第一章 解三角形(复习)
学习目标
能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题.
学习过程
一、课前准备
复习1: 正弦定理和余弦定理
(1)用正弦定理:
①知两角及一边解三角形;
②知两边及其中一边所对的角解三角形(要讨论解的个数).
(2)用余弦定理:
①知三边求三角;
②知道两边及这两边的夹角解三角形.
复习2:应用举例
距离问题,②高度问题,
③ 角度问题,④计算问题.
练:有一长为2公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变. 则斜坡长变为___ .
二、新课导学
※ 典型例题
例1. 在中,且最长边为1,,,求角C的大小及△ABC最短边的长.
例2. 如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?
例3. 在ABC中,设 求A的值.
※ 动手试试
练1. 如图,某海轮以60 n mile/h 的速度航行,在A点测得海面上油井P在南偏东60°,向北航行40 min后到达B点,测得油井P在南偏东30°,海轮改为北偏东60°的航向再行驶80 min到达C点,求P、C间的距离.
练2. 在△ABC中,b=10,A=30°,问a取何值时,此三角形有一个解?两个解?无解?
三、总结提升
※ 学习小结
1. 应用正、余弦定理解三角形;
2. 利用正、余弦定理解决实际问题(测量距离、高度、角度等);
3.在现实生活中灵活运用正、余弦定理解决问题. (边角转化).
※ 知识拓展
设在中,已知三边,,,那么用已知边表示外接圆半径R的公式是
学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好 B. 较好 C. 一般 D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 已知△ABC中,AB=6,∠A=30°,∠B=,则△ABC的面积为( ).
A.9 B.18 C.9 D.18
2.在△ABC中,若,则∠C=( ).
A. 60° B. 90° C.150° D.120°
3. 在ABC中,,,A=30°,则B的解的个数是( ).
A.0个 B.1个 C.2个 D.不确定的
4. 在△ABC中,,,,则_______
5. 在ABC中,、b、c分别为A、B、C的对边,若,则A=___ ____.
课后作业
1. 已知、、为的三内角,且其对边分别为、、,若.
(1)求;
(2)若,求的面积.
2. 在△ABC中,分别为角A、B、C的对边,,=3, △ABC的面积为6,
(1)求角A的正弦值; (2)求边b、c.
第一章 章末复习课
[整合·网络构建]
[警示·易错提醒]
1.三角形解的个数的确定(易错点)
已知两边和其中一边的对角不能唯一确定三角形,解这类三角形问题可能出现一解、两解、无解的情况,这时应结合“三角形中大边对大角”,此时一般用正弦定理,但也可用余弦定理.
(1)利用正弦定理讨论:若已知a、b、A,由正弦定理=,得sin B=.若sin B>1,无解;若sin B=1,一解;若sin B<1,两解.
(2)利用余弦定理讨论: 已知a、b、A.由余弦定理a2=c2+b2-2cbcos A,即c2-(2bcos A)c+b2-a2=0,这是关于c的一元二次方程.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形一解;若方程有两不同正数解,则三角形有两解.
2.三角形形状的判定方法
判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理,化边为角(如:a=2Rsin A,a2+b2-c2=2abcos C等),利用三角变换得出三角形内角之间的关系
进行判断.此时注意一些常见的三角恒等式所体现的角之间的关系.如:
sin A=sin B?A=B;sin (A-B)=0?A=B;sin 2A=sin 2B?A=B或A+B=等;二是利用正弦定理、余弦定理化角为边,如:sin A=(R为△ABC外接圆半径),cos A=等,通过代数恒等变换求出三条边之间的关系进行判断.
3.解三角形应用题的基本思路
解三角形应用题的关键是将实际问题转化为解三角形问题来解决.其基本解题思路是:首先分析此题属于哪种类型的问题(如测量距离、高度、角度等),然后依题意画出示意图,把已知量和未知量标在示意图中(目的是发现已知量与未知量之间的关系),最后确定用哪个定理转化,哪个定理求解,并进行作答.解题时还要注意近似计算的要求.
(对应学生用书P22)
专题一 利用正、余弦定理解三角形(自主研析)
[例1] △ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=2,C=.
(1)若△ABC的面积等于,求a,b;
(2)若sin B=2sin A,求△ABC的面积.
[自主解答] (1)由余弦定理得a2+b2-ab=4.又因为△ABC的面积等于,所以absin C=,得ab=4.
联立方程组
解得a=2,b=2.
(2)由正弦定理已知条件可化为b=2a,
联立方程组
解得a=,b=,
所以△ABC的面积S=absin C=.
归纳升华
正、余弦定理应用需注意的三个方面
(1)正弦定理和余弦定理提示了三角形边角之间的关系,解题时要根据题目条件恰当地实现边角的统一.
(2)统一为“角”后,要注意正确利用三角恒等变换及诱导公式进行变形;统一为“边”后,要注意正确利用配方、因式分解等代数变换方法进行变形.
(3)求值时注意方程思想的运用.
[变式训练] △ABC的内角A,B,C的对边分别为a,b,c,asin A+csin C-asin C=bsin B.
(1)求角B的大小;
(2)若A=75°,b=2,求a,c.
解:(1)由正弦定理得a2+c2-ac=b2.
由余弦定理得b2=a2+c2-2accos B.
故cos B=,因此B=45°.
(2)sin A=sin(30°+45°)=sin 30°cos45°+cos 30°sin 45°=
.
故a=b×=1+.
由已知得,C=180°-45°-75°=60°,
c=b×=2×=.
专题二 判断三角形的形状问题
[例2] 在△ABC中,如果lg a-lg c=lg sin B=-lg,且B为锐角,试判断此三角形的形状.
解:因为lg sin B=-lg,所以sin B=,
又因为0°<B<90°,所以B=45°.
由lg a-lg c=-lg,得=.
由正弦定理得=
即2sin(135°-C)=sin C,
即2(sin 135°cos C-cos 135°sin C)=sin C.所以cos C=0,得C=90°,
又因为A=45°,所以B=45°,从而△ABC是等腰直角三角形.
归纳升华
利用正、余弦定理判断三角形形状的方法
主要有两种方法:方法一,通过边之间的关系判断形状;方法二,通过角之间的关系判断形状.
利用正、余弦定理可以将已知条件中的边、角互化,把条件转化为边的关系或转化为角的关系.
[变式训练] 在△ABC中,若∠B=60°,2b=a+c,试判断△ABC的形状.
解:法一:由正弦定理,得2sin B=sin A+sin C.
因为∠B=60°,
所以∠A+∠C=120°.
所以2sin 60°=sin(120°-C)+sin C.
展开整理得sin C+cos C=1.
所以sin(C+30°)=1.因为0<C<120°,
所以∠C+30°=90°.所以∠C=60°.
故∠A=60°.
所以△ABC为等边三角形.
法二:由余弦定理,得
b2=a2+c2-2accos B.
因为∠B=60°,b=,
所以=a2+c2-2accos 60°,化简得(a-c)2=0,
所以a=c.
又∠B=60°,所以a=b=c.
所以△ABC为等边三角形.
专题三 正、余弦定理的实际应用
[例3] 航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的高度为海拔10 000 m,速度为180 km/h,飞机先看到山顶的俯角为15°,经过420 s后又看到山顶的俯角为45°,求山顶的海拔高度(取≈1.4,≈1.7).
解:如图所示,根据题意可得∠A=15°,∠DBC=45°,
所以∠ACB=30°,
AB=180×=21(km)=21 000(m).
所以在△ABC中,=,
所以BC=·sin 15°=10 500(-)(m).
因为CD⊥AD,
所以CD=BCsin∠CBD=
10 500(-)×=10 500(-1)≈
10 500×(1.7-1)=7 350(m),
所以,山顶的海拔高度=10 000-7 350=2 650(m).
归纳升华
正、余弦定理与三角函数的综合应用
(1)以三角形为载体,以正、余弦定理为工具,以三角恒等变换为手段来考查三角形问题是近年高考的一类热点题型.在具体解题时,除了熟练使用正、余弦定理外,也要根据条件合理选用三角函数公式,达到化简问题的目的.
(2)解三角形问题的实质是将几何问题转化为代数问题.在高考中,出题者有时会利用平面向量等知识给出问题的某些条件,这些知识一般只起到“点缀”作用,难度较小.
[变式训练] (1)如图所示,某住宅小区的平面图呈扇形AOC.小区的两个出入口设置在点A及点C处,小区里有两条笔直的小路AD,DC,且拐弯处的转角为120°.已知某人从C沿CD走到D用了10分钟,从
D沿DA走到A用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米).
(2)在△ACB中,内角A,B,C的对边分别为a,b,c,
且a>c,已知·=2,cos B=,b=3,求:
①a和c的值;
②cos(B-C)的值.
(1)解:法一:设该扇形的半径为r米,由题意,得CD=
500 米,DA=300 米,∠CDO=60°.
在△CDO中,CD2+OD2-2·CD·OD·cos 60°=OC2,
即5002+(r-300)2-2×500×(r-300)×=r2,
解得r=≈445 (米).
法二:连接AC,作OH⊥AC,交AC于点H,
由题意,得CD=500米,
AD=300米,
∠CDA=120°.
在△ACD中,AC2=CD2+AD2-2·CD·AD·
cos 120°=5002+3002+2×500×300×=7002,
所以AC=700(米).
cos∠CAD==.
在Rt△HAO中,AH=350(米),
cos∠HAO=,
所以OA==≈445(米).
(2)解:①由·=2,得c·acos B=2,又cos B=,所以ac=6.
由余弦定理,得a2+c2=b2+2accos B.
又b=3,所以a2+c2=32+2×6×=13.
解得或
因为a>c,所以a=3,c=2.
②在△ABC中,
sin B== =,
由正弦定理,得
sin C=sin B=×=.
因a=b>c,所以C为锐角,
因此cos C===.
于是cos(B-C)=cos Bcos C+sin Bsin C=
×+×=.
解三角形知识点归纳
一 正弦定理
(一)知识与工具:
正弦定理:在△ABC中,。
在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。
注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用:
(1)三内角和为180°
(2)两边之和大于第三边,两边之差小于第三边
(3)面积公式:S=absinC==2R2sinAsinBsinC
(4)三角函数的恒等变形。
sin(A+B)=sinC,cos(A+B)=-cosC ,sin=cos,cos=sin
(二)题型 使用正弦定理解三角形共有三种题型
题型1 利用正弦定理公式原型解三角形
题型2 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化。
例如:
题型3 三角形解的个数的讨论
方法一:画图看
方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数。
二 余弦定理
(一)知识与工具:
a2=b2+c2﹣2bccosA cosA=
b2=a2+c2﹣2accosB cosB=
c2=a2+b2﹣2abcosC cosC=
注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。在变形中,注意三角形中其他条件的应用:
(1)三内角和为180°;
(2)两边之和大于第三边,两边之差小于第三边。
(3)面积公式:S=absinC==2R2sinAsinBsinC
(4)三角函数的恒等变形。
(二)题型使用余弦定理解三角形共有三种现象的题型
题型1 利用余弦定理公式的原型解三角形
题型2 利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。
题型3 判断三角形的形状
结论:根据余弦定理,当a2+b2<c2、b2+c2<a2、c2+a2<b2中有一个关系式成立时,该三角形为钝角三角形,而当a2+b2>c2、b2+c2>a2,c2+a2>b2中有一种关系式成立时,并不能得出该三角形为锐角三角形的结论。
判断三角形形状的方法:
(1)将已知式所有的边和角转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状。
(2)将已知式所有的边和角转化为内角三角函数间的关系,通过三角恒等变形,得出内角的关系,从而判断出三角形的形状,这时要注意使用A+B+C=π这个结论。
在两种解法的等式变形中,一般两边不要约去公因式,应移项提取出公因式,以免漏解。
正余弦定理在实际中的应用
求
距离
两点间不可通又不可视
两点间可视但不可达
两点都不可达
求
高度
底部可达
底部不可达
题型1 计算高度 题型2 计算距离
题型3 计算角度 题型4 测量方案的设计
实际应用题型的本质就是解三角形,无论是什么样的现象,都要首先画出三角形的模型,再通过正弦定理和余弦定理进行求解。
(三)其他常见结论
1三角形内切圆的半径:,
特别地,
2三角学中的射影定理:
在△ABC 中,,…
3两内角与其正弦值:
在△ABC 中,,…
课件16张PPT。解三角形复习课 正弦定理 余弦定理余弦定理解决的题型:1、已知三边求三角.
2、已知两边和他们的夹角,
求第三边和其他两角. 三角形面积公式 解决已知两边及其夹角求三角形面积 课 堂 练 习本章知识框架图 正弦定理 余弦定理 解 三 角 形 典 型 例 题在△ABC中,角A、B、C的对边分别为a、b、c,若(Ⅰ)判断△ABC的形状;
(Ⅱ)若的值. 巩 固 训 练 典 型 例 题 巩 固 训 练本章知识框架图 正弦定理 余弦定理 解 三 角 形 应 用 举 例1、分析:分析题意,弄清已知和所求;
2、建模:根据题意,将实际问题转化为数学问
题,写出已知所求,画出示意图;
3、求解:正确运用正、余弦定理;
4、检验:检验上述所求是否符合实际意义。求解三角形应用题的一般步骤: 应 用 举 例 甲船以每小时 海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于 处时,乙船位于甲船的北偏西 的方向 处,此时两船相距20海里.当甲船航行20分钟到达 处时,乙船航行到甲船的北偏西方向 的 处,此时两船相距 海里,问乙船每小时航行多少海里?北南西东方向角 一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角,通常表达成北(南)偏东(西)××度. 应 用 举 例 甲船以每小时 海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于 处时,乙船位于甲船的北偏西 的方向 处,此时两船相距20海里.当甲船航行20分钟到达 处时,乙船航行到甲船的北偏西方向 的 处,此时两船相距 海里,问乙船每小时航行多少海里? 课 堂 小 结1、正弦定理、余弦定理的简单应用;2、利用正、余弦定理、三角形面积公式解
三角形问题(注意隐含条件的运用);3、解三角形的实际应用问题