北京课改版八年级下14.7一次函数的应用同步练习含答案

文档属性

名称 北京课改版八年级下14.7一次函数的应用同步练习含答案
格式 zip
文件大小 141.8KB
资源类型 教案
版本资源 北京课改版
科目 数学
更新时间 2017-07-24 14:22:52

图片预览

文档简介

14.7一次函数的应用
一、夯实基础
1、如图所示,反映了某公司产品的销售收入与销售量的关系,反映了该公司产品的销售成本与销售量的关系,根据图象判断该公司盈利时的销售量是(
).
A.小于4吨
B.大于4吨
C.等于4吨
D.大于或者等于4吨
2、小静准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是(
).
A.①②③④
B.①③④
C.①②④
D.①②③
二、能力提升
3、星期天,小王同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;小王同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与小王同学和妈妈的乘车路线相同,路程均为40km.设爸爸骑行时间为x(h).
请分别写出爸爸的骑行路程y1(km)、小王同学和妈妈的乘车路程y2(km)与x(h)之间的函数解析式,并注明自变量的取值范围;
解:
4、某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.
解:
5、根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:
(1)暂停排水需要多少时间?排水孔排水速度是多少?
(2)当2≤t≤3.5时,求Q关于t的函数表达式.
解:
三、课外拓展
6、暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.
(1)从小刚家到该景区乘车一共用了多少时间?
(2)求线段AB对应的函数解析式;
(3)小刚一家出发2.5小时时离目的地多远?
解:
四、中考链接
7、(2016年三明)小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元.
(1)求y与x的函数关系式;
(2)根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的,那么他的月收入最高能达到多少元?
解:
参考答案
夯实基础
1、B
2、C
能力提升
3、解;由题意,得y1=20x
(0≤x≤2)
y2=40(x﹣1)(1≤x≤2).
4、解:本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.
根据题意得:
整理得:
则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是:
5、解:(1)暂停排水需要的时间为:2﹣1.5=0.5(小时).
∵排水数据为:3.5﹣0.5=3(小时),一共排水900m3,
∴排水孔排水速度是:900÷3=300m3/h;
(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0).
∵t=1.5时,排水300×1.5=450,此时Q=900﹣450=450,
∴(2,450)在直线Q=kt+b上;
把(2,450),(3.5,0)代入Q=kt+b,
得,解得,
∴Q关于t的函数表达式为Q=﹣300t+1050.
课外拓展
6、解:(1)从小刚家到该景区乘车一共用了4h时间;
(2)设AB段图象的函数表达式为y=kx+b.
∵A(1,80),B(3,320)在AB上,
∴,
解得.
∴y=120x﹣40(1≤x≤3);
(3)当x=2.5时,y=120×2.5﹣40=260,
380﹣260=120(km).
故小刚一家出发2.5小时时离目的地120km远.
中考链接
7、解:(1)由题意得,y=20×4x+12×8×(22﹣x)+900,即y=﹣16x+3012;
(2)∵依题意,得4x≥×8×(22﹣x),
∴x≥12.
在y=﹣16x+3012中,
∵﹣16<0,
∴y随c的增大而减小.
∴当x=12时,y取最大值,此时y=﹣16×12+3012=2820.
答:当小李每月加工A型服装12天时,月收入最高,可达2820元.