等于相似比,即相似比k==,=.
已知△A′B′C′的周长为20cm,所以=.所以△ABC的周长为10cm.
  易错提醒:在相似表达式△ABC∽△A′B′C′及对应中线比=中,都是△ABC在前,△A′B′C′在后,而在出现问题时,△A′B′C′在前,△ABC在后,顺序已经不同了,所以相似比要随之调整或者直接把相关量代入关系式求解.
探究点二:相似三角形的面积比
如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E是AB的中点,连接EF.若四边形BDFE的面积为6,求△ABD的面积.
  解:∵CF平分∠ACB,DC=AC,
∴CF是△ACD的中线,即F是AD的中点.
∵点E是AB的中点,∴EF∥BD,且=.
∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴=()2=.
∵S△AEF=S△ABD-S四边形BDFE=S△ABD-6,
∴=.
∴S△ABD=8,即△ABD的面积为8.
  易错提醒:在运用“相似三角形的面积比等于相似比的平方”这一性质时,同样要注意是对应三角形的面积比,在本题中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四边形BDFE=1:2之类的错误.
三、板书设计
相似三角形的周长和面积之比:相似三角形的周长比等于相似比,面积比等于相似比的平方.
经历相似三角形的性质的探索过程,培养学生的探索能力.通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体验化归思想.运用相似多边形的周长比,面积比解决实际问题,训练学生的运用能力,增强学生对知识的应用意识.4.1 成比例线段
第1课时 线段的比和成比例线段
1.知道线段的比的概念,会计算两条线段的比;(重点)
2.理解成比例线段的概念;(重点)
3.掌握成比例线段的判定方法.(难点)
                   
一、情景导入
请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?
这些例子都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段的长度不同.
二、合作探究
探究点一:线段的比
【类型一】
求线段的比
已知线段AB=2.5m,线段CD=400cm,求线段AB与CD的比.
解析:要求AB和CD的比,只需要根据线段的比的定义计算即可,但注意要将AB和CD的单位统一.
解:∵AB=2.5m=250cm,
∴==.
  方法总结:求线段的比时,首先要检查单位是否一致,不一致的应先统一单位,再求比.
【类型二】
比例尺
在比例尺为1:50
000的地图上,量得甲、乙两地的距离是3cm,则甲、乙两地的实际距离是    m.
  解析:根据“比例尺=”可求解.
设甲、乙两地的实际距离为xcm,则有1:50
000=3:x,解得x=150
000.
150
000cm=1500m.故答案为1500.
  方法总结:理解比例尺的意义,注意实际尺寸的单位要进行恰当的转化.
探究点二:成比例线段
【类型一】
判断线段成比例
下列四组线段中,是成比例线段的是(  )
A.3cm,4cm,5cm,6cm
B.4cm,8cm,3cm,5cm
C.5cm,15cm,2cm,6cm
D.8cm,4cm,1cm,3cm
  解析:将每组数据按从小到大的顺序排列,前两条线段的比和后两条线段的比相等的四条线段成比例.四个选项中,只有C项排列后有=.故选C.
  方法总结:判断四条线段是否成比例的方法:
(1)把四条线段按从小到大顺序排好,计算前两条线段的比和后两条线段的比,看是否相等做出判断;
(2)把四条线段按从小到大顺序排好,计算前后两个数的积与中间两个数的积,看是否相等作出判断.
【类型二】
由线段成比例求线段的长
已知:四条线段a、b、c、d,其中a=3cm,b=8cm,c=6cm.
(1)若a、b、c、d是成比例线段,求线段d的长度;
(2)若b、a、c、d是成比例线段,求线段d的长度.
解析:紧扣成比例线段的概念,利用比例式构造方程并求解.
解:(1)由a、b、c、d是成比例线段,得
=,即=,解得d=16.
故线段d的长度为16cm;
(2)由b、a、c、d是成比例线段,得
=,即=,解得d=.
故线段d的长度为cm.
  方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.
已知三条线段长分别为1cm,cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.
解析:因为本题中没有明确告知是求1,,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.
解:若x:1=:2,则x=;若1:x=:2,则x=;若1:=x:2,则x=;若1:=2:x,则x=2.
  所以所添加的线段的长有三种可能,可以是cm,cm,或2cm.
  方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.
三、板书设计
从丰富的实例入手,引导学生进行观察、发现和概括.在自主探究和合作交流过程中,适时引入新知识,并通过引导学生建立新的数学模型,开拓思维,提升学生认知能力.第2课时
复杂图形的三视图
教学目标:
1.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。
2.
会根据三视图描述原几何体。
教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。
教学难点:几何体与视图之间的相互转化。培养空间想像观念。
课型:新授课
教学方法:观察实践法
教学过程设计







补充完善
一、实物观察、空间想像观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。绘制:请你将抽象出来的三种视图画出来,并与同伴交流。比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画的对不对?谈谈你的看法。拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试。三视图画法四注意:1.注意物体摆放的位置
2.明确三种视图的形状3.准确三种视图的大小
4.注意实线与虚线的用法
学生观察自己所摆设的两个直棱柱实物。想像――抽象――绘制――比较――拓展注意:在画视图时,看得见部分的轮廓线通常画成实线,看不见部分的轮廓通常画成虚线。
二、典例解析例1..
如图,说出下列各几何体的名称,并指出哪些几何体属于棱柱,其中可以由平面图形旋转得到的几何体是哪几个?对应训练:1.一个四棱柱的俯视图如图3所示,则这个四棱柱的主视图和左视图可能是(
)2.画视图时,看得见的轮廓线通常画成
,看不见的部分通常画成
。3.举两个左视图是三角形的物体例子:

。4.
下列图形中左视图是   的是(   )A      B        C        D   5.画出右方实物的三视图。解:巧解与探究:例2.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有
个碟子。对应训练:下图是正方体分割后的一部分,它的另一部分为下列图形中的(
)能力升华:由主视图、俯视图确定小立方体的个数例3.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图1所示.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为,请你写出的所有可能值.解:(1)左视图共有5种情况,只要画对其中之一便可.根据主视图和俯视图可综合判出简单几何体的可能情况(其中俯视图中的数字表示垂直方向小正方体的个数)如下图所示.11123俯视图左视图23111俯
视23112231222312112123211232212323123图左视图(2)由上面(1)的种可能情况可知:的所有可能值为:.对应训练:如图所示的积木是有16块棱长为acm的正方体堆积而成的.请求出它的表面积_____。
答案:(1)正方体;(2)圆锥;(3)三棱形;(4)四棱形;(5)圆台;(6)球;(7)圆柱;(8)长方体;(9)长方体;(10)四棱柱;(11)六棱锥;(12)五棱柱.其中(1),(3),(4),(8),(9),(11),(12)属于棱柱体;(2),(5),(6),(7)是由不同的平面图形旋转得到的几何体.答案:1.D2.实线,虚线;3.圆锥,正四棱锥,倒放的正三棱柱等;4.A答案:12答案:B分析:根据主视图和俯视图,先确定左视图的可能情况,然后再确定实物情况,得出的可能值.答案:50a2cm2
四、课堂总结、本节课主要通过对由实物抽象出几何体的过程,发展大家的空间想像能力。在画实物的视图时,必须首先对实物进行合理的抽象,即把实物抽象成相应的几何体,在此基础上再画其视图。而且也会根据三视图描述几何体。
本节课主要是通过观察――绘制――比较――拓展,来完成学习内容的。在学习中注意想像和抽象,即把实物抽象成相应的几何体,在此基础上再画其视图。
五、布置作业课本习题5.4
5.5
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
图3
A.
B.
C.
D.
俯视图
主视图
左视图2.4
用因式分解法求解一元二次方程
【学习目标】
1、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。
2、学习重点:用因式分解法解某些方程。
【温故】
1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?
(2)将下列多项式因式分解

3x2-4x

4x2-9y2
③x2-6xy+9y2

(2x+1)2+4(2x+1)+4
【知新】
1.自学课本P46----P48
[讨论]以上解方程的方法是如何使二次方程降为一次的?
2、用分解因式法解方程
例1、解下列方程
(1)3
x2-5x=0
(2)x(x-2)
+x-2=0
例2、用因式分解法解下列方程
(1)5x2-2x-1/4=x2-2x+3/4
(2)x(x-3)-4(3-x)=0
(3)(5-x)2-16=0
(4)16(2x-1)2=25(x-2)2
【达标】
1解下列方程:
(1)x2+x=0
(2)x2+2√3
x=0
(3)3x2-6x=-3
(4)4
x2-121 =0
(5)3x(2x+1)=4x+2
(6)
(x-4)2=(5-2x)2
2把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径。
【拓展】选择合适的方法解一元二次方程
(1)4(x-5)2=16
(2)3
x2+2x-3=0
(3)(x+3)(x+1)=56.2
反比例函数的图象与性质
第1课时
反比例函数的图象


第1课时
反比例函数的图象
课型
新授课
教学目标
1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。3.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数图象的主要特征。
教学重点
掌握反比例函数的作图。
教学难点
反比例函数图象的特征
教学方法
自主探究法
教学后记







备注
一、回顾交流、问题牵引回顾:1.一次函数的图象是怎样的呢?你能画出y=-2x-1的图象吗?2.什么叫做反比例函数:3.你能提供一个生活情境来表现反比例函数中两个变量之间的相依关系吗?与同伴交流。学生思考、交流、回答。迁移:同学们,请你们猜一猜,反比例函数的图象是什么样的呢?你能画出的图象吗?学生动手画图,相互观摩。议一议(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?(4)曲线都分布在哪个象限内?学生先分四人小组进行讨论,而后小组汇报做一做作反比例函数的图象。学生动手画图,相互观摩。想一想观察和的图象,它们有什么相同点和不同点?学生小组讨论,弄清上述两个图象的异同点。交流讨论反比例函数图象是中心对称图形吗?如果是,请找出对称中心.反比例函数图象是轴对称图形吗 如果是,请指出它的对称轴.二、随堂练习课本随堂练习
[探索与交流]对于函数,两支曲线分别位于哪个象限内?对于函数,两支曲线又分别位于哪个象限内?怎样区别这两个函数的图象。学生分四人小组全班探索。三、课堂总结在进行函数的列表,描点作图的活动中,就已经渗透了反比例函数图象的特征,因此在作图象的过程中,大家要进行积极的探索。另外,(1)反比例函数的图象是非线性的,它的图象是双曲线;(2)反比例函数y=的图像,当k>0时,它的图像位于一、三象限内,当k<0时,它的图像位于二、四象限内;(3)反比例函数既是中心对称图形,又是轴对称图形。四、布置作业
课本习题6.2第3课时
利用三边判定三角形相似
●教学目的:
使学生掌握三角形相似的判定定理3和它的应用.
●教学重点:
判定定理3
●教学难点:
判定定理3的应用
●教学过程:
复习:
1.判定三角形相似目前有哪些方法?
2.回忆三角形相似判定定理1和2的证明的方法.
新授
(一)导入新课
三角形全等的判定中AAS
和ASA对应于相似三角形的判定的判定定理1,SAS对应于相似三角形的判定的判定定理2,那么SSS对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书)
(二)
做一做
画△ABC与△A′B′C′,使、和都等于给定的值k.
(1)设法比较∠A与∠A′的大小;
(2)△ABC与△A′B′C′相似吗?说说你的理由.
改变k值的大小,再试一试.
定理3:三边:成比例的两个三角形相似.
(三)例题学习
例:如图,在△ABC和△ADE中,==
,∠BAD=20°,求∠CAE的度数.
解:∵==

∴△ABC∽△ADE(三边成比例的两个三角形相似).
∴∠BAC=∠DAE,
∴∠BAC-∠DAC
=∠DAE-∠DAC,
即∠BAD=∠CAE.
∵∠BAD=20°,
∴∠CAE=20°.
三、巩固练习
四、小结
本节学习了相似三角形的判定定理3,使用时一定要注意它使用的条件.
五、作业:
板书设计:
教学后记:第五章
投影与视图
5.1


第1课时
投影的概念与中心投影
教学目标设计
知识与技能:经历实践、探索的过程,了解中心投影的含义,体会灯光下物体的影子在生活中的应用;通过实例了解视点、视线、盲区的概念.
过程与方法:通过观察、想象,能根据灯光来辨别物体的影子,发展学生的空间观念;通过实践、探索的过程.培养学生的观察、想象能力.
情感与价值观要求:经历观察、实验、想象等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点;初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造;学会与人合作,并能与他人交流思维的过程和结果.
教学方法设计
教法:
1、目标教学的方法;
2、组织小组讨论交流的方法.
3、采用多媒体投影辅助教学的方法.
学法指导:
自主探究式学习法
合作交流式学习法
教学程序设计
一、知识链接:
1、问题:大家看过皮影戏吗 你知道什么是皮影戏吗 皮影戏是怎样演出来的呢
2、多媒体播放手影表演、皮影戏的动画,组织学生欣赏.
3、同学们在感受这些形象逼真的图形时,思考一下,这些图形是怎样形成的呢?它们形成的原理又是什么呢?这些原理还有哪些重要用途呢?
(组织学生欣赏手影表演、皮影戏的动画,并让学生观察、分析皮影戏是怎样形成的.)
结论:皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲.表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐.
皮影戏的原理实际上就是用灯光把剪影照射在银幕上,在现实生活中我们也经常可见有关灯光与影子的实例.比如,在灯光下.做不同的手势可以形成各种各样的手影.
上面我们说的皮影与手影都是在灯光照射下形成的影子.灯光与影子在日常生活中有着非常广泛的应用,这节课我们就来探讨一下这个话题.
定义:物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象。一般地,物体在光线的照射下,在某个平面(地面、墙壁等)上得到的影子称为物体的投影,照射光线称为投影线,投影所在的平面称为投影面.
探照灯、手电筒、路灯和台灯的光线可以看成是从一个点发出的,像这样的光线所形成的投影称为中心投影.

教师根据上面的分析引导学生得出定义.)
二、自主探究:
活动一:
取一些长短不等的小棒和三角形、矩形纸片,用手电筒(或台灯)等去照射这些小棒和纸片.
(1)固定手电筒(或台灯),改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化
(2)固定小棒和纸片,改变手电简(或台灯)的摆放位置和方向,它们的影子发生了什么变化
问题:请大家先想象一下,小棒和三角形、矩形纸片在灯光照射下的影子是什么样子的
让我们一齐动手来实践一下,然后大家互相交流自己总结出的结果.
结论:(1)固定手电筒(或台灯)时,改变小棒或纸片的摆放位置和方向,它们的影子将变大或变小,当改变小棒或纸片的位置时,位置距离灯光越近,影子越大;距离越远,影子越小,当不改变位置只改变方向时,影子随着方向的改变而改变.
(2)固定小棒和纸片,改变手电筒(或台灯)的摆放位置,影子随着物体与手电筒(或台灯)之间距离的缩小而增大;改变手电筒(或台灯)的方向,影子随着发生变化.
活动二:在同—灯光下物体的影子与物体上对应点的连线肯定过灯泡所在位置,利用这个原理,我们做—下练习.
(让学生分小组进行活动,各小组记录结论,然后互相交流自己总结出的结果.)
三、综合运用:
做一做:确定下图中路灯灯泡所在的位置.
分析:根据刚才我们的讨论可知,在同一灯光下物体的影子与物体上对应点的连线过灯泡所在位置,那么如何找物体与影子上的对应点呢 找一对对应点可以吗 这是本题的关键,请大家互相交流,
(学生先独立完成,然后小组讨论,教师个别指导.)
四、反馈练习:
议一议:下图是两棵小树在同一时刻的影子,请在图中画出形成树影的光线.你能确定光源的位置 与同伴进行交流.
结论:因为灯光光线是由一点发出的光线,因此分别找到两对对应点以后,过这两对对应线作直线,两直线的交点即为灯光光源.
(学生先独立完成,然后小组讨论,教师个别指导.)
五、回顾总结:
总结:1、投影、中心投影
2、如何确定光源
(小组交流总结.)
六、自我检测:
检测:晚上,小华在马路的一侧散步,对面有一路灯,当小华笔直地往前走时,他在这盏路灯下的影子也随之向前移动.小华头顶的影子所经过的路径是怎样的?它与小华所走的路线有何位置关系
七、课后延伸:
延伸:课本128页习题5.1
八、板书设计
投影
做一做:
投影线
投影面
议一议:
中心投影
九、课后反思
本节课先由皮影戏引出灯光与影子这个话题,接着经历实践、探索的过程,掌握了中心投影的含义,进一步根据灯光光线的特点,由实物与影子来确定路灯的位置,能画出在同一时刻另一物体的影子,还要求大家不仅要自己动手实践,还要和同伴互相交流.同时要用自己的语言加以描述,做到手、嘴、脑互相配合,培养大家的实践操作能力,合作交流能力,语言表达能力.第2课时 营销问题及平均变化率问题与一元二次方程
1.会用列一元二次方程的方法解决营销问题及平均变化率问题;(重点、难点)
2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识.
                   
一、情景导入
某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?
二、合作探究
探究点一:利用一元二次方程解决营销问题
某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8000元的利润,且尽量减少库存,售价应为多少?
解析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.
解:设每件商品涨价x元,根据题意,得
(50+x-40)(500-10x)=8000,即x2-40x+300=0.解得x1=10,x2=30.
经检验,x1=10,x2=30都是原方程的解.
当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件).
当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件).
∵要尽量减少库存,∴售价应为60元.
  方法总结:理解商品销售量与商品价格的关系是解答本题的关键,另外,“尽量减少库存”不能忽视,它是取舍答案的一个重要依据.
探究点二:利用一元二次方程解决平均变化率问题
某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率.
解析:设3,4月份销售额的月平均增长率为x,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x)万元,4月份的销售额为60(1-10%)(1+x)2万元.
解:设3,4月份销售额的月平均增长率为x.
根据题意,得60(1-10%)(1+x)2=121.5,则(1+x)2=2.25,
解得x1=0.5,x2=-2.5(不合题意,舍去).
所以,3,4月份销售额的月平均增长率为50%.  方法总结:解决平均增长率(或降低率)问题的关键是明确基础量和变化后的量.如果设基础量为a,变化后的量为b,平均每年的增长率(或降低率)为x,则两年后的值为a(1±x)2.由此列出方程a(1±x)2=b,求出所需要的量.
三、板书设计
营销问题及平均变化率
经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣.第2课时 正方形的判定
1.掌握正方形的判定方法;(重点)
2.会运用正方形的判定条件进行有关的论证和计算.(难点)
                   
一、情景导入
我们学行四边形、矩形、菱形、正方形,那么思考一下,它们之间有怎样的包含关系?请填入下图中.
通过填写让学生形象地看到正方形是特殊的矩形,也是特殊的菱形,还是特殊的平行四边形;而正方形、矩形、菱形都是平行四边形;矩形、菱形都是特殊的平行四边形.
1.怎样判断一个四边形是矩形?
2.怎样判断一个四边形是菱形?
3.怎样判断一个四边形是平行四边形?
4.怎样判断一个平行四边形是矩形、菱形?
议一议:你有什么方法判定一个四边形是正方形?
二、合作探究
探究点一:正方形的判定
【类型一】
先证明是矩形再证明是正方形
已知:如图所示,在Rt△ABC中,∠C=90°,∠BAC,∠ABC的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.
解析:欲证明四边形CEDF是正方形,先根据∠C=90°,DE⊥BC,DF⊥AC,证明四边形CEDF是矩形,再证明一组邻边相等即可.
证明:如图所示,过点D作DG⊥AB于点G.
∵DF⊥AC,DE⊥BC,
∴∠DFC=∠DEC=90°.
又∠C=90°,
∴四边形CEDF是矩形(有三个角是直角的四边形是矩形).
∵AD平分∠BAC,DF⊥AC,DG⊥AB,
∴DF=DG.
同理可得DE=DG.∴DE=DF.
∴四边形CEDF是正方形(有一组邻边相等的矩形是正方形).
方法总结:正方形的判定方法有很多,可以先证明它是矩形,再证明它有一组邻边相等或对角线互相垂直;或先证明它是菱形,再证明它有一个角是直角或对角线相等.
【类型二】
先证明是菱形再证明是正方形
如图,EG,FH过正方形ABCD的对角线的交点O,且EG⊥FH.求证:四边形EFGH是正方形.
解析:已知EG⊥FH,要证四边形EFGH为正方形,则只需要证四边形的对角线EG,HF互相平分且相等即可,根据题意可通过三角形全等来证OE=OH=OG=OF.
证明:∵四边形ABCD为正方形,
∴OB=OC,∠ABO=∠BCO=45°,∠BOC=90°=∠COH+∠BOH.
∵EG⊥FH,
∴∠BOE+∠BOH=90°,
∴∠COH=∠BOE,
∴△CHO≌△BEO,∴OE=OH.
同理可证:OE=OF=OG,
∴OE=OF=OG=OH.
又∵EG⊥FH,
∴四边形EFGH为菱形.
∵EO+GO=FO+HO,即EG=HF,
∴四边形EFGH为正方形.
方法总结:对角线互相垂直平分且相等的四边形是正方形.
探究点二:正方形、菱形、矩形与平行四边形之间的关系
填空:
(1)对角线________________的四边形是矩形;
(2)对角线____________的平行四边形是矩形;
(3)对角线__________的平行四边形是正方形;
(4)对角线________________的矩形是正方形;
(5)对角线________________的菱形是正方形.
解:(1)相等且互相平分 (2)相等 (3)垂直且相等 (4)垂直 (5)相等
方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
三、板书设计
经历正方形判定条件的探索过程,发展学生初步的综合推理能力,主动探究的学习习惯,逐步掌握说理的基本方法.理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.第2课时
正方形的判定
教学目标
熟练掌握正方形的判定利用判定定理解决相关问题
课前准备:温故:(1)正方形是怎样的平行四边形?
(2)正方形是怎样的矩形?
(3)正方形是怎样的菱形?
(4)判定一个平行四边形是正方形,还应具备什么条件?
(5)判定一个矩形是正方形还应具备什么条件?
(6)判定一个菱形是正方形还应具备什么条件?
二、
初步探究1、宁宁在商场看中了一块正方形纱巾,但不知是否是正方形,只见售货员阿姨拉起纱巾的一组对角,另一组对角能完全重合,看宁宁还在犹豫,又拉起纱巾的另一组对角,剩下的那组对角也能完全重合.阿姨认为这样就能证明纱巾是正方形,把纱巾给了宁宁,你认为宁宁手上的纱巾一定是正方形吗?
(说说自己的证明办法)
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形.

)(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.(
)(3)两条对角线互相垂直平分且相等的四边形,一定是正方形.

)(4)四条边相等,且有一个角是直角的四边形是正方形.

)2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.五:课时作业
对角线相等4.4 探索三角形相似的条件
第1课时 利用两角判定三角形相似
1.理解相似三角形的定义,掌握定义中的两个条件;2.掌握相似三角形的判定定理1;(重点)
3.能熟练运用相似三角形的判定定理1.(难点)
                   
一、情景导入
如图,从放大镜里看到的三角尺和原来的三角尺相似吗?
二、合作探究
探究点一:两角分别相等的两个三角形相似
在△ABC和△A′B′C′中,∠A=∠A′=80°,∠B=70°,∠C′=30°,这两个三角形相似吗?请说明理由.
解:△ABC∽△A′B′C′.
理由:由三角形的内角和是180°,
得∠C=180°-∠A-∠B=180°-80°-70°=30°,
所以∠A=∠A′,∠C=∠C′.
故△ABC∽△A′B′C′(两角分别相等的两个三角形相似).
  方法总结:两个三角形已有一对角相等,故只要看是否还有一对角相等即可.一般地,在解题过程中要特别注意“公共角”“对顶角”“同角(或等角)的余角”等隐含条件.
探究点二:相似三角形的判定定理1的应用
已知:如图,△ABC的高AD、BE相交于点F,求证:=.
解析:要证明=,可以考虑比例式中四条线段所在的三角形是否相似,即考虑△AFE与△BFD是否相似,利用两个角对应相等的三角形相似可以证明这个结论.
  证明:∵BE⊥AC,AD⊥BC,
∴∠AEF=∠BDF=90°.
又∵∠AFE=∠BFD,
∴△AFE∽△BFD,∴=.
  方法总结:证明比例式,可构造相似三角形,只要证明这两个三角形相似,就可根据相似三角形的对应边成比例得到相关比例式.
如图所示,已知DE∥BC,DF∥AC,AD=4cm,BD=8cm,DE=5cm,求线段BF的长.
  解:方法一:因为DE∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,
所以=,即=,
所以BC=15cm.又因为DF∥AC,
所以四边形DFCE是平行四边形,
所以FC=DE=5cm,
所以BF=BC-FC=15-5=10(cm).
方法二:因为DE∥BC,所以∠ADE=∠B.
又因为DF∥AC,所以∠A=∠BDF,
所以△ADE∽△DBF,
所以=,即=,
所以BF=10cm.
  方法总结:求线段的长,常通过找三角形相似得到成比例线段而求得,因此选择哪两个三角形就成了解题的关键,这就需要通过已知的线段和所求的线段分析得到.
三、板书设计
(1)相似三角形的定义:三角分别相等、三边成比例的两个三角形叫做相似三角形;
(2)相似三角形的判定定理1:两角分别相等的两个三角形相似.
感受相似三角形与相似多边形、相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关
系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生的观察、动手探究、归纳总结的能力.4.2 平行线分线段成比例
1.了解平行线分线段成比例的基本事实及其推论;(重点)
2.会用平行线分线段成比例及其推论解决相关问题.(难点)
                   
一、情景导入
梯子是我们生活中常见的工具.
  如图是一个生产过程中不合格的左右不对称的梯子的简图,经测量,AB=BC=CD,AA1∥BB1∥CC1∥DD1,那么A1B1和B1C1相等吗?
二、合作探究
探究点一:平行线分线段成比例
如图,直线l1∥l2∥l3,直线AC分别交这三条直线于点A,B,C,直线DF分别交这三条直线于点D,E,F,若AB=3,DE=,EF=4,求BC的长.
  解:∵直线l1∥l2∥l3,且AB=3,DE=,EF=4,
∴根据平行线分线段成比例可得=,
即BC=·AB=×3=.
  方法总结:利用平行线分线段成比例求线段长的方法:先确定图中的平行线,由此联想到线段之间的比例关系,结合待求线段和已知线段写出一个含有它们的比例关系式,构造出方程,解方程求出待求线段长.
如图所示,直线l1∥l2∥l3,下列比例式中成立的是(  )
  A.=
B.=
C.=
D.=
  解析:由平分线分线段成比例可知=,故A选项不成立;由=可知B选项不成立;由=可知C选项不成立;D选项成立.故选D.
  方法总结:应用平行线分线段成比例得到的比例式中,四条线段与两条直线的交点位置无关,关键是线段的对应,可简记为:“=,=,=”或“==”.
探究点二:平行线分线段成比例的推论
如图所示,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,若AD:AB=3∶4,AE=6,则AC等于(  )
  A.3
B.4
C.6
D.8
  解析:由DE∥BC可得=,即=,∴AC=8.故选D.
  易错提醒:在由平行线推出成比例线段的比例式时,要注意它们的相互位置关系,比例式不能写错,要把对应的线段写在对应的位置上.
如图,在△ABC的边AB上取一点D,在AC上取一点E,使得AD=AE,直线DE和BC的延长线相交于P,求证:=.
解析:本题无法直接证明,分析所要求证的等式中,有BP:CP,又含有BD,故可考虑过点C作PD的平行线CF,便可以构造出=,此时只需证得CE=DF即可.
  证明:如图,过点C作CF∥PD交AB于点F,则=,=.
∵AD=AE,∴DF=CE,∴=.
  方法总结:证明四条线段成比例时,如果图形中有平行线,则可以直接应用平行线分线段成比例的基本事实以及推论得到相关比例式.如果图中没有平行线,则需构造辅助线创造平行条件,再应用平行线分线段成比例的基本事实及其推论得到相关比例式.
三、板书设计
通过教学,培养学生的观察、分析、概括能力,了
解特殊与一般的辩证关系.再次锻炼类比的数学思想,能把一个复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.在探索过程中,积累数学活动的经验,体验探索结论的方法和过程,发展学生的合情推理能力和有条理的说理表达能力.第2课时 用配方法求解较复杂的一元二次方程
1.会用配方法解二次项系数不为1的一元二次方程;(重点)
2.能够熟练地、灵活地应用配方法解一元二次方程.(难点)
                   
一、情景导入
某辆汽车在公路上行驶,它行驶的路程s(m)和时间t(s)之间的关系为:s=10t+3t2,那么行驶200m需要多长时间?
二、合作探究
探究点一:用配方法解二次项系数不为1的一元二次方程
用配方法解方程:-x2+x-=0.
解析:先把方程二次项的系数化为1,再配方成(x+m)2=n(n≥0)的形式,最后开平方即可.
解:方程两边同除以-,得x2-5x+=0.
移项,得x2-5x=-.
配方,得x2-5x+(-)2=-+(-)2,
即(x-)2=.
两边开平方,得x-=±.
即x-=或x-=-.
所以x1=,x2=.
易错提醒:用配方法解一元二次方程时,易出现以下错误:(1)方程一边忘记加常数项;(2)忘记将二次项系数化为1;(3)在二次项系数化为1时,常数项忘记除以二次项系数;(4)配方时,只在一边加上一次项系数一半的平方.
探究点二:配方法的应用
【类型一】
利用配方法求代数式的值
已知a2-3a+b2-+=0,求a-4的值.
解析:观察方程可以知道,原方程可以用配方法转化为两个数的平方和等于0的形式,得到这两个数都为0,从而可求出a,b的值,再代入代数式计算即可.
解:原等式可以写成:(a-)2+(b-)2=0.
∴a-=0,b-=0,解得a=,b=.
∴a-4=-4×=-.
方法总结:这类题目主要是配方法和非负数性质的综合应用,通过配方把等式转化为两个数的平方和等于0的形式是解题的关键.
【类型二】
利用配方法求代数式的最值或判定代数式的值与0的关系
请用配方法说明:不论x取何值,代数式x2-5x+7的值恒为正.
解析:本题是要运用配方法将代数式化为一个平方式加上一个常数的形式.
解:∵x2-5x+7=x2-5x+()2+7-()2=(x-)2+,而(x-)2≥0,
∴(x-)2+≥.
∴代数式x2-5x+7的值恒为正.
方法总结:对于代数式是一个关于x的二次式且含有一次项,在求它的最值时,常常采用配方法,将原代数式变形为一个平方式加一个常数的形式,根据一个数的平方是一个非负数,从而就可以求出原代数式的最值.
【类型三】
利用配方法解决一些简单的实际问题
如图,一块矩形土地,长是48m,宽是24m,现要在它的中央划一块矩形草地,四周铺上花砖路,路面宽都相等,草地面积占矩形土地面积的,求花砖路面的宽.
解析:若设花砖路面宽为xm,则草地的长与宽分别为(48-2x)m及(24-2x)m,根据等量关系:矩形草地的面积=×矩形土地的面积,即可列一元二次方程求解.
解:设花砖路面的宽为xm.根据题意,得(48-2x)(24-2x)=×48×24.
整理,得x2-36x=-128.
配方,得x2-36x+(-18)2=-128+(-18)2,
即(x-18)2=196.
两边开平方,得x-18=±14.
即x-18=14,或x-18=-14.
所以x1=32(不合题意,舍去),x2=4.
故花砖路面的宽为4m.
方法总结:列一元二次方程解决实际问题时,一定要检验方程的根,这些根虽然满足所列的一元二次方程,但未必符合实际问题,因此,求出一元二次方程的解之后,要把不符合实际问题的解舍去.
三、板书设计
用配方法解二次项系数不为1的一元二次方程的步骤:
(1)把原方程化为一般形式;
(2)二次项系数化为1,方程两边都除以二次项系数;
(3)移项,把常数项移到右边,使方程左边只含二次项和一次项;
(4)配方,方程两边都加上一次项系数一半的平方;
(5)用直接开平方法解方程.
通过对比用配方法解二次项系数是1的一元二次方程,发现解二次项系数不是1的一元二次方程的方法,经历从简单到复杂的过程,对配方法全面认识.培养学生发现问题的能力,通过学生亲自解方程的感受与经验,总结成文,帮助学生养成系统整理知识的学习习惯.2.6
应用一元二次方程
第1课时
几何问题及数字问题与一元二次方程
教学目标:
1、掌握列出一元二次方程解应用题;并能根据具体问题的实际意义,检验结果的合理性;
2、理解将一些实际问题抽象为方程模型的过程,形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题。
教学过程:
情境问题
问题1、一根长22cm的铁丝。
(1)能否围成面积是30cm2的矩形?
(2)能否围成面积是32
cm2的矩形?并说明理由。
分析:如果设这根铁丝围成的矩形的长是xcm,那么矩形的宽是__________。
根据相等关系:
矩形的长×矩形的宽=矩形的面积,
可以列出方程求解。
解:
问题2、如图,在矩形ABCD中,AB=6cm,BC=3cm。点P沿边AB从点A开始向点B以2cm/s的速度移动,点Q沿边DA从点D开始向点A以1cm/s的速度移动。如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤3)。那么,当t为何值时,△QAP的面积等于2cm2
解:
问题3.(教材例题)如图,某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头:小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航,一般补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.
(1)小岛D和小岛F相距多少海里
(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里 (结果精确到0.1海里)
分析:(1)因为依题意可知△ABC是等腰直角三角形,△DFC也是等腰直角三角形,AC可求,CD就可求,因此由勾股定理便可求DF的长.
(2)要求补给船航行的距离就是求DE的长度,DF已求,因此,只要在Rt△DEF中,由勾股定理即可求.
解:(1)连结DF,则DF⊥BC
∵AB⊥BC,AB=BC=200海里.
∴AC=AB=200海里,∠C=45°
∴CD=AC=100海里
DF=CF,DF=CD
∴DF=CF=CD=×100=100(海里)
所以,小岛D和小岛F相距100海里.
(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,
EF=AB+BC-(AB+BE)-CF=(300-2x)海里
在Rt△DEF中,根据勾股定理可得方程
x2=1002+(300-2x)2
整理,得3x2-1200x+100000=0
解这个方程,得:x1=200-≈118.4
x2=200+(不合题意,舍去)
所以,相遇时补给船大约航行了118.4海里.
二、练一练
1、用长为100
cm的金属丝制作一个矩形框子。框子各边多长时,框子的面积是600
cm2?能制成面积是800
cm2的矩形框子吗?
解:
2、如图,在矩形ABCD中,AB=6
cm,BC=12
cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,几秒后△PBQ的面积等于8
cm2?
解:
三、课后自测:
1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC=6cm,动点P、Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?
2、如图,在Rt△ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?
3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才能追上(点B为追上时的位置)?
4、如图,把长AD=10cm,宽AB=8cm的矩形沿着AE对折,使D点落在BC边的F点上,求DE的长。
5、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃。
(1)如果要围成面积为45平方米的花圃,AB的长是多少米?
(2)能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由。2.4 用因式分解法求解一元二次方程
1.了解因式分解法的解题步骤,能用因式分解法解一元二次方程;(重点)
2.能根据具体一元二次方程的特征,灵活选择方程的解法.(难点)
一、情景导入
王庄村在测量土地时,发现了一块正方形的土地和一块矩形的土地,矩形土地的宽和正方形的边长相等,矩形土地的长为80m,工作人员说,正方形土地的面积是矩形面积的一半.你能帮助工作人员计算一下正方形土地的面积吗?
二、合作探究
探究点一:用因式分解法解一元二次方程
方程(x-3)(x+1)=x-3的解是(  )
A.x=0
B.x=3
C.x=3或x=-1
D.x=3或x=0
解析:把(x-3)看成一个整体,利用因式分解法解方程,原方程变形,得(x-3)(x+1)-(x-3)=0,所以(x-3)(x+1-1)=0,即x-3=0或x=0,所以原方程的解为x1=3,x2=0.故答案为D.
易错提醒:解形如ax2=bx的方程,千万不可以在方程的两边同时除以x,得到x=,这样会产生丢根现象,只能提公因式,得到x1=0,x2=.如本题中易出现在方程两边同除以(x-3),从而得到x=0的错误.
探究点二:选用适当的方法解一元二次方程
用适当的方法解方程:
(1)3x(x+5)=5(x+5);
(2)3x2=4x+1;
(3)5x2=4x-1.
解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,
∴x+5=0或3x-5=0,
∴x1=-5,x2=;
(2)将方程化为一般形式,得3x2-4x-1=0.
这里a=3,b=-4,c=-1,
∴b2-4ac=(-4)2-4×3×(-1)=28>0,
∴x===,
∴x1=,x2=;
(3)将方程化为一般形式,得5x2-4x+1=0.
这里a=5,b=-4,c=1,
∴b2-4ac=(-4)2-4×5×1=-4<0,
∴原方程没有实数根.
方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
三、板书设计
经历因式分解法解一元二次方程的探索过程,发展学生合情合理的推理能力.积极探索方程不同的解法,体验解决问题方法的多样性.通过交流发现最优解法,在学习活动中获得成功的体验.第2课时
用配方法求解较复杂的一元二次方程


第2课时
用配方法求解较复杂的一元二次方程
课型
新授课
教学目标
1.会用配方法解二次项系数不为1的一元二次方程.2.了解用配方法解一元二次方程的基本步骤.
教学重点
用配方法求解一元二次方程.
教学难点
理解配方法.
教学方法
讲练结合法
教学后记







学生活动
一、复习:1、什么叫配方法?2、怎样配方?方程两边同加上一次项系数一半的平方。3、解方程:(1)x2+4x+3=0
(2)x2―4x+2=0
二、新授:1、例题讲析:例3:解方程:3x2+8x―3=0
分析:将二次项系数化为1后,用配方法解此方程。解:两边都除以3,得:
x2+x―1=0移项,得:x2+x
=
1配方,得:x2+x+()2=
1+()2
(方程两边都加上一次项系数一半的平方)
(x+)2=()2
即:x+=±
所以x1=,x2=―32、用配方法解一元二次方程的步骤:(1)把二次项系数化为1;(2)移项,方程的一边为二次项和一次项,另一边为常数项。(3)方程两边同时加上一次项系数一半的平方。(4)用直接开平方法求出方程的根。3、做一做:
一小球以15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系:
h=15
t―5t2小球何时能达到10m高?
三、巩固:练习:P39随堂练习四、小结:用配方法解一元二次方程的步骤。(1)化二次项系数为1;(2)移项;(3)配方:(4)求根。五、作业:课本P40习题2.4
1、2板书设计:
学生回答演板由学生共同小结这节课我们利用配方法解决了二次项系数不为1或者一次项系数不为偶数等较复杂的一元二次方程,由此我们归纳出配方法的基本步骤
解方程
做一做,读一读
课时小结
课后作业第2课时
利用一元二次方程解决面积问题
教学目标
1、体会通过建立方程解决实际问题的意义和方法
2、会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力
知识准备
无盖的长方体是如何制作的?教学内容:
一、情境创设
一块长方形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5㎝,容积是500㎝3的无盖长方体容器。求这块铁皮的长和宽。
二、探索活动
如何设未知数?如何找出表达实际问题的相等关系?这个问题中的相等关系是什么?
一般情况下,应设要求的未知量为未知数;应从题中寻找未知数所表示的未知量与已知量之间的等量关系;这个问题的等量关系是“长×宽×高=容积”与“长=宽×2”。
三、典型例题
例1、一块正方形铁皮的四个角各剪去一个边长为4㎝的小正方形,做成一个无盖的盒子。已知盒子的容积是400㎝,求原铁皮的边长。
四.知识梳理
谈谈用一元二次方程解决例1实际问题的方法。
五、目标检测设计
1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( 
).
【设计意图】发现几何图形中隐蔽的相等关系.
2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.
(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.
(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.
【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.6.3
反比例函数的应用
教学目标:
(一)教学知识点
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.
2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力
(二)能力训练要求
通过对反比例函数的应用,培养学生解决问题的能力.
(三)情感与价值观要求
经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题.发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用.
教学重点:用反比例函数的知识解决实际问题.
教学难点:如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题.
教学方法:教师引导学生探索法.
教具准备:多媒体课件
教学过程:
Ⅰ.创设问题情境,引入新课
[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢
[生]是为了应用.
[师]很好.学习的目的是为了用学到的知识解决实际问题.究竟反比例函数能解决一些什么问题呢 本节课我们就来学一学.
Ⅱ.
新课讲解
某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗 当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化 如果人和木板对湿地地面的压力合计600
N,那么
(1)用含S的代数式表示p,p是S的反比例函数吗
为什么
(2)当木板画积为0.2
m2时.压强是多少
(3)如果要求压强不超过6000
Pa,木板面积至少要多大
(4)在直角坐标系中,作出相应的函数图象.
(5)请利用图象对(2)和(3)作出直观解释,并与同伴进
行交流.
[师]分析:首先要根据题意分析实际问题中的两个
变量,然后看这两个变量之间存在的关系,从而去
分析它们之间的关系是否为反比例函数关系,若是
则可用反比例函数的有关知识去解决问题.
请大家互相交流后回答.
[生](1)由p=得p=
p是S的反比例函数,因为给定一个S的值.对应的就有唯一的一个p值和它对应,根据函数定义,则p是S的反比例函数.
(2)当S=0.2
m2时,
p==3000(Pa).
当木板面积为0.2m2时,压强是3000Pa.
(3)当p=6000
Pa时,
S==0.1(m2).
如果要求压强不超过6000
Pa,木板面积至少要0.1
m2.
(4)图象如下:
(5)(2)是已知图象上某点的横坐标为0.2,求该点的纵坐标;(3)是已知图象上点的纵坐标不大于6000,求这些点所处的位置及它们横坐标的取值范围.
[师]这位同学回答的很好,下面我要提一个问题,大家知道
反比例函数的图象是两支双曲线、它们要么位于第一、三象限,
要么位于第二、四象限,从(1)中已知p=>0,所以图象应位于第一、三象限,为什么这位同学只画出了一支曲线,是不是另一支曲线丢掉了呢 还是因为题中只给出了第一象限呢
[生]第三象限的曲线不存在,因为这是实际问题,S不可能取负数,所以第三象限的曲线不存在.
[师]很好,那么在(1)中是不是应该有条件限制呢
[生]是,应为p=
(S>0).
做一做
蓄电池的电压为定值.使用此电源时,电流I(A)与电阻
R(Ω)之间的函数关系如下图所示;
(1)蓄电池的电压是多少 你能写出这一函数的表达式吗
(2)完成下表,并回答问题:如果以此蓄电池为电源的用电
器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内
R/Ω
3
4
5
6
7
8
9
10
I/A
4
[师]从图形上来看,I和R之间可能是反比例函数关系.电压U就相当于反比例函数中的k.要写出函数的表达式,实际上就是确定k(U),只需要一个条件即可,而图中已给出了一个点的坐标,所以这个问题就解决了,填表实际上是已知自变量求函数值.
[生]解:(1)由题意设函数表达式为I=
∵A(9,4)在图象上,
∴U=IR=36.
∴表达式为I=.
蓄电池的电压是36伏.
(2)表格中从左到右依次是:12,9,7.2,6,4.5,3.6.
电源不超过10
A,即I最大为10
A,代入关系式中得R=3.6,为最小电阻,所以用电器的可变电阻应控制在R≥3.6这个范围内.
2.如下图,正比例函数y=k1x的图象与反比例函数y=的图象相交于A,B两点,其中点A的坐标为(,2).
(1)分别写出这两个函数的表达式:
(2)你能求出点B的坐标吗 你是怎样求的 与同伴进行交流.
[师]要求这两个函数的表达式,只要把A点的坐标代入即可求出k1,k2,求点B的
坐标即求y=k1x与y=的交点.
[生]解:(1)∵A(,2)既在y=k1x图象上,又在y=的图象上.
∴k1=2,2=.
∴k1=2,
k2=6
∴表达式分别为y=2x,y=.
y=2x,
(2)由
得2x=,
y=
∴x2=3
∴x=±.
当x=-时,y=-2.
∴B(-,-2).
Ⅲ.课堂练习
1.某蓄水池的排水管每时排水8
m3,6
h可将满池水全部排空.
(1)蓄水池的容积是多少
(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化
(3)写出t与Q之间的关系式;
(4)如果准备在5
h内将满池水排空,那么每时的排水量至少为多少
(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空
解:(1)8×6=48(m3).
所以蓄水池的容积是48
m3.
(2)因为增加排水管,使每时的排水量达到Q(m3),所以将满池水排空所需的时间t(h)将减少.
(3)t与Q之间的关系式为
t=.
(4)如果准备在5
h内将满池水排空,那么每时的排水量至少为=9.6(m3).
(5)已知排水管的最大排水量为每时12m3,那么最少要=4小时可将满池水全部排空.
Ⅳ.课时小结
节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题.
Ⅴ课后作业
习题6.4.
补充题:为了预防“非典”,
某学校对教室采用药熏消毒,已知药物燃烧时,
室内每立方米空气中的含药量y(毫克)与时
间x(分钟)成为正比例,药物燃烧后,y与x成反比例
(如右图),现测得药物8分钟燃毕,此时室内空气中
每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x的函数关系式为
,自变量x的取值范围为

药物燃烧后,y关于x的函数关系式为
.
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效 为什么
答案:(1)y=x,
0y=
(2)30
(3)此次消毒有效,因把y=3分别代入y=x,y=,求得x=4和x=16,而16-4=12>10,即空气中的含药量不低于3毫克/m3的持续时间为12分钟,大于10分钟的有效消毒时间.1.2 矩形的性质与判定
第1课时 矩形的性质
1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系;(重点)
2.会运用矩形的概念和性质来解决有关问题.(难点)
                   
一、情景导入
1.展示生活中一些平行四边形的实际应用图片(推拉门、活动衣架、篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?
2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)
3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形(小学学过的长方形),引出本课题及矩形定义.
矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都是矩形.
有一个角是直角的平行四边形是矩形.矩形是平行四边形,但平行四边形不一定是矩形,矩形是特殊的平行四边形,它具有平行四边形的所有性质.
二、合作探究
探究点一:矩形的性质
【类型一】
矩形的四个角都是直角
如图,矩形ABCD中,点E在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC的面积为(  )
A.15
B.30
C.45
D.60
解析:如图,过E作EF⊥AC,垂足为F.
∵AE平分∠BAC,EF⊥AC,BE⊥AB,
∴EF=BE=4,
∴S△AEC=AC·EF=×15×4=30.故选B.
方法总结:矩形的四个角都是直角,常作为证明或求值的隐含条件.
【类型二】
矩形的对角线相等
如图所示,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是(  )
A.2
B.4
C.2
D.4
解析:根据矩形的对角线互相平分且相等可得OC=OD=OA=AC,由∠AOD=60°得△AOD为等边三角形,即可求出AC的长.
∵四边形ABCD为矩形,
∴AC=BD,OA=OC=AC,OD=OB=BD,
∴OA=OD.∵∠AOD=60°,
∴△AOD为等边三角形,
∴OA=OD=2,∴AC=2OA=4.
故选B.
方法总结:矩形的两条对角线互相平分且相等,即对角线把矩形分成四个等腰三角形,当两条对角线的夹角为60°或120°时,图中有等边三角形,从而可以利用等边三角形的性质解题.
探究点二:直角三角形斜边上的中线等于斜边的一半
如图,已知BD,CE是△ABC不同边上的高,点G,F分别是BC,DE的中点,试说明GF⊥DE.
解析:本题的已知条件中已经有直角三角形,有斜边上的中点,由此可联想到应用“直角三角形斜边上的中线等于斜边的一半”这一定理.
解:连接EG,DG.
∵BD,CE是△ABC的高,
∴∠BDC=∠BEC=90°.
∵点G是BC的中点,
∴EG=BC,DG=BC.
∴EG=DG.
又∵点F是DE的中点,
∴GF⊥DE.
方法总结:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.
探究点三:矩形的性质的应用
【类型一】
利用矩形的性质求有关线段的长度
如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.
解析:先判定△AEF≌△DCE,得CD=AE,再根据矩形的周长为32列方程求出AE的长.
解:∵四边形ABCD是矩形,
∴∠A=∠D=90°,
∴∠CED+∠ECD=90°.
又∵EF⊥EC,
∴∠AEF+∠CED=90°,
∴∠AEF=∠ECD.
而EF=EC,
∴△AEF≌△DCE,
∴AE=CD.
设AE=xcm,
∴CD=xcm,AD=(x+4)cm,
则有x+4+x=16,解得x=6.
即AE的长为6cm.
方法总结:矩形的各角为直角,常作为全等的一个条件用来证三角形全等,可借助直角的条件解决直角三角形中的问题.
【类型二】
利用矩形的性质求有关角度的大小
如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO的度数.
解析:由∠BAE与∠DAE之和为90°及这两个角之比可求得这两个角的度数,从而得∠ABO的度数,再根据矩形的性质易得∠EAO的度数.
解:∵四边形ABCD是矩形,∴∠DAB=90°,
AO=AC,BO=BD,AC=BD,
∴∠BAE+∠DAE=90°,AO=BO.
又∵∠DAE:∠BAE=3:1,
∴∠BAE=22.5°,∠DAE=67.5°.
∵AE⊥BD,
∴∠ABE=90°-∠BAE=90°-22.5°=67.5°,
∴∠OAB=∠ABE=67.5°
∴∠EAO=67.5°-22.5°=45°.
方法总结:矩形的性质是证明线段相等或倍分、角的相等与求值及线段平行或垂直的重要依据.
【类型三】
利用矩形的性质求图形的面积
如图所示,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的(  )
             
A.
  B.
C.
  D.
解析:由四边形ABCD为矩形,易证得△BEO≌△DFO,则阴影部分的面积等于△AOB的面积,而△AOB的面积为矩形ABCD面积的,故阴影部分的面积为矩形面积的.故选B.
方法总结:求阴影部分的面积时,当阴影部分不规则或比较分散时,通常运用割补法将阴影部分转化为较规则的图形,再求其面积.
【类型四】
矩形中的折叠问题
如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.
解析:这是一道折叠问题,折后的图形与原图形全等,从而得知△BCD≌△BC′D,则易得BE=DE.在Rt△ABE中,利用勾股定理列方程求出BE的长,即可求得△BED的面积.
解:∵四边形ABCD是矩形,
∴AD∥BC,∠A=90°,
∴∠2=∠3.
又由折叠知△BC′D≌△BCD,
∴∠1=∠2.
∴∠1=∠3.∴BE=DE.
设BE=DE=x,则AE=8-x.
∵在Rt△ABE中,AB2+AE2=BE2,
∴42+(8-x)2=x2.解得x=5,
即DE=5.
∴S△BED=DE·AB=×5×4=10.
方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.
三、板书设计
矩形
经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.第2课时 概率与游戏的综合运用
1.能判断某事件的每个结果出现的可能性是否相等;
2.能将不等可能随机事件转化为等可能随机事件,求其发生的概率.(重点、难点)
                   
一、情景导入
为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.
二、合作探究
探究点一:用表格或树状图求“配紫色”概率
用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?
解析:由图可知,转动A转盘时会出现三种可能的结果,但转出红色的可能性大些;转动B转盘时会出现两种可能的结果,但转出蓝色的可能性大些.由于这几种结果发生的可能性不等,所以不能直接用树状图或列表法表示试验出现的所有可能结果,而是要先将其转化.由图可知A转盘中红色区域是白色或蓝色的2倍,因此可将红色区域2等分.同理,可将B转盘中的蓝色区域2等分,从而将其转化为等可能性试验后,再用表格或树状图进行列举求解.
解:将A转盘中“红”区域2等分,B转盘“蓝”区域2等分后列表如下:
转盘A转盘B


红1
红2

(白,红)
(蓝,红)
(红1,红)
(红2,红)
蓝1
(白,蓝1)
(蓝,蓝1)
(红1,蓝1)
(红2,蓝1)
蓝2
(白,蓝2)
(蓝,蓝2)
(红1,蓝2)
(红2,蓝2)
  从表中可知该试验共有12种等可能结果,由于红色和蓝色在一起配成了紫色,所以能配成紫色的有5种结果,所以P(紫色)=.
  方法总结:(1)在一些试验中,包含的几种结果发生的可能性不等时,应先通过转化将其转化为有限等可能性试验,再利用树状图或表格来求其发生的概率.(2)在不等可能性试验转化为有限等可能性试验时,要抓住各种结果之间的联系——“倍、分”关系,根据它们之间的联系采用合适的方法.
探究点二:概率与游戏的综合运用
王铮擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,王铮左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果两次正面朝上一次正面朝下,则王铮加入足球阵营;如果两次反面朝上,一次反面朝下,则王铮加入篮球阵营.
(1)用画树状图的方法表示三次抛掷硬币的所有结果;
(2)这个游戏规则对两个球队是否公平?为什么?
解:(1)根据题意画出树状图,如图.
(2)这个游戏规则对两个球队公平.理由如下:
两次正面朝上一次正面朝下有3种结果,正正反,正反正,反正正;
两次反面朝上一次反面朝下有3种结果,正反反,反正反,反反正.
所以P(王铮去足球队)=P(王铮去篮球队)=.
  方法总结:判断游戏是否公平这类问题,实际是比较两个事件概率大小的问题,因此判断之前,先要计算两事件发生的概率的大小.
三、板书设计
概率与游戏的综合运用
经历实验、画图、列表等活动,学生在具体情境中分析事件,计算其发生的概率.渗透数形结合、分类讨论思想,提高分析问题和解决问题的能力.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.4.5 相似三角形判定定理的证明
1.会证明相似三角形判定定理;(重点)
2.运用相似三角形的判定定理解决相关问题.(难点)
                   
一、情景导入
相似三角形的判定方法有哪些?
答:(1)两角对应相等,两三角形相似;
(2)两边对应成比例且夹角相等,两三角形相似;
(3)三边对应成比例,两三角形相似.
怎样证明这些结论呢?
二、合作探究
探究点:相似三角形的判定定理
【类型一】
根据条件判定三角形相似
如图所示,给出以下条件:①∠B=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD·AB.其中能单独判定△ABC∽△ACD的个数为(  )
A.1
B.2
C.3
D.4
  解析:在图中已知两个三角形有一对公共角,只要再找一对角相等,或夹公共角的两组对应边成比例即可判定两个三角形相似.题中有三个条件可以单独判定△ABC∽△ACD,分别是①②④.①②是根据有两组角分别对应相等的两个三角形相似来判定的;④是根据两组对应边成比例且夹角相等的两个三角形相似来判定;③虽然两边对应成比例,但不能得到其夹角相等,所以不能判定两个三角形相似.故选C.
  方法总结:利用两边分别对应成比例且夹角相等的方法判定两个三角形相似时,一定要注意必须是对应成比例的两边的夹角相等,若不是夹角相等,则不能判定这两个三角形相似.
【类型二】
探索三角形相似的条件
如图,已知AB⊥BD,CD⊥BD.
(1)若AB=9,CD=4,BD=10,请问在BD上是否存在点P,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;
(2)若AB=9,CD=4,BD=12,请问在BD上存在多少个点P,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(3)若AB=9,CD=4,BD=15,请问在BD上存在多少个点P,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(4)若AB=m,CD=n,BD=l,请问在m、n、l满足什么关系时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个点P?两个点P?三个点P?
解:(1)设BP=x,则DP=10-x.
若△ABP∽△CDP,则=,即=,解得x=;若△ABP∽△PDC,则=,即=,此时方程无解.
综上,存在这样的点P,此时BP=;
(2)设BP=x,则DP=12-x.
若△ABP∽△CDP,则=,即=,解得x=;若△ABP∽△PDC,则=,即=,解得x=6.
综上所述,存在两个这样的点P,此时BP=6或;
(3)设BP=x,则DP=15-x.
若△ABP∽△CDP,则=,即=,解得x=;若△ABP∽△PDC,则=,即=,解得x=3或12.
综上所述,存在三个这样的点,此时BP=,3或12;
(4)设BP=x,则DP=l-x.
若△ABP∽△CDP,则=,即=,解得x=;若△ABP∽△PDC,则=,即=,得方程x2-lx+mn=0,Δ=l2-4mn.
当Δ=l2-4mn<0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个点P;
当Δ=l2-4mn=0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的两个点P;
当Δ=l2-4mn>0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的三个点P.
  方法总结:由于相似情况不明确,因此要分两种情况讨论,注意要找准对应边.
三、板书设计
相似三角形判定定理的证明
本课主要是证明相似三角形判定定理,以学生的自主探究为主,鼓励学生独立思考,多角度分析解决问题,总结常见的辅助线添加方法,使学生的推理能力和几何思维都获得提高,培养学生的探索精神和合作意识.第2课时 利用两边及夹角判定三角形相似
1.掌握相似三角形的判定定理2;(重点)
2.能熟练运用相似三角形的判定定理2.(难点)
                   
一、情景导入
画△ABC与△A′B′C′,使∠A=∠A′,和都等于给定的值k.设法比较∠B与∠B′的大小(或∠C与∠C′的大小),△ABC与△A′B′C′相似吗?
二、合作探究
探究点一:两边成比例且夹角相等的两个三角形相似
如图,已知点D是△ABC的边AC上的一点,根据下列条件,可以得到△ABC∽△BDC的是(  )
  A.AB·CD=BD·BC
B.AC·CB=CA·CD
C.BC2=AC·DC
D.BD2=CD·DA
  解析:有两边对应成比例,并不能说明两个三角形相似,若再知道成比例的两边的夹角相等,则这两个三角形才相似.本题中,∠C是△ABC和△BDC的公共角,关键是找出∠C的两边对应成比例,即=或BC2=AC·DC.故选C.
  方法总结:判定两个三角形相似时,应根据条件适当选择方法,如本题已知有一个公共角,而它的两条夹边都能成比例,则应选择判定定理2加以判断.
探究点二:相似三角形的判定定理2的应用
如图所示,零件的外径为a,要求它的厚度x,需求出内孔的直径AB,但不能直接量出AB,现用一个交叉长钳(AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x.
解析:欲求厚度x,而x=,根据题意较易推出△AOB∽△COD,利用相似三角形的对应边成比例,列出关于AB的比例式,解之即可.
解:因为OA:OC=OB:OD,∠AOB=∠COD,
所以△AOB∽△COD,
故==n,可得AB=bn,
所以x=.
  方法总结:当条件中有两边对应成比例时,通常考虑相似三角形的判定定理2,并注意利用图形的隐含条件,如公共角、对顶角.
如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿AB向点B以1cm/s的速度移动,点Q从点B开始沿BC向点C以2cm/s的速度移动.如果点P,Q同时出发,经过多长时间后△PBQ与△ABC相似?
解析:要证明△PBQ与△ABC相似,很显然∠B为公共角,因此可运用两边对应成比例且夹角相等来得到相似,可根据对应边成比例列方程求解,同时要注意分类讨论.
解:设经过t
s后,△PBQ与△ABC相似.
(1)当=时,
△PBQ∽△ABC.
此时=,解得t=4.
即经过4s后△PBQ与△ABC相似;
(2)当=时,△PBQ∽△CBA.
此时=,解得t=1.6.
即经过1.6s后△PBQ与△ABC相似.
综上可知,点P,Q同时出发,经过1.6s或4s后△PBQ与△ABC相似.
  易错提醒:在点运动的情况下寻找相似的条件,随着点的位置的变化,△PBQ的形状也会发生变化,因此既要考虑△PBQ∽△ABC的情况,还要考虑△PBQ∽△CBA的情况.
三、板书设计
相似三角形的判定定理2:两边成比例且夹角相等的两个三角形相似.
经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,培养学生的观察、发现、比较、归纳能力,进一步发展学生的探究、交流能力.感受两个三角形相似的判定定理2与全等三角形判定定理(SAS)的区别与联系,体验事物间特殊与一般的关.第2课时 平行投影与正投影
1.知道平行投影和正投影的含义,能够确定物体在太阳光下的影子;(重点)
2.了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的,理解在同一时刻,物体的影子与它们的高度成比例;(重点)
3.会利用平行投影的性质进行相关计算.(难点)
                   
一、情景导入
太阳光下的影子是我们司空见惯的,物体在太阳光下形成的影子与在灯光下形成的影子有什么不同呢?
二、合作探究
探究点一:平行投影
【类型一】
平行投影的认识
下列物体的影子中,不正确的是(  )
  解析:太阳光线是平行的,故影长与物体高度成比例,所以A项正确;太阳光线画得不平行,故B项错误;因为物体在光源两侧,故影子方向不同,因而C项正确;因灯光是发散的,故影子与物体高度不成比例且物体在光源同侧,影子方向相同,D项正确.故选B.
  方法总结:(1)平行投影的光源是太阳,平行投影的光线是平行的;而中心投影的光源是点光源,中心投影的光线是相交的.(2)同一时刻,太阳光下的影子长度都与物体高度成比例;灯光下的影子长度与物体高度不一定成比例.(3)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.
【类型二】
平行投影的作图
如图,在某一时刻垂直于地面的物体AB在阳光下的投影是BC,请你画出此时同样垂直于地面的物体DE在阳光下的投影,并指出这一时刻是在上午、中午还是下午?
解:如图,连接AC,过点D作DF∥AC,过点E作EF∥BC交DF于点F,则EF就是DE的投影.由BC是北偏西方向,判断这一时刻是上午.
  方法总结:(1)画物体的平行投影的方法:先根据物体的投影确定光线,然后利用两个物体的顶端和各自影子的末端的连线是一组平行线,过物体顶端作平行线与地面相交,从而确定其影子.(2)物体在阳光下的不同时刻,不仅影子的大小在变,而且影子的方向也在改变,就我们生活的北半球而言,上午的影子的方向是由西向北变化,影子越来越短,下午的影子方向由北向东变化,影子越来越长.
【类型三】
平行投影的有关计算
如图,小王身高1.7m,他想测量一栋大楼的高度,他沿着阳光下的楼影BA由B向A走去,当他走到点C时,他的影子顶端正好与大楼的影子顶端重合,测得AC=19.2m,BC=0.8m,则大楼的高度为    m.
解析:设大楼的高为xm,楼和人均与地面垂直,由平行投影的特点可得到两三角形相似.由相似三角形的性质,得=,即=.解得x=42.5.
  方法总结:本题也可用同一时刻,太阳光下不同物体的高度与影长成正比,即=来解答.
一位同学想利用树影测树高,已知在某一时刻直立于地面的长1.5m的竹竿的影长为3m,但当他马上测量树影时,发现树的影子有一部分落在墙上(如图①).经测量,留在墙上的影高CD=1.2m,地面部分影长BD=5.4m,求树高AB.
解:方法一:过点D作DE∥AC交AB于点E,如图①.
∵四边形AEDC为平行四边形,
∴AE=CD=1.2m.
∵=,∴EB=2.7m,
∴AB=AE+EB=3.9m.
方法二:延长AC交BD的延长线于点E,如图②.
∵CD=1.2m,=,∴DE=2.4m.
∴BE=BD+DE=7.8m.
∵=,∴AB=3.9m.
∴树高AB为3.9m.
  方法总结:解决这类问题较为常见的方法有两种,一是画出树影在墙脚对应的树高;二是透过墙,补全树在平地上的影长.
探究点二:正投影
观察如图所示的物体,若投影的方向如箭头所示,图中物体的正投影是下列选项中的(  )
解析:我们观察图中的两个立体图形,分别按照所示投影线考虑它的正投影,得到圆柱的正投影是长
方形,其中短边等于圆柱底面的直径,长边等于圆柱的高;正方体的正投影是与它一个面全等的正方形.因此本题画出的图形应是它们的组合,且长方形在正方形的左边.故答案为C.
  方法总结:本题是正投影性质的简单应用,通过观察和画图可以加深对正投影的理解,同时也可以发展我们的空间想象能力.本题还可以用实物进行实验,通过实验验证结果的正确性.
三、板书设计
本节课研究平行投影,让学生体会影子与生活的息息相关,激发学生学习的动机与兴趣,树立正确的数学观.本课时密切联系实际,涉及地理、物理等知识,体现了数学与各学科内容间的联系.让学生积极参加数学活动,认识数学与人类的密切联系及对人类历史发展的作用,激发学生探究与创造,加强学生的合作与交流.第2课时
相似三角形的周长和面积之比
●教学目标
(一)教学知识点
1.相似三角形的周长比,面积比与相似比的关系.
2.相似三角形的周长比,面积比在实际中的应用.
(二)能力训练要求
1.经历探索相似三角形的性质的过程,培养学生的探索能力.
2.利用相似三角形的性质解决实际问题训练学生的运用能力.
(三)情感与价值观要求
1.学生通过交流、归纳,总结相似三角形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.
2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.
●教学重点
1.相似三角形的周长比、面积比与相似比关系的推导.
2.运用相似三角形的比例关系解决实际问题.
●教学难点
相似三角形周长比、面积比与相似比的关系的推导及运用.
●教学方法
引导启发式
通过温故知新,知识迁移,引导学生发现新的结论,通过比较、分析,应用获得的知识达到理解并掌握的目的.
●教具准备
投影片两张
第一张:(记作§4.7.2
A)
第二张:(记作§4.7.2
B)
●教学过程
Ⅰ.创设问题情境,引入新课
[师](拿大小不同的两个等腰直角三角形三角板).我手中拿着两名同学的两个大小不同的三角板.请同学们观察其形状,并请两位同学来量一量它们的边长分别是多少.然后告诉大家数据.
(让学生把数据写在黑板上)
[师]同学们通过观察和计算来回答下列问题.
1.两三角形是否相似.
2.两三角形的周长比和面积比分别是多少?它们与相似比的关系如何?与同伴交流.
[生]因为两三角形都是等腰直角三角形,其对应角分别相等,所以它们是相似三角形.
周长比与相似比相等,而面积比与相似比却不相等.
[师]能不能找到面积比与相似比的量化关系呢?
[生]面积比与相似比的平方相等.
[师]老师为你的重大发现感到骄傲.但这是特殊三角形,对一般三角形、多边形,我们发现的结论成立吗?这正是我们本节课要解决的问题.
Ⅱ.新课讲解
1.做一做
投影片(§4.7.2
A)
在上图中,△ABC∽△A′B′C′,相似比为.
(1)请你写出图中所有成比例的线段.
(2)△ABC与△A′B′C′的周长比是多少?你是怎么做的?
(3)△ABC的面积如何表示?△A′B′C′的面积呢?△ABC与△A′B′C′的面积比是多少?与同伴交流.
[生](1)∵△ABC∽△A′B′C′
∴======.
(2).
∵===.

=
=.
(3)S△ABC=AB·CD.
S△A′B′C′=A′B′·C′D′.
∴.
2.想一想
如果△ABC∽△A′B′C′,相似比为k,那么△ABC与△A′B′C′的周长比和面积比分别是多少?
[生]由上可知
若△ABC∽△A′B′C′,相似比为k,那么△ABC与△A′B′C′的周长比为k,面积比为k2.
3.议一议
投影片(§4.7.2
B).
如图,四边形A1B1C1D1∽四边形A2B2C2D2,相似比为k.
(1)四边形A1B1C1D1与四边形A2B2C2D2的周长比是多少?
(2)连接相应的对角线A1C1,A2C2,所得的△A1B1C1与△A2B2C2相似吗?
△A1C1D1与△A2C2D2呢?如果相似,它们的相似各是多少?为什么?
(3)设△A1B1C1,△A1C1D1,△A2B2C2,△A2C2D2的面积分别是
那么各是多少?
(4)四边形A1B1C1D1与四边形A2B2C2D2的面积比是多少?
如果把四边形换成五边形,那么结论又如何呢?
[生]解:(1)∵四边形A1B1C1D1∽四边形A2B2C2D2.相似比为k.
(2)△A1B1C1∽△A2B2C2、△A1C1D1∽△A2C2D2,且相似比都为k.
∵四边形A1B1C1D1∽四边形A2B2C2D2

∠D1A1B1=∠D2A2B2,∠B1=∠B2.
∠B1C1D1=∠B2C2D2,∠D1=∠D2.
在△A1B1C1与△A2B2C2中

∠B1=∠B2.
∴△A1B1C1∽△A2B2C2.
∴=k.
同理可知,△A1C1D1∽△A2C2D2,且相似比为k.
(3)∵△A1B1C1∽△A2B2C2,△A1C1D1∽△A2C2D2.
照此方法,将四边形换成五边形,那么也有相同的结论.
由此可知:
相似多边形的周长比等于相似比,面积比等于相似比的平方.
Ⅲ.随堂练习
完成教材随堂练习
Ⅳ.课时小结
本节课我们重点研究了相似三角形的对应线段(高、中线、角平分线)的比,周长比都等于相似比,面积比等于相似比的平方.
Ⅴ.课后作业
习题4.12
●板书设计
4.7
相似三角形的性质
第2课时
相似三角形的周长和面积之比
一、1.做一做
2.想一想
3.议一议
二、课堂练习
三、课时小结
四、课后作业第2课时 利用一元二次方程解决面积问题
1.能够建立一元二次方程模型解决有关面积的问题;(重点、难点)
2.能根据具体问题的实际意义检验结果的合理性.(难点)
                   
一、情景导入
如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?
二、合作探究
探究点:利用一元二次方程解决面积问题
如图所示,某幼儿园有一道长为16m的墙,计划用32m长的围栏靠墙围成一个面积为120m2的矩形草坪ABCD,求该矩形草坪BC边的长.
解析:若设BC长为xm,则宽AB可表示为m,由矩形的面积公式“面积=长×宽”可列方程求解.
解:设矩形草坪BC边的长为xm,则宽AB为m.
根据题意,得x·=120.
解得x1=12,x2=20.
又由题意知BC≤16,∴x=20不符合题意,应该舍去.
∴该矩形草坪BC边的长为12m.
方法总结:(1)结合图形分析数量关系是解决面积等几何问题时的关键;(2)注意检验一元二次方程的根是否符合题意.
将一条长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.
(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?
(2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.
解析:做成的是两个正方形,且已知两个正方形的面积之和,只需设出正方形的边长或用未知数表示出边长,列方程解答即可.
解:设一个正方形的周长为xcm,则另一个正方形的周长为(20-x)cm.
(1)由题意可列方程()2+()2=17.解此方程,得x1=16,x2=4.
所以两段铁丝的长度分别为16cm和4cm;
(2)由题意可列方程()2+()2=12,
此方程化为一般形式为x2-20x+104=0.
∵b2-4ac=(-20)2-4×1×104=-16<0,
∴此方程无解.
∴两个正方形的面积之和不可能等于12cm2.
方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.
三、板书设计
列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:
(1)审:审题要弄清已知量和未知量,问题中的等量关系;
(2)设:设未知数,有直接和间接两种设法,因题而异;
(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;
(4)解:求出所列方程的解;
(5)检:检验方程的解是否正确,是否保证实际问题有意义;
(6)答:根据题意,选择合理的答案.
经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.1.1 菱形的性质与判定
第1课时 菱形的性质
1.通过折、剪纸张的方法,探索菱形独特的性质,理解菱形与平行四边形之间的联系;
2.通过学生间的交流、讨论、分析、类比、归纳,运用已学过的知识总结菱形的特征;
3.掌握菱形的概念和菱形的性质以及菱形的面积公式的推导.(重点、难点)
                   
一、情景导入
请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.
让学生举一些日常生活中所见到过的菱形的例子.
总结:(1)菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等.(2)菱形是特殊的平行四边形,即当一个平行四边形的一组邻边相等时,该平行四边形是菱形.不能忽略平行四边形这一前提,而错误地认为有一组邻边相等的四边形就是菱形.
二、合作探究
探究点一:菱形的性质
【类型一】
菱形的四条边相等
如图所示,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是(  )
A.10
B.12
C.15
D.20
解析:根据菱形的性质可判断△ABD是等边三角形,继而根据AB=5求出△ABD的周长.
∵四边形ABCD是菱形,
∴AB=AD.
又∵∠A=60°,
∴△ABD是等边三角形,
∴△ABD的周长=3AB=15.
故选C.
方法总结:如果一个菱形的内角为60°或120°,则两边与较短对角线可构成等边三角形,这是非常有用的基本图形.
【类型二】
菱形的对角线互相垂直
如图所示,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC=6cm,求菱形的周长.
解析:由于菱形的四条边都相等,所以要求其周长就要先求出其边长.由菱形性质可知,其对角线互相垂直平分,因此可以在直角三角形中利用勾股定理进行计算.
解:因为四边形ABCD是菱形,
所以AC⊥BD,
AO=AC,BO=BD.
因为AC=6cm,BD=12cm,
所以AO=3cm,BO=6cm.
在Rt△ABO中,由勾股定理,得
AB===3(cm).
所以菱形的周长=4AB=4×3=12(cm).
方法总结:因为菱形的对角线把菱形分成四个全等的直角三角形,所以菱形的有关计算问题常转化到直角三角形中求解.
【类型三】
菱形是轴对称图形
如图,在菱形ABCD中,CE⊥AB于点E,CF⊥AD于点F,求证:AE=AF.
解析:要证明AE=AF,需要先证明△ACE≌△ACF.
证明:连接AC.
∵四边形ABCD是菱形,
∴AC平分∠BAD,
即∠BAC=∠DAC.
∵CE⊥AB,CF⊥AD,
∴∠AEC=∠AFC=90°.
在△ACE和△ACF中,
∴△ACE≌△ACF.
∴AE=AF.
方法总结:菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.
探究点二:菱形的面积的计算方法
如图所示,在菱形ABCD中,点O为对角线AC与BD的交点,且在△AOB中,AB=13,OA=5,OB=12.求菱形ABCD两对边的距离h.
解析:先利用菱形的面积等于两条对角线长度乘积的一半求得菱形的面积,又因为菱形是特殊的平行四边形,其面积等于底乘高,也就是一边长与两边之间距离的乘积,从而求得两对边的距离.
解:在Rt△AOB中,AB=13,OA=5,OB=12,
于是S△AOB=OA·OB=×5×12=30,
所以S菱形ABCD=4S△AOB=4×30=120.
又因为菱形两组对边的距离相等,
所以S菱形ABCD=AB·h=13h,
所以13h=120,得h=.
方法总结:菱形的面积计算有如下方法:(1)一边长与两对边的距离(即菱形的高)的积;(2)四个小直角三角形的面积之和(或一个小直角三角形面积的4倍);(3)两条对角线长度乘积的一半.
三、板书设计
菱形
为学生提供动手实践、研究探讨的时间与空间,让学生经历知识发生、发展的全过程,培养学生自主学习、合作学习、主动获取知识的能力,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法及数学观念,培养学生能力,促进学生发展.第2课时
一元二次方程的解及其估算




1、会用估算的方法探索一元二次方程的解或近似解。
2、经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力。
重点:探索一元二次方程的解或近似解
难点:培养学生的估算意识和能力
【教学过程】一、温故而知新1、什么叫一元二次方程?它的一般形式是:_________________________.2、指出下列方程的二次项系数,一次项系数及常数项。(1)2x2―x+1=0
(2)―x2+1=0
(3)x2―x=0
(4)-x2=0问题探究:探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程
(8―2x)(5―2x)=18也就是:2x2―13x+11=0
你能估算出地毯花边的宽度x吗?
(1)x可能小于0吗?说说你的理由;_________________.
(2)x可能大于4吗?可能大于2.5吗?为什么?
(3)完成下表x00.511.522.52x2-13x+11
(4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x0x2+12x-15所以
______的整数部分是___,十分位是___.当堂训练:完成课本34页随堂练习学习体会:五、课后作业
备注备注6.2 反比例函数的图象与性质
第1课时 反比例函数的图象
1.会用描点法画出反比例函数的图象,并掌握反比例函数图象的特征;(重点)
2.会利用反比例函数图象解决相关问题.(难点)
一、情景导入
已知某面粉厂加工出4000吨面粉,厂方决定把这些面粉全部运往B市.
所需要的时间t(天)和每天运出的面粉总重量m(吨)之间有怎样的函数关系?你能在平面直角坐标系中形象地画出这个函数关系的图象吗?
二、合作探究
探究点一:反比例函数的图象
【类型一】
判断反比例函数所在的象限
反比例函数y=-的图象在(  )
A.第一、二象限
B.第二、三象限
C.第一、三象限
D.第二、四象限
解析:因为k=-6<0,所以反比例函数的图象在第二、四象限.故选D.
  方法总结:反比例函数y=的图象是由两支曲线组成的.当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内.
【类型二】
由反比例函数图象的位置确定k的取值范围
若双曲线y=的两个分支分别在第二、四象限,则k的取值范围是(  )
A.k>
B.k<
C.k=
D.不存在
  解析:反比例函数图象的两个分支分别在第二、四象限,则必有2k-1<0,解得k<.故选B.
  方法总结:反比例函数的图象的位置由k的符号确定.
【类型三】
实际问题的反比例函数图象
已知一个长方形的面积是8,则这个长方形的一组邻边长y与x之间的函数关系图象大致是图中的(  )
解析:本题是一道有关反比函数的实际问题.已知长方形的面积是8,两邻边的长分别是x,y,所以x·y=8,即y=,所以此函数属于反比例函数.而长方形的任意一边的长度都必须大于0,故x的取值范围是x>0.由k>0且x>0可知,函数的图象只在第一象限内,故选D.
  方法总结:在解决与反比例函数的图象有关的实际问题时,因自变量的取值范围有限制,常只有一个分支或一个分支中的部分曲线段符合题意.
探究点二:一次函数与反比例函数的综合应用
在同一平面直角坐标系中,函数y=ax+b与y=(ab≠0)的图象大致是(  )
解析:在A、B中,反比例函数的图象在第一、三象限,∴ab>0.而观察一次函数的图象,在A中,a>0,b<0,矛盾;在B中,a<0,b>0,矛盾.在C、D中,反比例函数的图象在二、四象限,∴ab<0.再观察一次函数的图象,在C中,a<0,b>0,符合题意;在D中,a>0,b>0,矛盾,故选C.
  方法总结:在每个选项中可先由一个函数图象的位置得出a、b的符号情况,然后在另一个函数图象上检验,若无矛盾,则此选项正确,否则就是错误的.
已知反比例函数y=的图象与一次函数y=3x+m的图象相交于点(1,5).
(1)求这两个函数的解析式;
(2)求这两个函数图象的另一个交点的坐标.
  解:(1)∵点(1,5)在反比例函数y=的图象上,
∴5=,即k=5,
∴反比例函数的解析式为y=.
又∵点(1,5)在一次函数y=3x+m的图象上,
∴5=3+m,即m=2,
  ∴一次函数的解析式为y=3x+2;
(2)由题意,联立
解得或
∴这两个函数图象的另一个交点的坐标为(-,-3).
三、板书设计
通过学生自己动手列表、描点、连线,提高学生的作图能力.理解函数的三种表示方法及相互转换,对函数进行认识上的整合,逐步明确研究函数的一般要求.反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动的空间.第2时
菱形的判定




1、掌握菱形的判定定理并解决实际问题,会根据已知条件画出菱形
2、能够运用综合法证明菱形的判定定理及其推论。
3、经历探索菱形判定的过程,培养学生的动手能力、观察能力及推理能力。
重点:严格证明菱形判定定理及其推论。
难点:运用综合法解决菱形的相关题型。
知识链接:
平行四边形的性质与判定
【学习过程】一、课前自主学习
菱形的对边
。菱形的四边

菱形的性质:
菱形的对角线

菱形是
对称图形,又是
对称图形。
菱形的面积=

菱形的面积=
二、课内探索新知。菱形的判定方法:方法一:(定义)有一组邻边相等的平行四边形是菱形方法二:用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过探究,得到:对角线
的平行四边形是菱形。
证明上述结论:
已知菱形的一条对角线你会做菱形吗?试一试方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到:
的四边形是菱形。证明上述结论:三、例题巩固
课本6页例2
四、课堂检测1、下列判别错误的是(
)A.对角线互相垂直,平分的四边形是菱形.
B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形.
D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是(
)A.两条对角线相等
B.两条对角线互相垂直C.两条对角线相等且垂直
D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形2.3 用公式法求解一元二次方程
第1课时 用公式法求解一元二次方程
1.理解一元二次方程求根公式的推导过程;
2.会用公式法解一元二次方程;(重点)
3.会用根的判别式b2-4ac判断一元二次方程根的情况及相关应用.(难点)
一、情景导入
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用配方法的步骤求出它们的两根?请同学独立完成下面这个问题.
问题:已知ax2+bx+c=0(a≠0),且b2-4ac≥0,试推导它的两个根x1=,x2=.
二、合作探究
探究点一:用公式法解一元二次方程
方程3x2-8=7x化为一般形式是__________,其中a=________,b=________,c=________,方程的根为____________.
解析:将方程移项可化为3x2-7x-8=0.其中a=3,b=-7,c=-8,因为b2-4ac=(-7)2-4×3×(-8)=145>0,代入求根公式可得x=.
故答案分别为3x2-7x-8=0,3,-7,-8,.
方法总结:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a,b,c确定的,只要确定了系数a,b,c的值,代入公式就可求得方程的根.
用公式法解下列方程:
(1)-3x2-5x+2=0;
(2)2x2+3x+3=0;
(3)x2-2x+1=0.
解析:先确定a,b,c及b2-4ac的值,再代入公式求解即可.
解:(1)-3x2-5x+2=0,3x2+5x-2=0.
∵a=3,b=5,c=-2,
∴b2-4ac=52-4×3×(-2)=49>0,
∴x==,
∴x1=,x2=-2;
(2)∵a=2,b=3,c=3,
∴b2-4ac=32-4×2×3=9-24=-15<0,
∴原方程没有实数根;
(3)∵a=1,b=-2,c=1,
∴b2-4ac=(-2)2-4×1×1=0,
∴x==,
∴x1=x2=1.
方法总结:用公式法解一元二次方程时,首先应将其变形为一般形式,然后确定公式中a,b,c的值,再求出b2-4ac的值与“0”比较,最后利用求根公式求出方程的根(或说明其没有实数根).
探究点二:一元二次方程根的判别式
【类型一】
用根的判别式判断一元二次方程根的情况
已知一元二次方程x2+x=1,下列判断正确的是(  )
A.该方程有两个相等的实数根
B.该方程有两个不相等的实数根
C.该方程无实数根
D.该方程根的情况不确定
解析:原方程变形为x2+x-1=0.∵b2-4ac=12-4×1×(-1)=5>0,∴该方程有两个不相等的实数根,故选B.
方法总结:判断一元二次方程根的情况的方法:利用根的判别式判断一元二次方程根的情况时,要先把方程转化为一般形式ax2+bx+c=0(a≠0).当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程无实数根.
【类型二】
根据方程根的情况确定字母的取值范围
若关于x的一元二次方程kx2-2x-1=0,有两个不相等的实数根,则k的取值范围是(  )
A.k>-1
B.k>-1且k≠0
C.k<1
D.k<1且k≠0
解析:由根的判别式知,方程有两个不相等的实数根,则b2-4ac>0,同时要求二次项系数不为0,即解得k>-1且k≠0,故选B.
易错提醒:利用b2-4ac判断一元二次方程根的情况时,容易忽略二次项系数不能等于0这一条件,本题中容易误选A.
【类型三】
根的判别式与三角形的综合应用
已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2
ax=0有两个相等的实数根,请判断△ABC的形状.
解析:先将方程转化为一般形式,再根据根的判别式确定a,b,c之间的关系,即可判定△ABC的形状.
解:将原方程转化为一般形式,得(b+c)x2-2
ax+(c-b)m=0.
∵原方程有两个相等的实数根,
∴(-2
a)2-4(b+c)(c-b)m=0,
即4m(a2+b2-c2)=0.
又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.
根据勾股定理的逆定理可知△ABC为直角三角形.
方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.
三、板书设计
 
经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解求根公式的基础.通过对求根公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.体会数式通性,感受数学的严谨性和数学结论的确定性.提高学生的运算能力,并养成良好的运算习惯.2.2
用配方法求解一元二次方程
第1课时
用配方法求解简单的一元二次方程
教学


1.会用开平方法解形如(x+m)2=n(n≥0)的方程;理解配方法,会用配方法解简单的数字系数的一元二次方程.2.
经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界数量关系的一个有效数学模型,增强学生运用数学的意识和能力.3.体会转化的数学思想方法.
重点:利用配方法解一元二次方程.
难点:把一元二次方程通过配方转化为(x+m)2=n(n≥0)的形式.
知识链接:求一元二次方程的近似解
一、【自学感知】在上一节的问题中,梯子底端滑动的距离x(m)满足方程x2
+
12x-15=0.我们已经求出了x的近似值,你能求出它的精确值吗?二、合作交流活动一:你能解哪些特殊的一元二次方程?你会解下列一元二次方程吗?你是怎么做的?
x2=5,2x2+3=5,x2+2x+1=5
,(x+6)2
+72
=
102你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+
=(x+6)2
(2)x2―4x+
=(x―
)2
(3)x2+8x+
=(x+
)2
在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?
课本37页随堂练习课时作业
备注备注3.2
用频率估计概率
教学目标:
1、借助实验,体会随机事件在每一次实验中发生与否具有不确定性;
2、通过操作,体验重复实验的次数与事件发生的频率之间的关系;
3、能从频率值角度估计事件发生的概率;
4、懂得开展实验、设计实验,通过实验数据探索规律,并从中学会合作与交流。
教学重点与难点:通过实验体会用频率估计概率的合理性。
教学过程:
一、引入:
我们知道,任意抛一枚均匀的硬币,”正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:
实验者
抛掷次数n
“正面朝上”次数m
频率m/n
隶莫弗布丰皮尔逊皮尔逊
204840401200024000
10612048601912012
0.5180.5.690.50160.5005
观察上表,你获得什么启示 (实验次数越多,频率越接近概率)
二、合作学习(课前布置,以其中一小组的数据为例)让转盘自由转动一次,停止转动后,指针落在红色区域的概率是,以数学小组为单位,每组都配一个如图的转盘,让学生动手实验来验证:
(1)填写以下频数、频率统计表:
转动次数
指针落在红色区域次数
频率
10
3
0.3
20
8
0.4
30
11
0.36
40
14
0.35
50
16
0.32
(2)把各组得出的频数,频率统计表同一行的转动次数和频数进行汇总,求出相应的频率,制作如下表格:
实验次数
指针落在红色区域的次数
频率
80
25
0.3125
160
58
0.3625
240
78
0.325
320
110
0.3438
400
130
0.325
(3)根据上面的表格,画出下列频率分布折线图
(4)议一议:频率与概率有什么区别和联系 随着重复实验次数的不断增加,频率的变化趋势如何
结论:从上面的试验可以看到:当重复实验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,我们可以通过大量重复实验,用一个事件发生的频率来估计这一事件发生的概率。
三、做一做:
1.某运动员投篮5次,投中4次,能否说该运动员投一次篮,投中的概率为4/5 为什么
2.回答下列问题:
(1)抽检1000件衬衣,其中不合格的衬衣有2件,由此估计抽1件衬衣合格的概率是多少
(2)1998年,在美国密歇根州汉诺城市的一个农场里出生了1头白色的小奶牛,据统计,平均出生1千万头牛才会有1头是白色的,由此估计出生一头奶牛为白色的概率为多少
四、例题分析:
例1、在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:
实验种子n(粒)
1
5
50
100
200
500
1000
2000
3000
发芽频数m(粒)
0
4
45
92
188
476
951
1900
2850
发芽频数m/n
0
(1)计算表中各个频数.
(2)估计该麦种的发芽概率
(3)如果播种该种小麦每公顷所需麦苗数为4181818棵,种子发芽后的成秧率为87%,该麦种的千粒质量为35g,那么播种3公顷该种小麦,估计约需麦种多少kg
分析:(1)学生根据数据自行计算
(2)估计概率不能随便取其中一个频率区估计概率,也不能以为最后的频率就是概率,而要看频率随实验次数的增加是否趋于稳定。
(3)设需麦种x(kg)
由题意得,
解得
x≈531(kg)
答:播种3公顷该种小麦,估计约需531kg麦种.
五、课内练习:
1.如果某运动员投一次篮投中的概率为0.8,下列说法正确吗 为什么
(1)该运动员投5次篮,必有4次投中.
(2)该运动员投100次篮,约有80次投中.
2.对一批西装质量抽检情况如下:
抽检件数
200
400
600
800
1000
1200
正品件数
190
390
576
773
967
1160
次品的概率
(1)填写表格中次品的概率.
(2)从这批西装中任选一套是次品的概率是多少
(3)若要销售这批西装2000件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装
六、课堂小结:
尽管随机事件在每次实验中发生与否具有不确定性,但只要保持实验条件不变,那么这一事件出现的频率就会随着实验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值。
七、作业:课后练习
补充:一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球与10的比值,再把球放回袋中摇匀。不断重复上述过程5次,得到的白求数与10的比值分别为:0.4,0.1,0.2,0.1,0.2。根据上述数据,小亮可估计口袋中大约有
48
个黑球。第2课时
平行投影与正投影
教学内容
平行投影与正投影
教学目标
1、知识与技能目标
了解平行投影的含义,能够确定物体在太阳光下的影子。了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。
2、过程与方法目标
经历实践、探索的过程,了解平行投影的含义。通过观察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。理解在同一时刻,物体的影子与它们的高度成比例.
3、情感与态度目标
让学生积极参加数学活动,认识数学与人类的密切联系及对人类历史发展的作用,激发学生探究与创造,加强学生的合作与交流。
教学重点
了解平行投影的含义,能够确定物体在太阳光下的影子。了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。理解在同一时刻,物体的影子与它们的高度成比例.
教学难点
经历操作、观察,由直观到推理,归纳总结到理论的过程。
教学过程







备注
一、创设情境、设问导入引言:太阳光下的影子是我们司空见惯的,物体在太阳光下形成的影子与在灯光下形成的影子有什么不同呢?
二、操作感知、建立表象
做一做实践:取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。提问:(1)固定投影面,改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒或纸片,改变投影面的摆放位置和方向,它们的影子分别发生了什么变化 学生操作,观察,探索.概念:太阳光线可以看成平行光线,平行光线所形成的投影称为平行投影。平行光线与投影面垂直时称为正投影.
三、联系生活、丰富联想议一议这三幅图是我国北方某地某天上午不同时刻的同一位置拍摄的.提出问题:⑴在三个时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由;⑵在同一时刻,大树和小树的影子长度与它们的高度之间有什么关系?与同伴进行交流.学生观察、交流。结论:在同一时刻,大树和小树的影子与它们的高度成比例
四、范例学习、理解领会例2
某校墙边有甲、乙两根木杆。已知乙木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图5-6所示,你能画出此时乙木杆的影子吗?(用线段表示影子)
(2)在图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?
(3)在(2)的情况下,如果测得甲、乙木杆的影子长分别为1.24m和1m,那么你能求出甲木杆的高度吗 学生画图、实验、观察、探索。
五、随堂练习课本随堂练习
学生观察、画图、合作交流。
六、课堂总结
本节课通过各种实践活动,促进大家对内容的理解,本课内容,要体会物体在太阳光下形成的不同影子,在操作中观察不同时刻影子的方向和大小变化特征。在同一时刻,物体的影子与它们的高度成比例.
七、布置作业课本习题
1
2
34.5
相似三角形判定定理的证明
一、教学目标:
知识与技能:正确理解并掌握相似三角形的判定定理的证明方法
过程与态度:
让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
情感态度与价值观:让学生在演绎推理的过程中体验成功的快乐
二、教学重难点:
重点:相似三角形的判定定理的证明过程
难点:相似三角形的判定定理的运用
三、教学过程:
(一)提出问题,导入新课
在上节课中,我们通过类比两个三角形全等的条件,寻找并探究判定两个三角形相似的条件,我们得出的结论是怎样的?您能证明它们一定成立吗?
目的:通过学生回顾复习已得结论入手,激发学生学习兴趣。
(二)合作探究,学习新知:
命题1、两角分别相等的两个三角形相似。如何对文字命题进行证明?与同伴进行交流.
目的:通过学生回顾证明文字命题的步骤入手,引导学生进行画图,写出已知,求证。
第一步:引导学生根据文字命题画图,
第二步:根据图形和文字命题写出已知,求证。
已知:如图,在△ABC和△A’B’C’中,∠A=∠A’,∠B=∠B’。
求证:
△ABC∽△A’B’C’。
第三步:写出证明过程。(分析现在能说明两个三角形相似的方法只有相似三角形的定义,我们可以利用这一线索进行探索,已知两角对应相等,根据三角形内角和定理可以推出第三个角也相等,从而可得三角对应相等,下一步,我们只要再证明三边对应成比例即可。根据平行线分线段成比例的推论,我们可以在△ABC内部或外部构造平行线,从而构造出与△A’B’C’全等的三角形。)
证明:在△ABC的边AB(或延长线)上截取AD=A’B’,过点D作BC的平行线,交AC于点E,则∠ADE=∠B,∠AED=∠C,
(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例)。
过点D作AC的平行线,交BC于点F,则
(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例)。
∴____________
∵DE∥BC,DF∥AC
∴四边形DFCE是平行四边形。
∴DE=CF
∴____________
∴____________
而∠ADE=∠B,
∠DAE=∠BAC,
∠AED=∠C,
∴___________
∵∠A=∠A’,
∠ADE=∠B’,
AD=A’B’,
∴△____≌△____
∴△ABC∽△A’B’C’.
通过证明,我们可以得到命题1是一个真命题,从而得出相似三角形判定定理1:两角分别相等的两个三角形相似。现在,我们已经有两种判定三角形相似的方法。
下面我们可以类比前面的证明方法,来继续证明命题2:两边成比例且夹角相等的两个三角形相似。能自己试试吗?
鼓励学生积极思考,模仿前面的证明过程进行证明。可让学生板书过程,或老师在学生中寻找资源,通过投影修正过程中存在的问题。
通过证明,学生可以得到相似三角形判定定理2:两边成比例且夹角相等的两个三角形相似。
下面让每个学生独立完成三边成比例的两个三角形相似的证明。从而得到相似三角形判定定理:三边成比例的两个三角形相似。
(三)运用知识解决问题
例1
已知:如图是一束光线射入室内的平面图,上檐边缘射入的光线照在距窗户2.5m处,已知窗户AB高为2m,B点距地面高为1.2m,求下檐光线的落地点N与窗户的距离NC.
例2
如图,等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.
例3
在ABCD中,M,N为对角线BD的三等分点,连接AM交BC于E,连接EN并延长交AD于F.(1)试说明△AMD∽△EMB;(2)求的值.
相似三角形的判定定理的选择:1.已知有一角相等,可选判定定理1和2;2.已知有两边对应成比例,可选判定定理2和3。
(四)学习小结:
通过本节课的学习,你学会了哪些知识和方法?哪里还有困惑?
(五)布置作业:
四、教学反思:第2课时 矩形的判定
1.理解并掌握矩形的判定方法;(重点)
2.能熟练掌握矩形的判定及性质的综合应用.(难点)
                   
一、情景导入
小明想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框?看看谁的方法可行!
二、合作探究
探究点一:对角线相等的平行四边形是矩形
如图所示,外面的四边形ABCD是矩形,对角线AC,BD相交于点O,里面的四边形MPNQ的四个顶点都在矩形ABCD的对角线上,且AM=BP=CN=DQ.求证:四边形MPNQ是矩形.
解析:要证明四边形MPNQ是矩形,应先证明它是平行四边形,由已知可再证明其对角线相等.
证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.
∵AM=BP=CN=DQ,
∴OM=OP=ON=OQ.
∴四边形MPNQ是平行四边形.
又∵OM+ON=OQ+OP,
∴MN=PQ.
∴平行四边形MPNQ是矩形(对角线相等的平行四边形是矩形).
方法总结:在判断四边形的形状时,若已知条件中有对角线,可首先考虑能否用对角线的条件证明矩形.
探究点二:有三个角是直角的四边形是矩形
如图,GE∥HF,直线AB与GE交于点A,与HF交于点B,AC、BC、BD、AD分别是∠EAB、∠FBA、∠ABH、∠GAB的平分线,求证:四边形ADBC是矩形.
解析:利用已知条件,证明四边形ADBC有三个角是直角.
证明:∵GE∥HF,
∴∠GAB+∠ABH=180°.
∵AD、BD分别是∠GAB、∠ABH的平分线,
∴∠1=∠GAB,∠4=∠ABH,
∴∠1+∠4=(∠GAB+∠ABH)=×180°=90°,
∴∠ADB=180°-(∠1+∠4)=90°.
同理可得∠ACB=90°.
又∵∠ABH+∠FBA=180°,
∠4=∠ABH,∠2=∠FBA,
∴∠2+∠4=(∠ABH+∠FBA)=×180°=90°,即∠DBC=90°.
∴四边形ADBC是矩形.
方法总结:矩形的判定方法和矩形的性质是相辅相成的,注意它们的区别和联系,此判定方法只要说明一个四边形有三个角是直角,则这个四边形就是矩形.
探究点三:有一个角是直角的平行四边形是矩形
如图所示,在△ABC中,D为BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD.连接BF.
(1)BD与DC有什么数量关系?请说明理由;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
解析:(1)根据“两直线平行,内错角相等”得出∠AFE=∠DCE,然后利用“AAS”证明△AEF和△DEC全等,根据“全等三角形对应边相等”可得AF=CD,再利用等量代换即可得BD=CD;(2)先利用“一组对边平行且相等的四边形是平行四边形”证明四边形AFBD是平行四边形,再根据“有一个角是直角的平行四边形是矩形”可知∠ADB=90°.由等腰三角形三线合一的性质可知△ABC满足的条件必须是AB=AC.
解:(1)BD=CD.理由如下:
∵AF∥BC,
∴∠AFE=∠DCE.
∵E是AD的中点,
∴AE=DE.
在△AEF和△DEC中,
∴△AEF≌△DEC(AAS),
∴AF=DC.
∵AF=BD,
∴BD=DC;
(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形.
∴AB=AC,BD=DC,
∴∠ADB=90°.
∴四边形AFBD是矩形.
方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.
三、板书设计
通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.4.6 利用相似三角形测高
1.通过测量旗杆的高度的活动,巩固相似三角形有关知识,积累数学活动的经验;(重点)
2.灵活运用三角形相似的知识解决实际问题.(难点)
                   
一、情景导入
胡夫金字塔是埃及现存规模最大的金字塔,被誉为“世界古代八大奇迹之一”,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理测量金字塔的高度.
你能根据图示说出他测量金字塔的原理吗?
二、合作探究
探究点一:利用阳光下的影子测量高度
【类型一】
影子在同一平面上时高度的测量
如图所示,身高为1.6m的某同学想测量学校旗杆的高度,当他站在C处时,正好站在旗杆影子的顶端处,已测得该同学在地面上的影长为2m,旗杆在地面上的影长为8m,那么旗杆的高度是多少呢?
解析:同一时刻的太阳的光线应是平行的,人和旗杆都与地面垂直,因此可以通过相似三角形对应边成比例来求旗杆的高度.
解:如图,用DC表示人的身高,EC表示人的影长,AB表示旗杆的高度,BC表示旗杆的影长.
由题意知DC=1.6m,EC=2m,BC=8m.
∵太阳光AC∥DE,
∴∠E=∠ACB.
又∵∠B=∠DCE=90°,∴△ABC∽△DCE.
∴=,即=.
解得AB=6.4(m).
故旗杆的高度是6.4m.
  方法总结:同一时刻,对于都垂直于地面的两个物体来说,它们的高度之比等于它们的影长之比,即物体的高度之比与其影长之比相同.
【类型二】
影子不在同一平面上时高度的测量
如图①,在离某建筑物CE4m处有一棵树AB,在某时刻,1.2m的竹竿FG垂直地面放置,影子GH长为2m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2m,那么这棵树的高是多少?
  解:方法一:延长AD,与地面交于点M,如图②.
根据同一时刻,物体的影长和它的高度成正比,
所以==.
因为CD=2m,FG=1.2m,GH=2m,BC=4m,
所以CM=m,所以BM=BC+CM=(m).
所以=,AB=4.4(m).
故这棵树的高是4.4m.
方法二:过点D作AB的垂线,交AB于点M,如图③.
由题意可知=,而DM=BC=4m,AM=AB-CD=(AB-2)m,FG=1.2m,GH=2m,
所以=,解得AB=4.4(m).
故这棵树的高是4.4m.
方法三:过点C作AD的平行线交AB于点P,如图④.
由题意可知=,而BP=AB-CD=(AB-2)m,BC=4m,FG=1.2m,GH=2m,
所以=,解得AB=4.4(m).
故这棵树的高是4.4m.
  方法总结:在图上补全影子或构造相似三角形是求出树高的关键.三种方法的解题依据实质上都是应用了相似三角形的性质,但其解题的简便性不同,显然方法二和方法三比方法一简单.
探究点二:利用标杆测量高度
如图,小明为了测量一棵树CD的高度,他在距树24m处立了一根高为2m的标杆EF,然后小明前后调整自己的位置,当他与树相距27m的时候,他的眼睛、标杆的顶端和树的顶端在同一条直线上.已知小明的眼高1.6m,求树的高度.
解析:人、树、标杆是相互平行的,添加辅助线,过点A作AN∥BD交CD于N,交EF于M,则可得△AEM∽△ACN.
解:过点A作AN∥BD交CD于N,交EF于M,因为人、标杆、树都垂直于地面,
所以∠ABF=∠EFD=∠CDF=90°,
所以AB∥EF∥CD,所以∠EMA=∠CNA.
因为∠EAM=∠CAN,
所以△AEM∽△ACN,所以=.
因为AB=1.6m,EF=2m,BD=27m,FD=24m,
所以=,所以CN=3.6(m),
所以CD=3.6+1.6=5.2(m).
故树的高度为5.2m.
  方法总结:利用标杆测量物体的高度时,必须使观测者的眼睛、标杆顶端、建筑物顶端在同一条直线上.
探究点三:利用镜子的反射测量高度
为了测量一棵大树的高度,某同学利用手边的工具(镜子、皮尺)设计了如下测量方案:如图,①在距离树AB底部15m的E处放下镜子;②该同学站在距离镜子1.2m的C处,目高CD为1.5m;③观察镜面,恰好看到树的顶端.你能帮助他计算出大树的大约高度吗?
  解析:借助物理学知识:入射角等于反射角,法线垂直于水平面(镜面),然后利用相似三角形的知识求解.
解:如图,∵∠1=∠2,
∠DCE=∠BAE=90°,
∴△DCE∽△BAE.
∴=,即=,
解得BA=18.75(m).
因此,树高约为18.75m.
  方法总结:利用镜子的反射测量物体的高度时,利用入射角等于反射角,等角的余角相等产生相似三角形,利用相似三角形的性质求树高.
三、板书设计
利用相似三角形测高
通过设计测量旗杆高度的方案,学会由实物图形抽象成几何图形的方法,体会实际问题转化成数学模型的转化思想,培养学生的观察、归纳、建模、应用能力,体验解决问题策略的多样性.在增强相互协作的同时,激发学习数学的兴趣.第2课时
营销问题及平均变化率问题与一元二次方程
教学目标:
知识技能目标
通过探索,学会解决有关营销的问题和平均比变化率的问题.
过程性目标
经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.
情感态度目标
通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.
重点和难点:
重点:列一元二次方程解决实际问题.
难点:寻找实际问题中的相等关系.
教学过程:
一、创设情境
我们经常从电视新闻中听到或看到有关增长率的问题,例如今年我市人均收入Q元,比去年同期增长x%;环境污染比去年降低y%;某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问题.
二、探究归纳
例1
阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?
分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.

设原值为1,平均年增长率为x,则根据题意得
解这个方程得

因为不合题意舍去,所以

答 这两年的平均增长率约为41.4%.
探索 若调整计划,两年后的财政净收入值为原值的1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?
又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政净收入翻一番?
归纳:平均增长率(或平均减少率)问题:
原数(1

平均增长率)=
。(n为相距时间)
原数(1

平均减少率)=

例2、某商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。针对
这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?
(月销售利润=月销售量×销售单价-月销售成本.)
课堂练习
1.某工厂准备在两年内使产值翻一番,求平均每年增长的百分率.(精确到0.1%)
2、某种服装,平均每天可销售20件,若每件降价1元,则每天可多售5件。如果每天
要盈利1600元,每件应降价多少元?
三、交流反思
四、检测反馈
1.某地一月份发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是(
).
A.100(1+x)2=250
B.100(1+x)+100(1+x)2=250
C.100(1-x)2=250
D.100(1+x)2
2.
某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,若设每件售价定为x元,销售量可表示为(

A.
×10
B.
200-×10
C.
200-×10
D.
200-0.5(x-10)×10
3.
西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利20元,应将每千克小型西瓜的售价降低(  )元.
A.
0.2或0.3
B.
0.4
C.
0.3
D.
0.2
4.
新华商场销售某种水箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5000元,如果设每台冰箱降价x元,那么每台冰箱的定价就是____________元,每台冰箱的销售利润为_____________________元,平均每天销售冰箱的数量为_______________台,据此可列方程
.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?
6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)
7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?
8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时,可以获利9100元?
五、布置作业
习题2.103.2 用频率估计概率
1.知道通过大量的重复试验,可以用频率来估计概率;(重点)
2.了解替代模拟试验的可行性.
                   
一、情景导入
我们知道,任意抛一枚均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:
实验者
抛掷次数n
“正面朝上”次数m
频率m/n
隶莫弗布丰皮尔逊皮尔逊
204840401200024000
10612048601912012
0.5180.50690.50160.5005
  观察上表,你获得什么启示?(实验次数越多,频率越接近概率)
二、合作探究
探究点:用频率估计概率
小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下表:
朝上的点数
1
2
3
4
5
6
出现的次数
7
9
6
8
20
10
(1)计算“3点朝上”的频率和“5点朝上”的频率;
(2)小颖说:“根据试验,一次试验中出现‘5点朝上’的概率大”;小红说:“如果掷600次,那么出现‘6点朝上’的次数正好是100次.”小颖和小红的说法正确吗?为什么?
解:(1)“3点朝上”的频率为=,“5点朝上”的频率为=;
(2)小颖的说法是错误的,因为“5点朝上”的频率大并不能说明“5点朝上”这一事件发生的概率大,因为当试验的次数非常多时,随机事件发生的频率才会稳定在事件发生的概率附近.
小红的说法也是错误的,因为掷骰子时“6点朝上”这个事件的发生具有随机性,故如果掷600次,“6点朝上”的次数不一定是100次.
  易错提醒:频率与概率的联系与区别:
(1)联系:当试验次数很多时,事件发生的频率会稳定在一个常数附近,人们常把这个常数作为概率的近似值.
(2)区别:事件发生的频率不能简单地等同于其概率.概率从数量上反映了一个随机事件发生的可能性大小,是理论值,是由事件本质决定的,只能取唯一值,它能精确地反映事件发生的可能性大小;而频率只有在大量重复试验的前提下才可近似地作为这个事件的概率,即概率是频率的稳定值,而频率是概率的近似值.
在“抛掷一枚均匀硬币”的试验中,如果手边现在没有硬币,则下列各个试验中哪个不能代替(  )
A.两张扑克,“黑桃”代替“正面”,“红桃”代替“反面”
B.两个形状大小完全相同,但颜色为一红一白的两个乒乓球
C.扔一枚图钉
D.人数均等的男生、女生,以抽签的方式随机抽取一人
解析:“抛一枚均匀硬币”的试验中,出现正面和反面的可能性相同,因此所选的替代物的试验结果只能有两个,且出现的可能性相同,因此A项、B项、D项都符合要求,故选C.
  方法总结:用替代物进行试验时,首先要求替代物与原试验物所产生的所有可能均等的结果数相同,且所有结果中的每一对应事件的概率相等;其次所选择的替代物不能比实物进行试验时更困难.替代物通常选用:扑克、卡片、转盘、相同的乒乓球、计算器等.
某篮球队教练记录了该队一名主力前锋练习罚篮的结果如下:
练习罚篮次数
30
60
90
150
200
300
400
500
罚中次数
27
45
78
118
161
239
322
401
罚中频率
  (1)填表:求该前锋罚篮命中的频率(精确到0.001);
(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是多少吗?
解:(1)表中的频率依次为0.900,0.750,0.867,0.787,0.805,0.797,0.805,0.802;
(2)从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率约为0.8.
  方法总结:利用频率估计概率时,不能以某一次练习的结果作为估计的概率.试验的次数越多,用频率估计概率也越准确,因此用多次试验后的频率的稳定值估计概率.
在一个不透明的盒子里装有颜色不同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:
摸球的次数n
100
200
300
500
800
1
000
3
000
摸到白球的次数m
65
124
178
302
481
599
1803
摸到白球的频率
0.65
0.62
0.593
0.604
0.601
0.599
0.601
  (1)请估计:当n很大时,摸到白球的频率将会接近    (精确到0.1);
(2)假如你摸一次,估计你摸到白球的概率P(白球)=    ;
(3)试估算盒子里黑球有多少个.
解:(1)0.6 (2)0.6
(3)设黑球有x个,则=0.6,解得x=16.
经检验,x=16是方程的解且符合题意.
所以盒子里有黑球16个.
  方法总结:本题主要考查用频率估计概率的方法,当摸球次数增多时,摸到白球的频率将会接近一个数值,则可把这个数值近似看作概率,知道了概率就能估算盒子里黑球有多少个.
三、板书设计
用频率估计概率
通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率.经历实验、统计等活动过程,进一步发展学生合作交流的意识和能力.通过动手实验和课堂交流,进一步培养学生收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神.第2课时
反比例函数的性质


第2课时
反比例函数的性质
课型
新授课
教学目标
1.经历观察、归纳、交流的过程,逐步提高从函数图象中获取信息的能力,探索反比例函数的主要性质。2.提高学生的观察、分析能力和对图形的感知水平,使学生从整体上领会研究函数的一般要求。
教学重点
掌握反比例函数的主要性质。
教学难点
理解反比例函数的性质。
教学方法
自主探究法
教学后记







备注
一、观察联想、探究新知观察反比例函数的图象,你能发现它们的共同特征吗?探索:(1)函数图象分别位于哪几个象限内?
(2)在每一个象限内,随着x值的增大,y的值是怎样变化的?能说明这是为什么吗?
(3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么?学生观察,同桌交流,大胆发言,发表见解。二、自主探究、领悟规律议一议考察当k=-2,-4,-6时,反比例函数的图象,它们有哪些共同特征?学生通过相互交流、补充和修正。性质:反比例函数的图象,当k>0时,在每个象限内,y的值随x值的增大而减小;当k<0时,在每一象限内,y的值随x值的增大而增大。想一想在一个反比例函数图象上任取两点P、Q,过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为,和有什么关系?为什么?学生分四人小组进行操作。三、随堂练习课本随堂练习
1、2四、课堂总结通过归纳、概括反比例函数的性质,发展从图象中获取信息的能力。五、布置作业
课本习题6.3第二章
一元二次方程
2.1
认识一元二次方程
第1课时
一元二次方程




1、经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型。
2、经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力。
重点:认识产生一元二次方程知识的必要性
难点:列方程的探索过程
【教学过程】一
、学前准备:什么叫方程?
2、什么叫一元一次方程?
二、问题探究:探究一:根据题意,列出方程
1、艺术设计一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m。如果地毯中央长方形图案的面积为18m2,那么花边有多宽?
如果设所求的宽度为x
m,你能列出怎样的方程
2、梯子移动一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?如果设梯子底端滑动x
m,你能列出怎样的方程?探究二:
1、上述两个方程有什么共同特点?
2、你还能写出具备上述特征的方程吗?
综上有:一元二次方程的定义:
一元二次方程的一般式:
三、课堂检测:
(一)、判断题(是一无二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)1.
5x2+1=0


2.
3x2++1=0

)3.
4x2=ax(其中a为常数)


4.2x2+3x=0

)5.
=2x


6.
=2x


(二)、填空题.1.方程5(x2-x+1)=-3x+2的一般形式是__________,其二次项是__________,一次项是_______,常数项是__________.2.如果方程ax2+5=(x+2)(x-1)是关于x的一元二次方程,则a__________.3.关于x的方程(m-4)x2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m________时,是一元一次方程。四、学习体会:
五、课后作业
备注备注
8m
5m
PAGE2.6 应用一元二次方程
第1课时 几何问题及数字问题与一元二次方程
1.掌握列一元二次方程解决几何问题、数学问题,并能根据具体问题的实际意义,检验结果的合理性;(重点、难点)
2.理解将一些实际问题抽象为方程模型的过程,形成良好的思维习惯,学会从数学的角度提出问题、分析问题,并能运用所学的知识解决问题.
                   
一、情景导入
要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)
二、合作探究
探究点一:利用一元二次方程解决几何问题
【类型一】
面积问题
要对一块长60米,宽40米的矩形荒地ABCD进行绿化和硬化.设计方案如图所示,矩形P,Q为两块绿地,其余为硬化路面,P,Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P,Q两块绿地周围的硬化路面的宽.
解:设P,Q两块绿地周围的硬化路面的宽为x米.
根据题意,得(60-3x)·(40-2x)=60×40×,
解得x1=10,x2=30.
检验:如果硬化路面宽为30米,则2×30=60>40,所以x2=30不符合题意,舍去,故x=10.
故P,Q两块绿地周围的硬化路面的宽为10米.
易错提醒:在应用题中,未知数的允许值往往有一定的限制,因此除了检验未知数的值是否满足所列方程外,还必须检验它在实际问题中是否有意义.在求出方程的解为10或30时,如果不进行验根,就会误以为本题有两个答案,而题目中明确有“荒地ABCD是一块长60米,宽40米的矩形”这个已知条件,显然x=30不符合题意.
【类型二】
动点问题
如图所示,A,B,C,D为矩形的四个顶点,AB=16cm,AD=6cm,P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B运动,一直到达B为止,点Q以2cm/s的速度向D移动,点P停止运动时点Q也停止运动.
(1)P,Q两点从出发开始几秒时,四边形PBCQ的面积为33cm2
(2)P,Q两点从出发开始几秒时,点P和点Q的距离第一次是10cm
解:(1)设P,Q两点从出发开始xs时,四边形PBCQ的面积为33cm2,根据题意得PB=AB-AP=(16-3x)cm,CQ=2xcm.
故(2x+16-3x)×6=33,解得x=5.
故P,Q两点从出发开始5s时,四边形PBCQ的面积为33cm2;
(2)设P,Q两点从出发开始xs时,点P和点Q的距离是10cm.
如图,过Q点作QM⊥AB于点M,则BM=CQ=2xcm,故PM=(16-5x)cm.
在Rt△PMQ中,PM2+MQ2=PQ2,
∴(16-5x)2+62=102.解得x1=,x2=.
∵所求的是第一次满足条件的时间,∴x=.
故P,Q两点从出发开始s时,点P和点Q的距离第一次是10cm.
方法总结:解决动态几何问题的关键是寻找点运动的过程中变化的量与不变的量,寻找等量关系列方程.对于动点问题,常先假设出点的位置,根据面积或其他关系列出方程,如果方程的根符合题目的要求,就说明假设成立,否则,假设不成立.
探究点二:利用一元二次方程解决数字问题
有一个两位数,个位数字与十位数字的和为14,交换位置后,得到新的两位数,比这两个数字的积还大38,求这个两位数.
解析:这是一个数字排列的问题,题中有两个等量关系,由前一个等量关系知,个位数字与十位数字均可用同一个未知数表示,这样交换位置后的新两位数也可以用上述未知数表示出来,然后根据后一个等量关系可列方程求解.
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).
根据题意,得10x+(14-x)-x(14-x)=38.
整理,得x2-5x-24=0,解得x1=8,x2=-3.
因为个位数上的数字不可能是负数,所以x=-3应舍去.
当x=8时,14-x=6.
所以这个两位数是68.
方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.
三、板书设计
几何问题及数字问题
经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.第2课时 比例的性质
1.理解并掌握比例的基本性质和等比性质;(重点)
2.能运用比例的性质进行相关计算,能通过比例变形解决一些实际问题.(难点)
                   
一、情景导入
配制糖水时,通过确定糖和水的比例来确保配制糖水的浓度.
若有含糖a千克的糖水b千克,含糖c千克的糖水d千克,含糖e千克的糖水f千克……它们的浓度相等,把这些糖水混合到一起后,浓度不变.可表示为=.
这样表示的数学根据是什么?
二、合作探究
探究点一:比例的基本性质
已知=,求的值.
解:解法1:由比例的基本性质,
得2(a+3b)=7×2b.
∴a=4b,∴=4.
解法2:由=,得=7,
∴+=+3=7,∴=4.
  方法总结:利用比例的基本性质,把比例式转化成等积式,再用含有其中一个字母的代数式表示另一个字母,然后利用代入法或化成方程求解,这是解决比例问题常见的方法.
探究点二:等比性质
(1)已知a:b:c=3:4:5,求的值;
(2)已知===2,且b+d+f≠0,求的值.
解析:(1)利用“引入参数法”,把a,b,c用含同一个字母的代数式表示出来,再代入分式求值;(2)应用比例的等比性质,表示出a与b、c与d、e与f三组量之间的倍数关系,再代入原代数式求值.
解:(1)设a:b:c=3:4:5=k,则a=3k,b=4k,c=5k,∴===-;
(2)∵===2,∴===2,
∴=2.
  方法总结:解多个比例式连在一起求值型试题的方法:方法一是引入参数,使其他的量都统一用含有一个字母的式子表示,再求分式的值;方法二是运用等比性质,即如果==…=(b+d+…+n≠0),则=,转化后求分式的值.
若a,b,c都是不等于零的数,且==
=k,求k的值.
解:当a+b+c≠0时,由===k,
得=k,
则k==2;
当a+b+c=0时,则有a+b=-c.
此时k===-1.
综上所述,k的值是2或-1.
  易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.
三、板书设计
经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.4.8
图形的位似
第1课时
位似多边形及其性质
教学目标
1.了解位似多边形及其有关概念,了解位似与相似的联系和区别,掌握位似多边形的性质.
2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.
重点、难点
1.重点:位似多边形的有关概念、性质与作图.
2.难点:利用位似将一个图形放大或缩小.
一.创设情境
活动1
教师活动:提出问题:
生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.
观察图中有多边形相似吗?如果有,那么这种相似什么共同的特征?
学生活动:学生通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生自己归纳出位似图形的概念:如果两个相似多边形每组对应点的连线都经过同一个点,那么这样的两个多边形叫做位似多边形,
这个点叫做位似中心.(位似中心可在形上、形外、形内.)
每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.
二、利用位似,可以将一个图形放大或缩小
活动2
教师活动:提出问题:
把图1中的四边形ABCD缩小到原来的.
分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2

作法一:(1)在四边形ABCD外任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,
使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.
问:此题目还可以如何画出图形?
作法二:(1)在四边形ABCD外任取一点O;
(2)过点O分别作射线OA,
OB,
OC,OD;
(3)分别在射线OA,
OB,
OC,
OD的反向延长线上取点A′、B′、C′、D′,使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图3.
作法三:(1)在四边形ABCD内任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,
使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.
(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)
三、课堂练习
活动3
教材习题
小结:谈谈你这节课学习的收获.正方形的性质与判定
第1课时
正方形的性质
教学目标
熟练掌握正方形的定义及边、角、对角线的性质。知道正方形与平行四边形、矩形、菱形的联系和区别。3、应用正方形的性质进行相关计算、证明。
课前准备:温故:1、矩形的性质是什么?
2、菱形的性质是什么?二、
初步探究1、同学们观察下列一组图片、你发现了那些几何图形:
2、动手操作:制作一张正方形纸片,通过折叠并观察,回答下列问题.问:它是轴对称图形吗?有几条对称轴?对称轴之间有什么位置关系?有什么数
量关系?3、图中有哪些相等的线段?③图中有哪些相等的角?(组内交流、互相指出来)4、正方形性质:正方形既是特殊的矩形,又是特殊的菱形.正方形具
的性质,同时又具有
的性质.总结:正方形的性质:正方形边的性质:
正方形角的性质:
正方形对角线的性质:
结论:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.正方形的性质:正方形是特殊的平行四边形,也是特殊的矩形、菱形.所以它具有这些图形的所有性质.
正方形是轴对称图形,有四条对称轴.
四条边相等、四个角是直角、对角线相等并且互相垂直平分,每一条对角线平分一组对角.三、对应练习1)正方形的边长为4cm,则周长为(
),面积为(

,对角线长为(
);2))正方形ABCD中,对角线AC、BD交于O点,AC=4
cm,则正方形的边长为(
),
周长为(
),面积为(
)3)在正方形ABCD中,AB=12
cm,对角线AC、BD相交于O,OA=
,AC=
。4)
1、正方形具有而矩形不一定具有的性质是(
)
A、四个角相等
B、对角线互相垂直平分
C、对角互补
D、对角线相等.
5)、正方形具有而菱形不一定具有的性质(

A、四条边相等
B对角线互相垂直平分
C对角线平分一组对角
D对角线相等.
6)、正方形对角线长6,则它的面积为_________
,周长为________.
7)、顺次连接正方形各边中点的小正方形的面积是原正方形面积的(
)A.1/2
B.1/3
C.1/4
D.1/
5四:范例讲解:1、(课本P21例1)学生自己阅读课本内容、注意证明过程的书写2、
如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.求证:BG=CE2.2 用配方法求解一元二次方程
第1课时 用配方法求解简单的一元二次方程
1.会用直接开平方法解形如(x+m)2=n(n>0)的方程;(重点)
2.理解配方法的基本思路;(难点)
3.会用配方法解二次项系数为1的一元二次方程.(重点)
                   
一、情景导入
一块石头从20m高的塔上落下,石头离地面的高度h(m)和下落时间x(s)大致有如下关系:h=20-5x2,问石头经过多长时间落到地面?
二、合作探究
探究点一:用直接开平方法解一元二次方程
用直接开平方法解下列方程:
(1)x2-16=0;
(2)3x2-27=0;
(3)(x-2)2=9;
(4)(2y-3)2=16.
解析:用直接开平方法解方程时,要先将方程化成左边是含未知数的完全平方式,右边是非负数的形式,再根据平方根的定义求解.注意开方后,等式的右边取“正、负”两种情况.
解:(1)移项,得x2=16.根据平方根的定义,得x=±4,即x1=4,x2=-4;
(2)移项,得3x2=27.两边同时除以3,得x2=9.根据平方根的定义,得x=±3,即x1=3,x2=-3;
(3)根据平方根的定义,得x-2=±3,即x-2=3或x-2=-3,所以x1=5,x2=-1;
(4)根据平方根的定义,得2y-3=±4,即2y-3=4或2y-3=-4,所以y1=,y2=-.
方法总结:直接开平方法是解一元二次方程的最基本的方法,它的理论依据是平方根的定义,它的可解类型有如下几种:①x2=a(a≥0);②(x+a)2=b(b≥0);③(ax+b)2=c(c≥0);④(ax+b)2=(cx+d)2(|a|≠|c|).
探究点二:用配方法解二次项系数为1的一元二次方程
用配方法解方程:x2+2x-1=0.
解析:方程左边不是一个完全平方式,需将左边配方.
解:移项,得x2+2x=1.
配方,得x2+2x+()2=1+()2,
即(x+1)2=2.
开平方,得x+1=±.
解得x1=-1,x2=--1.
方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.
三、板书设计
用配方法解简单的一元二次方程:
1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.
2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.
3.用配方法解二次项系数为1的一元二次方程的一般步骤:
(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;
(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;
(3)用直接开平方法求出它的解.
通过观察,思考,对比获得一元二次方程的解法——直接开平方法、配方法,领会降次——转化的数学思想.培养学生从不同角度进行探究的习惯和能力,使学生在数学活动中形成实事求是的态度以及独立思考的习惯.5.1 投 影
第1课时 投影的概念与中心投影
1.了解投影和中心投影的含义,体会灯光下物体的影子在生活中的应用;(重点)
2.通过观察、想象,能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.(难点)
                   
一、情景导入
皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲,表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐.
学生在灯光下做不同的手势,观察映射到屏幕上的表象.
二、合作探究
探究点一:中心投影的概念
下列投影中,不属于中心投影的是(  )
A.晚上路灯下小孩的影子
B.汽车灯光照射下行人的影子
C.阳光下沙滩上人的影子
D.舞台上一束灯光下演员的影子
  解析:A中晚上路灯的光线是从一个点发出的,故晚上路灯下小孩的影子是中心投影;B中汽车灯的光线也是从一点发出的,故在汽车照射下行人的影子是中心投影;C中阳光的光线是互相平行的,不是从一个点发出的,故不是中心投影;D中舞台上的一束灯光也是从一个点发出的,灯光下演员的影子是中心投影.故选C.
  方法总结:形成中心投影的光线是从一点发出的,各光线相交于一点(即光源处).
探究点二:中心投影的性质
【类型一】
中心投影的作图
一天晚上,小丽在路灯下玩,如图所示.你能画出小丽在路灯下的影子吗?(用线段表示)
  解:光是沿直线传播的,以光源S为端点过点C作射线,交地面于点A,则线段AB即可看作是小丽的影子.如图所示.
  方法总结:作一物体在路灯下的影子时,连接点光源和物体的顶端的点并延长,与地面相交,则与地面的交点和物体的底端之间的线段即为该物体的影子.
如图所示,由两根直立的木杆在一路灯下的影子判断路灯灯泡的位置.
解:如图所示,两条光线的交点O即为灯泡所在的位置.
  方法总结:相交光线的交点即为点光源所在的位置.点光源下两个物体的影子可能在同一个方向,也可能不在同一个方向.
【类型二】
中心投影的变化规律
如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子(  )
  A.逐渐变短
B.先变短后变长
C.先变长后变短
D.逐渐变长
  解析:在路灯下,路灯照人所形成的投影是中心投影.人的影子可以通过路灯和人的头顶作直线,该直线和地面的交点到人的距离即为他的影子的长度.因此人离路灯越远,他的影子就越长.由A到B这一过程中,人在地上的影子先逐渐变短,当他走到路灯正下方时,影子为一点,然后又逐渐变长.故选B.
  方法总结:在灯光下,垂直于地面的物体离点光源距离近时影子短,离点光源远时影子长.
【类型三】
中心投影的有关计算
如图所示,晚上,小明由路灯AD走向路灯BC,当他行至点P处时,发现他在路灯BC下的影长为2m,且影子的顶端恰好在A点,接着他又走了6.5m至点Q处,此时他在路灯AD下的影子的顶端恰好在B点(已知小明的身高为1.8m,路灯BC的高度为9m).
(1)计算小明站在点Q处时在路灯AD下影子的长度;
(2)计算路灯AD的高度.
  解析:由路灯、小明都垂直于地面,知AD∥PE∥QH∥BC,用相似三角形中的比例线段可求解.
解:(1)如图所示,∵EP⊥AB,
CB⊥AB,∴EP∥BC,
  ∴∠AEP=∠ACB,∠APE=∠ABC,
∴△AEP∽△ACB.
∴=,即=,
解得AB=10(m).
∴QB=AB-AP-PQ=10-2-6.5=1.5(m),
即小明站在点Q时在路灯AD下影子的长度为1.5m;
(2)同理可证△HQB∽△DAB,
∴=,即=,解得AD=12(m).
即路灯AD的高度为12m.
  方法总结:解决本题的关键是构造相似三角形,然后利用相似三角形的性质求出对应线段的长度.
三、板书设计
影子是生活中常见的现象,在探索物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念.通过在灯光下摆弄小棒、纸片,体会、观察影子大小和形状的变化情况,总结规律,培养学生观察问题、分析问题的能力.第六章
反比例函数
6.1
反比例函数
(1)从现实情境和学生已有的知识经验出发,讨论两个变量之间的相互关系,加深对函数概念的理解。
(2)经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念。
(3)体会数学从实践中来又到实际中去的研究、应用过程。培养学生的观察能力,及数学地发现问题,解决问题的能力。
三、重点、难点、关键
(1)重点:理解和领会反比例函数的概念;
(2)难点:领悟反比例函数的概念;
(3)关键:从现实情境和所学的知识入手,探索两个变量之间的相依关系。
四、教学方法:小组合作、探究式
五、教学过程
(一)创设情境,引入新课
1、把一张100元换成50元的人民币,可换几张?换成10元的人民币可换几张?依次换成5元,2元,1元的人民币,各可换几张?换得的张数y
与面值x之间有怎样的关系呢?请同学们填表:
换成的元数x(元)
50
20
10
5
2
1
换成的张数y(张)
提问:学生你会用含有x的代数式表示y吗?并提出问题:当换成的元数x变化时,换成的张数y会怎样变化呢?变量y是x的函数吗?为什么?这就是我们今天要学习的反比例函数。我们再看课本的例子:
(二)互动探究,学习新课
我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,(1)你能用含有R的代数式表示I吗?;(2)利用你写出的关系式完成下表:
R/Ω
20
40
60
80
100
I/A
学生填表完成,提出当R越来越大时,I是怎样变化的?当R越来越小呢?(3)变量I是R的函数吗?为什么?
我们通过控制电阻的变化来实现舞台灯光的效果。在电压一定时,当R变大时,电流I变小,灯光就变暗,相反,当R变小时,电流I变大,灯光变亮。
引导学生看课本例子,京沪高速铁路全长约为1318km,列车沿京沪高速铁路从上海驶往北京,列车行完成全程所需的时间t(h)与行驶的平均速度v
(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?
(三)学生分组交流讨论
提示学生:数学来源于生活,请同学在生活中找出类似的例子。分组交流讨论,并完成资料的讨论部分。
我们再看例子:
两个变量x和y的乘积等于-6,用函数关系式表示出来是,思考:变量x和y之间的关系是什么?
提出问题:①变量之间的关系具有什么特点?引导学生得出:两个变量的乘积等于非零常数.②如何给反比例函数下定义?
教师总结并和学生一起探索出反比例函数的概念:
一般地,如果两个变量x,y之间的关系可以表示成:(k为常数,k≠0)的形式,那么称y是x的反比例函数。
强调在理解概念时要注意:①常数k≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当写成时注意x的指数为—1。④由定义不难看出,k可以从两个变量相对应的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。
六、课堂练习:
I、学生完成课本的做一做1-3题:即
1、一个矩形的面积为20,相邻的两条边长分别为x
cm和
ycm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?
2、某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?
3、y是x的反比例函数,下表给出了x与y的一些值:
x
1
3
Y
2
(1)写出这个反比例函数的表达式;(2)根据表达式完成上表。
教师巡视个别辅导,学生完毕教师给予评估肯定。
II巩固练习:限时完成课本“随堂练习”1-2题。教师并给予指导。
七、总结、提高。(结合板书小结)
今天通过生活中的例子,探索学习了反比例函数的概念,我们要掌握反比例函数是针对两种变化量,并且这两个变化的量可以写成(k为常数,k≠0)同时要注意几点::①常数k≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当可写为时注意x的指数为—1。④由定义不难看出,k可以从两个变量相对应的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。
八、布置作业:(见资料

九、板书设计:
反比例函数1、定义:一般地,如果两个变量x,y之间的关系可以表示成:(k为常数,k≠0)的形式,那么称y是x的反比例函数。2、注意:①常数k≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当可写为时注意x的指数为—1。④确定了k,这个函数就确定了。
自由空间(供作教学过程演练用)
十、课后反思(记录教学感受,包括学生作业完成情况等情况)第2课时
利用两边及夹角判定三角形相似
一、教学目标
1.初步掌握“两边成比例且夹角相等的两个三角形相似”的判定方法.
2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.
3.能够运用三角形相似的条件解决简单的问题.
二、重点、难点
重点:掌握判定方法,会运用判定方法判定两个三角形相似.
难点:(1)三角形相似的条件归纳、证明;
(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.
难点的突破方法
判定方法2一定要注意区别“夹角相等”
的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.
三、课堂引入
1.提出问题:由三角形全等的SAS判定方法,我们也会想如果一个三角形的两条边与另一个三角形的两条边对应成比例,那么能否判定这两个三角形相似呢?
2.教材P91做一做
让学生画图,自主展开探究活动.
【归纳】
三角形相似的判定方法2
两边成比例且夹角相等的两个三角形相似.
四、例题讲解
例1(教材P91例2)
解:略
例2
(补充)已知:如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD=,求AD的长.
分析:由已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角相等”来证明.计算得出,结合∠B=∠ACD,证明△ABC∽△DCA,再利用相似三角形的定义得出关于AD的比例式,从而求出AD的长.
解:略(AD=).
五、课堂练习
1.教材P92
随堂练习
2.如果在△ABC中∠B=30°,AB=5㎝,AC=4㎝,在△A’B’C’中,∠B’=30°A’B’=10㎝,A’C’=8㎝,这两个三角形一定相似吗?试着画一画、看一看。
六、课后练习
1.教材P93
习题4.6
2.如图,AB AC=AD AE,且∠1=∠2,求证:△ABC∽△AED.
※3.已知:如图,P为△ABC中线AD上的一点,且BD2=PD AD,
求证:△ADC∽△CDP.
教学反思第2课时 菱形的判定
1.理解并掌握菱形的判定方法;(重点)
2.灵活运用菱形的判定方法进行有关的证明和计算.(难点)
                   
一、情景导入
木工在做菱形的窗格时,总是保证四条边框一样长,你知道其中的道理吗?借助以下图形探索:如图,在四边形ABCD中,AB=BC=CD=DA,试说明四边形ABCD是菱形.
二、合作探究
探究点一:对角线互相垂直的平行四边形是菱形
如图所示,?ABCD的对角线BD的垂直平分线与边AB,CD分别交于点E,F.求证:四边形DEBF是菱形.
解析:本题首先应用到平行四边形的性质,其次应用到菱形的判定方法.要证四边形DEBF是菱形,可以先证明其为平行四边形,再利用“对角线互相垂直”证明其为菱形.
证明:∵四边形ABCD是平行四边形,
∴AB∥DC.
∴∠FDO=∠EBO.
又∵EF垂直平分BD,
∴OB=OD.
在△DOF和△BOE中,
∴△DOF≌△BOE(ASA).
∴OF=OE.
∴四边形DEBF是平行四边形.
又∵EF⊥BD,
∴四边形DEBF是菱形.
方法总结:用此方法也可以说是对角线互相垂直平分的四边形是菱形,但对角线互相垂直的四边形不一定是菱形,必须强调对角线是互相垂直且平分的.
探究点二:四边相等的四边形是菱形
如图所示,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.
解析:根据平移的性质可得CF=AD=10cm,DF=AC,再在Rt△ABC中利用勾股定理求出AC的长为10cm,就可以根据四边相等的四边形是菱形得到结论.
证明:由平移变换的性质得CF=AD=10cm,DF=AC.
∵∠B=90°,AB=6cm,BC=8cm,
∴AC===10(cm),
∴AC=DF=AD=CF=10cm,
∴四边形ACFD是菱形.
方法总结:当四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.
探究点三:菱形的判定和性质的综合应用
如图所示,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
(1)证明:∵D、E分别是AB、AC的中点,
∴DE∥BC且2DE=BC.
又∵BE=2DE,EF=BE,
∴EF=BC,EF∥BC,
∴四边形BCFE是平行四边形.
又∵EF=BE,
∴四边形BCFE是菱形;
(2)解:∵∠BCF=120°,∴∠EBC=60°,
∴△EBC是等边三角形,
∴菱形的边长为4,高为2,
∴菱形的面积为4×2=8.
方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.
三、板书设计
经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括
以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.矩形的性质与判定
第1课时
矩形的性质
教学


1.知道矩形的概念与有关性质,会用这些知识进行简单的推理与计算。2.
在了解矩形与平行四边形之间的关系,掌握、运用矩形性质的过程中,渗透数形结合、转化化归与方程思想,进一步提高分析问题与解决问题的能力。
重点
矩形概念的理解;掌握并会运用矩形的性质
难点
运用矩形的性质进行简单的推理与计算。
一、定义: 矩形的定义:
。由此可见,矩形是特殊的
,它具有
的所有性质。 二、探究矩形的性质:1.四个角都是直角.2.对角线相等且平分...三、知识延展:(1)、由矩形性质有OA=OC=AC
OB=OD=BD且AC=BD得OA=
=
=
∴矩形对角线的交点O到各顶点的距离
。由图可知,在矩形中有
个直角三角形,它们分别是

个等腰三角形,它们分别是
∴我们通常在直角三角形、等腰三角形中求有关边与角。(3)、由矩形性质有∠ABC=900,OA=OB=OC这说明:Rt△ABC中,若OB是斜边AC的
,则OB=
AC∴直角三角形斜边上的中线等于斜边长的
思考:矩形是轴对称图形吗?将矩形作业纸对折,我们发现:矩形是
图形,有
条对称轴。对称轴是
。∴矩形既是
对称图形,又是
对称图形,对称中心为
四、应用1、例题:(P13例1,先看题目自己完成证明过程,再对照课本检查)2、课堂检测: (1)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB=
60°,AC=16,则图中长度为8的线段有(
)
A.2条
B.4条
C.5条
D.6条(2)下列关于矩形的说法中正确的是(
)A.对角线相等的四边形是矩形
B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分
D.矩形的对角线相等且互相平分(3)将矩形ABCD沿AE折叠,得到如图所示图形。若∠CED′=56°,则∠AED的大小是_______.4.7
相似三角形的性质
第1课时
相似三角形中的对应线段之比
●教学目标
(一)教学知识点
相似三角形对应高的比,对应角平分线的比和对应中线的比与相似比的关系.
(二)能力训练要求
1.
熟练应用相似三角形的性质:对应高的比、对应角平分线的比、对应中线的比都等于相似比。
2.利用相似三角形的性质解决一些实际问题.
(三)情感与价值观要求
1.通过探索相似三角形中对应线段的比与相似比的关系,培养学生的探索精神和合作意识.
2.通过运用相似三角形的性质,增强学生的应用意识.
●教学重点
1.相似三角形中对应线段比值的推导.
2.运用相似三角形的性质解决实际问题.
●教学难点
相似三角形的性质的运用.
●教学方法
引导启发式
●教具准备
投影片两张
第一张:(记作§4.7.1
A)
第二张:(记作§4.7.1
B)
●教学过程
Ⅰ.创设问题情境,引入新课
[师]在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边成比例.那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质.
Ⅱ.新课讲解
1.做一做
投影片(§4.7.1
A)
钳工小王准备按照比例尺为3∶4的图纸制作三角形零件,如图,图纸上的△ABC表示该零件的横断面△A′B′C′,CD和C′D′分别是它们的高.
(1),,各等于多少?
(2)△ABC与△A′B′C′相似吗?如果相似,请说明理由,并指出它们的相似比.
(3)请你在图①中再找出一对相似三角形.
(4)等于多少?你是怎么做的?与同伴交流.
图①
[生]解:(1)===
(2)△ABC∽△A′B′C′
∵==
∴△ABC∽△A′B′C′,且相似比为3∶4.
(3)△BCD∽△B′C′D′.(△ADC∽△A′D′C′)
∵由△ABC∽△A′B′C′得
∠B=∠B′
∵∠BCD=∠B′C′D′
∴△BCD∽△B′C′D′(同理△ADC∽△A′D′C′)
(4)=
∵△BDC∽△B′D′C′
∴=
=
2.议一议
已知△ABC∽△A′B′C′,△ABC与△A′B′C′的相似比为k.
(1)如果CD和C′D′是它们的对应高,那么等于多少?
(2)如果CD和C′D′是它们的对应角平分线,那么等于多少?如果CD和C′D′是它们的对应中线呢?
[师]请大家互相交流后写出过程.
[生甲]从刚才的做一做中可知,若△ABC∽△A′B′C′,CD、C′D′是它们的对应高,那么==k.
[生乙]如图②,△ABC∽△A′B′C′,CD、C′D′分别是它们的对应角平分线,那么=
=k.
图②
∵△ABC∽△A′B′C′
∴∠A=∠A′,∠ACB=∠A′C′B′
∵CD、C′D′分别是∠ACB、∠A′C′B′的角平分线.
∴∠ACD=∠A′C′D′
∴△ACD∽△A′C′D′
∴=
=k.
[生丙]如图③中,CD、C′D′分别是它们的对应中线,则=
=k.
图③
∵△ABC∽△A′B′C′
∴∠A=∠A′,=
=k.
∵CD、C′D′分别是中线
∴===k.
∴△ACD∽△A′C′D′
∴=
=k.
由此可知相似三角形还有以下性质.
相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.
3.例题讲解
投影片(§4.7.1
B)
图④
如图④所示,AD是△ABC的高,AD=h,点R在AC边上,点S在AB边上,SR⊥AD,垂足为E.当SR=BC时,求DE的长,如果SR=BC呢?
解:∵
SR⊥AD,BC⊥AD,
∴SR∥BC.
∵∠ASR=∠B,
∠ARS=∠C,
∴△ASR∽△ABC(两角分别相等的两个三角形相似).
∴(相似三角形对应高的比等于相似比),
即.
当SR=BC时,得,解得DE=h
当SR=BC时,得,解得DE=h
Ⅲ.课堂练习
如果两个相似三角形对应高的比为4∶5,那么这两个相似三角形的相似比是多少?对应中线的比,对应角平分线的比呢?
(都是4∶5).
Ⅳ.课时小结
本节课主要根据相似三角形的性质和判定推导出了相似三角形的性质:相似三角形的对应高的比、对应角平分线的比和对应中线的比都等于相似比.
Ⅴ.课后作业
完成习题
Ⅵ.活动与探索
图⑤
如图⑤,AD,A′D′分别是△ABC和△A′B′C′的角平分线,且
==
你认为△ABC∽△A′B′C′吗?
解:△ABC∽△A′B′C′成立.
∵==
∴△ABD∽△A′B′D′
∴∠B=∠B′,∠BAD=∠B′A′D′
∵∠BAC=2∠BAD,
∠B′A′C′=2∠B′A′D′
∴∠BAC=∠B′A′C′
∴△ABC∽△A′B′C′
●板书设计
4.7
相似三角形的性质
第1课时
相似三角形中的对应线段之比
一、1.做一做
2.议一议
3.例题讲解
二、课堂练习
三、课时小节
四、课后作业
●备课资料
如图⑥,CD是Rt△ABC的斜边AB上的高.
图⑥
(1)则图中有几对相似三角形.
(2)若AD=9
cm,CD=6
cm,求BD.
(3)若AB=25
cm,BC=15
cm,求BD.
解:(1)∵CD⊥AB
∴∠ADC=∠BDC=∠ACB=90°
在△ADC和
△ACB中
∠ADC=∠ACB=90°
∠A=∠A
∴△ADC∽△ACB
同理可知,△CDB∽△ACB
∴△ADC∽△CDB
所以图中有三对相似三角形.
(2)∵△ACD∽△CBD


∴BD=4
(cm)
(3)∵△CBD∽△ABC
∴.

∴BD==9
(cm).第2课时
平面直角坐标系中的位似变换
教学目标
1、理解图形在平面直角坐标系中的相似变换方法与性质;
2、会在平面直角坐标系中的进行图形的相似变换,掌握在平面直角坐标系中相似变换的坐标关系;
3、了解伸缩变换与反向位似图形的概念;
教学重点:
图形在平面直角坐标系中的相似变换方法与性质;
教学难点:
在平面直角坐标系中的进行图形的相似变换,以及平面直角坐标系中相似变换的坐标关系;
教学过程
一、回顾与反思
1、几何变换,相似变换,位似变换三者之间有何关系?
相似变换是特殊的几何变换,位似变换又是特殊的相似变换,位似变换是具有特殊位置关系的相似图形。
2、如何作一个图形的位似图形?
位似中心可以是平面内任意一点,该点可在图形的同侧,或在两图形之间,或在图形内,或在边上,也可是顶点。
二、图形在平面直角坐标系中的相似变换
图形在平面直角坐标系中的相似变换时,它们的坐标有何关系吗?
如图,△ABC的顶点坐标分别是A(1,1),B(3,2),C(4,1),以原点O为位似中心,相似比为k=3,作△ABC的
位似图形(学生在草稿本上完成),观察对应顶点的坐标变化,你能有什么发现?
A(1,1)→A’(3,3);B(3,2)→B’(9,6);C(4,1)→C’(12,3),
你能证明所得到的结论吗?
由学生依据相似三角形的判定和性质加以证明;
以原点O为位似中心的同向位似变换性质:
在平面直角坐标系中,如果位似变换是以原点O为位似中心,相似比为k(k>0),原图形上点的坐标为(x,y),那么同向位似图形对应点的坐标为(kx,ky)。
三、应用举例
例1:△ABC的顶点坐标分别是A(1,1),B(3,2),C(4,1),按(x,y)→(x,y)的方式变换,求变换后所得图形中对应点的坐标,画出变换后的图形,并比较它与原图形的关系?
(让学生通过实践操作、观察、发现并总结变化规律,加深对位似变换的认识)
思考:
在上述图形变换中,如果取相似比k=-3,对△ABC进行变换,请动手操作,看看结果如何?它与k=3时的变换结果又有什么不同?
(关于原点成中心对称)
我们把相似比k<0时的变换得到的图形称为反向位似图形。
四、巩固练习
教材P117
随堂练习
五、本节内容小结
图形在平面直角坐标系中的相似变换分别就k>0和k<0时的坐标有何性质?
六、作业:
教材P86
练习25.2


第1课时
简单图形的三视图
教学目标:
1.经历由实物抽象出几何体的过程,进一步发展空间观念。
2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。
3.会根据三视图描述原几何体。
教学重点:掌握部分几何体的三视图的画法,能根据三视图描述原几何体。
教学难点:几何体与视图之间的相互转化。培养空间想像观念。
课型:新授课
教学方法:观察实践法
教学过程设计







补充完善
一、实物观察、空间想像设置:学生利用准备好的大小相同的正方形方块,搭建一个立体图形,让同学们画出三视图。而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。学生分小组合作交流、观察、作图。议一议1.图5-14中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?2.在图5-15中找出图5-14中各物体的主视图。3.图5-14中各物体的左视图是什么?俯视图呢?
学生分四人小组,合作学习。学生观察、动手、动脑,同桌交流。学生观察、画图、交流,上台演示。
二、小组合作,人际互动想一想如图5-16,是一个蒙古包的照片,小明认为这个蒙古包可以看成用5-17所示的几何体,你能帮小明画出这个几何体的三视图吗?
学生观察、理解、同桌交流。
三、典例解析例1.
图中三视图表示的物体是
.对应训练:1.
若一个几何体的三视图都相同,则该几何体可能是        .2.
一个长度,高都互不相等的长方体的主视图、俯视图、左视图都是      .3.
圆柱的主视图与左视图       ,形状都是       .4.
圆锥的主视图与左视图      ,形状都是        .根据下列俯视图,找出对应的物体.5.(1)对应    ;(2)对应    ;(3)对应    ;(4)对应    ;(5)对应    .能力升华:由三视图确定原实物小立方体的个数例2如图是由几个相同的小立方块搭成的立体图形的三视图,则这个立体图形中的小正方体一共有(  )A.7块
B.8块
C.9块
D.10块解:从正视图最左边有层可以判定出俯视图中最大的一个有层,正视图中间是层,可以判定出俯视图都有层,正视图最右边是层,可以判定出俯视图有层.从左视图最左边是层,可知有层.左视图中间有层,又已知有层,因此必须有层.所以,(块).故选
答案:长方体答案:正方体或球答案:矩形答案:形状相同;矩形答案:形状相同;等腰三角形答案:(1)D,(2)A,(3)E,(4)C,(5)B分析:从三视图到确定实物,应先根据主视图和俯视图情况分析,再结合左视图的情况定出实物,最后便可得出这个立方体组合的小正方体个数.
四、课堂总结、本节课主要通过对由实物抽象出几何体的过程,发展大家的空间想像能力。在画实物的视图时,必须首先对实物进行合理的抽象,即把实物抽象成相应的几何体,在此基础上再画其视图。而且也会根据三视图描述几何体。
本节课主要是通过观察――绘制――比较――拓展,来完成学习内容的。在学习中注意想像和抽象,即把实物抽象成相应的几何体,在此基础上再画其视图。
五、布置作业课本习题5.3
正视图
左视图
俯视图
(1)
(2)
(3)
(4)
(5)
A
B
C
D
E

3
2
1
1
24.3
相似多边形
教学目的:
(1)探索相似图形的性质,知道相似图形的对应角相等,对应边的比相等.
(2)探索相似图形的判定,知道“如果两个多边形满足对应角相等,对应边的比相等.那么这两个多边形相似”
(3)在探索相似图形的性质的探究过程中,让学生运用观察—猜想—思考—验证的数学思想,并体会由特殊到一般的思想方法.能运用相似图形的性质解决问题.
(4)在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质.
重点、难点
教学重点:
知道相似图形的对应角相等,对应边的比相等.
教学难点:
能运用相似图形的性质解决问题.
一.创设情境
活动1观察图片,体会相似图形性质
(1)
图27.1-4(1)中的△A1B1C1是由正△ABC放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?
图27.1-4
(2)对于图27.1-4(2)中两个相似的正六边形,是否也能得到类似的结论?
教师活动:教师出示图片,提出问题;
学生活动:学生细心观察思考,小组讨论后回答问题:
它们的对应角相等,对应边的比相等.

教师活动:在活动中,教师应重点关注:
(1)
学生参与活动的热情及语言归纳数学结论的能力;
(2)
学生对正三角形和正六边形的图形性质的认识是否到位.
活动2
探究:
图27.1-5(1)中是两个相似三角形,
它们的对应角有什么关系?对应边的比是否相等?
对于图27.1-5(2)中两个相似四边形,它们的对应角、对应边是否也有同样的结论?
(1)
(2)
图27.1-5
教师活动:教师出示图片,提出问题;为了验证学生自己的猜想,可以鼓励学生用刻度尺和量角器量一量.
学生活动:学生猜想,小组讨论后回答问题:
学生归纳总结:相似多边形的对应角相等,对应边的比相等;
(1)如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似;
(2)相似多边形的对应边的比称为相似比;
(3)当相似比为1时,两个多边形全等.
二、运用相似多边形的性质.
活动3
例:
如图27.1-6,四边形ABCD和EFGH相似,求角的大小和EH的长度.
27.1-6
教师活动:教师出示例题,提出问题;
学生活动:学生通过例题运用相似多边形的性质,正确解答出角的大小和EH的长度.(2人板演)
活动4
1.在比例尺为1﹕10
000
000的地图上,量得甲、乙两地的距离是30
cm,求两地的实际距离.
2.如图所示的两个直角三角形相似吗?为什么?
3.如图所示的两个五边形相似,求未知边、、、的长度.
教师活动:在活动中,教师应重点关注:
(1)学生参与活动的热情及语言归纳数学结论的能力;
(2)学生对于相似多边形的性质的掌握情况.
三、回顾与反思.(1)谈谈本节课你有哪些收获.
(2)布置课外作业:教材P88页习题4.4第2课时
概率与游戏的综合运用
教学目标
1、经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.
2、鼓励学生思维的多样性,提高应用所学知识解决问题的能力.
重点、难点
1、借助于树状图、列表法计算随机事件的概率。2、在利用树状图或者列表法求概率时,各种情况出现可能性不同时的情况处理。







一、自主学习,感受新知
“配紫色”游戏:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.
(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少 二、合作交流,探求新知游戏2:如果把转盘变成如下图所示的转盘进行“配紫色”游戏.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少 三、典型例题,应用新知例2、一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概率.
分析:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下:总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以P(能配成紫色)=四、分层提高,完善新知1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个面积相等的三个扇形.请求出配成紫色的概率是多少?2.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为五、课堂小结,回顾新知利用树状图和列表法求概率时应注意什么?你还有哪些收获和疑惑?六、作业布置,巩固新知习题3.3第1、2、3题第2课时 平面直角坐标系中的位似变换
1.理解位似图形的坐标变化规律;(难点)
2.能熟练在坐标系中根据坐标的变化规律作出位似图形.(重点)
                   
一、情景导入
观察如图所示的坐标系中的几个图形,它们之间有什么联系?
二、合作探究
探究点:平面直角坐标系中的位似变换
【类型一】
求在坐标系中进行位似变化对应点的坐标
在平面直角坐标系中,已知点A(6,4),B(4,-2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是(  )
A.(3,2)
B.(12,8)
C.(12,8)或(-12,-8)
D.(3,2)或(-3,-2)
  解析:根据题意画出相应的图形,找出点A的对应点A′的坐标即可.
如图,△A′B′O与△A″B″O即为所作的位似图形,可求得点A的对应点的坐标为(3,2)或(-3,-2).故选D.
  方法总结:位似图形与位似中心有两种情况:(1)位似图形在位似中心两侧;(2)位似图形在位似中心同侧.若题中未指明位置关系,应该分两种情况讨论,防止漏解.
【类型二】
在平面直角坐标系中画位似图形
如图,在平面直角坐标系中,A(1,2),B(2,4),C(4,5),D(3,1)围成四边形ABCD,作出一个四边形ABCD的位似图形,使得新图形与原图形对应线段的比为2:1,位似中心是坐标原点.
解析:以坐标原点O为位似中心的两个位似图形,一种可能是位似图形在位似中心同侧,此时各顶点的坐标比为2;另一种可能是位似图形在位似中心的两侧,此时各顶点的坐标比为-2,此题作出一个即可.
解:如图,利用位似变换中对应点的坐标的变化规律,分别取A′(2,4),B′(4,8),C′(8,10),D′(6,2),顺次连接A′B′,B′C′,C′D′,D′A′.
则四边形A′B′C′D′就是四边形ABCD的一个位似图形.
  方法总结:画以原点为位似中心的位似图形的方法:将一个多边形各点的横坐标与纵坐标都乘±k(或除以±k),可得新多边形各顶点的坐标,描出这些点并顺次连接这些点即可.
三、板书设计
平面直角坐标系中的位似变换:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.
位似变换是特殊的相似变换.以学生的自主探究为主线,培养学生的探索精神和合作意识.注重数形思想的渗透,通过坐标变换,在平面坐标系中,让学生画图、观察、归纳、交流,得出结论.在学习和探讨的过程中,体验特殊到一般的认知规律.通过交流合作,体验到成功的喜悦,树立学好数学的自信心.4.7 相似三角形的性质
第1课时 相似三角形中的对应线段之比
1.明确相似三角形对应高的比、对应角平分线的比和对应中线的比与相似比的关系;(重点)
2.能熟练运用相似三角形的性质解决实际问题.(难点)
                   
一、情景导入
在前面我们学习了相似多边形的性质,知道相似多边形的对应角相等,对应边成比例,相似三角形是相似多边形中的一种,因此三对对应角相等,三对对应边成比例.那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将进行研究相似三角形的其他性质.
二、合作探究
探究点一:相似三角形对应高的比
如图,△ABC中,DE∥BC,AH⊥BC于点H,AH交DE于点G.已知DE=10,BC=15,AG=12.求GH的值.
  解:∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C.
∴△ADE∽△ABC.
又∵AH⊥BC,DE∥BC,∴AH⊥DE.
∴=,即=.
∴AH=18.
∴GH=AH-AG=18-12=6.
  方法总结:利用相似三角形的性质:对应高的比等于相似比,将所求线段转化为求对应高的差.
探究点二:相似三角形对应角平分线的比
两个相似三角形的两条对应边的长分别是6cm和8cm,如果它们对应的两条角平分线的和为42cm,那么这两条角平分线的长分别是多少?
解:方法一:设其中较短的角平分线的长为xcm,则另一条角平分线的长为(42-x)cm.
根据题意,得=.解得x=18.
所以42-x=42-18=24(cm).
方法二:设较短的角平分线长为xcm,则由相似性质有=.解得x=18.较长的角平分线长为24cm.
故这两条角平分线的长分别为18cm,24cm.
  方法总结:在利用相似三角形的性质解题时,一定要注意“对应”二字,只有对应线段的比才等于相似比,而相似比即为对应边的比,列比例式时,尽可能回避复杂方程的变形.
探究点三:相似三角形对应中线的比
已知△ABC∽△A′B′C′,=,AB边上的中线CD=4cm,求A′B′边上的中线C′D′.
解:∵△ABC∽△A′B′C′,CD是AB边上的中线,C′D′是A′B′边上的中线,
∴==.
又∵CD=4cm,
∴C′D′==×4=6(cm).
即A′B′边上的中线C′D′的长是6cm.
  方法总结:相似三角形对应中线的比等于相似比.
三、板书设计
相似三角形中的对应线段之比:相似三角形对应高的比、对应角平分线的比、对应中线的比都等于相似比.
通过探索相似三角形中对应线段的比与相似比的关系,经历“观察-猜想-论证-归纳”的过程,渗透逻辑推理的方法,培养学生主动探究、合作交流的习惯和严谨治学的态度,并在其中体会类比的数学思想,培养学生大胆猜测、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力.4.4
探索三角形相似的条件
第1课时
利用两角判定三角形相似
教学目的:
1.使学生理解相似三角形的定义,掌握定义中的两个条件.
2.使学生掌握相似三角形判定定理1.
3.使学生初步掌握相似三角形的判定定理1的应用.
重点:准确找出相似三角形的对应边和对应角度.
难点:掌握相似三角形判定定理1及其应用.
教学过程:
一、讨论相似三角形的定义
请同学们都拿出文具盒中的三角板,观察它们之间的关系,再与教师手中的木制三角板比较,观察这些三角形的关系,这是有全等的关系也有相似的关系.从全等与相似的类比,不难得到相似三角形的定义.
二、
给出定义
从∠A=∠A,∠B=∠B,∠C=∠C,AB:A’B’=BC:B’C’=AC:A’C’
可知△ABC∽△A’B’C’.
板书定义.叫学生写在笔记本上.
三、合作学习:
合探1
同学们观察我们的直角三角尺,直观上看它们是什么关系?到底需要满足几个条件两个三角形能够相相似?
合探2
与同伴合作,两个人分别画△ABC和△A′B′C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此时,∠C与∠C′相等吗?三边的比相等吗?这样的两个三角形相似吗?改变∠α,∠β的大小,再试一试.
四、导入定理
判定定理1:两角分别相等的两个三角形相似.
这个定理的出现为判定两三角形相似增加了一条新的途径.
例:如图,D,E分别是△ABC的边AB,AC上的点,DE∥BC,AB=7,AD=5,DE=10,求BC的长。
解:∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C.
∴△ADE∽△ABC(两角分别相等的两个三角形相似).
∴=.
∴BC=
=
=14.
五、学生练习:
1.
讨论随堂练习第1题
有一个锐角相等的两个直角三角形是否相似?为什么?
2.自己独立完成随堂练习第2题
六、小结
本节主要学习了相似三角形的定义及相似三角形的判定定理1,一定要掌握好这个定理.
七、作业:
板书设计:第4课时 黄金分割
1.知道并理解黄金分割的定义,熟记黄金比;
2.能对黄金分割进行简单运用.(重点、难点)
                   
一、情景导入
生活中我们见到过许许多多的图形,形态各异,美观大方.那么这些漂亮的图形你能画出来吗?比如,下图是一个五角星图案,如何找点C把AB分成两段AC和BC,使得画出的图形匀称美观呢?
二、合作探究
探究点一:黄金分割的有关概念
已知M是线段AB的黄金分割点,MA是被分线段AB中较长的线段,且MA=-1,求原线段AB的长.
解析:由于M是黄金分割点,根据黄金比==,可求出原线段长.
解:因为M是线段AB的黄金分割点,且MA>MB,
所以=,
所以AB=·MA=×(-1)=2.
  方法总结:把一条线段黄金分割后,原线段、较长线段、较短线段之间有固定的比值关系,只要知道其中一条线段的长度,就可以求出另外两条线段的长度.
已知线段AB=6,点C为线段AB的黄金分割点,求下列各式的值:
(1)AC-BC;(2)AC·BC.
解析:黄金分割点是线段上一个点,这个点把线段分成一长一短两部分,由题意可知较长的线段是原线段的,并且在一条线段上有两个黄金分割点.
  解:若AC>BC,如图,则AC=AB=×6=3-3,所以BC=AB-AC=6-(3-3)=9-3.
(1)AC-BC=3-3-(9-3)=3-3-9+3=6-12;
(2)AC·BC=(3-3)×(9-3)=27-45-27+9=36-72.
若AC<BC,如图.
(1)AC-BC=12-6;
(2)AC·BC=36-72.
  易错提醒:注意一条线段有两个黄金分割点,因此题中未指出黄金分割点离哪个端点较近时,要分情况讨论.
探究点二:黄金分割的应用
在人体躯干与身高的比例上,肚脐是理想的黄金分割点,即比值越接近0.618越给人以美感.小明的妈妈脚底到肚脐的长度与身高的比为0.60,她的
身高为1.60m,她应该穿多高的高跟鞋看起来会更美?
解析:想要看起来更美,则鞋底到肚脐的长度与身高之比应为黄金比,此题应根据已知条件求出肚脐到脚底的距离,再求高跟鞋的高度.
解:设肚脐到脚底的距离为x
m,根据题意,得=0.60,解得x=0.96.
设穿上y
m高的高跟鞋看起来会更美,则=0.618.
解得y≈0.075,而0.075m=7.5cm.
故她应该穿约为7.5cm高的高跟鞋看起来会更美.
  易错提醒:要准确理解黄金分割的概念,较长线段的长是全段长的0.618.注意此题中全段长是身高与高跟鞋鞋高之和.
三、板书设计
经历黄金分割的引入以及黄金分割点的探究过程,通过问题情境的创设和解决过程,体会黄金分割的文化价值,在应用中进一步理解相关内容,在实际操作、思考、交流等过程中增强学生的实践意识和自信心.感受数学与生活的紧密联系,体会数学的思维方式,增进数学学习的兴趣.第2课时 矩形的判定
1.理解并掌握矩形的判定方法;(重点)
2.能熟练掌握矩形的判定及性质的综合应用.(难点)
                   
一、情景导入
小明想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框?看看谁的方法可行!
二、合作探究
探究点一:对角线相等的平行四边形是矩形
如图所示,外面的四边形ABCD是矩形,对角线AC,BD相交于点O,里面的四边形MPNQ的四个顶点都在矩形ABCD的对角线上,且AM=BP=CN=DQ.求证:四边形MPNQ是矩形.
解析:要证明四边形MPNQ是矩形,应先证明它是平行四边形,由已知可再证明其对角线相等.
证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.
∵AM=BP=CN=DQ,
∴OM=OP=ON=OQ.
∴四边形MPNQ是平行四边形.
又∵OM+ON=OQ+OP,
∴MN=PQ.
∴平行四边形MPNQ是矩形(对角线相等的平行四边形是矩形).
方法总结:在判断四边形的形状时,若已知条件中有对角线,可首先考虑能否用对角线的条件证明矩形.
探究点二:有三个角是直角的四边形是矩形
如图,GE∥HF,直线AB与GE交于点A,与HF交于点B,AC、BC、BD、AD分别是∠EAB、∠FBA、∠ABH、∠GAB的平分线,求证:四边形ADBC是矩形.
解析:利用已知条件,证明四边形ADBC有三个角是直角.
证明:∵GE∥HF,
∴∠GAB+∠ABH=180°.
∵AD、BD分别是∠GAB、∠ABH的平分线,
∴∠1=∠GAB,∠4=∠ABH,
∴∠1+∠4=(∠GAB+∠ABH)=×180°=90°,
∴∠ADB=180°-(∠1+∠4)=90°.
同理可得∠ACB=90°.
又∵∠ABH+∠FBA=180°,
∠4=∠ABH,∠2=∠FBA,
∴∠2+∠4=(∠ABH+∠FBA)=×180°=90°,即∠DBC=90°.
∴四边形ADBC是矩形.
方法总结:矩形的判定方法和矩形的性质是相辅相成的,注意它们的区别和联系,此判定方法只要说明一个四边形有三个角是直角,则这个四边形就是矩形.
探究点三:有一个角是直角的平行四边形是矩形
如图所示,在△ABC中,D为BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD.连接BF.
(1)BD与DC有什么数量关系?请说明理由;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
解析:(1)根据“两直线平行,内错角相等”得出∠AFE=∠DCE,然后利用“AAS”证明△AEF和△DEC全等,根据“全等三角形对应边相等”可得AF=CD,再利用等量代换即可得BD=CD;(2)先利用“一组对边平行且相等的四边形是平行四边形”证明四边形AFBD是平行四边形,再根据“有一个角是直角的平行四边形是矩形”可知∠ADB=90°.由等腰三角形三线合一的性质可知△ABC满足的条件必须是AB=AC.
解:(1)BD=CD.理由如下:
∵AF∥BC,
∴∠AFE=∠DCE.
∵E是AD的中点,
∴AE=DE.
在△AEF和△DEC中,
∴△AEF≌△DEC(AAS),
∴AF=DC.
∵AF=BD,
∴BD=DC;
(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形.
∴AB=AC,BD=DC,
∴∠ADB=90°.
∴四边形AFBD是矩形.
方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.
三、板书设计
通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.3.1 用树状图或表格求概率
第1课时 用树状图或表格求概率
1.会用画树状图或列表的方法计算简单随机事件发生的概率;(重点)
2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况,会用概率的相关知识解决实际问题.(难点)
                   
一、情景导入
游戏:小明对小亮说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,算我赢,如果落地后两面一样,算你赢.”结果小亮欣然答应,请问:你觉得这个游戏公平吗?
二、合作探究
探究点:用树状图或表格求概率
【类型一】
两步决定的概率问题
明华外出游玩时带了2件上衣(白色、米色)和3条裤子(蓝色、黑色、棕色),他任意拿出一件上衣和一条裤子恰好是白色和黑色的概率是多少?
解析:可采用画树状图或列表法把所有的情况都列举出来.
解:解法1:画树状图如图所示:
由图中可知共有6种可能,而白衣、黑裤只有1种可能,概率为;
解法2:将可能出现的结果列表如下:
裤子上衣
蓝色
黑色
棕色
白色
(白,蓝)
(白,黑)
(白,棕)
米色
(米,蓝)
(米,黑)
(米,棕)
  由表可知共有6种可能,而白衣、黑裤只有1种可能,概率为.
  方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在所有结果中占的比值.
【类型二】
两步以上决定的概率问题
小可、子宣、欣怡三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪子、布”的方式确定,那么在一个回合中,三个人都出“剪子”的概率是多少?
解:用树状图分析所有可能的结果,如图.
  由树状图可知所有可能的结果有27种,三人都出“剪子”的结果只有1种,所以在一个回合中三个人都出“剪子”的概率为.
  方法总结:当一次试验涉及三个或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用树状图.
【类型三】
有无放回试验
一只箱子里共有3个球,其中有2个白球,1个红球,它们除了颜色外均相同.
(1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率;
(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.
解析:题中(1)(2)的区别在于第一次摸出的球是否放回了箱子.由题可知,第二次摸球时(1)的箱子中应减少第一次摸出的那个球,那么还剩两个球可以摸,而(2)的箱子中还是有三个球可以摸.所以,两个白球应该区别开来,我们用“白1”“白2”表示.
解:(1)列表如下:
第一次第二次
白1
白2

白1
——
(白2,白1)
(红,白1)
白2
(白1,白2)
——
(红,白2)

(白1,红)
(白2,红)
——
  由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)==;
(2)列表如下:
第一次第二次
白1
白2

白1
(白1,白1)
(白2,白1)
(红,白1)
白2
(白1,白2)
(白2,白2)
(红,白2)

(白1,红)
(白2,红)
(红,红)
  由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=.
  方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.
三、板书设计
用树状图或表格求概率
通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.6.1 反比例函数
1.领会反比例函数的意义,理解并掌握反比例函数的概念;(重点)
2.会判断一个函数是否是反比例函数;(重点)
3.会求反比例函数的表达式.(难点)
                   
一、情景导入
你吃过拉面吗?有人能拉到细如发丝,同时还能做到丝丝分明.实际上在做拉面的过程中就渗透着数学知识.
一定体积的面团做成拉面,面条的总长度与面条的粗细之间有什么关系呢?
二、合作探究
探究点一:反比例函数的概念
【类型一】
辨别反比例函数
在下列函数表达式中,哪些函数表示y是x的反比例函数?
(1)y=; (2)y=; (3)y=;
(4)xy=; (5)y=; (6)y=-;
(7)y=2x-1; (8)y=(a≠5,a是常数).
解析:根据反比例函数的概念,必须是形如y=(k是常数,k≠0)的函数,才是反比例函数.如(2)(3)(6)(8)均符合这一概念的要求,所以它们都是反比例函数.但还要注意y=(k是常数,且k≠0)的一些常见的变化形式,如xy=k,y=kx-1等,所以(4)(7)也是反比例函数.在(5)中,y是(x-1)的反比例函数,而不是x的反比例函数.(1)中的y是x的正比例函数.
解:(2)(3)(4)(6)(7)(8)表示y是x的反比例函数.
  方法总结:判断一个函数是否是反比例函数,关键看它能否写成y=(k是常数,k≠0)或xy=k(k≠0)或y=kx-1(k≠0)这样的形式,即两个变量的积是不是一个非零常数.如果两个变量的积是一个不为0的常数,则这两个变量就成反比例关系;否则便不成反比例关系.
【类型二】
根据反比例函数的概念求值
若y=(k2+k)xk2-2k-1是反比例函数,试求(k-3)2015的值.
解:根据反比例函数的概念,得
所以
即k=2.
因此(k-3)2015=(2-3)2015=-1.
  易错提醒:反比例函数表达式的一般形式y=(k是常数,k≠0)也可以写成y=kx-1(k≠0),利用反比例函数的定义求字母参数的值时,一定要注意y=中k≠0这一条件,不能忽略,否则易造成错误.
探究点二:确定反比例函数的表达式
【类型一】
用待定系数法求反比例函数的表达式
已知y是x的反比例函数,当x=-4时,y=3.
(1)写出y与x之间的函数表达式;
(2)当x=-2时,求y的值;
(3)当y=12时,求x的值.
  解:(1)设y=(k≠0),
∵当x=-4时,y=3,
∴3=,解得k=-12.
因此,y和x之间的函数表达式为y=-;
(2)把x=-2代入y=-,得y=-=6;
(3)把y=12代入y=-,得12=-,x=-1.
  方法总结:(1)求反比例函数表达式时常用待定系数法,先设其表达式为y=(k≠0),然后再求出k值;(2)当反比例函数的表达式y=(k≠0)确定以后,已知x(或y)的值,将其代入表达式中即可求得相应的y(或x)的值.
【类型二】
用待定系数法求有反比例关系的函数的表达式
已知y与x-1成反比例,当x=2时,y=4.
(1)用含有x的代数式表示y;
(2)当x=3时,求y的值.
解:(1)设y=(k≠0),
因为当x=2时,y=4,所以4=,
解得k=4.
所以y与x的函数表达式是y=;
(2)当x=3时,y==2.
  易错提醒:题中y与x-1成反比例,而y与x不成反比例,防止出现设y=(k≠0)的错误.
探究点三:建立反比例函数的模型
已知一个长方体水箱的体积为1000立方厘米,它的长是y厘米(y>25),宽是25厘米,高是x厘米.
(1)写出用高表示长的函数关系式;
(2)写出自变量x的取值范围.
解:(1)根据题意,可得y=,化简得y=;
(2)根据题设可知自变量x的取值范围为0<x<.
  方法总结:反比例函数的自变量取值范围是全体非零实数,但在解决实际问题的过程中,自变量的取值范围要根据实际情况来确定.解题过程中应该注意对题意的正确理解.
三、板书设计
反比例函数
结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,从感性认识到理性认识的转化过程,发展学生的思维.利用多媒体创设大量生活情境,让学生体验数学来源于生活实际,并为生活实际服务,让学生感受数学有用,从而培养学生学习数学的兴趣.5.2 视图
第1课时 简单图形的三视图
1.理解视图及三视图的概念;
2.会辨别简单几何体的三种视图,能熟练画出简单几何体的三种视图;(重点)
3.能根据三视图描述基本几何体或实物原型.(难点)
                   
一、情景导入
一个物体从不同的角度观察,看到的形状可能是不相同的.观察一个毛绒玩具,我们从三个不同的角度看,得到三个图形,如图所示.你能说出它们是从哪个方向观察得到的吗?
二、合作探究
探究点一:三视图的识别
【类型一】
判断简单几何体的三种视图
图中的四个几何体中,主视图、左视图和俯视图都相同的几何体共有(  )
  A.1个
B.2个
C.3个
D.4个
  解析:圆柱的主视图、左视图都是长方形,而俯视图是圆;圆锥的主视图、左视图都是等腰三角形,而俯视图是带圆心的圆;球的三种视图都是圆;正方体的三种视图都是正方形,故选B.
  方法总结:常见的几何体有圆柱、圆锥、球以及直棱柱,竖直放置的圆柱、圆锥的主视图、左视图相同,一般的直棱柱的三种视图是不同的,而球和正方体的三种视图都是相同的,它们分别是圆和正方形.
【类型二】
根据实物确定视图
如图,从不同方向看一只茶壶,你认为是俯视效果图的是(  )
解析:俯视图就是从物体的正上方向下看到的视图,因而能够看到茶壶的顶部、壶把、壶嘴,从而选择A;D选项是茶壶的主视图.故选A.
  方法总结:根据实物确定视图的方法:首先要弄清楚物体的主视图、左视图、俯视图的含义,而后根据实际物体思考三种视图的大体轮廓.
探究点二:画简单几何体的三种视图
画出如图甲所示的几何体的三种视图.
解析:该几何体是由圆锥和圆柱组合而成的几何体,只要把圆锥和圆柱的三种视图分别画出再组合即可.
解:三种视图如图乙所示.
  方法总结:画组合体的三种视图时,先将几何体分解成若干个简单几何体,再进行各种视图组合.画圆锥的俯视图时一定要注意它是一个带圆心的圆,不要漏画了圆心.
探究点三:根据三视图还原几何体
【类型一】
根据三视图判断几何体的形状
已知一个几何体的三种视图如图所示,则该几何体是(  )
  解析:A图的主视图、左视图均为等腰三角形,B图的左视图、俯视图均为矩形,C图的俯视图的外轮廓线为四边形,由此可排除A,B,C选项,抓住某个特征采用排除法是解决这类问题的常用方法.故选D.
  方法总结:主视图能体现物体的左右长度、上下高度;俯视图能体现物体的左右长度、前后宽度;左视图能体现物体的上下高度、前后宽度.通过观察三种视图可以想象出几何体的立体图形.
【类型二】
根据两种视图讨论构成几何体的小正方体的个数
用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置小正方体的个数,请解答下列问题:
(1)a,b,c各表示多少?
(2)这个几何体最少由几个小立方体组成,最多又是多少?
(3)当d=e=1,f=2时,画出这个几何体的左视图.
解:(1)由俯视图知道这个几何体共有三排三列,第三列只有一排,第二列有两排;而从主视图知道第三列的层数为3层,第二列的层数为1层,所以a为3,b,c应为1;
(2)d,e,f既可以为1,也可以为2,但至少有一个为2,另外两个为1时,共有9个小立方体;另外两个都为2时,共有11个小正方体;
故最少由9个小立方体搭成,最多由11个小立方体搭成;
(3)左视图如右图所示.
  方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数.
三、板书设计
视图
通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系.通过具体活动,积累学生的观察、想象物体投影的经验,发展学生的动手实践能力、数学思考能力和空间观念.第2课时
矩形的判定
教学


1.理解并掌握矩形的判定定理,能有理有据的推理证明,精练准确地书写表达。2.
能熟练应用矩形的性质、判定等知识进行有关证明和计算.
重点
掌握并会运用矩形的判定
难点
运用矩形的判定进行简单的推理与计算。
 一、旧知回顾1、想一想:矩形有哪些性质?在这些性质中那些是平行四边形所没有的?列表进行比较.平行四边形矩形边对边平行且相等对边平行且相等角对角相等,邻角互补四个角都是直角对角线对角线互相平分对角线相等且互相平分2、矩形对称性:二、合作探究仿照平行四边形的判定猜想,你能猜出矩形的判定有哪些吗?(分别从边、角、对角线几个方面考虑。)1、定义可以作为判定2、四个角都是直角的四边形3、对角线相等的平行四边形或对角线互相平分且相等的四边形。你能证明所写出的判定命题吗?
备注(教师复备栏)
三、应用例1.
如图,□
ABCD的对角线AC、BD交于点O,△AOB是正三角形,AB=4cm.(1)
求证□
ABCD是矩形.(2)
求□
ABCD的面积.2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得
DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,
所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。
四、课堂检测:1.下列说法正确的是(
)A.有一组对角是直角的四边形一定是矩形
B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形
D.对角互补的平行四边形是矩形2.
矩形各角平分线围成的四边形是(

A.平行四边形
B.矩形
C.菱形
D.正方形3.
下列判定矩形的说法是否正确
(1)有一个角是直角的四边形是矩形


(2)四个角都是直角的四边形是矩形

)(3)四个角都相等的四边形是矩形


(4)对角线相等的四边形是矩形

)(5)对角线相等且互相垂直的四边形是矩形

)(6)对角线相等且互相平分的四边形是矩形

)4.
在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是
.(写出一种即可)
备注(教师复备栏)
O
D
C
B
A第2课时 反比例函数的性质
1.理解并掌握反比例函数图象的性质;(重点)
2.能利用反比例函数的图象与性质解决问题.(难点)
一、情景导入
在一个平面直角坐标系中,根据所提供的两组数据描绘出相应的反比例函数图象.
x
-6
-3
-2
-1
1
2
3
6
y
-1
-2
-3
-6
6
3
2
1
x
-6
-3
-2
-1
1
2
3
6
y
1
2
6
6
-6
-3
-2
-1
  观察这两个图象,试着求出它们的解析式,看看它们之间是否存在着某些关系?
二、合作探究
探究点一:反比例函数图象的性质
【类型一】
利用反比例函数的性质确定字母的取值范围
在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,则k的值可以是(  )
  A.-1
B.0
C.1
D.2
  解析:反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,根据反比例函数的性质可知,该图象的两个分支分别在第二、四象限内,所以该函数的比例系数1-k<0,解得k>1.故只有D项符合题意.故选D.
  方法总结:反比例函数图象的位置和函数的增减性,都是由比例系数k的符号决定的;反过来,由双曲线所在位置和函数的增减性,也可以推断出k的符号.
【类型二】
比较函数值的大小
在反比例函数y=-的图象上有三点(x1,y1),(x2,y2),(x3,y3),若x1>x2>0>x3,则下列各式正确的是(  )
A.y3>y1>y2
B.y3>y2>y1
C.y1>y2>y3
D.y1>y3>y2
解析:本题方法较多,一是根据x1,x2,x3的大小即可比较;二是画出草图,根据反比例函数图象的性质比较;三是利用特殊值法.
(方法一)比较法:由题意,得y1=-,y2=-,y3=-,因为x1>x2>0>x3,所以y3>y1>y2.
(方法二)图象法:
如图,在直角坐标系中作出y=-的草图,描出符合条件的三个点,观察图象直接得到y3>y1>y2.
(方法三)特殊值法:设x1=2,x2=1,x3=-1,则y1=-,y2=-1,y3=1,所以y3>y1>y2.故选A.  方法总结:此题的三种解法中,图象法形象直观,具有一般性;特殊值法最简单,这种方法对于解答许多选择题都很有效,要注意学会使用.
探究点二:反比例函数图象中比例系数k的几何意义
如图,四边形OABC是边长为1的正方形,反比例函数y=的图象经过点B(x0,y0),则k的值为    .
  解析:∵四边形OABC是边长为1的正方形,∴它的面积为1,且BA⊥y轴.又∵点B(x0,y0)是反比例函数y=图象上的一点,则有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵点B在第二象限,∴k=-1.
  方法总结:利用正方形或矩形或三角形的面积确定|k|的值之后,要注意根据函数图象所在位置或函数的增减性确定k的符号.
三、板书设计
通过对反比例函数图象的全面观察和比较,发现函数自身的规律,概括反比例函数的有关性质,进行语言表述,训练学生的概括、总结能力,在相互交流中发展从图象中获取信息的能力.让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲.第三章
概率的进一步认识
3.1
用树状图或表格求概率
第1课时
用树状图或表格求概率
教 学目 标
教学知识点:学习用树状图和列表法计算随机事件发生的概率.能力训练要求:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感与价值观要求:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.
重 点
用树状图和列表法计算随机事件发生的概率.
难 点
通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.
教学过程:一、创设问题,引入新课游戏:小明对小亮说:“我向空中抛2枚同样的—元硬币,如果落地后一正一反,你给我10元钱,如果落地后两面一样,我给你10元线.”结果小亮欣然答应,请问,你觉得这个游戏公平吗?分析得很好,当然,这只是个数学游戏.教师只是想用此介绍一些概率问题,而国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!下面我们再来看一个游戏.二、引入新课如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢?小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为,即.小颖的做法:通过列下表得到牌面数字和等于4的概率为.牌面数字的可能值23456相应的概率小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为.第一张牌的牌面数字第二张牌的牌面数1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)你认为谁做得对?说说你的理由.小颖和小亮都用了列表法,而小颖的做法是错误的,小亮的做法是正确的.你认为用列表法求概率时要注意些什么?用列表法求概率时应注意各种情况出现的可能性务必相同.从小亮的表格中你还能获得哪些事件发生的概率呢?用树状图或列表的方法求出:1.将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?2.掷两枚骰子.它们的点数和可能有哪些值?求出点数和为6的概率.
探索活动:(
教材P62
例1)小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?(同学们请认真阅读课本62页及63页的例题讲解部分、特别是树状图的列举)。做一做:小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?四、当堂自测有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率。五、课时小结本节课我们学习了用树状图和列表法求理论概率,进一步发展了同学们合作交流的意识和良好的反思习惯.六、课后作业四章
图形的相似
4.1
成比例线段
第1课时
线段的比和成比例线段
教学目的:
1、知道线段的比的概念。理解成比例线段的概念
2、会计算两条线段的比。
3、掌握成比例线段的判定方法。
重点:线段的比与成比例线段的概念。
教学过程:
一、自主预习
(一)阅读课本
,思考并回答下列问题:
1、一般地,如果选用
量得两条线段AB,CD的长度分别为m,n,那么这两条线段的比就是他们长度的比,即AB∶CD=
m:n,或写成其中,线段AB,CD分别叫做这个线段比的前项和后项.如果把表示成比值k,那么。
(1)在比或∶中,是
,是

⑵两条线段的
要统一

⑶在同一单位下线段长度的比与选用的
无关。
⑷线段的比是一个没有
的数。
(二)比例尺
1、在地图上或工程图纸上,图上长度与实际长度的比通常称为比例尺。
2、比例尺为1:50000,意思为:

(三)成比例线段的概念
1、一般地,在四条线段中,如果
等于
的比,那么这四条线段叫做成比例线段。(举例说明)
如:
2、四条线段a,b,c,d成比例,有顺序关系。即a,b,c,d成比例线段,则比例式为:a:b=c:d;a,b,
d,c成比例线段,则比例式为:a:b=d:c
3思考:a=12,b=8,c=6,d=4成比例吗?a=12,b=8,c=15,d=10呢?
三、例题解析:
例1、A、B两地的实际距离AB=
250m,画在一张地图上的距离A'B'=5cm,求该地图的比例尺。
例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜边AB=2。
求⑴,⑵
四、巩固练习
1、已知某一时刻物体高度与其影长的比值为2:7,某天同一时刻测得一栋楼的影长为30米,则这栋楼的高度为多少?
2、某地图上的比例尺为1:1000,甲,乙两地的实际距离为300米,则在地图上甲、乙两地的距离为多少?
3、已知线段a,d,b,c是成比例线段,其中a=4,b=5,c=10,求线段d的长。
五、小结:这节课我学到了第2课时 复杂图形的三视图
1.会辨别复杂的几何体的三视图;(重点)
2.会画复杂的几何体的三视图,会根据复杂的三视图判断实物原型;(重点)
3.明确三视图中实线和虚线的区别.(难点)
                   
一、情景导入
张师傅是铸造厂的工人,小王有事情拜托他,想让他制作一个如图所示的小零件,小王应该如何准确地告诉张师傅小零件的形状和规格呢?
二、合作探究
探究点一:判断复杂的几何体的视图
如图,空心圆柱体的主视图的画法正确的是(  )
解析:本题中空心的小圆柱看不到应画成虚线,圆柱的底面圆看得见,应画出实线,只有C符合,故选C.
  方法总结:画几何体的三种视图时,一定要按照“看得见的轮廓线画成实线,看不见的轮廓线画成虚线”的原则进行.
探究点二:画复杂的几何体的三视图
画出下图中三个几何体对应的三种视图.
解析:根据三种视图的画法画出即可,画第二个和第三个几何体的左视图时应该注意将凹进去的部分用虚线表示出来.
解:三个几何体的三种视图分别如下图所示:
  方法总结:画三种视图时,一定要注意:主与俯“长对正”,主与左“高平齐”,左与俯“宽相等”.画较复杂的实物图(几何体)的三种视图时,可以根据几何体的特征将其分成几个部分,先画出最主要(最大)的部分的三种视图,再逐步画出其他部分的三种视图,最后再对照原图几何体的形状检查一下三种视图的轮廓是否正确.
探究点三:根据视图确定几何体
一个几何体的三种视图如图所示,则这个几何体是(  )
解析:熟记常见几何体的三种视图后首先可排除选项A,因为长方体的三视图都是矩形;因为所给的主视图中间是两条虚线,故可排除选项B;选项D的几何体中的俯视图应为一个梯形,与所给俯视图形状不符.只有C选项的几何体与已知的三视图相符.故选C.
  方法总结:由几何体的三种视图想象其立体形状可以从如下途径进行分析:
(1)根据主视图想象物体的正面形状及上下、左右位置,根据俯视图想象物体的上面形状及左右、前后位置,再结合左视图验证该物体的左侧面形状,并验证上下和前后位置;
(2)从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.
在得出原立体图形的形状后,也可以反过来想象一下这个立体图形的三种视图,看与已知的三种视图是否一致.
探究点四:三视图中的计算
如图所示是一个工件的三种视图,图中标有尺寸,则这个工件的体积是(  )
A.13πcm3
B.17πcm3
C.66πcm3
D.68πcm3
解析:由三种视图可以看出,该工件是上下两个圆柱的组合,其中下面的圆柱高为4cm,底面直径为4cm;上面的圆柱高为1cm,底面直径为2cm,则V=4×π×22+1×π×12=17π(cm3).故选B.
  方法点拨:解决此类问题的关键是想象几何体的形状,根据物体对应的相关数据找准其对应关系,再正确地进行计算.
三、板书设计
经历由直棱柱到其三种视图的转化过程,进一步发展空间观念,培养学生自主学习与合作学习相结合的学习方式.在应用数学解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情.4.3 相似多边形
1.了解相似多边形和相似比的概念;
2.会根据条件判断两个多边形是否为相似多边形;(重点)
3.掌握相似多边形的性质,能根据相似比进行相关的计算.(难点)
                   
一、情景导入
观察以下三组图形,每一组图形的对应边、对应角有什么关系呢?
二、合作探究
探究点一:相似多边形的判定
下列图形都相似吗?为什么?
(1)所有正方形;(2)所有矩形;(3)所有菱形;(4)所有等边三角形;(5)所有等腰三角形;(6)所有等腰梯形;(7)所有等腰直角三角形;(8)所有正五边形.
解析:利用定义判断边数相同的多边形是否相似,要从两方面进行判断:(1)对应角相等;(2)对应边成比例,两者缺一不可.
解:(1)相似,因为正方形每个角都等于90°,所以对应角相等,而每个正方形的边长都相等,所以对应边成比例;
(2)不一定,虽然矩形的每个角都等于90°,对应角相等,但是对应边不一定成比例,如图①;
(3)不一定,每个菱形的四条边长都相等,所以两菱形的对应边一定成比例,但是它们的对应角不一定相等,如图②,显然两个菱形的对应角是不相等的;
(4)相似,因为每个等边三角形的三条边都相等,所以两个等边三角形的对应边一定成比例,并且对应角都等于60°;
(5)不一定,如图③,对应边不成比例,对应角不相等;
(6)不一定,如图④,对应边不成比例,对应角不相等;
(7)相似,因为等腰直角三角形的三个角分别是45°,45°,90°,所以对应角相等,而且每一个三角形的三边的比都是1:1:,所以对应边成比例;
(8)相似,因为正五边形的各角都等于108°,所以对应角相等,而且正五边形的各边都相等,所以对应边成比例.
  方法总结:(1)相似多边形的定义也是相似多边形的判定方法,在判定两个多边形相似时,必须同时具备两点:对应角相等,对应边成比例.(2)在说明图形不相似时只需画图举出反例即可.(3)所有边数相等的正多边形都相似.
探究点二:相似多边形的性质
已知四边形ABCD与四边形EFGH相似,试根据图中所给出的数据求出四边形EFGH和四边形ABCD的相似比.
解:∵四边形ABCD与四边形EFGH相似,且∠A=∠E=80°,∠B=∠F=75°,
∴AB与EF是对应边.∵==,
∴四边形EFGH与四边形ABCD的相似比为.
  方法总结:找准相似多边形的对应边是解决此类问题的关键,方法类似于找全等三角形对应边和对应角的方法.
探究点三:相似多边形的应用
如图所示,在四边形ABCD中,AD∥BC,EF∥BC,EF将四边形ABCD分成两个相似四边形AEFD和EBCF.若AD=3,BC=4,求AE:EB的值.
解析:根据相似多边形的对应边成比例,可得到=,可以求出EF的长,从而可求AE:EB的值.
  解:因为四边形AEFD∽四边形EBCF,
所以=,
所以EF2=AD·BC=3×4=12,
所以EF==2.
因为四边形AEFD∽四边形EBCF,
所以AE:EB=AD:EF=3:2=:2.
  方法总结:若两个多边形相似,则它们对应的边成比例,根据此特性,可列等式或比例式求解.
在AB=20m,AD=30m的矩形花坛ABCD的四周建筑小路.
(1)如果四周的小路的宽均相等,如图①,那么小路四周所围成的矩形A′B′C′D′和矩形ABCD相似吗?请说明理由;
(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?
解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;
(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.
解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:
假设两个矩形相似,不妨设小路宽为xm,
则=,解得x=0.
∵由题意可知,小路宽不可能为0,
∴矩形A′B′C′D′和矩形ABCD不相似;
(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:
若矩形A′B′C′D′和矩形ABCD相似,
则=,所以=.
∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.
  方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.
三、板书设计
相似多边形
在探索相似多边形本质特征的过程中,让学生运用“观察-比较-猜想”分析问题,进一步发展学生观察、分析、判断、归纳、类比、反思、交流等方面的能力,提高数学思维水平,体会反例的作用,培养与他人交流、合作的意识和品质.4.2
平行线分线段成比例
一、教学目标
1.知识目标:
①了解平行线分线段成比例定理
②会用平行线分线段成比例定理解决实际问题
2.能力目标:
掌握推理证明的方法,发展演绎推理能力
二、教学过程分析
1.复习提问
(1)什么叫比例线段?
答:四条线段
a、b、c、d
中,如果
a:b=c:d,那么这四条线段a、b、c、d
叫做成比例的线段,简称比例线段.
(2)比例的基本性质?
答:如果
a:b
=c:d
,那么ad
=bc.
如果
ad
=bc,那么
a:b
=c:d
.
如果
a:b
=c:d,那么(a-b):b
=(c-d):d;
(a+b):b
=(c+d):d.
2.引入新课
做一做
在图4-6中,小方格的边长均为1,直线l1

l2∥
l3,分别交直线m,n与格点A1,A2,A3,B1,B2,B3.
图4-6
(1)计算
的值,你有什么发现?
(2)将向下平移到如图3-7的位置,直线m,n
与的交点分别为
你在问题(1)中发现结论还成立吗?如果将平移到其它位置呢?
(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?
3.分组讨论,得出结论
平行线分线段成比例定理:
两条直线被一组平行线所截,所得的对应线段成比例.
4.想一想
(一)如果把图1中l1
,
l2两条直线相交,交点A刚落到l3上,如图2所得的对应线段的比会相等吗?依据是什么?
(二)如果把图1中l1
,
l2两条直线相交,交点A刚落到l4上,如图2(2)所得的对应线段的比会相等吗?依据是什么?
得出结论:(推论)
平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的对应线段成比例.
5.
例题学习
例1
如图,在△ABC中,E,F分别是AB和AC上的点,且EF∥BC。
(1)如果AE=7
,EB=5,FC=4.那么AF的长是多少?
(2)如果AB=10
,AE=6,AF=5.那么FC的长是多少?
例2
如图所示,如果D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.求证:OD∶OA=OE∶OB
6.课时小结
平行线分线段成比例定理:
(1)两直线被一组平行线所截,所得的对应线段成比例(关键要能熟练地找出对应线段)
(2)平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的对应线段成比例.
7.课后作业
习题4.3
知识技能
第1,2题