21世纪教育网 –中小学教育资源及组卷应用平台
1.比与分数、除法的关系
【知识点归纳】
1.联系:比的前项相当于分数的分子、除法 ( http: / / www.21cnjy.com )中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商.21世纪教育网版权所有
( http: / / www.21cnjy.com )
2.区别:比是一种关系,分数是一种数,除法是一种运算.
【命题方向】
常考题型:
例: ( http: / / www.21cnjy.com )=16÷ 20 = 8 :10= 80 %= 八 成.
分析:根据比与分数、除法之间的关系,并利用商不变的规律、比的基本性质等知识即可得答案.
解: ( http: / / www.21cnjy.com )=4÷5=16÷20,
( http: / / www.21cnjy.com )=4:5=8:10,
( http: / / www.21cnjy.com )=0.8=80%=八成,
故答案为: ( http: / / www.21cnjy.com )=16÷20=8:10=80%=八成
点评:此题主要考查商不变的规律、比的基本性质等知识.
2.比的应用
【知识点归纳】
1.按比例分配问题的解题方法:
(1)把比看作分得的份数,用先求出每一份的方法来解答.解题步骤:
a.求出总份数;
b.求出每一份是多少;
c.求出各部分相应的具体数量.
(2)转化成份数乘法来解答.解题步骤:
a.先根据比求出总份数;
b.再求出各部分量占总量的几分之几;
c.求出各部分的数量.
2.按比例分配问题常用解题方法的应用:
(1)已知一个数量的各部分的比和其中某一部分的量,求另外几个部分量;
(2)已知两个量或几个量的比和其中两个量的差,求总量.
【命题方向】
常考题型:
例1:一个三角形与一个平行四边形的面积和底部都相等,这个三角形与平行四边形高的比是( )
A、2:1 B、1:2 C、1:1 D、3:1
分析:根据三角形和平行四边形的面积公式可得:三角形的高=面积×2÷底;平行四边形的高=面积÷底,由此即可进行比较,解答问题.21教育网
解:三角形的高=面积×2÷底,
平行四边形的高=面积÷底,
当三角形和平行四边形的面积和底分别相等时,三角形的高是平行四边形的高的2倍.
所以这个三角形与平行四边形高的比是2:1.
故选:A.
点评:考查了平行四边形的面积和三角形的面积公式,解题的关键是知道底相等、面积也相等的三角形和平行四边形中三角形的高是平行四边形的高的2倍.
例2:甲、乙两人各走一段路,他们的速度比是3:4,路程比是8:3,那么他们所需时间比是( )
A、2:1 B、32:9 C、1:2 D、4:3
分析:根据题意,把乙的速度看作1,那么甲的速度就为 ( http: / / www.21cnjy.com );把甲的路程看作1,那么乙的路程就为 ( http: / / www.21cnjy.com );根据时间=路程÷速度,可得甲用的时间为1÷ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),乙用的时间为 ( http: / / www.21cnjy.com )÷1= ( http: / / www.21cnjy.com );进而写出甲和乙所需的时间比,再把比化成最简比即可.
解:把乙的速度看作1,那么甲的速度就为 ( http: / / www.21cnjy.com ),
把甲的路程看做1,那么乙的路程就为 ( http: / / www.21cnjy.com ),
甲用的时间为:1÷ ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ),
乙用的时间为: ( http: / / www.21cnjy.com )÷1= ( http: / / www.21cnjy.com ),
甲乙用的时间比: ( http: / / www.21cnjy.com ): ( http: / / www.21cnjy.com )=( ( http: / / www.21cnjy.com )×24):( ( http: / / www.21cnjy.com )×24)=32:9;
答:甲乙所需的时间比是32:9.
故选:B.
点评:关键是把速度和路程设出来,然后根据时间=路程÷速度,先求得各自用的时间,再写出所用的时间比并化简比.21cnjy.com
3.长方形的周长
【知识点归】
周长:图形一周的长度,就是图形的周长;周长的长度等于图形所有边的和.一般用字母C来表示.
计算方法:
①周长=长+宽+长+宽
②周长=长×2+宽×2
③周长=(长+宽)×2.
【命题方向】
常考题型:
例1:用一根长38厘米的铁丝围长方形,使它们的长和宽都是整厘米数,可以有( )种围法.
A、7 B、8 C、9 D、10
分析:要求有几种围法,应依据长方形的周长公式,求出长和宽的和,再据条件“长和宽都是整数”进行推算即可.21·cn·jy·com
解:长方形的周长=(长+宽)×2
所以长与宽之和是:38÷2=19(厘米)
由此可知:1+18=19、2+17=19、3+16=19、4+15=19、5+14=19
6+13=19、7+12=19、8+11=19、9+10=19.
一共有9种方法.
故选:C.
点评:此题主要考查长方形的周长公式及整数的加减问题,依据题目条件,可以推算出结果.
例2:一个周长为20米的长方形,如果把它的长和宽都增加5米,那么它的周长增加( )
A、10米 B、20米 C、30米 D、40米
分析:抓住“长和宽都增加5米”,那么周长就增加了2个(5+5)的长度.由此计算得出即可选择正确答案.www.21-cn-jy.com
解:(5+5)×2
=10×2
=20(米);
答:那么它的周长增加20米.
故选:B.
点评:此题考查了长方形的周长公式的灵活应用.
【解题思路点拨】
(1)常规题求长方形的周长,分别找出长和宽,代入公式即可求得.
(2)周长概念和公式要理解牢记.
4.长方体和正方体的体积
【知识点归纳】
长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)
正方体体积公式:V=a3.(a表示棱长)
【命题方向】
常考题型:
例1:一个正方体的棱长扩大3倍,体积扩大( )倍.
A、3 B、9 C、27
分析:正方体的体积等于棱长的立方,它的棱长扩大几倍,则它的体积扩大棱长扩大倍数的立方倍,据此规律可得.2·1·c·n·j·y
解:正方体的棱长扩大3倍,它的体积则扩大33=27倍.
故选:C.
点评:此题考查正方体的体积及其棱长变化引起体积的变化.
例2:一只长方体的玻璃缸,长8分米,宽6分米,高4分米,水深2.8分米.如果投入一块棱长为4分米的正方体铁块,缸里的水溢出多少升?
分析:根据题意知用水的体积加铁块的体积,再减去玻璃缸的容积,就是溢出水的体积.据此解答.
解:8×6×2.8+4×4×4﹣8×6×4,
=134.4+64﹣192,
=6.4(立方分米),
=6.4(升).
答:向缸里的水溢出6.4升.
点评:本题的关键是让学生理解:溢出水的体积=水的体积+铁块的体积﹣玻璃缸的容积,这一数量关系.
5.扇形统计图
【知识点归纳】
1.扇形统计图的特点:扇形统计图是用整个圆的面积表示总数,用院内的扇形面积表示各部分数量占总数的百分比.21·世纪*教育网
2.读懂扇形统计图:
(1)获取信息的方法:运用综合、对比等多种观察方法,可以从扇形统计图中获取信息,还可以利用这些信息提出相应的问题.【来源:21·世纪·教育·网】
(2)扇形统计图的优点:它可以清楚地表示出部分数量与总数、部分数量与部分数量之间的关系.
3.利用扇形统计图解决问题,就是解决有关不同类型的百分数应用题,按照百分数应用题的解题思路和解题方法进行解答.www-2-1-cnjy-com
【命题方向】
常考题型:
例1:如图是某小学六年级学生视力情况统计图.
①视力正常的有76人,视力近视的有 60 人;
②假性近视的同学比视力正常的人少 15.8 %; (百分号前保留一位小数)
③视力正常的学生与视力非正常学生人数的比是 19:31 .
分析:由图可知:把总人数看成单位“1”,视力正常的人数占总人数的38%,近视的人数占总人数的30%,假性近视的人数占总人数的32%;2-1-c-n-j-y
①视力正常的有76人,它对应的百分数是38%,由此用除法求出总人数,再求出总人数的30%就是近似的人数;21*cnjy*com
②用视力正常占的百分数减去假性近视人数占的百分数,然后用求得的差除以视力正常占的百分数即可;
③先求出视力非正常学生人数占总人数的百分数,然后作比.
解:①76÷38%×30%,
=200×30%,
=60(人);
答:视力近视的有60人.
②(38%﹣32%)÷38%,
=6%÷38%,
≈15.8%;
答:假性近视的同学比视力正常的人少15.8%.
③38%:(32%+30%),
=38%:62%,
=38:62,
=19:31;
答:视力正常的学生与视力非正常学生人数的比是19:31.
故答案为:60,15.8%,19:31.
点评:解决本题关键是从图中读出数据,找出单位“1”,再根据基本的数量关系求解.
( http: / / www.21cnjy.com )
6.简单事件发生的可能性求解
【知识点归纳】
1.抛钢镚实验、掷骰子实验和转盘实验,能够列出简单实验的所有可能发生的结果,每个结果发生的可能性都相等. 【来源:21cnj*y.co*m】
2.用列举法求简单事件发生的可能性,可以用数值表示及其表示方法.
【命题方向】
常考题型:
例1:一个纸箱里放了6个红色乒乓球,4个黄色乒乓球和10个白色乒乓球,从中任意摸出一个球,摸到红球的可能性是 ( http: / / www.21cnjy.com ),摸到黄球的可能性是 ( http: / / www.21cnjy.com ).
【分析】求摸球的可能性用所求颜色球的个数除以球的总个数即可.
解:6÷(6+4+10)
=6÷20
= ( http: / / www.21cnjy.com )
4÷(6+4+10)
=4÷20
= ( http: / / www.21cnjy.com )
答:摸到红球的可能性是 ( http: / / www.21cnjy.com );摸到黄球的可能性是 ( http: / / www.21cnjy.com ).
故答案为: ( http: / / www.21cnjy.com ); ( http: / / www.21cnjy.com ).
【点评】本题主要考查可能性的求法,即求一个数是另一个数的几分之几用除法解答.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)