2017-2018高一数学人教A版必修2教案:第2章第1节空间点、直线、平面之间的位置关系

文档属性

名称 2017-2018高一数学人教A版必修2教案:第2章第1节空间点、直线、平面之间的位置关系
格式 zip
文件大小 1.8MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2017-09-19 21:22:30

文档简介

20167208高一数学人教
A版必修2教案:2.1.4+平面与平面之间的位置关系
课题
2.1.4
平面与平面之间的位置关系(1课时)
修改与创新
教学目标
1.结合图形正确理解空间中平面与平面之间的位置关系.2.进一步熟悉文字语言、图形语言、符号语言的相互转换.3.培养学生全面思考问题的能力.
教学重、难点
平面与平面的相交和平行.
教学准备
多媒体课件
教学过程
复习1.直线与直线的位置关系:相交、平行、异面.2.直线与平面的位置关系:①直线在平面内——有无数个公共点,②直线与平面相交——有且只有一个公共点,③直线与平面平行——没有公共点.导入新课观察长方体(图1),围成长方体ABCD—A′B′C′D′的六个面,两两之间的位置关系有几种?
( http: / / www.21cnjy.com )图1提出问题①什么叫做两个平面平行?②两个平面平行的画法.③回忆两个平面相交的依据.④什么叫做两个平面相交 ⑤用三种语言描述平面与平面之间的位置关系.活动:先让学生思考,后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.问题①引导学生回忆直线与平面平行的定义.问题②怎样体现两个平面平行的特点.问题③两个平面有一个公共点,两平面是否相交.问题④回忆公理三.问题⑤鼓励学生自我训练.讨论结果:①两个平面平行——没有公共点.②画两个互相平行的平面时,要注意使表示平面的平行四边形的对应边平行,如图2.
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )图2
图3③如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图3,用符号语言表示为:P∈α且P∈βα∩β=l,且P∈l.④两个平面相交——有一条公共直线.⑤如果两个平面没有公共点,则两平面平行若α∩β=
( http: / / www.21cnjy.com ),则α∥β.如果两个平面有一条公共直线,则两平面相交若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图4.
( http: / / www.21cnjy.com )图4应用示例例1
已知平面α,β,直线a,b,且α∥β,aα,bβ,则直线a与直线b具有怎样的位置关系 活动:学生自己思考或讨论,再写出正确的答案.教师在学生中巡视,发现问题及时纠正,并及时评价.解:如图5,直线a与直线b的位置关系为平行或异面.
( http: / / www.21cnjy.com )图5例2
如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.解:三个平面两两相交,它们的交线有一条或三条,如图6.
( http: / / www.21cnjy.com )图6变式训练
α、β是两个不重合的平面,在下列条件中,可判定α∥β的是(
)A.α、β都平行于直线l、mB.α内有三个不共线的点到β的距离相等C.l、m是α内的两条直线,且l∥β,m∥βD.l、m是两条异面直线,且l∥α、m∥α、l∥β,m∥β分析:如图7,分别是A、B、C的反例.
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )图7答案:D点评:判断正误要结合图形,并善于发现反例,即注意发散思维.课堂小结
本节主要学习平面与平面的位置关系,平面与平面的位置关系有两种:
①两个平面平行——没有公共点;
②两个平面相交——有一条公共直线.
另外,空间想象能力的培养是本节的重点和难点.作业
课本习题2.1
B组1、2、3.
板书设计
教学反思2017-2018高一数学人教A版必修2教案:2.1.1+平面
课题
2.1.1
平面(1课时)
修改与创新
教学目标
1.正确理解平面的几何概念,掌握平面的基本性质.2.熟练掌握三种数学语言的转换与翻译,结合三个公理的应用会证明共点、共线、共面问题.3.通过三种语言的学习让学生感知数学语言的美,培养学生学习数学的兴趣.
教学重、难点
三种数学语言的转换与翻译,利用三个公理证明共点、共线、共面问题.
教学准备
多媒体课件
教学过程
观察长方体(图1),你能发现长方体的顶点、棱所在的直线,以及侧面、底面之间的关系吗?
( http: / / www.21cnjy.com )图1
长方体由上、下、前
( http: / / www.21cnjy.com )、后、左、右六个面围成.有些面是平行的,有些面是相交的;有些棱所在的直线与面平行,有些棱所在的直线与面相交;每条棱所在的直线都可以看成是某个面内的直线等等.空间中的点、直线、平面之间有哪些位置关系呢?本节我们将讨论这个问题.提出问题①怎样理解平面这一最基本的几何概念;②平面的画法与表示方法;③如何描述点与直线、平面的位置关系?④直线与平面有一个公共点,直线是否在平面内?直线与平面至少有几个公共点才能判断直线在平面内?⑤根据自己的生活经验,几个点能确定一个平面?⑥如果两个不重合的平面有一个公共点,它们的位置关系如何?请画图表示;⑦描述点、直线、平面的位置关系常用几种语言?⑧自己总结三个公理的有关内容.活动:让学生先思考或讨论,然后再回答,
( http: / / www.21cnjy.com )经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.对有困难的学生可提示如下:①回忆我们学过的最基本的概念(原始概念),如点、直线、集合等.②我们的桌面看起来像什么图形?表示平面和表示点、直线一样,通常用英文字母或希腊字母表示.③点在直线上和点在直线外;点在平面内和点在平面外.④确定一条直线需要几个点?⑤引导学生观察教室的门由几个点确定.⑥两个平面不可能仅有一个公共点,因为平面有无限延展性.⑦文字语言、图形语言、符号语言.⑧平面的基本性质小结.讨论结果:①平面与我们学过的点、直
( http: / / www.21cnjy.com )线、集合等概念一样都是最基本的概念(不加定义的原始概念),只能通过对它描述加以理解,可以用它定义其他概念,不能用其他概念来定义它,因为它是不加定义的.平面的基本特征是无限延展性,很像如来佛的手掌(吴承恩的立体几何一定不错).②我们的桌面看起来像平行四边形,因
( http: / / www.21cnjy.com )此平面通常画成平行四边形,有些时候我们也可以用圆或三角形等图形来表示平面,如图2.平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把它遮挡的部分用虚线画出来,如图3.
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )图2
图3
平面的表示法有如下几种:(1)在一个
( http: / / www.21cnjy.com )希腊字母α、β、γ的前面加“平面”二字,如平面α、平面β、平面γ等,且字母通常写在平行四边形的一个锐角内(图4);(2)用平行四边形的四个字母表示,如平面ABCD(图5);(3)用表示平行四边形的两个相对顶点的字母来表示,如平面AC(图5).
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )图4
图5③下面我们总结点与直线、平面的位置关系如下表:点A在直线a上(或直线a经过点A)
( http: / / www.21cnjy.com )A∈a元素与集合间的关系点A在直线a外(或直线a不经过点A)
( http: / / www.21cnjy.com )Aa点A在平面α内(或平面α经过点A)
( http: / / www.21cnjy.com )A∈α点A在平面α外(或平面α不经过点A)
( http: / / www.21cnjy.com )Aα④直线上有一个点在平面内,
( http: / / www.21cnjy.com )直线没有全部落在平面内(图7),直线上有两个点在平面内,则直线全部落在平面内.例如用直尺紧贴着玻璃黑板,则直尺落在平面内.公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内.这是用文字语言描述,我们也可以用符号语言和图形语言(图6)描述.
空间图形的基本元
( http: / / www.21cnjy.com )素是点、直线、平面.从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示.公理1也可以用符号语言表示:若A∈a,B∈a,且A∈α,B∈α,则aα.
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )图6
图7请同学们用符号语言和图形语言描述直线与平面相交.若A∈a,B∈a,且Aα,B∈α,则aα.如图(图7).⑤在生活中,我们常常可以看到这样的现象:三脚架可以牢固地支撑照相机或测量用的平板仪等等.
上述事实和类似的经验可以归纳为下面的公理.公理2:经过不在同一直线上的三点,有且只有一个平面.如图(图8).
( http: / / www.21cnjy.com )图8公理2刻画了平面特有的性质,它是确定一个平面位置的依据之一.⑥我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?不是,因为平面是无限延展的.直线是可以
( http: / / www.21cnjy.com )落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.现在我们根据平面的无限延展性来观察一个现象(课件演示给学生看).问:两个平面会不会只有一个公共点?不会
( http: / / www.21cnjy.com ),因为平面是无限延展的,应当有很多公共点.正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?可见,这无数个公共点在一条直线上.
这说明,如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图(图9),用符号语言表示为:P∈α,且P∈βα∩β=l,且P∈l.
( http: / / www.21cnjy.com )图9
公理3告诉我们,如果两个不
( http: / / www.21cnjy.com )重合的平面有一个公共点,那么这两个平面一定相交,且其交线一定过这个公共点.也就是说,如果两个平面有一个公共点,那么它们必定还有另外一个公共点,只要找出这两个平面的两个公共点,就找出了它们的交线.
由此看出公理3不仅给出了两个平面相交的依据,还告诉我们所有交点在同一条直线上,并给出了找这条交线的方法.⑦描述点、直线、平面的位置关系常用3种语言:文字语言、图形语言、符号语言.⑧“平面的基本性质”小结:名称作用公理1判定直线在平面内的依据公理2确定一个平面的依据公理3两平面相交的依据应用示例例1
如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.
( http: / / www.21cnjy.com )图10活动:学生自己思考或讨论,再写出(最好用实物投影仪展示写的正确的答案).教师在学生中巡视,发现问题及时纠正,并及时评价.解:在(1)中,α∩β=l,a∩α=A,a∩β=B.在(2)中,α∩β=l,aα,bβ,a∩l=P,b∩l=P.变式训练1.画图表示下列由集合符号给出的关系:(1)A∈α,Bα,A∈l,B∈l;(2)aα,bβ,a∥c,b∩c=P,α∩β=c.解:如图11.
( http: / / www.21cnjy.com )图112.根据下列条件,画出图形.(1)平面α∩平面β=l,直线ABα,AB∥l,E∈AB,直线EF∩β=F,Fl;(2)平面α∩平面β=a,△ABC的三个顶点满足条件:A∈a,B∈α,Ba,C∈β,Ca.答案:如图12.
( http: / / www.21cnjy.com )图12点评:图形语言与符号语言的转换是本节的重点,主要有两种题型:(1)根据图形,先判断点、直线、平面的位置关系,然后用符号表示出来.(2)根据符号,想象出点、直线、平面的位置关系,然后用图形表示出来.例2
已知直线a和直线b相交于点A.求证:过直线a和直线b有且只有一个平面.
( http: / / www.21cnjy.com )图13证明:如图13,点A是直线a和直线b的交点,在a上取一点B,b上取一点C,根据公理2经过不在同一直线上的三点A、B、C有一个平面α,因为A、B在平面α内,根据公理1,直线a在平面α内,同理直线b在平面α内,即平面α是经过直线a和直线b的平面.又因为A、B在a上,A、C在b上,所以经过直线a和直线b的平面一定经过点A、B、C.于是根据公理2,经过不共线的三点A、B、C的平面有且只有一个,所以经过直线a和直线b的平面有且只有一个.变式训练求证:两两相交且不共点的四条直线在同一平面内.证明:如图14,直线a、b、c、d两两相交,交点分别为A、B、C、D、E、F,
( http: / / www.21cnjy.com )图14∵直线a∩直线b=A,∴直线a和直线b确定平面设为α,即a,bα.∵B、C∈a,E、F∈b,∴B、C、E、F∈α.而B、F∈c,C、E∈d,∴c、dα,即a、b、c、d在同一平面内.点评:在今后的学习中经常遇到证明点和直线共面问题,除公理2外,确定平面的依据还有:(1)直线与直线外一点.(2)两条相交直线.(3)两条平行直线.课堂小结1.平面是一个不加定义的原始概念,其基本特征是无限延展性.2.通过三个公理介绍了平面的基本性质,及作用.名称作用公理1判定直线在平面内的依据公理2确定一个平面的依据公理3两平面相交的依据3.利用三个公理证明共面、共线、共点问题.作业课本习题2.1
A组5、6.
板书设计
教学反思201672018高一数学人教A版必修2教案:2.1.2+空间中直线与直线之间的位置关系
课题
2.1.2
空间中直线与直线之间的位置关系
(1课时)
修改与创新
教学目标
1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系.2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用.3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质.
教学重、难点
两直线异面的判定方法,以及两异面直线所成角的求法.
教学准备
多媒体课件
教学过程
导入新课观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何?
( http: / / www.21cnjy.com )图1提出问题①什么叫做异面直线?②总结空间中直线与直线的位置关系.③两异面直线的画法.④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗?⑤什么是空间等角定理?⑥什么叫做两异面直线所成的角?⑦什么叫做两条直线互相垂直?活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形式给出的,以否定形式给出的问题一般用反证法证明.②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系:③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图2.
( http: / / www.21cnjy.com )图2④组织学生思考:长方体ABCD—A′B′C′D′中,如图1,BB′∥AA′,DD′∥AA′,BB′与DD′平行吗?通过观察得出结论:BB′与DD′平行.再联系其他相应实例归纳出公理4.公理4:平行于同一条直线的两条直线互相平行.符号表示为:a∥b,b∥ca∥c.强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用.公理4是:判断空间两条直线平行的依据,不必证明,可直接应用.⑤等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.⑥怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢?生:可以把异面直线所成角转化为平面内两直
( http: / / www.21cnjy.com )线所成角来表示.如图3,异面直线a、b,在空间中任取一点O,过点O分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.
( http: / / www.21cnjy.com )图3针对这个定义,我们来思考两个问题.问题1:这样定义两条异面直线所成的角,是否合理?对空间中的任一点O有无限制条件?答:在这个定义中,空间中的一点是任意取的.
( http: / / www.21cnjy.com )若在空间中,再取一点O′(图4),过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等,即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O取在a或b上(如图3).
( http: / / www.21cnjy.com )图4问题2:这个定义与平面内两相交直线所成角是否矛盾?答:没有矛盾.当a、b相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.⑦在定义中,两条异面直线所成角的范围是(0
( http: / / www.21cnjy.com )°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面(图5).
( http: / / www.21cnjy.com )图5应用示例例1
如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
( http: / / www.21cnjy.com )图6求证:四边形EFGH是平行四边形.证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=.同理,FG∥BD,且FG=.所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.变式训练1.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD.求证:四边形EFGH是菱形.证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=.同理,FG∥BD,EF∥AC,且FG=,EF=.所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.因为AC=BD,所以EF=EH.所以四边形EFGH为菱形.2.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD,AC⊥BD.求证:四边形EFGH是正方形.证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=.同理,FG∥BD,EF∥AC,且FG=,EF=.所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.因为AC=BD,所以EF=EH.因为FG∥BD,EF∥AC,所以∠FEH为两异面直线AC与BD所成的角.又因为AC⊥BD,所以EF⊥EH.所以四边形EFGH为正方形.点评:“见中点找中点”构造三角形的中位线是证明平行常用的方法.例2
如图7,已知正方体ABCD—A′B′C′D′.
( http: / / www.21cnjy.com )图7(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在直线与直线AA′垂直?解:(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与BA′是异面直线.(2)由BB′∥CC′可知,∠B′BA′是异面直线BA′和CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°.(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.变式训练
如图8,已知正方体ABCD—A′B′C′D′.
( http: / / www.21cnjy.com )图8(1)求异面直线BC′与A′B′所成的角的度数;(2)求异面直线CD′和BC′所成的角的度数.解:(1)由A′B′∥C′D′可知,∠BC′D′是异面直线BC′与A′B′所成的角,∵BC′⊥C′D′,∴异面直线BC′与A′B′所成的角的度数为90°.(2)连接AD′,AC,由AD′∥BC′可知,∠AD′C是异面直线CD′和BC′所成的角,∵△AD′C是等边三角形.∴∠AD′C=60°,即异面直线CD′和BC′所成的角的度数为60°.点评:“平移法”是求两异面直线所成角的基本方法.课堂小结
本节学习了空间两直线的三种位置关系:平行、相交、异面,其中异面关系是重点和难点.
为了准确理解两异面直线所成角的概念,我们学习了公理4和等角定理.作业
课本习题2.1
A组3、4.
板书设计
教学反思2017-2018高一数学人教A版必修2教案:2.1.3+空间中直线与平面之间的位置关系
课题
2.1.3
空间中直线与平面之间的位置关系(1课时)
修改与创新
教学目标
1.结合图形正确理解空间中直线与平面之间的位置关系.2.进一步熟悉文字语言、图形语言、符号语言的相互转换.3.进一步培养学生的空间想象能力.
教学重、难点
正确判定直线与平面的位置关系.
教学准备
多媒体课件
教学过程
导入新课
观察长方体(图1),你能发现长方
( http: / / www.21cnjy.com )体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的六个面所在平面有几种位置关系?
( http: / / www.21cnjy.com )图1提出问题
①什么叫做直线在平面内?
②什么叫做直线与平面相交
③什么叫做直线与平面平行
④直线在平面外包括哪几种情况
⑤用三种语言描述直线与平面之间的位置关系.活动:教师提示、点拨从直线与平面的交点个数考虑,对回答正确的学生及时表扬.讨论结果:①如果直线与平面有无数个公共点叫做直线在平面内.②如果直线与平面有且只有一个公共点叫做直线与平面相交.③如果直线与平面没有公共点叫做直线与平面平行.④直线与平面相交或平行的情况统称为直线在平面外.⑤直线在平面内aα
( http: / / www.21cnjy.com )直线与平面相交a∩α=A
( http: / / www.21cnjy.com )直线与平面平行a∥α
( http: / / www.21cnjy.com )应用示例思路1例1
下列命题中正确的个数是(
)①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线都平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点A.0
B.1
C.2
D.3分析:如图2,
( http: / / www.21cnjy.com )图2
我们借助长方体模型,棱AA1所在直线有无数点在平面ABCD外,但棱AA1所在直线与平面ABCD相交,所以命题①不正确;
A1B1所在直线平行于平面ABCD,A1B1显然不平行于BD,所以命题②不正确;
A1B1∥AB,A1B1所在直线平行于平面ABCD,但直线AB平面ABCD,所以命题③不正确;
l与平面α平行,则l与α无公共点,l与平面α内所有直线都没有公共点,所以命题④正确.答案:B变式训练
请讨论下列问题:
若直线l上有两个点到平面α的距离相等,讨论直线l与平面α的位置关系.
( http: / / www.21cnjy.com )图3解:直线l与平面α的位置关系有两种情况(如图3),直线与平面平行或直线与平面相交.点评:判断直线与平面的位置关系要善于找出空间模型,结合图形来考虑,注意考虑问题要全面.例2
已知一条直线与三条平行直线都相交,求证:这四条直线共面.已知直线a∥b∥c,直线l∩a=A,l∩b=B,l∩c=C.求证:l与a、b、c共面.证明:如图4,∵a∥b,
( http: / / www.21cnjy.com )图4∴a、b确定一个平面,设为α.∵l∩a=A,l∩b=B,∴A∈α,B∈α.又∵A∈l,B∈l,∴ABα,即lα.同理b、c确定一个平面β,lβ,∴平面α与β都过两相交直线b与l.∵两条相交直线确定一个平面,∴α与β重合.故l与a、b、c共面.变式训练
已知aα,bα,a∩b=A,P∈b,PQ∥a,求证:PQα.证明:∵PQ∥a,∴PQ、a确定一个平面,设为β.∴P∈β,aβ,Pa.又P∈α,aα,Pa,由推论1:过P、a有且只有一个平面,∴α、β重合.∴PQα.点评:证明两个平面重合是证明直线在平面内问题的重要方法.课堂小结
本节主要学习直线与平面的位置关系,直线与平面的位置关系有三种:①直线在平面内——有无数个公共点,②直线与平面相交——有且只有一个公共点,③直线与平面平行——没有公共点.
另外,空间想象能力的培养是本节的重点和难点.作业
课本习题2.1
A组7、8.
板书设计
教学反思