21世纪教育网 –中小学教育资源及组卷应用平台
二次根式单元检测A卷
姓名:__________班级:__________学号:__________
1 、选择题(本大题共12小题)
根式 ( http: / / www.21cnjy.com / )的值是( )
A. ﹣3 B. 3 C. 3或﹣3 D. 9
下列各式中,为二次根式的是( )
A. INCLUDEPICTURE "http://img./STSource/2014/04/29/11/d1fc7b3a/SYS201404291140146909057000_ST/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/11/d1fc7b3a/SYS201404291140146909057000_ST/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/11/d1fc7b3a/SYS201404291140146909057000_ST/0.png" \* MERGEFORMATINET B. INCLUDEPICTURE "http://img./STSource/2014/04/29/11/d1fc7b3a/SYS201404291140146909057000_ST/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/11/d1fc7b3a/SYS201404291140146909057000_ST/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/11/d1fc7b3a/SYS201404291140146909057000_ST/1.png" \* MERGEFORMATINET C. INCLUDEPICTURE "http://img./STSource/2014/04/29/11/d1fc7b3a/SYS201404291140146909057000_ST/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/11/d1fc7b3a/SYS201404291140146909057000_ST/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/11/d1fc7b3a/SYS201404291140146909057000_ST/2.png" \* MERGEFORMATINET D. INCLUDEPICTURE "http://img./STSource/2014/04/29/11/d1fc7b3a/SYS201404291140146909057000_ST/3.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/11/d1fc7b3a/SYS201404291140146909057000_ST/3.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/11/d1fc7b3a/SYS201404291140146909057000_ST/3.png" \* MERGEFORMATINET
式子 INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_ST/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_ST/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_ST/0.png" \* MERGEFORMATINET 、 INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_ST/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_ST/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_ST/1.png" \* MERGEFORMATINET 、 INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_ST/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_ST/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_ST/2.png" \* MERGEFORMATINET 、 INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_ST/3.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_ST/3.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_ST/3.png" \* MERGEFORMATINET 中,有意义的式子个数为( )
A.1个 B.2个 C.3个 D.4个
下列根式中,不是最简二次根式的是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
的结果是( )
A. B. C. INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_ST/3.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_ST/3.png" \* MERGEFORMATINET D. INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_ST/4.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_ST/4.png" \* MERGEFORMATINET 21教育名师原创作品
( http: / / www.21cnjy.com )的倒数是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C.﹣3 D. ( http: / / www.21cnjy.com )
下列各组二次根式中是同类二次根式的是( )
A. ( http: / / www.21cnjy.com ) B. ( http: / / www.21cnjy.com ) C. ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
计算 ( http: / / www.21cnjy.com )的结果是( )
A.3 B. ( http: / / www.21cnjy.com ) C.2 ( http: / / www.21cnjy.com ) D. ( http: / / www.21cnjy.com )
下列运算正确的是( )
A.﹣a a3=a3 B.﹣(a2)2=a4 C.x﹣ ( http: / / www.21cnjy.com )x= ( http: / / www.21cnjy.com ) D.( ( http: / / www.21cnjy.com )﹣2)( ( http: / / www.21cnjy.com )+2)=﹣1
式子 ( http: / / www.21cnjy.com )在实数范围内有意义,则x的取值范围是( )
A.x<1 B.x≤1 C.x>1 D.x≥1
化简 ( http: / / www.21cnjy.com / )﹣( ( http: / / www.21cnjy.com / ))2,结果是( )
A.6x﹣6 B.﹣6x+6 C.﹣4 D.4
如果一个三角形的三边长分别为1、k、4.则化简|2k﹣5|﹣ ( http: / / www.21cnjy.com )的结果是( )
A.3k﹣11 B.k+1 C.1 D.11﹣3k
1 、填空题(本大题共8小题)
代数式 INCLUDEPICTURE "http://img./STSource/2014/04/29/22/b2cf9717/SYS201404292209119073715013_ST/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/22/b2cf9717/SYS201404292209119073715013_ST/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/22/b2cf9717/SYS201404292209119073715013_ST/0.png" \* MERGEFORMATINET 的最大值为 ,此时x= .
若x<2,化简 ( http: / / www.21cnjy.com )+|3﹣x|的正确结果是 .
若一个矩形的长为 ( http: / / www.21cnjy.com / )cm,宽为 ( http: / / www.21cnjy.com / )cm,则与它面积相等的正方形的边长为 cm.
16. 计算 QUOTE http://www.21cnjy.com/ ( http: / / www.21cnjy.com ) 的结果是_______.
当 ( http: / / www.21cnjy.com )= 时,两个最简二次根式和可以合并.
化简: ( http: / / www.21cnjy.com ) = .
已知,则 INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_ST/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_ST/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_ST/1.png" \* MERGEFORMATINET =______.
已知:x=,y=,那么x2+y2的值为 .
1 、解答题(本大题共8小题)
已知,,求(1)+的值;(2)的值;(3)的值.
计算下列各题:
(1); (2);
(3); (4);
(5).
计算:
(1)9 ( http: / / www.21cnjy.com )﹣7 ( http: / / www.21cnjy.com )+5 ( http: / / www.21cnjy.com ); (2) ( http: / / www.21cnjy.com )÷ ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )× ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com ).
已知a,b是有理数,若 ( http: / / www.21cnjy.com )+2 ( http: / / www.21cnjy.com )=b+4,求a和b的值.
数a、b在数轴上的位置如图所示,化简:
. ( http: / / www.21cnjy.com )
已知 INCLUDEPICTURE "http://img./STSource/2014/05/14/11/1354c792/SYS201405141152590444392020_ST/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/11/1354c792/SYS201405141152590444392020_ST/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/11/1354c792/SYS201405141152590444392020_ST/0.png" \* MERGEFORMATINET ,求 INCLUDEPICTURE "http://img./STSource/2014/05/14/11/1354c792/SYS201405141152590444392020_ST/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/11/1354c792/SYS201405141152590444392020_ST/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/11/1354c792/SYS201405141152590444392020_ST/1.png" \* MERGEFORMATINET 的值.
已知三角形的两边长分别为3和5,第三边长为c,化简 INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_ST/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_ST/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_ST/0.png" \* MERGEFORMATINET .
如图是一个正方体展开图,已知正方体相对 ( http: / / www.21cnjy.com )两面的代数式的值相等;
(1)求a、b、c 的值;
(2)判断a+b-c的平方根是有理数还是无理数.21世纪教育网版权所有
答案解析
1 、选择题
【分析】 根据二次根式的性质: ( http: / / www.21cnjy.com / )=|a|进行化简,然后再去绝对值即可.
解: ( http: / / www.21cnjy.com / )=|﹣3|=﹣(﹣3)=3.
故选B.
【分析】根据二次根式的性质,被开方数大于 ( http: / / www.21cnjy.com )或等于0可知.
解:、被开方数是负数,根式无意义,不是二次根式;
B、是三次根式,不是二次根式;
C、被开方数是负数,根式无意义,不是二次根式;
D、被开方数是非负数,是二次根式.
故选D.21·cn·jy·com
【分析】根据二次根式的有意义的条件,逐一判断.
解: INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/0.png" \* MERGEFORMATINET = INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/1.png" \* MERGEFORMATINET 与 INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/2.png" \* MERGEFORMATINET 的被开方数小于0,没有意义;
INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/3.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/3.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/3.png" \* MERGEFORMATINET = INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/4.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/4.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/4.png" \* MERGEFORMATINET 与 INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/5.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/5.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/01/22/09/c2b76717/SYS201401220927296981158012_DA/5.png" \* MERGEFORMATINET 的被开方数大于等于0,有意义.
故有意义的式子有2个.
故选B.【来源:21·世纪·教育·网】
【分析】判定一个二次根式是不是最简二次根 ( http: / / www.21cnjy.com )式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.21教育网2-1-c-n-j-y
解:因为 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com )=2 ( http: / / www.21cnjy.com ),因此 ( http: / / www.21cnjy.com )不是最简二次根式.
故选B.
【分析】根据负整数指数幂的运算法则进行计算,再分母有理化.
解:原式= INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_DA/0.png" \* MERGEFORMATINET
= INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_DA/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_DA/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_DA/1.png" \* MERGEFORMATINET
=-1- INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/11/eed8ec2b/SYS201405141158575981859025_DA/2.png" \* MERGEFORMATINET .
故选D.21*cnjy*com
【分析】利用倒数定义得到结果,化简即可.
解: ( http: / / www.21cnjy.com )的倒数为 ( http: / / www.21cnjy.com )= ( http: / / www.21cnjy.com ).
故选D
【分析】化简各选项后根据同类二次根式的定义判断.
解:A. ( http: / / www.21cnjy.com )=2 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )被开方数不同,故不是同类二次根式,故A选项错误;
B、 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )被开方数不同,故不是同类二次根式,故B选项错误;
C、 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )被开方数相同,是同类二次根式,故C选项正确;
D、 ( http: / / www.21cnjy.com )与 ( http: / / www.21cnjy.com )被开方数不同,故不是同类二次根式,故D选项错误.
故选:C.
【分析】把 ( http: / / www.21cnjy.com )化简为2 ( http: / / www.21cnjy.com ),再和﹣ ( http: / / www.21cnjy.com )合并即可得问题答案.
解:原式= ( http: / / www.21cnjy.com ),
=2 ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com ),
= ( http: / / www.21cnjy.com ).
故选B.
【分析】利用同底数的幂的乘法法则、幂的乘方、合并同类项法则,以及平方差公式即可判断.
解:A.﹣a a3=﹣a4,故选项错误;
B、﹣(a2)2=﹣a4,选项错误;
C、x﹣ ( http: / / www.21cnjy.com )x= ( http: / / www.21cnjy.com )x,选项错误;
D、( ( http: / / www.21cnjy.com )﹣2)( ( http: / / www.21cnjy.com )+2)=( ( http: / / www.21cnjy.com ))2﹣22=3﹣4=﹣1,选项正确.
故选D.
【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.
解:依题意得:x﹣1>0,
解得x>1.
故选:C.
【分析】求值的第一个式子是个完全平方公式,开方要注意正负值,由已知条件可得3x﹣5≥0,即3x≥5,所以3x﹣1>0,据此求解. 2·1·c·n·j·y
解:由已知条件可得3x﹣5≥0,即3x≥5,则3x﹣1>0,
∴原式= ( http: / / www.21cnjy.com / )( ( http: / / www.21cnjy.com / ))2=3x﹣1﹣(3x﹣5)=3x﹣1﹣3x+5=4.
故选D.
【分析】由于三角形的三边 ( http: / / www.21cnjy.com )长分别为1、k、4,根据三角形的三边关系,1+4>k,即k<5,4﹣1<k,所以k>3,根据k的取值范围,再对代数式进行化简.www-2-1-cnjy-com
解:∵三角形的三边长分别为1、k、4,
∴ ( http: / / www.21cnjy.com ),
解得,3<k<5,
所以,2k﹣5>0,k﹣6<0,
∴|2k﹣5|﹣ ( http: / / www.21cnjy.com )=2k﹣5﹣ ( http: / / www.21cnjy.com )=2k﹣5﹣[﹣(k﹣6)]=3k﹣11.
故选A.
1 、填空题
【分析】根据算术平方根的性质可以得到 INCLUDEPICTURE "http://img./STSource/2014/04/29/22/b2cf9717/SYS201404292209119073715013_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/22/b2cf9717/SYS201404292209119073715013_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/22/b2cf9717/SYS201404292209119073715013_DA/0.png" \* MERGEFORMATINET ≥0,即最小值是0,据此即可确定原式的最大值.
解: INCLUDEPICTURE "http://img./STSource/2014/04/29/22/b2cf9717/SYS201404292209119073715013_DA/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/22/b2cf9717/SYS201404292209119073715013_DA/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/22/b2cf9717/SYS201404292209119073715013_DA/1.png" \* MERGEFORMATINET ≥0,
∴当x=±2时,有最小值0,
则当x=±2,3- INCLUDEPICTURE "http://img./STSource/2014/04/29/22/b2cf9717/SYS201404292209119073715013_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/22/b2cf9717/SYS201404292209119073715013_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/04/29/22/b2cf9717/SYS201404292209119073715013_DA/2.png" \* MERGEFORMATINET 有最大值是3.
故答案是:3,±2.21cnjy.com
【分析】先根据x的取值范围,判断出x﹣2和3﹣x的符号,然后再将原式进行化简.
解:∵x<2,
∴x﹣2<0,3﹣x>0;
∴ ( http: / / www.21cnjy.com )+|3﹣x|=﹣(x﹣2)+(3﹣x)
=﹣x+2+3﹣x=5﹣2x.
【分析】先求出长方形的面积,再根据正方形的面积公式即可求得其边长.
解:长为 ( http: / / www.21cnjy.com / )cm,宽为 ( http: / / www.21cnjy.com / )cm的矩形的面积是 ( http: / / www.21cnjy.com / )× ( http: / / www.21cnjy.com / )=16cm2,
所以正方形的面积是16cm2,所以这个正方形的边长为 ( http: / / www.21cnjy.com / )=4cm.
故答案为:4.www.21-cn-jy.com
【分析】直接相乘化简后即可得出答案
解:.
【分析】 根据同类二次根式的定义求解
解:由题意知:2+1=2+,
解得=1.
因此当=1 QUOTE http://www.21cnjy.com/ ( http: / / www.21cnjy.com ) 时两最简二次根式可以合并.
【分析】先进行二次根式的化简,然后合并即可.
解:原式=3+2 ( http: / / www.21cnjy.com )+ ( http: / / www.21cnjy.com )
= ( http: / / www.21cnjy.com ).
【分析】根据二次根式有意义的条件,得2x-1=0,x= INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_DA/0.png" \* MERGEFORMATINET ,然后求得y的值,最后代入 INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_DA/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_DA/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_DA/1.png" \* MERGEFORMATINET 求解.
解:二次根式有意义,则 INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_DA/2.png" \* MERGEFORMATINET ,
解得x= INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_DA/3.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_DA/3.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/e78ce56e/SYS201405131457363242473025_DA/3.png" \* MERGEFORMATINET .
∴y==4.
∴==3.21教育网
【分析】将x、y的值化简,分别求出x+y、xy的值,根据x2+y2=(x+y)2-2xy求解.
解:∵x==-,y==+,
∴x+y=2,xy=1,
∴x2+y2=(x+y)2-2xy=(2)2-2=10.
故本题答案为10.【来源:21cnj*y.co*m】
1 、解答题
【分析】二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式的不合并 21·世纪*教育网
解:(1) ( http: / / www.21cnjy.com / )+ ( http: / / www.21cnjy.com / )= + =-1+ 8=7
(2);
(3) INCLUDEPICTURE "http://img./STSource/2014/06/27/18/ea7bdb3d/SYS201406271859418665271334_DA/SYS201406271859418665271334_DA.010.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/06/27/18/ea7bdb3d/SYS201406271859418665271334_DA/SYS201406271859418665271334_DA.010.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/06/27/18/ea7bdb3d/SYS201406271859418665271334_DA/SYS201406271859418665271334_DA.010.png" \* MERGEFORMATINET .
【分析】(1)分母是3 INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/0.png" \* MERGEFORMATINET ,先化成最简二次根式,再分子、分母同乘以
(2)分子、分母同乘以 INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/2.png" \* MERGEFORMATINET ;
(3)分子、分母同乘以 INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/4.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/4.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/4.png" \* MERGEFORMATINET ;
(4)分子x-y可以分解成 INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/5.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/5.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/5.png" \* MERGEFORMATINET ;后,直接与分母约分,从而化去分母;
(5)分子、分母分别分解因式,然后约分.
解:(1) INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/6.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/6.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/6.png" \* MERGEFORMATINET = INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/7.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/7.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/7.png" \* MERGEFORMATINET ;
(2) INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/8.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/8.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/8.png" \* MERGEFORMATINET = INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/9.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/9.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/9.png" \* MERGEFORMATINET ;
(3) INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/10.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/10.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/10.png" \* MERGEFORMATINET = INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/11.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/11.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/11.png" \* MERGEFORMATINET = INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/12.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/12.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/12.png" \* MERGEFORMATINET ;
(4) INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/13.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/13.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/13.png" \* MERGEFORMATINET = INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/14.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/14.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/14.png" \* MERGEFORMATINET ;
(5) INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/15.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/15.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/15.png" \* MERGEFORMATINET = INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/16.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/16.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/16.png" \* MERGEFORMATINET = INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/17.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/17.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/14/12/98150936/SYS201405141227325104749000_DA/17.png" \* MERGEFORMATINET .
【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;
(2)先利用二次根式的除法和乘法法则运算,然后合并即可.
解:(1)原式=9 ( http: / / www.21cnjy.com )﹣14 ( http: / / www.21cnjy.com )+20 ( http: / / www.21cnjy.com )
=15 ( http: / / www.21cnjy.com );
(2)原式= ( http: / / www.21cnjy.com )﹣ ( http: / / www.21cnjy.com )+2 ( http: / / www.21cnjy.com )
=4﹣ ( http: / / www.21cnjy.com )+2 ( http: / / www.21cnjy.com )
=4+ ( http: / / www.21cnjy.com ).
【分析】根据二次根式的被开方数是非负数即可求得a的值,进而求得b的值.
解:根据题意得: ( http: / / www.21cnjy.com ),
解得:a=5,
则b+4=0,解得:b=﹣4.
【分析】利用二次根式的性质化简即可
解:由题意得
原式=-a-1+b-1-(b-a)
=-2
【分析】可先把原式化简再代入计算,主要是根据被开方数底数的符号开平方.
解:
=
=
=
=1.【出处:21教育名师】
【分析】由三边关系定理,得到关系式;判断出被开方数的正负,再化简开方,得出结果.
解:由三边关系定理,得3+5>c,5-3<c,即8>c>2,
INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/0.png" \* MERGEFORMATINET = INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/1.png" \* MERGEFORMATINET
=c-2-(4- INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/2.png" \* MERGEFORMATINET c)=c-2-4+ INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/3.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/3.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/3.png" \* MERGEFORMATINET c= INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/4.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/4.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/13/14/5212b569/SYS201405131454209154530018_DA/4.png" \* MERGEFORMATINET c-6.【版权所有:21教育】
【分析】(1)根据正方体相对两面的代数式的值相等可列出方程组,从而解出即可得出答案.
(2)根据(1)的结果,将各组数据分别代入可判断出结果.
解:1)依题意,得 INCLUDEPICTURE "http://img./STSource/2014/05/15/09/c1c6a28c/SYS201405150908500373488019_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/15/09/c1c6a28c/SYS201405150908500373488019_DA/0.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/15/09/c1c6a28c/SYS201405150908500373488019_DA/0.png" \* MERGEFORMATINET ,
由 ①、②得方程组: INCLUDEPICTURE "http://img./STSource/2014/05/15/09/c1c6a28c/SYS201405150908500373488019_DA/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/15/09/c1c6a28c/SYS201405150908500373488019_DA/1.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/15/09/c1c6a28c/SYS201405150908500373488019_DA/1.png" \* MERGEFORMATINET ,
解得: INCLUDEPICTURE "http://img./STSource/2014/05/15/09/c1c6a28c/SYS201405150908500373488019_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/15/09/c1c6a28c/SYS201405150908500373488019_DA/2.png" \* MERGEFORMATINET INCLUDEPICTURE "http://img./STSource/2014/05/15/09/c1c6a28c/SYS201405150908500373488019_DA/2.png" \* MERGEFORMATINET ,
由③得:c=±2,
∴a=3,b=1,c=±2.
(2)当a=3,b=1,c=-2 时
a+b-c=3+1+2=6,
a=3,b=1,c=2时
a+b-c=3+1-2=2,
∵和都是无理数
∴a+b-c 的平方根是无理数.21*cnjy*com
( http: / / www.21cnjy.com / )
HYPERLINK "http://www.21cnjy.com/" 版权所有@21世纪教育网(www.21cnjy.com)