《有理数之二:相反数、绝对值、有理数大小的比较》教案
姓名
年级
七年级
性别
教材
第
课
教学课题
有理数之二:相反数、绝对值、有理数大小的比较
教学目标
课堂教学过程
课前检查
作业完成情况:优□
良□
中□
差□
建议__________________________________________
过程
一、重点:是相反数、绝对值的概念,这是很重要的两个概念,要求掌握。要能进行有理数的相反数、绝对值的一些初步计算及有理数大小的比较。
难点:是对绝对值意义的理解。
二、知识要点:
1.相反数:只有性质符号不同的两个数,才互为相反数。如
( http: / / www.21cnjy.com )和-
( http: / / www.21cnjy.com );-3和3;7和-7都是互为相反数。0的相反数是0,由定义知相反数是成对出现的(但-3和5不叫相反数),数轴上表示它们的点分别在原点的两侧且与原点的距离相等。如下图,5
( http: / / www.21cnjy.com )与-5
( http: / / www.21cnjy.com )互为相反数,
( http: / / www.21cnjy.com )一般地,数a的相反数是-a,
记作-(a
( http: / / www.21cnjy.com ))=-a;-a的相反数是a,
即-(-a)=a,这里a可表示正数,负数和0。
正数的相反数是负数;0的相反数还是0;负数的相反数是正数。例如:-(+5)=-5,-0=0,-(-7)=7等等。
2.绝对值:
(1)几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离。
数a的绝对值记作|a|。例如-3在数轴上表示它的点与原点的距离是3个单位长度,如图,
∴
-3的绝对值是3,即|-3|=3。
(2)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
用式子表示为:若a是有理数,则
|a|
=
( http: / / www.21cnjy.com ) 或 |a|=
( http: / / www.21cnjy.com ) 或 |a|
=
( http: / / www.21cnjy.com )
这几种表示法是等价的。例如:|5|=5,
|0|=0,
|-6|=6等等。
由绝对值的概念可知:
①一个数绝对值是非负数,即|a|≥0。
②互为相反数的两个数的绝对值相等。
例如:|-7|=7,|7|=7。反之,若|m|=8,则m=±8,在这里要考虑到m的两种情况,建立分类的思想。
3.有理数大小比较的法则如下:
(1)利用数轴比较有理数的方法;即在数轴上表示的两个数,右边的数总比左边的数大。
(2)比较有理数的一般方法;即正数都大于0,负数都小于0,正数大于一切负数。
(3)两个负数比较大小的方法和步骤:
①先求出两个负数的绝对值,比较两个绝对值的大小。
②用法则判断:绝对值大的反而小。
例如,试比较-
( http: / / www.21cnjy.com )与-
( http: / / www.21cnjy.com )的大小,因为|-
( http: / / www.21cnjy.com )|=
( http: / / www.21cnjy.com ),|-
( http: / / www.21cnjy.com )|=
( http: / / www.21cnjy.com ),而
( http: / / www.21cnjy.com )>
( http: / / www.21cnjy.com ),
所以-
( http: / / www.21cnjy.com )<-
( http: / / www.21cnjy.com )。
( http: / / www.21cnjy.com )
例2.
(1)用相反数的概念化简-[-(-
( http: / / www.21cnjy.com ))]
(2)一个数的倒数是
( http: / / www.21cnjy.com ),求这个数的相反数。
(3)一个数的相反数的倒数是3
( http: / / www.21cnjy.com ),求这个数。
例3.比较-5
( http: / / www.21cnjy.com )和-5.6的大小。
例4.比较m与|m|的大小。
例5.若|x|=8,
|y|=5,
求
x+y的值。
四、练习:
(一)判断正误:
( http: / / www.21cnjy.com )
(二)、化简下列各数:
(1)
-(+
( http: / / www.21cnjy.com ))
(2)
-(-5)
(3)
-[-(-7)] (4)
-[+(-8)]
(5)
-[-(+6)]
(6)
+[-(-9)]
(三)、计算:
(1)
|0|+|-27|
(2)
|-3
( http: / / www.21cnjy.com )|+|4
( http: / / www.21cnjy.com )|
(3)
|2.46|+|-5.54|
(4)
|-9|-|4
( http: / / www.21cnjy.com )-2.25|+
|-5|
(四)、填空:
(1)24是____
( http: / / www.21cnjy.com )__的相反数,是_____的倒数,是_______的绝对值。
(2)-13和+13互为_____,|-13|=_____,|13|=_____,它们的绝对值______。
(3)把-7
( http: / / www.21cnjy.com ),-7,|-5|,3.5,
0,
7填入下列适当的位置:
____
<____
<____
<____
<____
<____。
(4)若-a>0,
则a_____0。
(5)任何一个_______数的相反数都是正数,_____的相反数是0,任何一个______数的相反数都是负数。
(6)任何一个有理数的绝对值都是________数。
(7)_______的相反数是它本身;_______数的绝对值是它本身;______的倒数是它本身。
(8)_______的相反数大于它本身;________的相反数小于它本身;________的绝对值大于它本身。
(9)若|x+5|=0,
则x
=________。
(10)若
|-
( http: / / www.21cnjy.com )|=
( http: / / www.21cnjy.com ),
则y=________。
(11)若x为整数,则满足条件|x|<4的x值为_______。(可借助于数轴寻找)
(12)任何数的绝对值都不是_______数。
相反数,绝对值、有理数大小的比较(提高训练)
绝对值与相反数的意义是本章的重点之一,也是难点,是我们今后学习有理数运算及根式等内容的基础,因此应引起我们的足够重视,多练习,勤思考,认真总结它们的性质,才能较深刻地认识这两个概念。本讲我们将对相反数、绝对值的性质继续进行研究。主要研究下列几点:
1、任何数的绝对值都是一个非负数。
即若a为有理数,则|a|≥0。如|-7|=7,|0|=0,|5|=5等等。
2、互为相反数的两个数的绝对值相等。
即,若a+b=0,则|a|=|b|。如,|7|=7,|-7|=7,∴|-7|=|7|。又如,若|a|=5,则a=±5。反之,若两个数的绝对值相等,那么这两个数相等或互为相反数。即,若|a|=|b|,则a=b或a=-b。例如,若|x|=|-5|,则x=5或
x=-5。
3、如果几个非负数的和为零,那么每个非负数都要等于零。
用式子表示为:若|a|+|b|=0,则|a|=0且|b|=0,∴a=0且b=0。
例如:|x+1|+|y-3|=0,则x+1=0且y-3=0,∴x=-1且y=3。
一、例题:
例1、根据下列条件求x:
(1)|x-2|=5,
(2)已知数轴上表示x的点与3的距离为3,求x。
例2.已知|a|=7,|b|=4,且a>b,求
( http: / / www.21cnjy.com )的值。
例3.已知|a+b|+|a-b|=0求a,b的值。
例5.若|x-2|=3,|4y+2|=4,且x|y|<0,求|3y-x|
例6.若x≠0,求①
( http: / / www.21cnjy.com )的值,②
( http: / / www.21cnjy.com )的值。
二.练习:
(一)填空:
(1)在有理数范围内,最小的整数是______,最大的负整数是______,最小的非负整数是_______,最大的正整数是_______,绝对值最小的数是______。
(2)-x=6,则x=_____;_____的相反数是2.1。
(3)当|x|=5时,3x=_____。
(4)若|-x|=|-8|,则x=_____。
(5)若|x-5|=0,|2y+4|=0,则|x+y|=_____。
(6)已知x是绝对值最小的有理数,y是最大的负整数,则xy+
( http: / / www.21cnjy.com )+3x+3y=_____。
(7)_____的绝对值和相反数都等于它本身。
(8)若|a|=9,b是最小的正整数,则a+b=_____。
(9)
|x|=3,|y|=4,则x+y=________。
(10)已知a<0,则
( http: / / www.21cnjy.com )=_______。
(二)比较下列各数的大小,并用“>”号连接起来。
-[+(-5)],
-|-2
( http: / / www.21cnjy.com )|,
-(-2),
-(+
( http: / / www.21cnjy.com )),
-|-1|,
0,
-
( http: / / www.21cnjy.com )。
(三)已知数轴上表示数a的点在原点的左边,表示数b的点在原点的右边,且|a|>|b|,用“<”号把数a,b,-a,-b连接起来。
(四)试比较m与2m的大小。
(五)根据下列条件求x:
|2x-3|=5
(六)已知|5x-4|+|2y-6|=0,求
( http: / / www.21cnjy.com )的值。
(七)在数轴上点A与表示数2的点的距离为7,求点A所表示的数。
练习参考答案:
(一)判断正误:
(1)×
(2)×
(3)×
(4)×
(5)×
(6)
√
(7)×
(8)√
(9)×
(10)√
(二)化简下列各数:
(1)
-
( http: / / www.21cnjy.com ) (2)
5 (3)-7 (4)8 (5)6 (6)9
(三)计算:
(1)27 (2)
8 (3)
8 (4)
12
(四)填空:
(1)-24;
( http: / / www.21cnjy.com );±24 (2)相反数;13;13;相等 (3)-7
( http: / / www.21cnjy.com )<-7<0<3.5<|-5|<7 (4)a<0
(5)
负,0,正 (6)
非负
(7)
0;非负数;±1 (8)负数;正数;负数
(9)-5 (10)
±6
(11)
-3,-2,-1,0,1,2,3 (12)负
练习参考答案:
(一)填空:
(1)不存在;-1;0不存在;0
(2)-6;-2.1 (3)±15
(4)x=±8
(5)3
(6)-3
(7)0
(8)10或-8
(9)±1或±7
(10)0
(二)比较大小:
-[+(-5)]>-(-2)>0>-(+
( http: / / www.21cnjy.com ))>-|-1|>-|-2
( http: / / www.21cnjy.com )|>-
( http: / / www.21cnjy.com )
(三)提示:利用数轴,标出a,b,-a,-b,即用数形结合的方法,如图:
( http: / / www.21cnjy.com )
∴a<-b (四)解:∵m-2m=-m(利用两数之差与0的关系比较两数大小)
当m>0时,
m-2m=-m<0,
∴m<2m。
当m=0时,-m=0,∴m=2m。
当m<0时,-m>0,
∴m>2m。
综上,当m>0时;m<2m;当m=0时,m=2m;当m<0时,m>2m。
(五)求x:
(1)x=4或x=-1
(2)-5≤x≤5
(3)x<-4或x>4
(4)-6( http: / / www.21cnjy.com )
课后记
配合需求:家长:学管师:督促作业完成备注:
签字
教学组长签字:
教研主任签字: