2017-2018学年七年级数学上册第五章 一元一次方程全章教案

文档属性

名称 2017-2018学年七年级数学上册第五章 一元一次方程全章教案
格式 zip
文件大小 1022.4KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2017-10-23 15:38:02

文档简介

5.6
应用一元一次方程——追赶小明
一、学生起点分析
学生在小学已经学过有关行程问题的应用题,熟悉路程、时间、速度之间的关系,已能利用“线段图”来解决一些简单的应用题,初步感受到方程是解决实际问题的一种有效途径.通过本章前几节的学习,对一元一次方程的有关知识及应用也有了一定的了解及掌握,但对于有些问题还有待进一步的学习及巩固.
二、教学任务分析
本节内容是学生学习了一元一次方程及其解法后的延伸,是一元一次方程的应用问题中的追及问题.通过本节课的学习要求学生能借助“线段图”分析复杂问题中的数量关系,并利用方程解决此类问题,帮助学生从数量关系的角度更准确、清晰地描述和把握现实世界,体现数学知识的形成与应用过程,使学生明确方程是研究现实世界数量关系的重要数学模型,为以后学习列方程解应用题打下基础,这也正体现了数学教学前后的联系,由浅入深,由知识的掌握到能力的提升的规律.
三、教学目标
1、能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题.熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换.
2、经历画“线段图”找等量关系,列出方程解决问题的过程,进一步体验画“线段图”也是解决实际问题的有效途径.体会“方程”是解决实际问题的有效模型,并进一步培养学生的文字语言、符号语言、图形语言的转换能力.
四、教学过程设计
本节课设计了六个教学环节:第一环节:情景导入;第二环节:探究新课;第三环节:运用巩固;第四环节:课堂小结;第五环节:当堂检测;第六环节:布置作业.
教学流程:
环节一、情景导入
活动内容:
学生以小品的形式演绎一位同学早晨忘带作业,他刚出门不久,父母就发现他忘带作业,于是赶快加速赶往学校给他送作业,最终在去学校的路上追上了他.
目的:
通过小品的形式揭示生活中蕴含着我们数学的一个常见问题——追及问题,从而引出课题及例题.
实际活动效果:
采用生动活泼的小品,让学生感受生活中我们常常会遇到类似的问题,从学生熟悉的生活经历出发,选择学生身边的、感兴趣的“能否追上小明”这一事件,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题、便于引起每位同学的兴趣.
环节二、探究新课
1.
追及问题:
活动内容:
教材实例分析:
例1:小明早晨要在7:20以前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带历史作业,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他.
  (1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
目的:
分析出发时间不同的追及问题,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既能娴熟使用“线段图”又能利用方程的思想解决问题.
实际活动效果:
教师引导学生根据题目已知条件,画出线段图:
找出等量关系:小明所用时间=5+爸爸所用时间;
小明走过的路程=爸爸走过的路程.
板书规范写出解题过程:
解:(1)设爸爸追上小明用了x分钟,
据题意得
80×5+80x=180x.
解,得x=4.
答:爸爸追上小明用了4分钟.
(2)180×4=720(米),1000-720=280(米).
答:追上小明时,距离学校还有280米.
作出小结:
活动内容:
变换条件,研究起点不同的追及问题:
例2:甲、乙两站间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列慢车从乙站开出,每小时行驶85千米.设两车同时开出,同向而行,则快车几小时后追上慢车?
目的:
分析起点不同的追及问题,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,能主动地使用“线段图”分析等量关系,进一步列出方程,解决问题.
实际活动效果:
通过个别学生分析已知条件,
引导大家正确画出线段图:
找出等量关系:快车所用时间=慢车所用时间;
快车行驶路程=慢车行驶路程+相距路程.
板书规范写出解题过程:
解:设快车x小时追上慢车,
 据题意得
85x=450+65x.
解,得x=22.5.
答:快车22.5小时追上慢车.
作出小结:
2.
相遇问题:[]
活动内容:
知识拓展,与学生共同探讨相遇问题,借助“线段图”归纳出其中的关系.
例3:甲、乙两人相距280,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,那么甲出发几秒与乙相遇?
目的:
分析相遇问题,能正确地画出线段图,正确得出其中的等量关系,正确列出方程,解决问题,最终能规范写出解题过程.
实际活动效果:
学生独立思考,
正确画出线段图:
找出等量关系:甲所用时间=乙所用时间;
甲路程+乙路程=甲乙相距路程.
板书规范写出解题过程:
解:设t秒后甲、乙相遇,
 
据题意得8t+6t
=280.
解,得t=20.
答:甲出发20秒与乙相遇.
作出小结:
3.
相遇和追及的综合问题:
活动内容:
将前两类题综合起来,形成一道综合题目.
例4:七年级一班列队以每小时6千米的速度去甲地.王明从队尾以每小时10千米的速度赶到队伍的排头后又以同样的速度返回排尾,一共用了7.5分钟,求队伍的长.
目的:
会将复杂的行程问题剖析出其中的追及问题和相遇问题,从而使综合问题转化成简单问题.
实际活动效果:
教师引导分析:
思路:把综合问题分解成2个简单问题,使难度降低.
例如:一列队伍,一个人从队尾追到排头,接着返回队尾的题目.
分解:①追上排头——追及问题;
②返回队尾——相遇问题.
找出等量关系:追及问题:队尾追排头;相遇问题:排头回队尾.
板书规范写出解题过程:
解:7.5分钟=0.125小时.
设王明追上排头用了x小时,则返回用了(0.125-x)小时,
  据题意得10
x-6
x
=10(0.125-x)+6(0.125-x).
解,得x=0.1.
此时,10×0.1-6×0.1
=0.4(千米)=400(米).
答:队伍长为400米.
环节三、运用巩固
活动内容:
练习1:小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒,小明几秒钟追上小兵?
分析:先画线段图:
写解题过程:解:设小明t秒钟追上小兵,
  
据题意得
6(4+t)
=7t.
解,得t=24.
答:小明24秒钟追上小兵.
练习2:甲骑摩托车,乙骑自行车同时从相距150千米的两地相向而行,经过5小时相遇,已知甲每小时行驶的路程是乙每小时行驶的路程的3倍少6千米,求乙骑自行车的速度.
解:设乙骑自行车的速度为x千米/时,
 
 据题意得
5(3x-6)+5x
=150.
解,得x=9.
答:乙骑自行车的速度为9千米/时.
目的:
给学生提供进一步巩固建立方程模型的基本过程和方法的熟悉机会,让学生活学活用,真正让学生学会借线段图分析行程问题的方法,得出其中的等量关系,从而正确地建立方程求解问题,同时还需注意检验方程解的合理性.
实际活动效果:
由于题目较简单,所以学生分析解答时很有信心,且正确率也比较高,同时也进一步体会到了借助“线段图”分析行程问题的优越性.
环节四、归纳小结
活动内容:
学生归纳总结本节课所学知识:
1.会借线段图分析行程问题.
2.各种行程问题中的规律及等量关系.
同向追及问题:
①同时不同地——甲路程+路程差=乙路程;
甲时间=乙时间.
②同地不同时——甲时间+时间差=乙时间;
甲路程=乙路程.
相向的相遇问题:
甲路程+乙路程=总路程;
甲时间=乙时间.
目的:
强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.
实际活动效果:
通过交流学生认识到借线段图来分析行程问题的好处,发现行程问题中的一些规律,并感受到运用方程解决实际问题的优势.充分体现了数学课堂由单纯传播知识的殿堂转变为学生主动从事学习活动.让学生自己总结,不但使学生懂得亲身实践、合作交流是一种重要的学习方法,而且提高了学生学习的积极性.
环节五、当堂检测
活动内容:
1:小华和小玲同时从相距700米的两地相对走来,小华每分钟走60米,小玲每分钟走80米.几分钟后两人相遇?
分析:先画线段图:
假设x分钟后两人相遇,此时小华走了
米,小玲走了
米,两人一共走了
米.找出当小华和小玲相遇时的等量关系:


写解题过程:
2:一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进。突然,1号队员以45千米/小时的速度独自行进,行进10千米后掉转车头,仍以45千米/小时的速度往回骑,直到与其他队员会合,1号队员从离队开始到与队员重新会合,经过了多长时间?
目的:
检测学生本节课掌握知识点的情况,及时反馈学生学习中存在的问题.
实际活动效果:
由于时间关系,只能要求学生在课堂上分析其中的等量关系,列出方程,而没有时间解方程,但也达到了检测的目的,知道了学生本课时知识掌握中的共性问题及教师没有考虑到的问题.
环节六、作业
习题5.9
1——3
五、教学反思
本节课以学生的实际生活为起点,通过对各种情况的行程问题的讲解、例题分析、巩固提高这种传统的教学模式来进行教学,同时又将新课标的精神融入其中,注重学生兴趣、激情的提高.这样做的好处是:能使大部分同学都能掌握基本知识,成绩好的也有新的收获,做到了各有所得.
整堂课在逻辑思路方面非常合理,层次安排得当,比较适合七年级学生所处的年龄阶段的认知水平和实际学习情况,让学生在轻松愉快的学习过程中获得进步,符合新课程标准的要求.对于应用题的解决,不少学生还是不习惯用列方程解决问题,所以在教学过程中注意引导学生利用方程模型,让学生切身感受到列方程解应用题的必要性,为八年级、九年级列方程解应用题打好基础.
同向而行
①甲先走,乙后走;
等量关系:甲的路程=乙的路程;甲的时间=乙的时间+时间差.
同向而行
②甲、乙同时走;
等量关系:甲的时间=乙的时间;乙的路程=甲的路程+起点距离.
相向而行
等量关系:甲所用时间=乙所用时间;甲的路程+乙的路程=总路程5.3
应用一元一次方程——水箱变高了
一、学生起点分析
本节课涉及到图形问题,关键是让学生抓住形变过程中的不变量,对于基本图形的体积、面积、周长等公式,学生已在小学系统学习,如果遗忘或混淆,可做适当复习.
二、教学任务分析
本节学习列方程解应用题,其关键还是寻找实际问题中的等量关系.在实际生活中经常会遇到类似本节情境的问题,最关键的是抓住变化中的不变量,从而设出未知数,根据等量关系列出方程.教学时,应鼓励学生独立思考,发现等量关系.特别是对例1,应让学生根据生活经验和原有基础分组独立完成,然后请各小组汇报:四个小问题的解答情况,最后组织学生展开讨论:解这道题的关键是什么?从解这道题中你有哪些收获和体验?因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解得合理性.
三、教学目标
借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接或间接设未知数的解题思路,从而建立方程,解决实际问题.
通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力.
通过对实际问题的探讨,使学生在动手独立思考、方程意识的过程中,进一步体会数学应用的价值,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.
四、教学过程设计
本节课设计了六个教学环节:
第一环节:创设情境,引入新课;第二环节:运用情境,解决问题;第三环节:操作实践,发现规律;第四环节:体验数学模型第五环节:课堂小结;第六环节:布置作业.
环节一:创设情境,引入新课
活动内容:
情境1:成语“朝三暮四”的故事
(附内容:从前有个叫狙公的人养了一群猴子.每一天他都拿足够的栗子给猴子吃,猴子高兴他也快乐.有一天他发现如果再这样喂猴子的话,等不到下一个栗子的收获季节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子的时候很是生气,呲牙咧嘴的.没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴得直打筋斗.)
问题1:猴子为什么高兴了?这其中有什么数学奥秘吗?
情境2:教师从讲台下拿出了两瓶矿泉水(容量一样,A短而宽,B长而窄).
问题2:请问大家哪瓶矿泉水多?为什么?
教师拿出两个相同的量杯,让学生把两瓶矿泉水分别倒进两个量杯中,结果全体同学都说一样多,没有说对的同学,不好意思的笑了.
教师:不要紧张,现在还有一个机会证明自己.
情境3:先用一块橡皮泥捏出一个“瘦长”的圆柱体,然后再让这个“瘦长”的圆柱“变矮”,变成一个又矮又胖的圆柱,请思考下列几个问题:
在你操作的过程中,圆柱由“高”变“低”,圆柱的底面直径变了没有?圆柱的高呢?
在这个变化过程中,是否有不变的量?是什么没变?
活动目的:
让学生在愉快地玩的过程中体会等体积变化的现象中蕴涵的不变量.同时分析出不变量与变量间的等量关系.
活动的实际效果:
学生能够感受到:两瓶形状不一样的矿泉水体积是一样的,手里的橡皮泥在手压前和手压后发生了变化,变胖了,变矮了.即高度和底面半径发生了改变,但手压前后体积不变,重量不变.
环节二:运用情景,解决问题
活动内容:
张师傅将一个底面直径为20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为10厘米的“瘦长”形圆柱.假设在张师傅锻压过程中圆柱的体积保持不变,那么圆柱的高变成了多少?
(在这个环节中可安排两组同桌分别上黑板合作完成.并把思路分析给大家.可给每个四人小组发一张表格,让学生试着通过填写表格寻找等量关系.)
活动目的:
将上述环节中体会到的形之间的变与不变的关系,量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.
活动的实际效果:
学生解答过程布列方程很顺利,很多学生使用了下面的表格来帮助分析.
锻压前
锻压后
底面半径
cm
cm

9cm
xcm
体积
π×
×9
π×
×x
由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程.
解:设锻压后的圆柱的高为xcm,由题意的
π××9=π××x,
解之,得
x=36.
黑板上两组学生中有一组学生将π的值取3.14,带入方程,教师应在此给予指导,不要早说,现在恰到好处!
此类题目中的π值由等式的基本性质就可以约去,无须带具体值;
若题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度.
环节三:操作实践,发现规律
活动内容:
学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内四个同学的计算结果,你发现了什么?
活动目的:
我们知道:学生自己亲手经历操作后的感受会更深刻.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生经过观察、分析、归纳、总结等数学学习活动中发现数学思想与数学方法,也同时让学生感悟复杂的问题中的道理就在我们玩的过程中,就在我们的生活中.
活动的实际效果:
长(cm)
宽(cm)
面积(cm )
长方形1
15
5
75
长方形2
13.5
6.4
86.4
长方形3
12.8
7.3
93.44
长方形4
11.6
8.4
97.44
长方形5
11
9
99
长方形6
10
10
100
由学生的实际操作得到的近似值已反映出来一个很好的规律.
学生:由操作过程,同学们作出的长方形形状有“胖”有“瘦”,反映到表中数据为:当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大.当长与宽一样长时面积最大.
过程感悟:不要怕完不成进度,这个过程进行完成后,学生对课本设置相关内容就剩下规范解题过程了,学生的理解远比直接先讲教材的例题效果要好的多.(此处教师可用几何画板来完成)
环节四:练一练,体验数学模型
活动内容:课本例题
例1:一根长为10米的铁丝围成一个长方形.
若该长方形的长比宽多1.4米.此时长方形的长和宽各为多少米?
若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米 它围成的长方形的面积与(1)中所围成长方形相比,面积有什么变化?
若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少 它围成的长方形的面积与(2)中相比,又有什么变化?
如果把这根长为10米的铁丝围成一个圆,这个圆的半径是多少?面积是多少?
请思考:解此例题的关键是什么?通过此题你有哪些收获和体验?你能试着设计表格解决这个问题吗?
活动的实际效果:因为有了环节三的铺垫,有效地分解难点,学生掌握很好.完整的解题过程留成课后作业.
环节五:课堂小结
通过对“我变高了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键,其中也蕴涵了许多变与不变的辩证的思想.
遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.
学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.
环节六:布置作业
P184
随堂练习
习题5.7
思考:地面上钉着用一根彩绳围成的直角三角形.如果将直角三角形锐角顶点的一个钉子去掉,并将这条彩绳钉成一个长方形,则所钉长方形的长,宽各是多少?面积是多少?
五、教学反思
1.创造性地使用教材.
本节课的引入新颖自然,通过两个实验(情景2为液态物体变化,情景3为固态物体变化),使学生对课题有了初步的认识,并通过学生对实验的观察,发现了在物体形状变化时的不变量,从而为列方程找等量关系作了铺垫.环节2中的表格发给每个小组,为增强小组讨论结果的展示起到了较好的作用.环节3中通过让学生自己设计表格为讨论的得出起到辅助作用.
2.相信学生并为学生提供充分展示自己的机会
本节课的设计中,通过学生多次的动手操作活动,引导学生进行探索,使学生确实是在旧知识的基础上探求新内容,探索的过程是没有难度的任何学生都会动手操作,每个学生都有体会的过程,都有感悟的可能,这种形式让学生切身去体验问题的情景,从而进一步帮助学生理解比较复杂的问题,再把实际问题抽象成数学问题.
3.注意改进的方面
本节课由于构题新颖有趣,所以一开始就抓住了学生的求知欲望,课堂气氛活跃,讨论问题积极主动.但由于学生发表自己的想法较多,使得教学时间不能很好把握,导致课堂练习时间紧张,今后予以改进.
数学日记


星期
天气
学习课题:
知识归纳与整理:
我的收获与困惑
自我评价
老师我想对你说5.5
应用一元一次方程——“希望工程”义演
一、学生起点分析
学生在小学已有列方程解应用题的基础,会通过分析简单应用题中已知数与未知数之间的等量关系,列出方程,通过运算求出未知数的值,写出应用题的答案.通过本章前几节的学习学生已经初步掌握了运用方程解决实际问题的一般过程,但有些学生在列方程解应用题时常常会遇到一些困难,即从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能正确列出方程.
二、教学任务分析
本课以“希望工程”义演为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生借助列表的方法分析问题,体会用图表语言分析复杂问题表达思维方法的优点,从而抓住等量关系“部分量之和等于总量”展开教学活动,让学生经历抽象的符号变换应用等活动,展现运用方程解决实际问题的一般过程.因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性.
三、教学目标
1、借助表格分析复杂问题中的数量关系和等量关系,体会间接设未知数的解题思路,从而建立方程解决实际问题,
并要求学生进一步明确必须检验方程的解是否符合题意.
2、通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.培养学生具有数学知识,增强学生探究、推理数学的能力;培养学生的数学兴趣,协助学生发展逻辑思维的能力,并能应用数学解决日常生活中的问题.
四、教学过程设计
本节课设计了六个教学环节:第一环节
情景导入;第二环节:探究新课;第三环节:运用巩固;第四环节:课堂小结;第五环节:当堂检测;第六环节:布置作业.
教学流程:
环节一、情景导入
活动内容:
引导学生复习回顾列一元一次方程解应用题的一般步骤:
1.审——通过审题找出等量关系;
2.设——设出合理的未知数(直接或间接),注意单位名称;
3.列——依据找到的等量关系,列出方程;
4.解——求出方程的解(对间接设的未知数切记继续求解);
5.检——检验求出的值是否为方程的解,并检验是否符合实际问题;
6.答——注意单位名称.
目的:
复习列一元一次方程解应用题的一般步骤,强化解题步骤.
实际活动效果:
学生印象深刻.
活动内容:
展示一组有关希望工程的图片,让学生谈谈他的所见所感(PPT展示图片),引出课题“希望工程”义演.
板书:《“希望工程”义演》
目的:
让学生身临其境,深刻感受到“希望工程”的重要作用,也为学生学习新知创设了问题情境,让学生的学习由被动变为主动.陶冶学生的数学情感,对学生进行爱国主义教育.
实际活动效果:
图片引起了学生的兴趣,又带来了疑问“希望工程”与数学有什么关系?带着好奇有了想继续听下去的冲动.
环节二、探究新课
活动内容:
教材实例分析:
例1:某文艺团体为“希望工程”募捐义演,成人票8元,学生票5元.
成人票卖出600张,学生票卖出300张,共得票款多少元?
成人票款共得6400元,学生票款共得2500元,成人票和学生票共卖出多少张?
如果本次义演共售出1000张票,筹得票款6950元,成人票与学生票各售出多少张?
目的:
为突破本节课的重点,将实际问题抽象成数学问题,找出其中的已知量、未知量和等量关系.引导学生把数学问题用图表语言来表达,借助表格整体把握和分析各个量之间的相互关系,并注意检验方程解的合理性.
实际活动效果:
(1)分析:总票款=成人票款×成人票价+学生票款×学生票价.
板书规范写出解题过程:
解:8×600+5×300=4800+1500=6300(元).
答:共得票款6300元.
(2)分析:票数=总票款÷票价.
板书规范写出解题过程:
解:(元).
答:成人票和学生票共卖出1300元.
(3)分析:本题中存在2个等量关系:
总票数=成人总票数+学生总票数;
总票款=成人总票款+学生总票款.
方法1分析:列表
学生
成人
票数(张)
x
1000-x
票款(元)
5x
8(1000-x)
板书规范写出解题过程:
解(方法1):设学生票为x张,
据题意得
5x+8(1000-x)
=6950.
解,得
x=350,
此时,1000-x=1000-350=650(张).
答:售出成人票650张,学生票350张.
方法2分析:列表
学生
成人
票数(张)
票款(元)
y
6950-y
板书规范写出解题过程:
解(方法2):设学生票款为y张,
据题意得
.
解,得
y=1750.
此时,
(张),
1000-350=650(张).
答:售出成人票650张,学生票350张.
活动内容:
引导学生对比哪种方法更简便一些?思考“在以前,列方程时,通常找一个等量关系,即可列出方程,为什么在这个题中寻找到了两个等量关系,它们各有什么用途?”
目的:
对于第(3)小问引导学生设不同的未知数,列出不同的方程,对比两种解法,虽然解法一要比解法二优化的多,但仍需让学生通过亲手计算,真正理解其中的含义:前面提到的含有两个未知量,两个等量关系,可以把其中一个未知量设为未知数,另一个未知量就用其中的一个等量关系表示为含未知数的代数式,而另一个等量关系则用来列方程是如何实施的;解法一的求解过程比较简单;不论选择哪种方法,在解题前,首先要明确数量关系,而在这里运用列表法是一种比较有效的工具.
实际活动效果:
学生通过对比,体会到了在这个较为复杂的实际问题中,为了理清楚各个量之间的关系,我们可以借助“列表格”的方法来帮助我们解决一些较复杂的问题.
活动内容:
变式:如果票价不变,那么售出1000张票所得的票款可能是6930元吗?
目的:
引导学生再次借助“列表格”来完成,进一步感受列表格的好处.
实际活动效果:
分析:列表
学生
成人
票数(张)
x
1000-x
票款(元)
5x
8(1000-x)
板书规范写出解题过程:
解:设售出学生票为x张,
据题意得
5x+8(1000-x)
=6930.
解,得
x=.
答:因为x=不符合题意,所以如果票价不变,售出1000张票所得票款不可能是6930元.
本环节设计思路:
1、提出问题:
  ①让学生思考,他们想用什么方法解决上面的问题?
  ②如果用列方程的方法,那么已知量是什么?未知量又是什么?
2、分析问题:
  
列方程解应用题的关键是找等量关系,让学生想一想,上面的问题中包含哪些等量关系?
3、解决问题:
  ①根据上述两个等量关系,填写下表,借助表格列出方程,解出方程,从而解决问题;
②引导学生利用其他方法,间接设未知数借助表格来解答。
4、检验方程解的合理性。
环节三、运用巩固
活动内容:
练习1:初三·1班举办了一次集邮展览,展出的邮票数若以平均每人3张则多24张,以平均每人4张则少26张,这个班级有多少学生?一共展出了多少张邮票?
练习2:某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半还少1人,三个车间各有多少人?
目的:
给学生提供进一步巩固对建立方程模型的基本过程和方法的熟悉机会.
实际活动效果:
(1)分析:列表
学生人数
邮票张数
方案1
x
3x+24
方案2
x
4x-26
找出等量关系:邮票总张数相等.
板书规范写出解题过程:
解:设这个班有学生x人,
据题意得
3x+24=4x-26.
解,得
x=50.
此时,3x+24=150+24=174(张).
答:共有学生50人,邮票174张.
(2)分析:第二车间与第三车间都和第一车间比较,因此第一车间是中间量,可以借它来建立它们之间的数量关系.
板书规范写出解题过程:
解:设第一车间有x人,则第二车间有3(x+1)人,第三车间有(0.5x-1)人,
据题意得x+3(x+1)+(0.5x-1)=180.
解,得
x=40,
此时,3(x+1)=
3(40+1)=121(人),0.5x-1=0.5×40-1=19(人)
答:第一、二、三车间分别有40人,121人,19人.
环节四、归纳小结
活动内容:
学生归纳总结本节课所学知识:
两个未知量,两个等量关系,如何列方程;
寻找中间量;
学会用表格分析数量间的关系.
目的:
为实现新课程改革的基本理念——让学生学会自我反思与评价,在此环节我给每一个学生提供平等的表述自己思想的机会,让学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.
实际活动效果:
通过交流学生认识到利用“列表格”法来分析问题的好处,并感受到运用方程解决实际问题的优势.让学生自己总结,不但使学生懂得亲身实践、合作交流是一种重要的学习方法,而且提高了学生对所学知识的梳理能力.
环节五、当堂检测
活动内容:
1:甲、乙、丙三个村庄合修一条水渠,计划需要176个劳动力,由于各村人口数不等,只有按2:3:6的比例摊派才较合理,则三个村庄各派多少个劳动力?
2:某校组织活动,共有100人参加,要把参加活动的人分成两组,已知第一组人数比第二组人数的2倍少8人,问这两组人数各有多少人?
目的:
检测学生本节课掌握知识点的情况,及时反馈学生学习中存在的问题.
实际活动效果:
从学生做题的情况看,大部分学生都能正确地列出方程,但其中一部分人并不能有意识地用“列表格”法来分析问题,因此,教师仍需引导他们能学会用“列表格”这个工具,有利于以后遇上复杂问题能很灵活地得到解决.
环节六、作业布置
习题5.8
1,
2,
3
五、教学反思
本节课中的设计中,通过丰富多彩的活动,有梯度的引导学生进行探索,使不同层面的同学有不同程度的收获.指导学生借助表格去表达问题的信息,这里表格的引入非常自然,使学生真正感受到表格对分析问题所起的重要性.引导学生一题多解,用不同的方式设未知数,用不同的等量关系列方程,并加以比较研究,对提高学生的分析问题和解决问题的能力有很大帮助,还应注意检验方程解的合理性.5.4
应用一元一次方程——打折销售
一、学生起点分析
打折问题,学生在小学阶段已有所接触和认识,学生已知“几折”所表示的意义,而且学过用算术方法计算一些简单的打折销售问题。但对于绝大多数学生来说,通过建立等量关系来分析一些较复杂的打折销售问题还存在一定的困难。
通过前两节课的学习,学生已经经历运用方程解决实际问题的过程,知道寻找等量关系是解决问题的关键。打折销售是学生学习了代数式,简易方程即一元一次方程的解法后的一个理论联系实际的最好教材,也是前一部分知识的应用与巩固。打折销售是生活中常见的但不是很熟悉的一个问题,学生缺少丰富的生活体验,因此布置学生进行课前调查很有必要。学生根据切身体会和实践经验进行总结,应用一元一次方程解决实际问题的一般步骤,体会更加深刻。
二、教学任务分析
本节课以“打折销售问题”为例展开探索,关键在于理解成本、售价、标价、利润、利润率等术语的含义。分析“打折销售问题”中的数量关系,建立数学模型,并用方程最终解决实际问题。使学生进一步领悟到方程解实际问题的关键是找到“等量关系”。由于打折销售问题是学生日常生活中常见的问题,可以在课前安排学生进行一次社会调查,让学生深入商店,感受有关打折销售的现实情景,了解成本、售价、标价、利润、利润率等之间的关系。同时由于此类问题所涉及的数量关系及数据较复杂,在讨论数量关系的过程中,学生可能会遇到困难,教师可以列出表格,帮助学生分析,首先鼓励学生自己填表,对学有困难的学生教师要通过举具体事例说明关系:利润=售价-进价,利润率=利润÷进价等,然后引导学生填写表格。要求学生在解决问题的过程中体验数学与周围世界的联系,以及数学在社会生活中的作用和意义,逐步领会学习数学与个人成长之间的关系,感受成功,增强自信。
三、教学目标
1.理解成本、售价、利润、利润率之间的数量关系,并能复述。
2.能在具体打折问题中准确找出等量关系列方程求解,并根据所求方程的解来解释和分析打折销售中的具体现象。
3.通过调查,体验和分析,充分感受身边的数学,尝试用数学的眼光分析生活中的打折现象,理性消费。
4.会从问题情境中探索等量关系,经历和体验运用一元一次方程解决实际问题的过程,培养抽象、概括、分析问题、解决问题的能力。
四、教学过程设计:
本节课设计了六个教学环节:第一环节:教学准备。第二环节:情景引入(汇报结果,获取信息)。第三环节:活动探究。第四环节:讲授例题,规范过程。第五环节:课堂小结。第六环节:布置作业。
环节一
教学准备
活动内容:
布置社会调查任务:选择某种商品的打折活动做调查。(把学生逛商场进行打折销售调查的场景播放出来(视频))
目的:
商品销售虽然是发生在学生身边的事情,但亲自经历过关注过商品销售的往往是少数学生,提前安排学生到商场进行价格调查,感受生活中的数学。
实际活动效果:
通过这个活动,不仅达到提前预习的目的,更让学生体验数学与周围世界的联系,以及数学在社会生活中的作用和意义,感受到数学就在身边,亲切自然,极大地激发了学生学习数学的热情和积极性。
环节二:情景引入(汇报结果,获取信息)
同学们到商场了解了有关打折销售的问题,获得了那些信息,请大家交流一下,分组讨论,形成知识体系。
目的:
由于学生小学已经学过一部分相关知识,而且又提前安排了社会调查,这样的交流活动,实际是学生独立面对生活时能力的体现。
实际活动效果:
学生调查的很全面,事例很详实。他们对各自收集的打折方式都进行探讨,一方面增长了生活常识,另一方面对相关术语也不讲自懂了,而且理解还很深刻。
环节三:活动探究
根据调查了解到的有关商品打折销售实际,解答学生自己编拟的题目.
学生编题选:
1.一件商品原价为120元,按八折(即原价的80%)出售,则现售价应为
元。
2.某件商品进价是270元,八折销售可获利润50元,则原售价为
元。
3.某商品的进价是1530元,若按商品标价的九折出售,利润率是15%。求该商品的标价。
4.某老板先把一件商品按成本提高50%后标价,再打八折销售,售价为600元,这种商品的成本是多少?商家的利润为多少元?
5.某商场售货员同时卖出两件衣服,每件都以135元售出,若按成本计算,其中一件盈利25%,另一件亏损25%,问这次售货员是赔了还是赚了?
(这里选了四人小组中比较有代表性的五道题,学生们都准备得很充分。)
目的:
设置了比教科书更开放的问题。实际生活中的数学问题往往可以有不同的方案,通过小组合作的形式,每个学生都有机会提出自己的解题方案,都有可能获得成功的体验。同时又分享别人的解题方案,共同讨论不同方案的优缺点,这对于发展学生的解题思路、增强学生的自信心、培养创造性思维十分有利。
实际效果:
学生经过研究后回答了对方编写的题目。答题的过程充分表现出他们对这类问题的胸有成竹,教学过程很顺利.
环节四:讲授例题,规范过程
例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠销售,结果仍获利15元,这种服装每件成本是多少元?
教师可出示表格,让学生尝试用填写表格的形式理清数量之间的关系。
如果设每件服装的成本价为x元
成本价
标价
售价
售价-成本价
利润
x
x(1+40%)
(1+40%)x·80%
(1+40%)x·80%
-
x
15
列出方程(1+40%)x·80%
-
x
=
15.
解方程得
x
=
125
答:这种服装每件成本为125元.
例2.某商场将某种商品按原价的八折出售,此时商品的利润率是10%。此商品的进价为1800元,那么商品的原价是多少?
目的:
这两道题的分析是重点,在此过程中,首先让学生分小组读题,讨论,思考题目的已知和未知,考虑思路,在学生遇到困难时,教师给予适当的指导,并注意分析和综合两种分析方法的应用,先用分析法。由未知找已知,执果索因;再用综合法由已知找未知,由因导果。这样有利于解决学生“不知如何思考”的问题,提高解题能力。
实际效果:
两道例题,第一道题师生共同分析,第二道题学生自己分析。部分学生在运用方程解答问题时,等量关系的寻找还是有困难,规范解题不够合理,仍需在作业过程中教师给予适当的指导。
环节五:课堂小结
这节课我们学习了有关打折销售的知识,其实类似的问题我们小学也遇到过,今天在分析实际问题时又用到了列表法,通过这节课的学习,谈谈你在知识方面的收获。提示学生通过对《日历中的方程》《我变高了》以及本节《打折销售》学习还有以往经验,让学生分组讨论,用一元一次方程解决实际问题的一般步骤是什么?
目的:
让学生进一步体会方程的作用,这里教师又提到学生的小学学习,目的是想提示学生,将今天的方程解法与小学学过的算术方法相对比。此活动的目的是使学生不再处于被动状态,而成为积极的发现者。
学习活动效果:
通过交流学生认识到列表分析问题的好处,发现打折销售中的一些规律,并感受到运用方程解决实际问题的优势。充分体现了数学课堂由单纯传播知识的殿堂转变为学生主动从事教学活动,构建自己有效的数学理念的场所。
环节六:布置作业
1.课本P188随堂练习及习题5.8
2.思考题:王女士看中的商品在甲乙两个商场以相同的价格销售。两商场采用的促销方式不同:在甲商场一次性购物超过100元,超过的部分八折优惠;在乙商场一次性购物超过50元,超过的部分九折优惠。那么,她在甲商场购物超过多少元就比乙商场优惠?
五、教学反思:
创造性地使用教材
布置学生以学习小组为单位去商场进行调查,了解商品打折有关情况及有关知识,让学生主动参与学习过程中自编题目,在活动中发现知识,在讨论中学到知识,在练习中巩固知识。让学生感到数学是这么“亲切”,极大激发了孩子们学习数学的热情和积极性,使学生更深刻地理解所学知识,教学效果非常好。
相信学生,为学生提供充分展示自己的机会。
课堂上把激发学生热情和获得学习能力放在教学首位,通过运用各种启发,激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度,培养了学生健全的人格。
注意改进的方面
在小组讨论之前,应该留给学生充分的独立思考时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。5.2
求解一元一次方程(第1课时)
一、学生起点分析
学生在上一节已经学习了等式的基本性质,并且会用等式的基本性质解较简单的一元一次方程.本节课要通过用等式的基本性质解一元一次方程,观察、归纳得出移项法则.但学生刚学时不习惯用移项法则,而仍然借助等式的基本性质解方程,这是正常的,需要通过大量练习后才能体会到移项法则的便利.
二、学习任务分析
本节内容分三个课时完成,每课时所完成的具体任务不同.本课时主要内容是在学生进一步熟悉运用等式性质一解方程的基础上,分析、观察、归纳得到移项法则,并能运用这一法则求方程的解.
三、教学目标
1.进一步熟悉利用等式的基本性质解一元一次方程的基本技能.
2.在解方程的过程中分析、归纳出移项法则,并能运用这一法则解方程.
3.体会学习移项法则解一元一次方程必要性,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.
四、教学过程
本节课设计了六个教学环节:第一环节:复习引入;第二环节:达标训练;第三环节:合作学习;第四环节:巩固提高;第五环节:课堂小结;第六环节:布置作业.
环节一:复习引入
内容:复习上节课用等式基本性质一解方程的过程,观察、分析、概括出移项法则.
要求:解下列一元一次方程,学生先自主完成,然后以小组形式交流各种解法,要说明这样解的依据.
(1)

           
解:方程两同时加上2,得. 
也就是     5x=8+2. 
方程两边同除以5,得 
 x=2. 
此题学生可能会用差+减数=被减数的方法
(2)

解:方程两都加上,得
也就是  5x-8x=2.
化简,得 
 -3x=2. 
方程两边同除以-3,得 
 x=. 
此题学生可能会用:被减数—差=减数;目的是把含有未知项放一边,已知数放一边.
设问1:在变形过程中,比较画横线的方程与原方程,可以发现什么?
设问2:上述变形过程中,方程中哪些项改变了原来的位置?怎样变的?
设问3:为什么方程两边都要加上2呢?第2小题在解的过程中两边加上的目的是什么?
归纳:像这样把原方程中的某一项改变
后,从
一边移到
,这种变形叫做移项
思考:(1)移项的依据是什么?移项的目的是什么?
(等式的基本性质;移项使含有未知数的项集中于方程的一边,常数项集中于方程的另一边)
目的:1.让学生在复习上课时内容、归纳出移项法则的过程中,体会用等式的基本性质一解方程与用加减互为逆运算解方程的区别;同时让学生经历将算术问题“代数化”的过程,此过程也是一个抽象的过程,提炼、归纳上升到一个规律变化的过程.
实际效果:
  学生通过利用等式的性质,加减逆运算关系,合并未知数系数等方法化为x=a的形式.
  学生在归纳“移项法则”的过程中,教师在不断的通过问题引发学生思考,学生表现出的观察、归纳、总结的能力很强,由此过程中表现出来的用“移项法则”解方程的思维强于用小学逆运算关系解方程,基本能做到:移动的项变号,不移动的项不变号,对“移项”的实质理解也比较到位,“要移就要变,左右移,变符号”.
  存在问题:方程两边需要移动的项多于两项时,移项过程中有的同学出现“移项”与“项的换序”混淆.
如:解方程:

.
——————(1)
    方程(1)中的没有移项,只是“换序”不应该变号.这就是对于移项的实质没有理解清楚造成的.
环节二:达标训练
【达标训练1】
1.把下列方程进行移项变形(未知数的项集中于方程的左边,常数项集中于方程的右边)
(1)移项,得
;(2)移项,得

(3)移项,得
;(4)移项,得

2.
下列变形符合移项法则的是(

A.
B.
C.
D.
目的:通过及时的训练落实移项变形,并由学生总结出移项的注意事项并归纳出移项法则.
总结:移动的项要   ;移项通常是将
,已知项
;(移项法则)
例1
解方程:
(1)

解:
移项,得 .
化简,得
 
 .
方程两边同时除以2,得
(2).
解:
移项,得 .
合并同类项,得
 
 .
【达标训练2】
(1);
  (2);
(3).
目的:通过例题分析,规范学生的书写步骤格式,并训练落实.(根据时间选做)
环节三:合作学习
内容:1.例2.解方程.
解:
移项,得 .
合并同类项,得
 
 .
方程两边同时除以(或同乘以),得
学生独立完成例2,学生互评(有哪些方法)
  2.以小组为单位,每人出一个解方程的题,题型局限于本课时的题型,组内交换解答,组长负责检查,组员负责看解答结果如何.
目的:1.学生自己出题的过程本身就是对本课时题型的一种掌握.
2.学生互解对方题目的过程,也是一个互相学习、取长补短的过程.
3.合作学习的过程也是让学生学会协作、交流的过程,从而达到巩固所学知识的目的.
实际效果:
1.我们看到学生在考虑解方程的问题时,也把有理数中各种数字的运算问题也做了迁移,有的学生还考虑到生活中会遇到的百分数问题.
2.一元一次方程的解法达到了巩固的目的.
环节四:巩固提高
内容:本节课后,随堂练习4个小题.
目的:巩固本课时的内容.
实际效果:
使用课堂检测的方式,限时完成.
好的方面:80%的学生能够顺利完成;
问题方面:解类似下面的方程:-3x+1=x+1 时出现一些问题.
环节五:课堂小结
本节课学习了哪些内容?哪些思想方法?
移项的目的是什么?为什么学习了等式的性质还要学习移项法则呢?
内容:引导学生结合本课时的内容,归纳总结解一元一次方程的“移项法则”及此过程中的注意事项.
目的:让学生及时归纳那总结所学知识,及时反思,因为反思是进步的关键因素.
实际效果:
  学生不仅会对课上的知识点进行梳理总结,而且还会对课上感悟到的数学思想
-----“转化的思想方法”准确地应用到以后的数学学习中.
学生在合作学习中感受到伙伴优于自己的学习热情,学习策略,他们会互相借鉴,取长补短,共同进步的.
环节六:布置作业.
习题5.3第1题
五、教学反思
教学中要注重“铺垫”与“打伏笔”,给后续教学留好生长点;本课时教学较为成功与上课时用等式基本性质一解一元一次方程学习到位有很大关系.本课引导学生体会新知识的引入与事物的发展变化总是由易到难,而解决新问题的方法往往是化“新”为“旧”,这样一个研究数学的方法,会对以后的数学学习在思维方式、解决问题的策略等方面给予启发和帮助.学生体会到了学习移项法则的必要性,就像学习了乘法分配律还学习去括号法则类似,引导学生勤于思考,善于总结.特别是通过问题的设计引发学生思考,如让学生明白移项的目的是什么?为什么学习了等式的性质还要学习移项呢?这样的问题可促进优等生的思考.
5.2
求解一元一次方程(第2课时)
一、学生起点分析
学生在上一节已经掌握了用移项法则解一元一次方程,用等式的基本性质二将方程中未知数的系数化为1,从而转化方程为x=a(a为常数)的形式,本节课在第一节的基础上进行去括号的应用,学生在之前已经学习了去括号法则,但仍然存在不少问题,教学时需复习巩固.
二、学习任务分析
   第一课时要求学生完成用等式基本性质一解方程,分析、观察、归纳出用移项法则,从而简化解方程的步骤.第二课时,让学生体会当方程左右两边含有括号时,如何通过去括号法则将方程化简再运用等式的基本性质一、二使方程变形到“x=a(a为常数)”的形式.
三、教学目标
1.会解含有括号的一元一次方程,进一步体会解方程是运用方程解决实际问题重要环节.
2.通过观察、思考,使学生探索方程的解法,经历和体验用多种方法解方程,提高解决问题的能力.
3.通过对与学生生活贴近的数学问题的探讨,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.
四、教学过程设计
本节课设计了六个教学环节:第一环节:小组讨论,引入课题;第二环节:合作学习;第三环节:探索交流,深化认识;第四环节:巩固提高;第五环节:课堂小结;第六环节:布置作业.
环节一:小组讨论,引入课题
内容:设置问题串,观看课本(或课前预习),请同学回答
上课时解一元一次方程的题型有什么特点
本节课的一元一次方程有什么特点 与上课时的题型差异何在
目的:因为解一元一次方程不同类型的方程简化方程到“x=a(a为常数)”的手段不同,所以必须引导学生善于分析观察题中所给信息的习惯及能力.
我们知道,一个优秀学生的首要标志就是“不惧生”,即对生面孔的题目总有自己的分
析方式,处理策略,解决办法,那么这些能力的培养是离不开教师在教学过程中,尽可能多地设置让学生自主发现、独立探索思考的机会的.即便错误很多,只要思考就是好的开始.
实际效果:
同学能很清楚地用自己的语言说出自己的看法.认为:
1.本课时的内容与课本上一节的内容有承接关系.
2.本课时增加了方程中含有括号的表达形式,需先去括号,这样就化成上课时所学内容了.
3.
去括号要注意括号系数为负系数的问题.
环节二:合作学习
内容:请同学们分析理解174页图解题.
由同学根据图示编出一道合理的应用题.
比较此题与本章节第一节引例的实际问题有何区别?
目的:进一步让学生体会数学中问题的提出大都是因人们的生活实践需要,因社会的发展需要,实际问题的“数学化”,数学服务于生活实际随处可见.[]
在学生由图示内容编题过程中,让学生强化“三种语言”的互话能力.即:文字语言,符号语言和图例语言之间的互相转化.学生着方面能力的培养在教师授课的过程中需要引起关注,将是一个事半功倍的方法,尤其是设法充分利用教材中所呈现内容这一资源,显得尤为重要.
实际效果:
1、同学完整编出此题:
小林到超市,准备买1听果奶和4听可乐,小明告诉他一听可乐比一听果奶贵5角钱,
小林给了营业员20元钱,找回了3元,大家帮助小林算算一听果奶,一听可乐各是多少钱?
完成的过程体现出学生对图例中已知、未知等相关方面的信息掌握全面,梳理清晰,表达准确.
本例及本章节的背景问题,学生们发现设问中的未知量由原来的一个增加到现在的两个,并给出完整的解答过程.这些方面学生都能很完整、准确地给予书面语言的表达,完成得非常好,为后续课程的学习奠定了很好的基础.
列出方程:4(x+0.5)+
x
=20-3.
这个方程列的对吗?怎样解所列的方程?
解方程:4(x+0.5)+
x
=17.
解:去括号,得
4x+2+
x
=17.
移项,得
4x+
x
=17-2.
合并同类项,得
5x
=15.
方程两边同除以5,得
x
=3.
此题通过师生合作解决,强调规范的步骤格式.
环节三:探索交流,深化认识
内容:1.课本175页,例4解方程: 
-2(x-1)=4.
解法一:去括号,得
-2x+2=4.
移项,得
-2x=4-2.
化简,得
-2x=2.
方程两边同时除以-2,得x=-1.
解法二:方程两边同时除以-2,得x-1=-2.
移项,得
    
x=-2+1.

x=-1.
此题通过学生板演解决,观察两种解方程的方法,说出它们的区别,同伴间进行交流.[]
2.学生自编一个类似例4的题目,用不同的方法给予解答.
目的:一方面让学生继续巩固含括号的一元一次方程的解法;另一方面让学生感受将(x-1)或其他的未知数的代数式看成整体的数学思想.
实际效果:
学生在解答此类问题时,总是习惯先去括号,转化成第一课时的方程形式求解,用整体的观念解方程还不够熟练.
编题:解方程:
1、
1-(x+1)=2.
2、
2(2x-1)-1=3(2x-1)+3.
3、
.
有些学生在编题过程中能表现出他们对此类问题理解的准确性与深刻性;知识体系自建的合理性与健全性.知识内化的深入与到位也是非常令人高兴的.
环节四:巩固提高
内容:课本175页随堂练习
实际效果:学生基本能够准确解答此类含括号的一元一次方程,用整体的思想解答问题,这一点学生使用的比较习惯,说明学生对此处渗透的接受程度较高.
环节五:课堂小结
1.本节课我们学习了哪些内容?哪些思想方法?
2.解含有括号的一元一次方程的一般步骤是什么?每步变形的依据及需注意什么?
内容:学生归纳总结本节内容,并回顾复习每步变形的依据及注意事项.
目的:学生的课堂小结看似简单,但是却反映学生知识内化的重要方面,这个过程的实现,通过学生的书面表达完成,更能体现了学生的综合能力.
环节六:布置作业
习题第5.4第1、2小题
课后反思
创造性地使用教材,是教师的主导作用的体现.本课时教材在使用时至少有三处贯穿了这样的思想.教师这个“教练”、“导演”应该引导学生充分利用其课文内在的资源,使其发挥最大的作用.如:
(1)开始引例“图示”的内容,让学生用其素材编题.
(2)本例解题过程回答题中两个未知量的解答环节.
(3)通过让学生自编用整体思想解答的方程.
这些环节的设置,对系统地、全面地培养学生捕捉信息、分析信息和处理信息的能力有非常大的作用,对学生课上反思、课上内化知识的能力提高.作为教师,应该长期坚持与学生在这方面切磋、探索,把课堂充分还给学生,充分尊重学生的个性思维,引导学生构建自己的认知结构,并给予适时调控和指导.5.1
认识一元一次方程(第1课时)
一、学生起点分析
学生在小学期间已学过等式、等式的基本性质以及方程、方程的解、解方程等知识,经历了分析简单数量的关系,并根据数量关系列出方程、求解方程、检验结果的过程。对方程已有初步认识,
但并没有学习“一元一次方程”准确的理性的概念。
二、学习任务分析
本节从有趣的“猜年龄”游戏入手,通过对五个熟悉的实际问题的分析,学生结合已有知识,能得出一元一次方程。在此过程中,学生逐渐体会方程是刻画现实世界、解决实际问题的有效数学模型.
本节的重点:学生在实际问题中分析、找到等量关系,准确列出方程,并总结所列方程的共同特点,归纳出一元一次方程的概念。
本节的难点:由特殊的几个方程的共同特点归纳一元一次方程的概念。
三、教学目标
1、在对实际问题情境的分析过程中感受方程模型的意义;
2、借助类比、归纳的方式概括一元一次方程的概念,并在概括的过程中体验归纳方法;
3、使学生在分析实际问题情境的活动中体会数学与现实的密切联系。
四、教学过程设计
环节一:阅读章前图
内容1:请一位同学阅读章前图中关于“丟番图”的故事。(大约1分钟)
丢番图(Diophantus)是古希腊数学家.人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,
多么令人惊讶,
它忠实地记录了其所经历的人生旅程.上帝赐予他的童年占六分之一,
又过十二分之一他两颊长出了胡须,
再过七分之一,点燃了新婚的蜡烛.五年之后喜得贵子,
可怜迟到的宁馨儿,
享年仅及其父之半便入黄泉.悲伤只有用数学研究去弥补,
又过四年,他也走完了人生的旅途.
——出自《希腊诗文选》(T
h
e
G
r
e
e
kAnthology)第
126

目的:通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效地模型。
效果:学生对丟番图的故事很感兴趣,有的学生提出问题:他的年龄是多少呢?教师借机也提出问题:用什么方法可以求解丟番图的年龄呢?紧接着呈现内容2。
内容2:回答以下3个问题:(大约4分钟)
1、你能找到题中的等量关系,列出方程吗?
2、你对方程有什么认识?
3、列方程解决实际问题的关键是什么?
目的:第一个问题考查学生根据等量关系列方程的能力,对于解方程这里不做要求。第二个问题意在鼓励学生用自己的语言对方程进行描述,锻炼学生的数学语言表达能力。第三个问题强调列方程解应用题的关键是:寻找等量关系。
实际效果:第一个问题学生可以完成问题。如下:
解:
设丟番图的年龄为x岁,则:
第二个问题学生的表述合理即可,教师可以用规范的语言再次强调:方程是刻画现实世界有效地模型。第三个问题学生回答较好。
内容3:阅读学习目标:(大约2分钟)
学习本章内容,你将感受方程是刻画现实生活中等量关系的有效模型。
掌握等式的基本性质,能解一元一次方程。
能用一元一次方程解决一些简单的实际问题。
在探索一元一次方程解法的过程中,感受转化思想。
目的:通过阅读学习目标,学生了解了本章知识的学习内容共有两部分:解一元一次方程和能用一元一次方程解决一些简单的实际问题。学生对于本章知识的学习和数学思想有一个整体的概念。
实际效果:学生通过阅读,目标明确了,学习更有针对性。尤其是认识了“转化思想”的重要性。
环节二:自主阅读、学习
内容:让学生阅读本节教材P132-P133随堂练习之前的内容。结合课本多以问题串的形式呈现内容的特点,粗读并完成书上的填空题。(大约10分钟)
目的:通过读书的过程,首先让学生回忆起小学学过的等式的概念、方程的概念,对课文所设置的较简单又熟悉的实例中的各种量的关系分析清楚,找出等量关系,列出方程,体会不同类型的方程.
实际效果:通常,多数学生能够分析教材实例中所蕴含的各种数量关系,并列出方程。教学过程中需要注意学生在这个环节的活动中所表现出来的书写不规范,错误的地方,提醒学生注意。
环节三:情境引入
内容:与学生共同分析完成课本呈现的五个情境:
(1)如果设小彬的年龄为
x
岁,那么“乘
2
再减
5
”就是2
x
-
5
,所以得到方程:2
x
-
5
=
21
组织活动:四人小组做猜年龄的游戏,每个小组会有几个不同的等式.
如:我的年龄乘2减5等于91,你知道老师多大了吗?
学生算出老师48岁了
(2)小颖种了一株树苗,开始时树苗高为
40
cm,栽种后每周树苗长高约
5
cm,大约几周后树苗长高到
1
m?
如果设
x
周后树苗长高到
1
m,那么可以得到方程:
40
+
5
x
=
100
(3)甲、乙两地相距
22
km,张叔叔从甲地出发到乙地,每时比原计划多行走
1
km,因此提前
12
min
到达乙地,张叔叔原计划每时行走多少千米?
设张叔叔原计划每时行走x
km,可以得到方程:
(4)根据第六次全国人口普查统计数据,截至
2010

11

1

0
时,全国每
10
万人中具有大学文化程度的人数为
8
930
人,与
2000
年第五次全国人口普查相比增长了
147.30%.
如果设
2000
年第五次全国人口普查时每
10
万人中约有
x
人具有大学文化程度,那么可以得到方程:
(
1
+
147.30%
)
x
=
8
930
(5)某长方形操场的面积是
5
850,长和宽之差为
25
m,这个操场的长与
宽分别是多少米?
如果设这个操场的宽为
x
m,那么长为(x
+
25)
m.可以得到方程
目的:通过准确列五个方程,感受:1、列方程解应用题的关键是:寻找等量关系;2、五个方程可分为三种类型:一元一次方程,分式方程,一元二次方程。
注意事项:学生在列方程时要注意以下问题:
1、让学生读题、审题,锻炼学生的审题能力;
2、(2)中单位换算:1米=100厘米。等量关系为:最后树高=初始树高+每周生长高度;
3、(3)中单位换算:12分=小时。等量关系为:原计划所用时间-现在所用时间=提前时间;
4、(4)中数字在前,字母在后。
环节四:归纳一元一次方程的定义,了解一元一次方程的解的含义
内容1:P133
议一议
(1)由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?与同伴
进行交流.
共得到五个方程。其中(1)、(2)、(4)都只有一个未知数,在小学学习时常见。
(2)方程
2
x
-
5
=
21,40
+
5
x
=
100,
(
1
+
147.30%
)
x
=
8
930
有什么共同点?
它们都只含有一个未知数,且未知数的指数都是
1。
目的:由(1)引导学生逐步深入地思考所列的五个方程的特点:未知数的次数、位置不同;由(2)得出一元一次方程的定义:在一个方程中,只含有一个未知数,且未知数的指数都是
1,这样的方程叫做一元一次方程。
实际效果:逐步引发学生对方程特点的研究,由此让学生自己说出一元一次方程的定义,并判断上述五个方程只有三个一元一次方程。结论的得出源于学生在实际问题中分析,并不断地综合总结,体现了学生思维的主动性.
内容2:判断下列各式是不是一元一次方程,是的打“√”,不是的打“x”。
(1)
-2+5=3
(
)
(2)
3
x
-1=0
(
)
(3)
y=3
(
)
(4)
x
+y=2
(
)
(5)
2
x
-5
x
+1=0
(
)
(6)
x
y-1=0
(
)
(7)
2m
-n
(
)
(8)
(
)
目的:巩固定义,准确判断一元一次方程的形式。
效果:(2)、(3)、(5)是一元一次方程。学生易出现以下错误:
1、漏掉(3);事实上(3)是最简洁的方程形式;
2、错选(6),次数不满足条件。
内容3:方程的解得含义:使方程左、右两边的值相等的未知数的值,叫做方程的解。
完成随堂练习2题:
x
=
2
是下列方程的解吗?
(1)3
x
+
(
10
-
x
)
=
20;
(2)2
+
6
=
7
x
目的:了解方程的解的含义;判断是否为方程的解的方法:将解带入原方程,分别计算左和右,看是否相等。相等则为原方程的解。
实际效果:1、学生有小学的基础,能理解方程的解的含义;
2、学生熟练将方程的解带入方程进行验证,得出结论。
环节五:达标检测
内容1:完成教材上的随堂练习1、根据题意,列出方程:
(1)
在一卷公元前
1600
年左右遗留下来的古埃及纸草书中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的,其和等于
19.”
你能求出问题中的“它”吗?
解:设“它”为x,则:
(2)
甲、乙两队开展足球对抗赛,规定每队胜一场得
3
分,平一场得
1
分,负一场得
0
分.甲队与乙队一共比赛了
10
场,甲队保持了不败记录,一共得

22
分.甲队胜了多少场?平了多少场?
解:设甲队赢了x场,则乙队赢了(10-x)场。则:
2、达标练习:
如果=8是一元一次方程,那么m
=
.
下列各式中,是方程的是
(只填序号)

2x=1

5-4=1

7m-n+1

3(x+y)=4
下列各式中,是一元一次方程的是
(只填序号)

x-3y=1

x2+2x+3=0

x=7

x2-y=0
a的20%加上100等于x
.
则可列出方程:
.[]
某数的一半减去该数的等于6,若设此数为x,则可列出方程
一桶油连桶的重量为8千克,油用去一半后,连桶重量为4.5千克,桶内有油多少千克?设桶内原有油x千克,则可列出方程___________________
7、小颖的爸爸今年44岁,是小颖年龄的3倍还大2岁,设小明今年x岁,则可列出方程:___________________
8、
3年前,父亲的年龄是儿子年龄的4倍,3年后父亲的年龄是儿子年龄的3倍,求父子今年各是多少岁?设3年前儿子年龄为x岁,则可列出方程:______
____
目的:对本节知识进行巩固练习
实际效果:
1、学生基本能很好地对随堂练习的问题给出准确的解答。
2、由同学选自己组的代表发言,对P133随堂练习
1中的各个量及所表示的意义进行说明,加深对背景下的数学模型的理解。
3、达标练习中的题可以有选择的做。
环节六:课堂小结
内容:师生互动,梳理本节内容。(本节课你的收获,你的疑惑)
目的:鼓励学生结合学习本节课本内容及课前的预习,谈谈自己的收获与感想,包括如何调整自己的读书方法.
实际效果:
学生一方面总结出了:
本节给出了四个知识点:等式(回顾巩固),方程(给出描述性定义),一元一次方程及一元一次的解(根).
感觉在解决实际问题时,列方程相比小学算术法,给出的思维方式与途径更具普遍性.
列方程的核心:实际问题“数学化”,关键是找到等量关系。
另一方面:每位同学都在现有程度上,适当调整自己的读书预习方式及自己独立思考问题的途径.
环节七:布置作业
1、习题5.1
2、思考:如何得到所列三个一元一次方程的解?
五、教学反思:
此阶段的学生有比较强烈的自我发展意识,对与自己的主观经验相冲突的现象,教师只有进行得当合理的诠释方可得到学生的认可。授课时要设法让学生体会运用方程建模的优越性,将能使众多实际问题“数学化”的重要数学模型成为学生学习后续知识的自觉选择。
让学生在简单的背景问题中,一点一滴地体会分析已知量、未知量之间的数量关系,对列方程的帮助,其正做到分解难点、降低难度、突破难点的目的.
学生的读书仍然停留在表面上的阅读,还须继续坚持和及时引导。
5.1
认识一元一次方程(第2课时)
一、学生起点分析
学生在小学期间已学过等式、等式的基本性质以及方程、方程的解、解方程等知识,经历了简单方程的简单数量关系的分析,对方程已有初步认识.
学生在小学已经经历了简单方程的简答、简单数量关系的分析,具有一定的解方程的能力.这时解方程的操作依据为加减法、乘除法互为逆运算的简单算理.
二、学习任务分析
本课通过天平的实验形式,形象直观地感受等式的基本性质,并尝试着用等式的基本性质解简单的方程
本课的重点:让学生理解等式的基本性质,并能应用它来解方程.
难点:利用等式的基本性质对等式进行变形.
三、教学目标
1、借助直观对象理解等式性质;
2、掌握利用等式性质解一元一次方程的基本技能;
3、进一步体会解一元一次方程的含义和解方程的基本过程。
四、教学过程设计
环节一:课前准备(学生预习)
内容:阅读P134-P135随堂练习之前的内容,总结所自学到的知识。
(大约5分钟)
1、等式的基本性质:
等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.[]
等式两边同时乘同一个数(或除以同一个不为
0
的数),所得结果仍是等式.
2、利用等式的基本性质可以解一元一次方程.
目的:1.让学生初步体会小学等式的基本性质的内容与中学等式的基本性质有何差异?
2.小学简单方程的求解过程的依据与中学方程求解过程依据有何差异?
3.能看懂并能理解书上呈现内容的主要环节.
实际效果:
学生观察得知:
1、要想消掉方程两边多的项,在方程两边同时加上这一项的相反数;
2、要使得方程未知数的系数化为1,方程两边都乘以未知数的系数的倒数,或除以未知数的系数.
环节二:情境引入(实践操作,演示天平称量过程)
内容1:在老师的协助下,学生实际操作用天平称量物体.
目的:培养学生从实际操作中获取信息,并通过亲身感受、体验归纳总结、抽象数学的能力;同时,培养学生严谨、有序的数学思维品质及科学的学术精神。
实际效果:
1、实际操作归纳出了等式的基本性质一、二.
2、通过引导并类比,分析出初中所学等式的基本性质一,有别于小学所学内容,“等式两边可同时加上同一个整式”.
3、归纳出了数学表达式:
如果a=b,(a、b为代数式),
则(1)a+c=b+c
;(c为代数式);
(2)ac=bc;(c为任意有理数);
(3)
;(c≠0)。
学生很细心,分析、认识问题比较全面,在回答问题的同时强调:

(1)式中的c为代数式;

(3)式中的c≠0必不可少.
内容2::下列用等式性质进行的变形中,那些是正确的,并说明理由
(1)若x=y,则5+x=5+y
(2)若x=y,则5-x=5-y
(3)若x=y,则5x=5y
(4)若x=y,则
(5)若
,则bx=by
(6)若2x(x-1)=x,
则2(x-1)=1
目的:巩固等式的基本性质,关注基本性质二中的限定条件。
注意事项:(1)、(2)、(3)、(4)正确。学生容易出错:
漏选(4),两边同除以5≠0,所得结果仍是等式;
错选(6),未考虑x=0,则分母为零无意义。
环节三:利用等式基本性质解一元一次方程
内容1:例1
解下列方程:
(1)x
+
2
=
5;
(2)3
=
x
-
5.
解:(1)方程两边同时减去
2,得
x
+
2
-
2
=
5
-
2.
于是
x
=
3.
(2)方程两边同时加上
5,得
3
+
5
=
x
-
5
+
5.
于是
8
=
x.
习惯上,我们写成
x
=
8.
补充:解下列方程:(3)–y+3=5;
(4)6-m=-3[]
解:(3)方程两边同时减去
3,得
–y+3-3=5-3
得–y=
2
于是y=
-2
(4)方程两边同时减去6,得
6-m-6=-3-6

-m=-9
于是
m=9
目的:1、在实际变形的过程中,让学生体会等式基本性质一的真正含义;
2、让学生感受到负数的引进及有理数运算的介入,用等式的基本性质解方程,相比小学的逆运算更具理性思维。
3、在经历等式变形的过程中,增强学生数学理性思维问题的意识,规范的数学书写格式。
实际效果:
1、学生习惯于用加法和减法逆运算的算理求出这两个方程的解,用等式的性质来解方程、读书能看懂,但有点思维不习惯,
2、习惯上,我们将未知数写在等号左边,值写在等号右边。
3、有同学提出:检验方程的解。应给予肯定和表扬。
内容2:例2
解下列方程:
(1)-
3
x
=
15;
(2)-
-
2
=
10.
解:(1)方程两边同时除以
-
3,得
化简,得
x
=
-
5.
(2)方程两边同时加上
2,得
-
-
2
+
2
=
10
+
2.
化简,

-
=
12.
方程两边同时乘
-
3,得
n
=
-
36.
目的:1、在实际变形的过程中,让学生体会等式基本性质一、二的真正含义;
2、培养学生严谨、科学的思维习惯,规范的数学书写格式。
实际效果:
1、学生在感受了例1的思考过程后,能比较顺利地完成本例的解答.
2、学生习惯于用乘法和除法逆运算的算理求出这两个方程的解,有点思维不习惯,
3、学生对等式性质中的限制性条件理解不深刻。如“同时乘以或除以同一个非零数”运用不够好.。
讲授以上两例时,创设了一种师生交流互动的环节,教师引导学生用等式的基本性质解方程,此过程中与学生平等交流,并给予恰倒好处的点拨.教师鼓励学生表达,并且在加深对等式基本性质理解的基础上,对不同的答案开展讨论,引导学生分享彼此的思想和结果,并重新审视自己的想法.
如:解方程(2).
同学甲:
解:方程两边同时加上2,得:
整理得
.
方程两边都乘以-3,得
n=-36.
同学乙:解:方程两边同时加上2,得:
.
整理得
.
方程两边都除以,得
n
=-36.
以上两种思考方式教师给予了客观公正的评价,本节课为解方程的第一课时,只要能用等式的基本性质将原来的方程变形成=a(a为常数)的形式即可.
同学丙:这样求得的方程中未知数的值一定是原方程的解吗?
同学丁:①整个解的过程利用了等式的两条基本性质和合并同类项的法则,理论根据可靠.②根据方程解的概念:“能使方程左右两边的值相等的未知数的值,叫做方程的解.”经检验就可知求解过程有无失误.
5、检验解的过程,学生出现了循环论证的不合理方式.
如:例1(1)+2=5的解为=3
学生检验过程:
代=3入原方程
3+2=5.
所以
=3为原方程的解.
正确方法:代=3入原方程
左边=+2=3+2=5,
右边=5,
因为
左=右.
所以=3是原方程的解.
环节四:联系与提高
内容:
1、
还记得上一课小华和小彬猜年龄的问题吗?你能帮小彬解开年龄之谜吗?
解方程
2
x
-
5
=
21
解:两边同时加上5,得
2
x
-
5
+5=
21+5
于是
2
x=
26

x=13
2、你能解方程
5
x
=
3
x
+
4
吗?
解:两边同时减去3
x,得
5
x-3
x
=
3
x
+
4-3
x

2
x=
4

x=2
3、随堂练习1.解下列方程:
(1)x
-
9
=
8;
(2)5
-
y
=
-
16;
(3)3
x
+
4
=
-
13;
(4)x
-
1
=
5.
4、达标练习
1、若2x-a=3,则2x=3+
,这是根据等式的性质,在等式两边同时
,等式仍然成立。
2、如果代数式8x-9与6-2x的值互为相反数,则x的值为

3、把
变形为
的依据是(

A
等式的基本性质1
B
等式的基本性质2
C
分数的基本性质
D
以上都不对
4、小明在解方程2x-3=5x-3时,按照以下步骤:
解:①方程两边都加上3,得2x=5x;
②方程两边都除以x,得2=5;
以上解方程在第
步出现错误。
目的:1、应用本课时所学内容解答上课时提出的问题.
2、对本节知识进行巩固落实.
实际效果:
1、
学生基本都能熟练地运用等式的基本性质解答简单的一元一次方程,回应了例2的两个题中,当方程化成a=b(a不等于0,a、b为常数)形式时,根据等式的基本性质2,方程两边同时乘以未知数系数的倒数也行,或同时除以未知数的系数也可行的解题方法,使小学学过的形如a+b=c
(a不等于0,a、b、c为常数)的方程,利用等式的基本性质得以顺利求解.同时为解较繁难的一元一次方程做了很好的铺垫.期间在教师的引导下,学生体会到了未知数系数相对烦琐时,用等式的基本性质变形比用运算的逆运算关系变形要方便快捷.
2、在解决年龄问题时,学生还意识到,上节课提出的问题,有些可以利用等式的基本性质求出其解.
环节五:课堂小结
内容:师生共同归纳总结主要内容:等式的基本性质及注意事项.
目的:通过对本课所学内容的归纳,一方面清晰地梳理出本课学过的基本知识及数学思想;另一方面,习惯地将新学的知识及方法构建到原有的知识体系中,找出“承前启后”的“承接点”、“启发点”.
环节六:布置作业
1、习题5.2;
2、探索等式基本性质1的变化特点,思考:能否理解为左右移项?
五、教学反思
1,教材只是为教师提供的最基本的教学素材,教师可根据学生的实际情况及教学设计目的进行适当调整.学生在小学学过用运算的逆运算关系解简单一元一次方程普遍掌握较好,在本课时教学时,例1可增加几个例题.如:解方程
–y+3=5,6-m=-3等类型的方程,让学生感受到负数的引进及有理数运算的介入,用小学方法解方程比用等式的基本性质解方程,理性思维要差些,引导学生体会代数中处理类似小学且难于小学的内容时“代数化”方法的优越性、概括性及抽象性.
2.相信学生,在教师引导下,会适时调整自己对数学学习的方式及获取各种信息的途径,获得最有价值的数学思维方式.