华师大九年级数学上《第21章二次根式》单元测试(解析版)

文档属性

名称 华师大九年级数学上《第21章二次根式》单元测试(解析版)
格式 zip
文件大小 210.5KB
资源类型 教案
版本资源 华东师大版
科目 数学
更新时间 2017-10-02 17:02:49

图片预览

文档简介

第21章二次根式单元测试
一、单选题(共10题;共30分)
1.下列二次根式中,与
( http: / / www.21cnjy.com )是同类二次根式的是( )
A.
( http: / / www.21cnjy.com )
B.
( http: / / www.21cnjy.com )
C.
( http: / / www.21cnjy.com )
D.
( http: / / www.21cnjy.com )
2.
( http: / / www.21cnjy.com ),
( http: / / www.21cnjy.com ),则x与y关系是(  ).
A.x>y
B.x=y
C.x<y
D.xy=1
3.若a<1,化简
( http: / / www.21cnjy.com )﹣1=(  )
A.a-2
B.2-a
C.a
D.-a
4.下列各式中是二次根式的是(  )
A.
( http: / / www.21cnjy.com )
B.
( http: / / www.21cnjy.com )
C.
( http: / / www.21cnjy.com )
D.
( http: / / www.21cnjy.com )(x<0)
5.下列计算正确的是(  )
A.
( http: / / www.21cnjy.com )+
( http: / / www.21cnjy.com )=2
B.
( http: / / www.21cnjy.com )﹣
( http: / / www.21cnjy.com )=0
C.
( http: / / www.21cnjy.com )×
( http: / / www.21cnjy.com )=4
D.
( http: / / www.21cnjy.com )=﹣3
6.计算
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )的结果是(  )
A.12
B.2
( http: / / www.21cnjy.com )
C.2
( http: / / www.21cnjy.com )
D.4
7.下列二次根式中,最简二次根式是(  )
A.
( http: / / www.21cnjy.com )
B.
( http: / / www.21cnjy.com )
C.
( http: / / www.21cnjy.com )
D.
( http: / / www.21cnjy.com )
8.(2016 来宾)下列计算正确的是(

A.
( http: / / www.21cnjy.com )﹣
( http: / / www.21cnjy.com )=
( http: / / www.21cnjy.com )
B.3
( http: / / www.21cnjy.com )×2
( http: / / www.21cnjy.com )=6
( http: / / www.21cnjy.com )
C.(2
( http: / / www.21cnjy.com ))2=16
D.
( http: / / www.21cnjy.com )=1
9.下列根式中,是最简二次根式的有(


( http: / / www.21cnjy.com );②
( http: / / www.21cnjy.com );③
( http: / / www.21cnjy.com );④
( http: / / www.21cnjy.com );⑤
( http: / / www.21cnjy.com );

( http: / / www.21cnjy.com ).
A.②③⑤
B.②③⑥
C.②③④⑥
D.①③⑤⑥
10.若
( http: / / www.21cnjy.com )有意义,则a的取值范围是(

A.一切数
B.正数
C.非负数
D.非零数
二、填空题(共8题;共24分)
11.化简
( http: / / www.21cnjy.com )=________ .
12.函数
( http: / / www.21cnjy.com )中,自变量x的取值范围是________
13.计算
( http: / / www.21cnjy.com )﹣
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )的结果是________
14.计算:
( http: / / www.21cnjy.com )=________
15.若式子
( http: / / www.21cnjy.com )在实数范围内有意义,则x的取值范围是________.
16.计算:
( http: / / www.21cnjy.com )×
( http: / / www.21cnjy.com )=________.
17.
( http: / / www.21cnjy.com )=________.
三、解答题(共6题;共48分)
18.实数a、b在数轴上的位置如图所示,化简:
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )
19.已知实数a满足|a﹣1|+
( http: / / www.21cnjy.com )=a,求a的值.
20.若x,y都是实数,且y=
( http: / / www.21cnjy.com )+
( http: / / www.21cnjy.com )+1,求
( http: / / www.21cnjy.com )+3y的值.
21.已知实数a,b,c在数轴上的位置如图所示,
化简:
( http: / / www.21cnjy.com )﹣|a+c|+
( http: / / www.21cnjy.com )﹣|﹣b|.

( http: / / www.21cnjy.com )
22.已知A=2
( http: / / www.21cnjy.com ),
B=
( http: / / www.21cnjy.com ),
C=
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )其中A,B都是最简二次根式,且A+B=C,分别求出a和x的值.
23.计算
( http: / / www.21cnjy.com ).
答案解析
一、单选题
1、【答案】B
【考点】同类二次根式
【解析】A、
( http: / / www.21cnjy.com )=2
( http: / / www.21cnjy.com )与
( http: / / www.21cnjy.com )被开方数不同,故不是同类二次根式;
B、
( http: / / www.21cnjy.com )=3
( http: / / www.21cnjy.com )与
( http: / / www.21cnjy.com )被开方数相同,是同类二次根式.
C、
( http: / / www.21cnjy.com )=2
( http: / / www.21cnjy.com )与
( http: / / www.21cnjy.com )被开方数不同,不是同类二次根式;
D、
( http: / / www.21cnjy.com )=3
( http: / / www.21cnjy.com )与
( http: / / www.21cnjy.com )被开方数不同,不是同类二次根式;
故选B
2、【答案】B
【考点】分母有理化
【解析】【解答】∵
( http: / / www.21cnjy.com ),

( http: / / www.21cnjy.com ),
∴x=y

故选B.
【分析】先把y进行分母有理化得到
( http: / / www.21cnjy.com ),即可得到x与y的关系.
3、【答案】D
【考点】二次根式的性质与化简
【解析】【解答】解:
( http: / / www.21cnjy.com )﹣1=|a﹣1|﹣1,
∵a<1,
∴a﹣1<0,
∴原式=|a﹣1|﹣1=(1﹣a)﹣1=﹣a,
故选:D.
【分析】根据公式
( http: / / www.21cnjy.com )=|a|可知:
( http: / / www.21cnjy.com )﹣1=|a﹣1|﹣1,由于a<1,所以a﹣1<0,再去绝对值,化简.
4、【答案】C
【考点】二次根式的定义
【解析】【解答】解:A、
( http: / / www.21cnjy.com )的根指数为3,不是二次根式;
B、
( http: / / www.21cnjy.com )的被开方数﹣1<0,无意义;
C、
( http: / / www.21cnjy.com )的根指数为2,且被开方数2>0,是二次根式;
D、
( http: / / www.21cnjy.com )的被开方数x<0,无意义;
故选:C.
【分析】根据二次根式的定义逐一判断即可.
5、【答案】B
【考点】二次根式的混合运算
【解析】【解答】解:∵
( http: / / www.21cnjy.com )+
( http: / / www.21cnjy.com )=2
( http: / / www.21cnjy.com ),
故选项A错误;

( http: / / www.21cnjy.com )﹣
( http: / / www.21cnjy.com )=0,故选项B正确;

( http: / / www.21cnjy.com )×
( http: / / www.21cnjy.com )=2,故选项C错误;

( http: / / www.21cnjy.com )=3,故选项D错误;
故选B.
【分析】计算出各个选项中式子的正确结果,即可得到哪个选项是正确.
6、【答案】B
【考点】二次根式的乘除法
【解析】【解答】解:
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )=
( http: / / www.21cnjy.com )=2
( http: / / www.21cnjy.com ),
故选B.
【分析】根据二次根式的乘法法则把被开方数相乘,再根据二次根式的性质化成最简即可.
7、【答案】D
【考点】最简二次根式
【解析】【解答】解:
( http: / / www.21cnjy.com )=
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com ),A错误;
( http: / / www.21cnjy.com )=
( http: / / www.21cnjy.com ),
B错误;
( http: / / www.21cnjy.com )=3
( http: / / www.21cnjy.com ),
C错误;
( http: / / www.21cnjy.com )是最简二次根式,D正确,
故选:D.
【分析】根据最简二次根式的概念进行判断即可.
8、【答案】B
【考点】二次根式的混合运算
【解析】【解答】解:A、
( http: / / www.21cnjy.com )不能化简,所以此选项错误;
B、3
( http: / / www.21cnjy.com )×2
( http: / / www.21cnjy.com )=6
( http: / / www.21cnjy.com ),所以此选项正确;
C、(2
( http: / / www.21cnjy.com ))2=4×2=8,所以此选项错误;
D、
( http: / / www.21cnjy.com )=
( http: / / www.21cnjy.com )=
( http: / / www.21cnjy.com ),所以此选项错误;
本题选择正确的,故选B.
【分析】A、
( http: / / www.21cnjy.com )和
( http: / / www.21cnjy.com )不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.
9、【答案】B
【考点】最简二次根式
【解析】【解答】解:②
( http: / / www.21cnjy.com );③
( http: / / www.21cnjy.com );⑥
( http: / / www.21cnjy.com )是最简二次根式,
故选:B.
【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.
10、【答案】C
【考点】二次根式有意义的条件
【解析】【解答】解:
( http: / / www.21cnjy.com )有意义,则a≥0,
故选:C.
【分析】根据二次根式中的被开方数是非负数可得答案.
二、填空题
11、【答案】
( http: / / www.21cnjy.com )
【考点】二次根式的化简求值
【解析】【解答】
( http: / / www.21cnjy.com )
考点:
二次根式的性质与化简.
【分析】原二次根式的被开方数中含有未开尽方的因数4a,因此要将它开方到根号外.
12、【答案】x≤1且x≠0
【考点】二
( http: / / www.21cnjy.com )次根式有意义的条件
【解析】【解答】由题意得:
1-x≥0且x≠0,
解得x≤1且x≠0.
【分析】让二次根式的被开方数为非负数,分母不为0列式求解即可.
13、【答案】
( http: / / www.21cnjy.com )
【考点】二次根式的加减法
【解析】【解答】解:
( http: / / www.21cnjy.com )﹣
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )=2
( http: / / www.21cnjy.com )﹣
( http: / / www.21cnjy.com )×3
( http: / / www.21cnjy.com )=
( http: / / www.21cnjy.com ).
故答案为:
( http: / / www.21cnjy.com ).
【分析】首先化简二次根式进而合并求出即可.
14、【答案】
( http: / / www.21cnjy.com )
【考点】二次根式的乘除法
【解析】【解答】解:
( http: / / www.21cnjy.com ),
故答案为:
( http: / / www.21cnjy.com )
【分析】根据二次根式的乘除法,即可解答.
15、【答案】x≥
( http: / / www.21cnjy.com )
【考点】二次根式有意义的条件
【解析】【解答】解:由题意得,3x﹣4≥0,
解得,x≥
( http: / / www.21cnjy.com ),
故答案为:x≥
( http: / / www.21cnjy.com ).
【分析】根据二次根式有意义的条件列出不等式,解不等式即可.
16、【答案】6
【考点】二次根式的乘除法
【解析】【解答】解:原式=2
( http: / / www.21cnjy.com )×
( http: / / www.21cnjy.com )=6.
故答案为:6.
【分析】先将二次根式化为最简,然后再进行二次根式的乘法运算即可.
17、【答案】2
【考点】算术平方根
【解析】【解答】解:∵22=4,

( http: / / www.21cnjy.com )=2.
故答案为:2
【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.
三、解答题
18、【答案】解:由实数a、b在数轴上的位置知,a<0
,b>0

( http: / / www.21cnjy.com )=-a-b-(b-a)=-2b.
【考点】二次根式的化简求值
【解析】【分析】由实数a、b在数轴上的位置确定a、b的正负,从而根据二次根式的性质化简.
19、【答案】解:根据二次根式有意义的条件可得a﹣2≥0,
解得:a≥2,
|a﹣1|+
( http: / / www.21cnjy.com )=a,
a﹣1+
( http: / / www.21cnjy.com )=a,
( http: / / www.21cnjy.com )=1,
a=3.
【考点】二次根式有意义的条件
【解析】【分析】根据二次根式有意义的条件可得a﹣2≥0,解不等式可得a的取值范围,进而可得a﹣1>0,根据绝对值的性质可得a﹣1+
( http: / / www.21cnjy.com )=a,整理可得
( http: / / www.21cnjy.com )=1,进而可得a的值.
20、【答案】解:由题意得:
( http: / / www.21cnjy.com ),
解得:x=4,
则y=1,
( http: / / www.21cnjy.com )+3y=2+3=5.
【考点】二次根式有意义的条件
【解析】【分析】首先根据二次根式有意义的条件可得:
( http: / / www.21cnjy.com ),
解不等式组可得x=4,然后再代入y=
( http: / / www.21cnjy.com )+
( http: / / www.21cnjy.com )+1可得y的值,进而可得
( http: / / www.21cnjy.com )+3y的值.
21、【答案】解:由图可知,a<0,c<0,b>0,
且|c|<|b|,
所以,a+c<0,c﹣b<0,
( http: / / www.21cnjy.com )﹣|a+c|+
( http: / / www.21cnjy.com )﹣|﹣b|,
=﹣a+a+c+b﹣c﹣b,
=0.
【考点】二次根式的性质与化简
【解析】【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.
22、【答案】解:∵A=2
( http: / / www.21cnjy.com ),B=
( http: / / www.21cnjy.com ),A,B都是最简二次根式,C=
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com ),A+B=C,
∴a+3=3a﹣1,
解得:a=2,
∴A=2
( http: / / www.21cnjy.com ),B=
( http: / / www.21cnjy.com ),
∴A+B=3
( http: / / www.21cnjy.com ),
∵A+B=C,

( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )=3
( http: / / www.21cnjy.com )
∴20(x+1)=180,
∴x=8.
【考点】最简二次根式
【解析】【分析】根据最简二次根式的定义得出关于a的方程,求出a的值,求出A和B,得出
( http: / / www.21cnjy.com )
( http: / / www.21cnjy.com )=3
( http: / / www.21cnjy.com ),
求出方程的解即可.
23、【答案】解:原式=
( http: / / www.21cnjy.com )
=
( http: / / www.21cnjy.com )
=2a.
【考点】二次根式的乘除法
【解析】【分析】把二次根式的被开方数相除,再根据二次根式的性质开出来即可.