名称 | 高中数学人教版必修3 第三章 概率 单元测试卷(A+B) | | |
格式 | zip | ||
文件大小 | 202.7KB | ||
资源类型 | 教案 | ||
版本资源 | 人教新课标A版 | ||
科目 | 数学 | ||
更新时间 | 2017-09-26 16:21:20 |
C.P(A)=P(B)
D.P(A)、P(B)大小不确定
10.如图所示,△ABC为圆O的内接三角形,AC=BC,AB为圆O的直径,向该圆内随机投一点,则该点落在△ABC内的概率是( )
A.
B.
C.
D.
11.若以连续两次掷骰子分别得到的点数m,n作为点P的坐标(m,n),则点P在圆x2+y2=25外的概率是( )
A.
B.
C.
D.
12.如图所示,两个圆盘都是六等分,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )
A.
B.
C.
D.
第Ⅱ卷(非选择题,共90分)
二、填空题(每小题5分,共20分)
13.已知半径为a的球内有一内接正方体,若球内任取一点,则该点在正方体内的概率为________.
14.在平面直角坐标系xOy中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随机投一点,则落入E中的概率为________.
15.在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.
16.在体积为V的三棱锥S-ABC的棱AB上任取一点P,则三棱锥S-APC的体积大于的概率是________.
三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)
17.(10分)已知函数f(x)=-x2+ax-b.
若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率.
18.(12分)假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,求军火库发生爆炸的概率.
19.(12分)如右图所示,OA=1,在以O为圆心,OA为半径的半圆弧上任取一点B,求使△AOB的面积大于等于的概率.
20.(12分)甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?
(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.
21.(12分)现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求A1被选中的概率;
(2)求B1和C1不全被选中的概率.
22.(12分)已知实数a,b∈{-2,-1,1,2}.
(1)求直线y=ax+b不经过第四象限的概率;
(2)求直线y=ax+b与圆x2+y2=1有公共点的概率.
第三章
概率
单元测试卷(B)
答案
第Ⅰ卷(选择题,共60分)
一、选择题(每小题5分,共60分)
1.D 2.B
3.A [记“甲碰到同性同学”为事件A,“甲碰到异性同学”为事件B,则P(A)=,P(B)=,故P(A)
4.A [在区间[-,],0
5.B [由题意知在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393,共5组随机数,故所求概率为==0.25.]
6.D [由于只有2本英语书,从中任意抽取3本,其中至少有一本是语文书.]
7.D [4枪命中3枪共有4种可能,其中有且只有2枪连中有2种可能,所以P==]
8.B [可能构成的两位数的总数为5×4=20(种),因为是“任取”两个数,所以每个数被取到的概率相同,可以采用古典概型公式求解,其中大于40的两位数有以4开头的:41,42,43,45共4种;以5开头的:51,52,53,54共4种,所以P==.]
9.C [横坐标与纵坐标为0的可能性是一样的.]
10.A [连接OC,设圆O的半径为R,记“所投点落在△ABC内”为事件A,则P(A)==.]
11.B [本题中涉及两个变量的平方和,类似于两个变量的和或积的情况,可以用列表法,使x2+y2>25的次数与总试验次数的比就近似为本题结果.即=.]
12.A [可求得同时落在奇数所在区域的情况有4×4=16(种),而总的情况有6×6=36(种),于是由古典概型概率公式,得P==.]
第Ⅱ卷(非选择题,共90分)
二、填空题(每小题5分,共20分)
13.
解析 因为球半径为a,则正方体的对角线长为2a,设正方体的边长为x,则2a=x,∴x=,由几何概型知,所求的概率P===.
14.
解析 如图所示,区域D表示边长为4的正方形的内部(含边界),区域E表示单位圆及其内部,
因此P==.
15.
解析
记“弦长超过圆内接等边三角形的边长”为事件A,如图所示,不妨在过等边三角形BCD的顶点B的直径BE上任取一点F作垂直于直径的弦,当弦为CD时,就是等边三角形的边长,弦长大于CD的充要条件是圆心O到弦的距离小于OF,由几何概型的概率公式得
P(A)==.
16.
解析 由题意可知>,如图所示,三棱锥S-ABC与三棱锥S-APC的高相同,因此==>(PM,BN为其高线),又=,故>,故所求概率为(长度之比).
三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)
17.解 a,b都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N=5×5=25个.函数有零点的条件为Δ=a2-4b≥0,即a2≥4b.因为事件“a2≥4b”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),共12个.所以事件“a2≥4b”的概率为P=.
18.解 设A、B、C分别表示炸中第一、第二、第三军火库这三个事件.
则P(A)=0.025,P(B)=P(C)=0.1,
设D表示军火库爆炸这个事件,则有
D=A∪B∪C,其中A、B、C是互斥事件,
∴P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.025+0.1+0.1=0.225.
19.解 如下图所示,作OC⊥OA,C在半圆弧上,过OC中点D作OA的平行线交半圆弧于E、F,所以在上取一点B,则S△AOB≥.
连结OE、OF,因为OD=OC=OF,
OC⊥EF,所以∠DOF=60°,所以∠EOF=120°,所以l=π·1=π.
所以P===.
20.解 (1)甲、乙二人抽到的牌的所有情况(方片4用4′表示,其他用相应的数字表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同情况.
(2)甲抽到红桃3,乙抽到的牌的牌面数字只能是2,4,4′,因此乙抽到的牌的牌面数字比3大的概率为.
(3)甲抽到的牌的牌面数字比乙大的情况有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种,故甲胜的概率P1=,同理乙胜的概率P2=.因为P1=P2,所以此游戏公平.
21.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件为
(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2),共18个基本事件.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.
用M表示“A1恰被选中”这一事件,则
M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},
事件M由6个基本事件组成,因而P(M)==.
(2)用N表示“B1、C1不全被选中”这一事件,则其对立事件表示“B1、C1全被选中”这一事件,由于={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件由3个基本事件组成,
所以P()==,由对立事件的概率公式得:P(N)=1-P()=1-=.
22.解 由于实数对(a,b)的所有取值为:(-2,-2),(-2,-1),(-2,1),(-2,2),(-1,-2),(-1,-1),(-1,1),(-1,2),(1,-2),(1,-1),(1,1),(1,2),(2,-2),(2,-1),(2,1),(2,2),共16种.
设“直线y=ax+b不经过第四象限”为事件A,“直线y=ax+b与圆x2+y2=1有公共点”为事件B.
(1)若直线y=ax+b不经过第四象限,则必须满足即满足条件的实数对(a,b)有(1,1),(1,2),(2,1),(2,2),共4种.∴P(A)==.故直线y=ax+b不经过第四象限的概率为.
(2)若直线y=ax+b与圆x2+y2=1有公共点,则必须满足≤1,即b2≤a2+1.
若a=-2,则b=-2,-1,1,2符合要求,此时实数对(a,b)有4种不同取值;
若a=-1,则b=-1,1符合要求,此时实数对(a,b)有2种不同取值;
若a=1,则b=-1,1符合要求,此时实数对(a,b)有2种不同取值,
若a=2,则b=-2,-1,1,2符合要求,此时实数对(a,b)有4种不同取值.
∴满足条件的实数对(a,b)共有12种不同取值.∴P(B)==.
故直线y=ax+b与圆x2+y2=1有公共点的概率为.第三章
概率
单元测试卷(A)
时间:120分钟 分值:150分
第Ⅰ卷(选择题,共60分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
一、选择题(每小题5分,共60分)
1.下列事件中不是随机事件的是( )
A.某人购买福利彩票中奖
B.从10个杯子(8个正品,2个次品)中任取2个,2个均为次品
C.在标准大气压下,水加热到100℃沸腾
D.某人投篮10次,投中8次
2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是( )
①选出1人是班长的概率为;
②选出1人是男生的概率是;
③选出1人是女生的概率是;
④在女生中选出1人是班长的概率是0.
A.①②
B.①③
C.③④
D.①④
3.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( )
A.
B.
C.
D.
4.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )
A.对立事件
B.不可能事件
C.互斥但不是对立事件
D.以上答案都不对
5.在2010年广州亚运会火炬传递活动中,在编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )
A.
B.
C.
D.
6.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?( )
A.①②
B.①③
C.②③
D.①②③
7.矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为( )
A.16
B.16.32
C.16.34
D.15.96
8.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17A.
B.
C.
D.
9.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( )
A.0.45
B.0.67
C.0.64
D.0.32
10.一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( )
A.
B.
C.
D.
11.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则m>n的概率为( )
A.
B.
C.
D.
12.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )
A.
B.
C.1-
D.1-
第Ⅱ卷(非选择题,共90分)
二、填空题(每小题5分,共20分)
13.从一箱苹果中任取一个,如果其重量小于200克的概率为0.2,重量在[200,300]内的概率为0.5,那么重量超过300克的概率为________.
14.在抛掷一颗骰子的试验中,事件A表示“不大于4的偶数点出现”,事件B表示“小于5的点数出现”,则事件A+发生的概率为________.(表示B的对立事件)
15.先后两次抛掷同一枚骰子,将得到的点数分别记为a,b.将a,b,5分别作为三条线段的长,则这三条线段能构成等腰三角形的概率是________.
16.设b和c分别是先后抛掷一颗骰子得到的点数,则方程x2-bx+c=0有实根的概率为________.
三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)
17.(10分)经统计,在某储蓄所一个营业窗口排队等候的人数及相应概率如下:
排队人数
0
1
2
3
4
5人及5人以上
概率
0.1
0.16
0.3
0.3
0.1
0.04
(1)至多2人排队等候的概率是多少?
(2)至少3人排队等候的概率是多少?
18.(12分)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂.
(1)求从A,B,C区中分别抽取的工厂个数;
(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.
19.(12分)在区间(0,1)上随机取两个数m,n,求关于x的一元二次方程x2-x+m=0有实根的概率.
20.(12分)某市地铁全线共有四个车站,甲、乙两人同时在地铁第一号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的.约定用有序实数对(x,y)表示“甲在x号车站下车,乙在y号车站下车”.
(1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;
(2)求甲、乙两人同在第3号车站下车的概率;
(3)求甲、乙两人在不同的车站下车的概率.
21.(12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完全相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.
(1)摸出的3个球为白球的概率是多少?
(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一天能赚多少钱?
22.(12分)汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
轿车A
轿车B
轿车C
舒适型
100
150
z
标准型
300
450
600
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
第三章
概率
单元测试卷(A)
答案
第Ⅰ卷(选择题,共60分)
一、选择题(每小题5分,共60分)
1.C
2.D [本班共有40人,1人为班长,故①对;而“选出1人是男生”的概率为=;“选出1人为女生”的概率为=,因班长是男生,∴“在女生中选班长”为不可能事件,概率为0.]
3.C [抛掷两枚质地均匀的硬币,可能出现“正、正”、“反、反”、“正、反”、“反、正”,因此两个正面朝上的概率P=.]
4.C [由互斥事件的定义可知:甲、乙不能同时得到红牌,由对立事件的定义可知:甲、乙可能都得不到红牌,即“甲、乙分得红牌”的事件可能不发生.]
5.B [从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),∴选出的火炬手的编号相连的概率为P=.]
6.A [从口袋内一次取出2个球,这个试验的基本事件空间Ω={(白,白),(红,红),(黑,黑),(红,白),(红,黑),(黑,白)},包含6个基本事件,当事件A“两球都为白球”发生时,①②不可能发生,且A不发生时,①不一定发生,②不一定发生,故非对立事件,而A发生时,③可以发生,故不是互斥事件.]
7.B [由题意=,∴S阴=×24=16.32.]
8.C [∵a∈(15,25],∴P(179.D [摸出红球的概率为=0.45,因为摸出红球,白球和黑球是互斥事件,因此摸出黑球的概率为1-0.45-0.23=0.32.]
10.A [任意敲击0到9这十个数字键两次,其得到的所有结果为(0,i)(i=0,1,2,…,9);(1,i)(i=0,1,2,…,9);(2,i)(i=0,1,2,…,9);…;(9,i)(i=0,1,2,…,9).
故共有100种结果.两个数字都是3的倍数的结果有(3,3),(3,6),(3,9),(6,3),(6,6),(6,9),(9,3),(9,6),(9,9).共有9种.故所求概率为.]
11.A
[建立平面直角坐标系(如图所示),则由图可知满足m>n的点应在梯形OABD内,所以所求事件的概率为P==.]
12.C [P===1-.]
第Ⅱ卷(非选择题,共90分)
二、填空题(每小题5分,共20分)
13.0.3
解析 所求的概率P=1-0.2-0.5=0.3.
14.
解析 事件A包含的基本事件为“出现2点”或“出现4点”;表示“大于等于5的点数出现”,包含的基本事件为“出现5点”或“出现6点”.显然A与是互斥的,故P(A+)=P(A)+P()=+=.
15.
解析 基本事件的总数为6×6=36.
∵三角形的一边长为5,
∴当a=1时,b=5符合题意,有1种情况;
当a=2时,b=5符合题意,有1种情况;
当a=3时,b=3或5符合题意,即有2种情况;
当a=4时,b=4或5符合题意,有2种情况;
当a=5时,b∈{1,2,3,4,5,6}符合题意,
即有6种情况;
当a=6时,b=5或6符合题意,即有2种情况.
故满足条件的不同情况共有14种,
所求概率为=.
16.
解析 基本事件总数为36个,
若使方程有实根,则Δ=b2-4c≥0,即b2≥4c.
当c=1时,b=2,3,4,5,6;
当c=2时,b=3,4,5,6;
当c=3时,b=4,5,6;
当c=4时,b=4,5,6;
当c=5时,b=5,6;
当c=6时,b=5,6.
符合条件的事件个数为5+4+3+3+2+2=19,因此方程x2-bx+c=0有实根的概率为.
三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)
17.解 记“有0人等候”为事件A,“有1人等候”为事件B,“有2人等候”为事件C,“有3人等候”为事件D,“有4人等候”为事件E,“有5人及5人以上等候”为事件F,则易知A、B、C、D、E、F互斥.
(1)记“至多2人排队等候”为事件G,
则G=A∪B∪C,
所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
(2)记“至少3人排队等候”为事件H,
则H=D∪E∪F,
所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.
也可以这样解,G与H互为对立事件,
所以P(H)=1-P(G)=1-0.56=0.44.
18.解 (1)工厂总数为18+27+18=63,样本容量与总体中的个体数比为=,所以从A,B,C三个区中应分别抽取的工厂个数为2,3,2.
(2)设A1,A2为在A区中抽得的2个工厂,B1,B2,B3为在B区中抽得的3个工厂,C1,C2为在C区中抽得的2个工厂,在这7个工厂中随机抽取2个,全部可能的结果有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A1,C2),(A2,B1),(A2,B2),(A2,B3),(A2,C1),(A2,C2),(B1,B2),(B1,B3)(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2),共有21种.
随机地抽取的2个工厂至少有1个来自A区的结果(记为事件X)有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A1,C2),(A2,B1),(A2,B2),(A2,B3),(A2,C1),(A2,C2)共有11种,所以这2个工厂中至少有1个来自A区的概率为P(X)=.
19.解 在平面直角坐标系中,以x轴和y轴分别表示m,n的值,因为m,n在(0,1)内与图中正方形内的点一一对应,即正方形内的所有点构成全部试验结果的区域.
设事件A表示方程x2-x+m=0有实根,则事件A={(m,n)|},所对应的区域为图中的阴影部分,且阴影部分的面积为,故P(A)==,即关于x的一元二次方程x2-x+m=0有实根的概率为.
20.解 (1)甲、乙两人下车的所有可能的结果为:
(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4).
(2)设甲、乙两人同在第3号车站下车的事件为A,则P(A)=.
(3)设甲、乙两人在不同的车站下车的事件为B,则P(B)=1-3×=.
21.解 把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个.
(1)事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123,
P(E)=1/20=0.05.
(2)事件F={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(F)=2/20=0.1,
假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件F发生有10次,不发生90次.
则一天可赚90×1-10×5=40,每天可赚40元.
22.解 (1)设该厂这个月共生产轿车n辆,
由题意得=,所以n=2
000.
则z=2
000-(100+300)-(150+450)-600=400.
(2)设所抽样本中有a辆舒适型轿车,
由题意得=,即a=2.
因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.
用A1,A2表示2辆舒适型轿车,用B1,B2,B3表示3辆标准型轿车,用E表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,
则基本事件空间包含的基本事件有:
(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3)共10个.事件E包含的基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3)共7个.故P(E)=,即所求概率为.
(3)样本平均数=×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.
设D表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D包括的基本事件有:
9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P(D)==,即所求概率为.