课件20张PPT。第十二章 全等三角形12.2 全等三角形的判定第2课时 利用两边夹角判定
三角形全等1课堂讲解判定两三角形全等的基本事实:边角边
全等三角形判定“边角边”的简单应用2课时流程逐点
导讲练课堂小结作业提升1知识点判定两三角形全等的基本事实:“边角边”知1-导探究
先任意画出一个△ABC.再画出一个△A′B′C′,
使A′B′=AB, A′C′=AC, ∠A′=∠A (即两边和它
们的夹角分别相等),把画好的△A′B′C′剪下来,
放到△ABC上,它们全等吗?知1-导现象:两个三角形放在一起
能完全重合.
说明:这两个三角形全等.画法:
(1)画∠DA′E =∠A;
(2)在射线A′D上截取
A′B′=AB,在射线
A′E上截取A′C′=AC;
(3)连接B′C′.知1-导1.判定方法二:两边和它们的夹角分别相等的两个三
角形全等(简写成“边角边”或“SAS”).
2. 几何语言:在△ABC和△A′B′C′中,
AB=A′B′,
∠ABC=∠A′B′C′,
BC=B′C′,
∴△ABC≌△A′B′C′.∵例1 已知:如图,AC=AD,∠CAB=∠DAB,
求证:△ACB≌△ADB.
知1-讲AC=AD(已知),∠CAB=∠DAB(已知),
AB=AB(公共边),
∴△ACB≌△ADB(SAS). 证明:在△ACB和△ADB中,如图,a,b,c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是( ) 知1-练B(中考?莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的( )
A.AB=CD B.EC=BF
C.∠A=∠D D.AB=BC知1-练 A (中考?贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是( )
A.∠A=∠C B.∠D=∠B
C.AD∥BC D.DF∥BE知1-练 B如图,两车从南北方向的路段AB的A端出发,分
别向东、向西行进相同的距离, 到达C,D两地,
此时C,D到B的距离相等吗?为什么?
知1-练知1-练AB=AB(公共边),∠BAC=∠BAD,
D A=CA,
∴△DAB≌△CAB(SAS).证明:因为在△DAB和△CAB中相等.∴ DB=CB.
∴ C,D到B的距离相等.2知识点全等三角形判定“边角边”的简单应用知2-讲问题 某同学不小心把一块三角形的玻璃从两个顶
点处打碎成两块(如图),现要到玻璃店去配一块完 全
一样的玻璃.请问如果只准带一块碎片,应该带哪一
块去,能试着说明理由吗?知2-讲 利用今天所学“边角边”知识,带黑色的那
块.因为它完整地保留了两边及其夹角,一个三
角形两条边的长度和夹角的大小确定了,这个三
角形的形状、大小就确定下来了.知2-讲 例2 如图,有一池塘,要测池塘两端A,B的距离,可先
在平地上取一个点C,从 点C不经过池塘可以
直接到达点A和B. 连接AC 并延长到点D,使
CD=CA.连接BC并延长到点 E,使CE=CB.连接DE,
那么量出的长就 是A,
B的距离.为什么?知2-讲分析:如果能证明△ABC≌△DEC ,就可以 得出
AB=DE.由题意可知,△ABC和△DEC 具备
“边角边”的条件.
证明:在△ABC和△DEC中,
CA=CD,
∠1=∠2,
CB=CE,
∴ △ABC≌△DEC(SAS).
∴ AB=DE.知2-讲 因为全等三角形的对应边相等,对应角相等,
所以证明线 段相等或者角相等时,常常通过证明它
们是全等三角形的对应边或对应角来解决.1 如图,AA′,BB′表示两根长度相同的木条,若O是
AA′,BB′的中点,经测量AB=9 cm,则容器的内
径A′B′为( )
A.8 cm B.9 cm C.10 cm D.11 cm
知2-练B知2-练2 (中考?云南)如图,在△ABC和△ABD中,AC与
BD相交于点E,AD=BC,∠DAB=∠CBA.求证:
AC=BD.知2-练AD=BC,∠DAB=∠CBA,
AB=BA
∴△BAD≌△ABC(SAS),证明:在△ABC和△BAD中,∴AC=BD.(1) 本节课学习了哪些主要内容?
(2) 我们是怎么探究出“SAS”判定方法的?用
“SAS”判定三角形全等应注意什么问题?
(3) 到现在为止,你学到了几种证明两个三角形
全等的方法?利用两边夹角判定三角形全等
【学习目标】1、理解三角形全等“边角边”的内容.
2、会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.
3、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过 程.
【重 点】掌握一般三角形全等的判定方法SAS
【难 点】运用全等三角形的判定方法解决证明线段或角相等的问题
一,学前准备
1. 回顾判定三角形全等的方法”SSS”
二,探究活动
活动1:探索三角形全等的条件
1、如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?
从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.
2、上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:
(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.
(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?
总结得出: 相等的两个三角形全等(简称“边角边”或“SAS”)
活动2 :(全等三角形判定的简单应用)
如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.
(提示:要证明两个三角形全等,已具有两个条件,一是
AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)
证明:
如图,已知AB=AC,AD=AE,∠1=∠2.
求证:△ABD≌ACE.(完成后小组交流展示,比比书写过程谁写得好)
课堂练习
已知:如图,AB=AC,F、E分别是AB、AC的中点.
求证:△ABE≌△ACF.
2、已知:点A、F、E、C在同一条直线上, AF=CE,
BE∥DF,BE=DF.
求证:AB∥CD
3、思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”
画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出
这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?
利用两边夹角判定三角形全等
【知识与技能】
掌握证明三角形全等的“边角边”定理.
【过程与方法】
1.经历探索三角形全等条件的过程,培养学生观察,分析图形的能力及动手能力.
2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.
【情感态度】
通过对问题的共同探讨,培养学生的协作精神.
【教学重点】
应用“边角边”证明两个三角形全等,进而得出线段或角相等.
【教学难点】
指导学生分析问题,寻找判定三角形全等的条件.
一、情境导入,初步认识
问题1 教材探究3:已知任意△ABC,画△A′B′C′,使AB=A′B′,A′C′=AC,∠A′=∠A.
【教学说明】要求学生规范地用作图工具画图,纠正学生的错误做法,并让学生剪出画好的△ABC,△A′B′C′,把它们放在一起,观察出现的结果,引导学生间交流结论.教师讲课前,先让学生完成“自主预习”.
问题2 请各学习小组间交流,并总结出规律.
二、思考探究,获取新知
根据学生交流情况,教师作出如下归纳总结.
1.两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.
2.其中的角必须是两条相等的对应边的夹角,边必须是夹相等角的两条对应边.
例1 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?
【教学说明】让学生思考后,书写推理过程,教师引导分析.
要想证AB=DE,只需要证△ABC≌△DEC.而证这两个三角形全等,已有条件 ,还需条件 .
证明:在△ABC和△DEC中,
∴△ABC≌△DEC(SAS).∴AB=DE.
【归纳结论】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来得到答案.
例2 如图,已知AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.
【教学说明】由学生依题意寻找条件,涉及三角形边的条件有AB=AC,AD=AE,但∠BAC=∠DAE只是对应边夹角的一部分,怎么办?以此引导学生思考,理清解题思路.
证明:∵∠BAC=∠DAE(已知),
∴∠BAC+CAD=∠DAE+CAD,
即∠BAD=∠CAE.
在△ABD与△ACE中,
AB=AC(已知),
∠BAD=∠CAE(已证),
AD=AE(已知),
∴△ABD≌△ACE.
【归纳结论】用来证明三角形全等的边、角条件,必须是这两个三角形的边、角,而不是其中的一部分,如∠BAC=∠DAE不能直接用于证△ABD与△ACE的全等.
三、运用新知,深化理解
1.如图,已知∠1=∠2,如果用SAS证明△ABC≌△BAD,还需要添加的条件是.
2.如图,已知OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).
A.60° B.50° C.45° D.30°
3.如图,已知AB∥DE,AB=DE,BE=CF,如果∠B=50°,∠A=70°,则∠F=( ).
A.70° B.65° C.60° D.55°
4.如图,点B,D,C,F在一条直线上,且BC=FD,AB=EF.
(1)请你添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是 .(2)添加了条件后,证明△ABC≌△EFD.
5.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.
(1)求证:△ACD≌△BCE.
(2)若∠D=50°,求∠B的度数.
【教学说明】引导学生应用“SAS”解答上述习题,巩固对“SAS”的认识和提升应用能力.可让学生在黑板上写出4,5题的过程,强化学生书写证明过程的能力.
在完成上述习题的解答后,请学生探究:“两边及其中一边的对角对应相等的两个三角形是否全等?”,指导学生画图分析、共同讨论,形成结论.
教师出示下列材料帮助学生探究:
如图,在△ABC和△ABD中,∠B=∠B,AB=AB,AC=AD,由图可知,△ABC与△ABD并不全等.
完成上述题目后,引导学生做本课时创优作业“课堂自主演练”中的题.
【答案】1.AC=BD 2.A 3.C
4.(1)∠B=∠F或AB∥EF或AC=ED.
(2)当∠B=∠F时,在△ABC和△EFD中,
AB=EF,
∠B=∠F,
BC=FD,
∴△ABC≌△EFD(SAS).其它证明略.
5.(1)∵点C是线段AB的中点,∴AC=BC,
又∵CD平分∠ACE,CE平分∠BCD,
∴∠1=∠2,∠2=∠3,∴∠1=∠3.
在△ACD和△BCE中,
CD=CE,
∠1=∠3,
AC=BC,
∴△ACD≌△BCE(SAS).
(2)∵∠1+∠2+∠3=180,∴∠1=∠2=∠3=60.
∵△ACD≌△BCE,∴∠E=∠D=50°.∴∠B=180°-∠E-∠3=70°.
四、师生互动,课堂小结
先归纳“SAS”,并强调:“两边及其中一边的对角对应相等的两个三角形不一定全等”.
再提出问题供同学思考,交流,探讨.
1.判定三角形全等的方法有哪些?
2.证明线段相等,角相等的常见方法有哪些?
1.布置作业:从教材“习题12.2”中选取.
2.完成练习册中本课时的练习.
本节课的引入,可采用探究的方式,引导学生通过操作、观察、探索、交流、发现思索的过程,得出判定三角形全等的“SAS”条件,同时利用一个联系生活实际的问题——测量池塘两端的距离,对得到的知识加以运用,最后再通过实际图形让学生认识到“两边及其中一边的对角对应相等”的条件不能判定两个三角形全等.
利用两边夹角判定三角形全等
【学习目标】1、理解三角形全等“边角边”的内容.
2、会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.
3、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过 程.
【重 点】掌握一般三角形全等的判定方法SAS
【难 点】运用全等三角形的判定方法解决证明线段或角相等的问题
一,学前准备
1. 回顾判定三角形全等的方法”SSS”
二,探究活动
活动1:探索三角形全等的条件
1、如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?
从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.
2、上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:
(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.
(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?
总结得出: 相等的两个三角形全等(简称“边角边”或“SAS”)
活动2 :(全等三角形判定的简单应用)
如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.
(提示:要证明两个三角形全等,已具有两个条件,一是
AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)
证明:
如图,已知AB=AC,AD=AE,∠1=∠2.
求证:△ABD≌ACE.(完成后小组交流展示,比比书写过程谁写得好)
课堂练习
已知:如图,AB=AC,F、E分别是AB、AC的中点.
求证:△ABE≌△ACF.
2、已知:点A、F、E、C在同一条直线上, AF=CE,
BE∥DF,BE=DF.
求证:AB∥CD
3、思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”
画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出
这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?
利用两边夹角判定三角形全等
一、教材分析
(一) 本节内容在教材中的地位与作用。
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。
(二) 教学目标
在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:
(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。
(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。
(3)培养学生勇于探索、团结协作的精神。
(三) 教材重难点
由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。
二、教法选择与学法指导
本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
三、教学流程
(一)创设情景,激发求知欲望
首先,我出示一个实际问题:
问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢??? 然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以和毛毛一起来攻克这个难题呢?
这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。
(二)引导活动,揭示知识产生过程
数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。
活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。
活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。
活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。
教师提出3个角不能判定两三角形全等,实质我们已经讨论过了。明确今天的任务:讨论两条边一个角是否可以判定两三角形全等。师生再共同探讨两边一角又分为两边一夹角与两边一对角两种情况。
活动三:讨论第一种情况:各小组每人用一张长方形纸剪一个直角三角形(只用直尺和剪刀),怎样才能使各小组内部剪下的直角三角形都全等呢?主要是让学生体验研究问题通常可以先从特殊情况考虑,再延伸到一般情况。
活动四:出示课本上的3幅图,让学生通过观察、进行猜想,再测量或剪下来验证。并说说全等的图形之间有什么共同点。
活动五:小组竞赛:每人画一个三角形,其中一个角是30°,有两条边分别是7cm、5cm,看哪组先完成,并且小组内是全等的。这样既调动了学生的积极性,又便于发现边角边的识别方法。
最后教师再用几何画板演示,学生进行观察、比较后,师生共同分析、归纳出“边角边”这一识别方法。
若有小组画成边边角的形式,则顺势引出下面的探究活动。否则提出:若两个三角形有两条边及其中一边的对角对应相等,则这两个三角形一定全等吗?
活动六:在给出的画有 的图上,让学生自主探究(其中另一条边为5cm),看画出的三角形是否一定全等。让学生在给出的图上研究是为了减小探索的麻木性。
教师用几何画板演示,让学生在辨析中再次认识边角边。同时完成课后练习第一题。
(三)例题教学,发挥示范功能
例题教学是课堂教学的一个重要环节,因此,如何充分地发挥好例题的教学功能是十分重要的。为此,我将充分利用好这道例题,培养学生有条理的说理能力,同时,通过对例题的变式与引伸培养学生发散思维能力。http://www.dakao8.com/
首先,我将出示课本例1,并设计下列系列问题,让学生一步一步地走向“知识获得与应用”的理想彼岸。
问题1: 请说说本例已知了哪些条件,还差一个什么条件,怎么办?(让学生学会找隐含条件)。
问题2: 你能用“因为??根据??所以??”的表达形式说说本题的说理过程吗?
问题3: △ADC可以看成是由△ABC经过怎样的图形变换得到的?
在探索完上述3个问题的基础上,对例题作如下的变式与引伸:
△ABC与△ADC全等了,你又能得到哪些结论?连接BD交AC于O,你能说明△BOC与△DOC全等吗?若全等,你又能得到哪些结论?
这样设计的目的在于体现“数学教学不仅仅是数学知识的教学,更重要的发展学生数学思维的教学”这一思想。
在例题教学的基础上,为了及时的反馈教学效果,也为提高学生知识应用的水平,达到及时巩固的目的,我设计了如下两个练习:
(1) 基础知识应用。完成教材P139练一练2。
(2) 已知如图:,请你添加一些适当的条件,再根据SAS的识别方法说明两个三角形全等。对学生进行逆向思维训练,同时让学生发现对顶角这一隐含条件。
(四)课堂小结,建立知识体系。
(1)本节课你有哪些收获:重点是将研究问题的方法进行一次梳理,对边角边的识别方法进行一次回顾。
(2)你还有哪些疑问?