1.1.1 命题
项目
内容
课题
1.1.1 命题
(1课时)
修改与创新
教学
目标
1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;
2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
教学重、
难点
重点:命题的概念、命题的构成
难点:分清命题的条件、结论和判断命题的真假
教学
准备
多媒体课件
教学过程
学生探究过程:
1.复习回顾
初中已学过命题的知识,请同学们回顾:什么叫做命题?
2.思考、分析
下列语句的表述形式有什么特点?你能判断他们的真假吗?
(1)若直线a∥b,则直线a与直线b没有公共点 .
(2)2+4=7.
(3)垂直于同一条直线的两个平面平行.
(4)若x2=1,则x=1.
(5)两个全等三角形的面积相等.
(6)3能被2整除.
3.讨论、判断
学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
4.抽象、归纳
定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.
命题的定义的要点:能判断真假的陈述句.
在数学课中,只研究数学命题,请学生举几个数学命题的例子. 教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.
5.练习、深化
判断下列语句是否为命题?
(1)空集是任何集合的子集. (2)若整数a是素数,则是a奇数.
(3)指数函数是增函数吗? (4)若平面上两条直线不相交,则这两条直线平行.
(5)=-2. (6)x>15.
让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.
解略。
引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?
通过对此问的思考,学生将清晰地认识到定理、推论都是命题.
过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?
6.命题的构成――条件和结论
定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者 “如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.
7.练习、深化
指出下列命题中的条件p和结论q,并判断各命题的真假.
(1)若整数a能被2整除,则a是偶数.
(2)若四边行是菱形,则它的对角线互相垂直平分.
(3)若a>0,b>0,则a+b>0.
(4)若a>0,b>0,则a+b<0.
(5)垂直于同一条直线的两个平面平行.
此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。
此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.
解略。
过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.
8.命题的分类――真命题、假命题的定义.
真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.
假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.
强调:
(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.
(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。
9.怎样判断一个数学命题的真假?
(1)数学中判定一个命题是真命题,要经过证明.
(2)要判断一个命题是假命题,只需举一个反例即可.
10.练习、深化
例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:
面积相等的两个三角形全等。
负数的立方是负数。
对顶角相等。
分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。
11、巩固练习:P4 2、3
板书设计
1.1.1命题
1.什么叫命题?真命题?假命题? 2.命题是由哪两部分构成的?
3.怎样将命题写成“若P,则q”的形式. 4.如何判断真假命题.
教学反思
对简略叙述形式的命题改成“若P,则q”的形式,有的学生在叙述时,语句不够通顺,句子结构不完整,这样会四种命题的书写。对此,在教学中,教师可适当增加一点练习,以帮助学生提高。
1.1.2四种命题 1.1.3四种命题的相互关系
项目
内容
课题
1.1.2四种命题 1.1.3四种命题的相互关系
(1课时)
修改与创新
教学
目标
1.知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.
2.过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.
3.情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.
教学重、
难点
重点:(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系.
难点:(1)命题的否定与否命题的区别; (2)写出原命题的逆命题、否命题和逆否命题;
教学
准备
多媒体课件
教学过程
学生探究过程:
1.复习引入
初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?
2.思考、分析
问题1:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?
(1)若f(x)是正弦函数,则f(x)是周期函数. (2)若f(x)是周期函数,则f(x)是正弦函数.
(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.
3.归纳总结
问题一通过学生分析、讨论可以得到正确结论.紧接结合此例给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题。
4.抽象概括
定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.
让学生举一些互逆命题的例子。
定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.
让学生举一些互否命题的例子。
定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.
让学生举一些互为逆否命题的例子。
小结:
交换原命题的条件和结论,所得的命题就是它的逆命题:
同时否定原命题的条件和结论,所得的命题就是它的否命题;
交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.
强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。
5.四种命题的形式
让学生结合所举例子,思考:
若原命题为“若P,则q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式?
学生通过思考、分析、比较,总结如下:
原命题:若P,则q.则:
逆命题:若q,则P.
否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非p)
逆否命题:若¬q,则¬P.
6.巩固练习
写出下列命题的逆命题、否命题、逆否命题并判断它们的真假:
若一个三角形的两条边相等,则这个三角形的两个角相等;
若一个整数的末位数字是0,则这个整数能被5整除;
若x2=1,则x=1;
若整数a是素数,则是a奇数。
7.思考、分析
结合以上练习思考:原命题的真假与其它三种命题的真假有什么关系?
通过此问,学生将发现:
①原命题为真,它的逆命题不一定为真。
②原命题为真,它的否命题不一定为真。
③原命题为真,它的逆否命题一定为真。
原命题为假时类似。
结合以上练习完成下列表格:
原 命 题
逆 命 题
否 命 题
逆 否 命 题
真
真
假
真
假
真
假
假
由表格学生可以发现:原命题与逆否命题总是具有相同的真假性,逆命题与否命题也总是具有相同的真假性.
由此会引起我们的思考:
一个命题的逆命题、否命题与逆否命题之间是否还存在着一定的关系呢?
让学生结合所做练习分析原命题与它的逆命题、否命题与逆否命题四种命题间的关系.
学生通过分析,将发现四种命题间的关系如下图所示:
8.总结归纳
若P,则q.
若q,则P.
原命题
互 逆
逆命题
互
否
互
为
否
逆
互
否
为
互
逆
否
否命题
逆否命题
互 逆
若¬P,则¬q.
若¬q,则¬P.
由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:
(1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.
由于原命题和它的逆否命题有相同的真假性,所以在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.
9.例题分析
例4: 证明:若p2 + q2 =2,则p + q ≤ 2.
分析:如果直接证明这个命题比较困难,可考虑转化为对它的逆否命题的证明。
将“若p2 + q2 =2,则p + q ≤ 2”视为原命题,要证明原命题为真命题,可以考虑证明它的逆否命题“若p + q >2,则p2 + q2 ≠2”为真命题,从而达到证明原命题为真命题的目的.
证明:若p + q >2,则
p2 + q2 =[(p -q)2+(p +q)2]≥(p +q)2>×22=2
所以p2 + q2≠2.
这表明,原命题的逆否命题为真命题,从而原命题为真命题。
练习巩固:证明:若a2-b2+2a-4b-3≠0,则a-b≠1.
板书设计
1.1.2四种命题 1.1.3四种命题的相互关系
(1)逆命题、否命题与逆否命题的概念;
(2)两个命题互为逆否命题,他们有相同的真假性;
(3)两个命题为互逆命题或互否命题,他们的真假性没有关系;
(4)原命题与它的逆否命题等价;否命题与逆命题等价.
教学反思
本节依次介绍了四种命题,命题“若p,则q”反映了条件p对于条件q的因果关系,为了更深入的掌握p与q的关系,不仅仅要研究原命题,而且还要研究它的各种形变。对于一个一般的数学命题,由于命题的条件和结论可能未清楚地给出,写出其命题就是一个容易混淆的问题,在此,明确的给出条件和结论的命题。
1.2.1充分条件与必要条件
项目
内容
课题
1.2.1充分条件与必要条件
(1课时)
修改与创新
教学
目标
1. 1.知识与技能:正确理解充分不必要条件、必要不充分条件的概念;会判断命题的充分条件、必要条件.
2.过程与方法:通过对充分条件、必要条件的概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力.
3.情感、态度与价值观:通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.
教学重、
难点
重点:充分条件、必要条件的概念.
(解决办法:对这三个概念分别先从实际问题引起概念,再详细讲述概念,最后再应用概念进行论证.)
难点:判断命题的充分条件、必要条件。
教学
准备
多媒体课件
教学过程
学生探究过程:
1.练习与思考
写出下列两个命题的条件和结论,并判断是真命题还是假命题?
(1)若x > a2 + b2,则x > 2ab, (2)若ab = 0,则a = 0.
学生容易得出结论;命题(1)为真命题,命题(2)为假命题.
置疑:对于命题“若p,则q”,有时是真命题,有时是假命题.如何判断其真假的?
答:看p能不能推出q,如果p能推出q,则原命题是真命题,否则就是假命题.
2.给出定义
命题“若p,则q” 为真命题,是指由p经过推理能推出q,也就是说,如果p成立,那么q一定成立.换句话说,只要有条件p就能充分地保证结论q的成立,这时我们称条件p是q成立的充分条件.
一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作:p(q.
定义:如果命题“若p,则q”为真命题,即p ( q,那么我们就说p是q的充分条件;q是p必要条件.
上面的命题(1)为真命题,即
x > a2 + b2 ( x > 2ab,
所以“x > a2 + b2 ”是“x > 2ab”的充分条件,“x > 2ab”是“x > a2 + b2” "的必要条件.
3.例题分析:
例1:下列“若p,则q”形式的命题中,那些命题中的p是q的充分条件?
(1)若x =1,则x2 - 4x + 3 = 0;(2)若f(x)= x,则f(x)为增函数;
(3)若x为无理数,则x2为无理数.
分析:要判断p是否是q的充分条件,就要看p能否推出q.
解略.
例2:下列“若p,则q”形式的命题中,那些命题中的q是p的必要条件?
若x = y,则x2 = y2;
若两个三角形全等,则这两个三角形的面积相等; (3)若a >b,则ac>bc.
分析:要判断q是否是p的必要条件,就要看p能否推出q.
解略.
4、巩固巩固:P12 练习第1、2、3、4题
板书设计
1.2.1充分条件与必要条件
充分、必要的定义.
在“若p,则q”中,若p(q,则p为q的充分条件,q为p的必要条件.
教学反思
学生对于充分条件和必要条件的理解,需要经过一定时间的体会,先给学生对于充分条件和必要条件一个准确的规范表述,及对充分条件和必要条件进行判断的方法及步骤,教学中不急于求成,而在后续的教学中经常借助这些概念表达,阐述和分析数学问题。
1.3.1且 1.3.2或
项目
内容
课题
1.3.1且 1.3.2或
(1课时)
修改与创新
教学
目标
1.知识与技能目标:
掌握逻辑联结词“或、且”的含义
正确应用逻辑联结词“或、且”解决问题
掌握真值表并会应用真值表解决问题
2.过程与方法目标:
在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.
3.情感态度价值观目标:
激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.
教学重、
难点
重点:通过数学实例,了解逻辑联结词“或、且”的含义,使学生能正确地表述相关数学内容。
难点:1、正确理解命题“P∧q”“P∨q”真假的规定和判定.2、简洁、准确地表述命题“P∧q”“P∨q”.
教学
准备
多媒体课件
教学过程
学生探究过程:
1、引入
在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.
在数学中,有时会使用一些联结词,如“且”“或”“非”。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。
为叙述简便,今后常用小写字母p,q,r,s,…表示命题。(注意与上节学习命题的条件p与结论q的区别)
2、思考、分析
问题1:下列各组命题中,三个命题间有什么关系?
(1)①12能被3整除;
②12能被4整除;
③12能被3整除且能被4整除。
(2)①27是7的倍数;
②27是9的倍数;
③27是7的倍数或是9的倍数。
学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词“且”联结得到的新命题,在第(2)组命题中,命题③是由命题①②使用联结词“或”联结得到的新命题,。
问题2:以前我们有没有学习过象这样用联结词“且”或“或”联结的命题呢?你能否举一些例子?
例如:命题p:菱形的对角线相等且菱形的对角线互相平分。
命题q:三条边对应成比例的两个三角形相似或两个角相等的两个三角形相似。
3、归纳定义
一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作
p∧q
读作“p且q”。
一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”。
命题“p∧q”与命题“p∨q”即,命题“p且q”与命题“p或q”中的“且”字与“或” 字与下面两个命题中的“且” 字与“或” 字的含义相同吗?
(1)若 x∈A且x∈B,则x∈A∩B。
(2)若 x∈A或x∈B,则x∈A∪B。
定义中的“且”字与“或” 字与两个命题中的“且” 字与“或” 字的含义是类似。但这里的逻辑联结词“且”与日常语言中的“和”,“并且”,“以及”,“既…又…”等相当,表明前后两者同时兼有,同时满足, 逻辑联结词“或”与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.
说明:符号“∧”与“∩”开口都是向下,符号“∨”与“∪”开口都是向上。
注意:“p或q”,“p且q”,命题中的“p”、“q”是两个命题,而原命题,逆命题,否命题,逆否命题中的“p”,“q”是一个命题的条件和结论两个部分.
4、命题“p∧q”与命题“p∨q”的真假的规定
你能确定命题“p∧q”与命题“p∨q”的真假吗?命题“p∧q”与命题“p∨q”的真假和命题p,q的真假之间有什么联系?
引导学生分析前面所举例子中命题p,q以及命题p∧q的真假性,概括出这三个命题的真假之间的关系的一般规律。
例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。
第(2)组命题中,①是假命题,②是真命题,但命题③是真命题。
p
q
p∧q
真
真
真
真
假
假
假
真
假
假
假
假
p
q
p∨q
真
真
真
真
假
真
假
真
真
假
假
假
(即一假则假) (即一真则真)
一般地,我们规定:
当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题;当p,q两个命题中有一个是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题。
5、例题
例1:将下列命题分别用“且”与“或” 联结成新命题 “p∧q” 与“p∨q”的形式,并判断它们的真假。
(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。
(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;
(3)p:35是15的倍数, q:35是7的倍数.
解:(1)p∧q:平行四边形的对角线互相平分且平行四边形的对角线相等.也可简写成
平行四边形的对角线互相平分且相等.
p∨q: 平行四边形的对角线互相平分或平行四边形的对角线相等. 也可简写成
平行四边形的对角线互相平分或相等.
由于p是真命题,且q也是真命题,所以p∧q是真命题, p∨q也是真命题.
(2)p∧q:菱形的对角线互相垂直且菱形的对角线互相平分. 也可简写成
菱形的对角线互相垂直且平分.
p∨q: 菱形的对角线互相垂直或菱形的对角线互相平分. 也可简写成
菱形的对角线互相垂直或平分.
由于p是真命题,且q也是真命题,所以p∧q是真命题, p∨q也是真命题.
(3)p∧q:35是15的倍数且35是7的倍数. 也可简写成
35是15的倍数且是7的倍数.
p∨q: 35是15的倍数或35是7的倍数. 也可简写成
35是15的倍数或是7的倍数.
由于p是假命题, q是真命题,所以p∧q是假命题, p∨q是真命题.
说明,在用"且"或"或"联结新命题时,如果简写,应注意保持命题的意思不变.
例2:选择适当的逻辑联结词“且”或“或”改写下列命题,并判断它们的真假。
(1)1既是奇数,又是素数;
(2)2是素数且3是素数;
(3)2≤2.
解略.
例3、判断下列命题的真假;
(1)6是自然数且是偶数
(2)(是A的子集且是A的真子集;
(3)集合A是A∩B的子集或是A∪B的子集;
(4)周长相等的两个三角形全等或面积相等的两个三角形全等.解略.
6.巩固练习 :P20 练习第1 , 2题
板书设计
1.3.1且 1.3.2或
掌握逻辑联结词“或、且”的含义
正确应用逻辑联结词“或、且”解决问题
掌握真值表并会应用真值表解决问题
p
q
P∧q
P∨q
真
真
真
真
真
假
假
真
假
真
假
真
假
假
假
假
教学反思
引导学生从前面学习的“充分条件”和“必要条件”出发,对新知有所认识。结合学生熟知的原命题与逆命题真假的判断归纳出新知识的特点,同时在应用新知的过程中,将所学的知识条理化,体会数学的严谨性,提高思维的深刻性,培养良好的思维品质。
1.3.1且 1.3.2或
项目
内容
课题
1.3.1且 1.3.2或
(1课时)
修改与创新
教学
目标
1.知识与技能目标:
掌握逻辑联结词“或、且”的含义
正确应用逻辑联结词“或、且”解决问题
掌握真值表并会应用真值表解决问题
2.过程与方法目标:
在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.
3.情感态度价值观目标:
激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.
教学重、
难点
重点:通过数学实例,了解逻辑联结词“或、且”的含义,使学生能正确地表述相关数学内容。
难点:1、正确理解命题“P∧q”“P∨q”真假的规定和判定.2、简洁、准确地表述命题“P∧q”“P∨q”.
教学
准备
多媒体课件
教学过程
学生探究过程:
1、引入
在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.
在数学中,有时会使用一些联结词,如“且”“或”“非”。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。
为叙述简便,今后常用小写字母p,q,r,s,…表示命题。(注意与上节学习命题的条件p与结论q的区别)
2、思考、分析
问题1:下列各组命题中,三个命题间有什么关系?
(1)①12能被3整除;
②12能被4整除;
③12能被3整除且能被4整除。
(2)①27是7的倍数;
②27是9的倍数;
③27是7的倍数或是9的倍数。
学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词“且”联结得到的新命题,在第(2)组命题中,命题③是由命题①②使用联结词“或”联结得到的新命题,。
问题2:以前我们有没有学习过象这样用联结词“且”或“或”联结的命题呢?你能否举一些例子?
例如:命题p:菱形的对角线相等且菱形的对角线互相平分。
命题q:三条边对应成比例的两个三角形相似或两个角相等的两个三角形相似。
3、归纳定义
一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作
p∧q
读作“p且q”。
一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”。
命题“p∧q”与命题“p∨q”即,命题“p且q”与命题“p或q”中的“且”字与“或” 字与下面两个命题中的“且” 字与“或” 字的含义相同吗?
(1)若 x∈A且x∈B,则x∈A∩B。
(2)若 x∈A或x∈B,则x∈A∪B。
定义中的“且”字与“或” 字与两个命题中的“且” 字与“或” 字的含义是类似。但这里的逻辑联结词“且”与日常语言中的“和”,“并且”,“以及”,“既…又…”等相当,表明前后两者同时兼有,同时满足, 逻辑联结词“或”与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.
说明:符号“∧”与“∩”开口都是向下,符号“∨”与“∪”开口都是向上。
注意: “p或q”,“p且q”,命题中的“p”、“q”是两个命题,而原命题,逆命题,否命题,逆否命题中的“p”,“q”是一个命题的条件和结论两个部分.
4、命题“p∧q”与命题“p∨q”的真假的规定
你能确定命题“p∧q”与命题“p∨q”的真假吗?命题“p∧q”与命题“p∨q”的真假和命题p,q的真假之间有什么联系?
引导学生分析前面所举例子中命题p,q以及命题p∧q的真假性,概括出这三个命题的真假之间的关系的一般规律。
例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。
第(2)组命题中,①是假命题,②是真命题,但命题③是真命题。
p
q
p∧q
真
真
真
真
假
假
假
真
假
假
假
假
p
q
p∨q
真
真
真
真
假
真
假
真
真
假
假
假
(即一假则假) (即一真则真)
一般地,我们规定:
当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题;当p,q两个命题中有一个是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题。
5、例题
例1:将下列命题分别用“且”与“或” 联结成新命题“p∧q” 与“p∨q”的形式,并判断它们的真假。
(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。
(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;
(3)p:35是15的倍数,q:35是7的倍数.
解:(1)p∧q:平行四边形的对角线互相平分且平行四边形的对角线相等.也可简写成
平行四边形的对角线互相平分且相等.
p∨q: 平行四边形的对角线互相平分或平行四边形的对角线相等. 也可简写成
平行四边形的对角线互相平分或相等.
由于p是真命题,且q也是真命题,所以p∧q是真命题, p∨q也是真命题.
(2)p∧q:菱形的对角线互相垂直且菱形的对角线互相平分. 也可简写成
菱形的对角线互相垂直且平分.
p∨q: 菱形的对角线互相垂直或菱形的对角线互相平分. 也可简写成
菱形的对角线互相垂直或平分.
由于p是真命题,且q也是真命题,所以p∧q是真命题, p∨q也是真命题.
(3)p∧q:35是15的倍数且35是7的倍数. 也可简写成
35是15的倍数且是7的倍数.
p∨q: 35是15的倍数或35是7的倍数. 也可简写成
35是15的倍数或是7的倍数.
由于p是假命题, q是真命题,所以p∧q是假命题, p∨q是真命题.
说明,在用"且"或"或"联结新命题时,如果简写,应注意保持命题的意思不变.
例2:选择适当的逻辑联结词“且”或“或”改写下列命题,并判断它们的真假。
(1)1既是奇数,又是素数;
(2)2是素数且3是素数;
(3)2≤2.
解略.
例3、判断下列命题的真假;
(1)6是自然数且是偶数
(2)(是A的子集且是A的真子集;
(3)集合A是A∩B的子集或是A∪B的子集;
(4)周长相等的两个三角形全等或面积相等的两个三角形全等.解略.
6.巩固练习 :P20 练习第1 , 2题
板书设计
1.3.1且 1.3.2或
逻辑联结词“或、且”的含义
应用逻辑联结词“或、且”解决问题
真值表并会应用真值表解决问题
p
q
P∧q
P∨q
真
真
真
真
真
假
假
真
假
真
假
真
假
假
假
假
教学反思
本节帮助学生正确使用常用逻辑用语,更好地理解数学内容中的逻辑关系,体会逻辑用语在表达和论述中的作用,利用这些逻辑用语准确地表达数学内容。本节学习“且”,“或”两个逻辑用语,掌握用这两个联结词组成的真假的判断。
1.3.3非
项目
内容
课题
1.3.3非
(1课时)
修改与创新
教学
目标
1.知识与技能目标:
(1)掌握逻辑联结词“非”的含义 (2)正确应用逻辑联结词“非”解决问题
(3)掌握真值表并会应用真值表解决问题
2.过程与方法目标:
观察和思考中,在解题和证明题中,本节课要特别注重学生思维能力中严密性品质的培养.
3.情感态度价值目标:
激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神
教学重、
难点
重点:通过数学实例,了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容.
难点: 1、正确理解命题 “¬P”真假的规定和判定.2、简洁、准确地表述命题 “¬P”.
教学
准备
多媒体课件
教学过程
生探究过程:1、思考、分析
问题1:下列各组命题中的两个命题间有什么关系?
(1)①35能被5整除; ②35不能被5整除;
(2) ①方程x2+x+1=0有实数根。 ②方程x2+x+1=0无实数根。
学生很容易看到,在每组命题中,命题②是命题①的否定。
2、归纳定义
一般地,对一个命题p全盘否定,就得到一个新命题,记作
¬p
读作“非p”或“p的否定”。
3、命题“¬p”与命题p的真假间的关系
命题“¬p”与命题p的真假之间有什么联系?
引导学生分析前面所举例子中命题p与命题¬p的真假性,概括出这两个命题的真假之间的关系的一般规律。
例如:在上面的例子中,第(1)组命题中,命题①是真命题,而命题②是假命题。
第(2)组命题中,命题①是假命题,而命题②是真命题。
由此可以看出,既然命题¬P是命题P的否定,那么¬P与P不能同时为真命题,也不能同时为假命题,也就是说,
若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题;
p
¬P
真
假
假
真
4、命题的否定与否命题的区别
让学生思考:命题的否定与原命题的否命题有什么区别?
命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定,因此在解题时应分请命题的条件和结论。
例:如果命题p:5是15的约数,那么
命题¬p:5不是15的约数;
p的否命题:若一个数不是5,则这个数不是15的约数。
显然,命题p为真命题,而命题p的否定¬p与否命题均为假命题。
5.例题分析
例1? 写出下表中各给定语的否定语。
若给定语为
等于
大于
是
都是
至多有一个
至少有一个
其否定语分别为
?
?
?
?
?
?
分析:“等于”的否定语是“不等于”; ??? “大于”的否定语是“小于或者等于”; ??? “是”的否定语是“不是”; ??? “都是”的否定语是“不都是”; ??? “至多有一个”的否定语是“至少有两个”; ??? “至少有一个”的否定语是“一个都没有”;
例2:写出下列命题的否定,判断下列命题的真假
(1)p:y = sinx 是周期函数;
(2)p:3<2;
(3)p:空集是集合A的子集。
解略.
6.巩固练习:P20 练习第3题
板书设计
1.3.2 非
(1)正确理解命题 “¬P”真假的规定和判定.
(2)简洁、准确地表述命题 “¬P”.
教学反思
本节以问题驱动为指导,通过不断地提出问题,研究问题,解决问题,使学生获得知识,完成教学。学生在初中学习了简单的问题,由此出发,本节给出还有“非”的复合命题的概念,然后借助真值表,判断真假。同时需强调命题的否定和否命题的区别。
1.4.1全称量词1.4.2存在量词
项目
内容
课题
1.4.1全称量词1.4.2存在量词
(1课时)
修改与创新
教学
目标
1.知识与技能目标
(1)通过生活和数学中的丰富实例理解全称量词与存在量词的含义,熟悉常见的全称量词和存在量词.
(2)了解含有量词的全称命题和特称命题的含义,并能用数学符号表示含有量词的命题及
判断其命题的真假性.
2.过程与方法目标 使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力.
3.情感态度价值观
通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.
教学重、
难点
重点:理解全称量词与存在量词的意义
难点: 全称命题和特称命题真假的判定.
教学
准备
多媒体课件
教学过程
学生探究过程:1.思考、分析
下列语句是命题吗?假如是命题你能判断它的真假吗?
(1)2x+1是整数;
(2) x>3;
(3) 如果两个三角形全等,那么它们的对应边相等;
(4)平行于同一条直线的两条直线互相平行;
(5)海师附中今年所有高中一年级的学生数学课本都是采用人民教育出版社A版的教科书;
(6)所有有中国国籍的人都是黄种人;
(7)对所有的x∈R, x>3;
(8)对任意一个x∈Z,2x+1是整数。
推理、判断
(让学生自己表述)
(1)、(2)不能判断真假,不是命题。
(3)、(4)是命题且是真命题。
(5)-(8)如果是假,我们只要举出一个反例就行。
注:对于(5)-(8)最好是引导学生将反例用命题的形式写出来。因为这些命题的反例涉及到“存在量词”“特称命题”“全称命题的否定”这些后续内容。
(5)的真假就看命题:海师附中今年存在个别(部分)高一学生数学课本不是采用人民教育出版社A版的教科书;这个命题的真假,该命题为真,所以命题(5)为假;
命题(6)是假命题.事实上,存在一个(个别、部分)有中国国籍的人不是黄种人.
命题(7)是假命题.事实上,存在一个(个别、某些)实数(如x=2), x<3.
(至少有一个x∈R, x≤3)
命题(8)是真命题。事实上不存在某个x∈Z,使2x+1不是整数。也可以说命题:存在某个x∈Z使2x+1不是整数,是假命题.
3.发现、归纳
命题(5)-(8)跟命题(3)、(4)有些不同,它们用到 “所有的”“任意一个” 这样的词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做全称量词,用符号“(”表示,含有全称量词的命题,叫做全称命题。命题(5)-(8)都是全称命题。
通常将含有变量x的语句用p(x),q(x),r(x),……表示,变量x的取值范围用M表示。那么全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:(x(M, p(x),读做“对任意x属于M,有p(x)成立”。
刚才在判断命题(5)-(8)的真假的时候,我们还得出这样一些命题:
(5),存在个别高一学生数学课本不是采用人民教育出版社A版的教科书;
(6),存在一个(个别、部分)有中国国籍的人不是黄种人.
(7), 存在一个(个别、某些)实数x(如x=2),使x≤3.(至少有一个x∈R, x≤3)
(8),不存在某个x∈Z使2x+1不是整数.
这些命题用到了“存在一个”“至少有一个”这样的词语,这些词语都是表示整体的一部分的词叫做存在量词。并用符号“”表示。含有存在量词的命题叫做特称命题(或存在命题)命题(5),-(8),都是特称命题(存在命题).
特称命题:“存在M中一个x,使p(x)成立”可以用符号简记为:。读做“存在一个x属于M,使p(x)成立”.
全称量词相当于日常语言中“凡”,“所有”,“一切”,“任意一个”等;存在量词相当于日常语言中“存在一个”,“有一个”,“有些”,“至少有一个”,“ 至多有一个”等.
4.巩固练习
(1)下列全称命题中,真命题是:
A. 所有的素数是奇数; B. ;
C. D.
(2)下列特称命题中,假命题是:
A.
B.至少有一个能被2和3整除
C. 存在两个相交平面垂直于同一直线 D.x2是有理数.
(3)已知:对恒成立,则a的取值范围是 ;
变式:已知:对恒成立,则a的取值范围是 ;
(4)求函数的值域;
变式:已知:对方程有解,求a的取值范围.
板书设计
1.4.1全称量词1.4.2存在量词
1.全称量词与全称命题的含义 例:
2.存在量词和特称命题的含义
例:
教学反思
全称量词和存在量词这节内容旨在使学生认识这两类在现实生活中广泛使用的量词,会判断含有量词的全称命题或特称命题的真假,从而为我们从量的形式和范围上认识和解决问题提供新的思路与方法。
1.4.3含有一个量词的命题的否定
项目
内容
课题
1.4.3含有一个量词的命题的否定
(1课时)
修改与创新
教学
目标
1.知识与技能目标
(1)通过探究数学中一些实例,使学生归纳总结出含有一个量词的命题与它们的否定在形式上的变化规律.
(2)通过例题和习题的教学,使学生能够根据含有一个量词的命题与它们的否定在形式上的变化规律,正确地对含有一个量词的命题进行否定.
2.过程与方法目标 :使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力.
3.情感态度价值观
通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.
教学重、
难点
教学重点:通过探究,了解含有一个量词的命题与它们的否定在形式上的变化规律,会正确地对含有一个量词的命题进行否定.
教学难点:正确地对含有一个量词的命题进行否定.
教学
准备
多媒体课件
教学过程
学生探究过程:1.回顾
我们在上一节中学习过逻辑联结词“非”.对给定的命题p ,如何得到命题p 的否定(或非p ),它们的真假性之间有何联系?
2.思考、分析
判断下列命题是全称命题还是特称命题,你能写出下列命题的否定吗?
(1)所有的矩形都是平行四边形;
(2)每一个素数都是奇数;
(3)(x∈R, x2-2x+1≥0。
(4)有些实数的绝对值是正数;
(5)某些平行四边形是菱形;
(6)( x∈R, x2+1<0。
3.推理、判断
你能发现这些命题和它们的否定在形式上有什么变化?(让学生自己表述)
前三个命题都是全称命题,即具有形式“”。
其中命题(1)的否定是“并非所有的矩形都是平行四边形”,也就是说,
存在一个矩形不都是平行四边形;
命题(2)的否定是“并非每一个素数都是奇数;”,也就是说,
存在一个素数不是奇数;
命题(3)的否定是“并非(x∈R, x2-2x+1≥0”,也就是说,
(x∈R, x2-2x+1<0;
后三个命题都是特称命题,即具有形式“”。
其中命题(4)的否定是“不存在一个实数,它的绝对值是正数”,也就是说,
所有实数的绝对值都不是正数;
命题(5)的否定是“没有一个平行四边形是菱形”,也就是说,
每一个平行四边形都不是菱形;
命题(6)的否定是“不存在x∈R, x2+1<0”,也就是说,
(x∈R, x2+1≥0;
4.发现、归纳
从命题的形式上看,前三个全称命题的否定都变成了特称命题。后三个特称命题的否定都变成了全称命题。
一般地,对于含有一个量词的全称命题的否定,有下面的结论:
全称命题P:
它的否定¬P
特称命题P:
它的否定¬P:
(x∈M,¬P(x)
全称命题和否定是特称命题。特称命题的否定是全称命题。
5.巩固练习
判断下列命题是全称命题还是特称命题,并写出它们的否定:
p:所有能被3整除的整数都是奇数;
p:每一个四边形的四个顶点共圆;
p:对(x∈Z,x2个位数字不等于3;
p:( x∈R, x2+2x+2≤0;
p:有的三角形是等边三角形;
p:有一个素数含三个正因数。
板书设计
1.4.3含有一个量词的命题的否定
全称命题P:
它的否定¬P
特称命题P:
它的否定¬P:
(x∈M,¬P(x)
教学反思
本节内容重在让学生通过数学中的一些实例,探索并归纳出含有一个量词的命题与他们的否定在形式上的变化规律,并在教师引导下,让学生根据全称量词和存在量词的含义,用简洁,自然地语言表达还有一个量词的命题的否定。