《曲线运动》测试题
一、
选择题:
1.关于互成角度的一个匀速直线运动和一个匀变速直线运动的合运动正确的说法是:
A.一定是直线运动
B.一定是曲线运动
( )
C.可以是直线也可能是曲线运动 D.以上说法都不正确
2.航天飞机中的物体处于失重状态,是指这个物体:
(
)
A不受地球的吸引力;
B地球吸引力和向心力平衡;
C受的向心力和离心力平衡;
D对支持它的物体的压力为零。
3.如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。当圆筒的角速度增大以后,下列说法正确的是:(
)
A物体所受弹力增大,摩擦力也增大了;
B物体所受弹力增大,摩擦力减小了;
C物体所受弹力和摩擦力都减小了;
D物体所受弹力增大,摩擦力不变。
4.从高H处以水平速度平抛一个小球1,同时从地面以速度竖直向上抛出一个小球2,两小球在空中相遇则
,如图所示
,则
:(
)
从抛出到相遇所用时间为
B.从抛出到相遇所用时间为
C.抛出时两球的水平距离是
D.相遇时小球2上升高度是
5.如图所示,半径为R的圆盘以角速度ω绕过圆心O的竖直轴匀速转动,在圆盘边缘上的P点向中心发射子弹,子弹发射速度为v,要使子弹击中目标,须使:
(
)
A.粒子对准O发射
B.粒子发射方向向PO左偏一适当角度
C.粒子发射方向向PO右偏一适当角度
D.粒子沿P点的切线方向发射
6.平抛物体的运动实验安装实验装置过程中,斜槽末端的切线必须是水平的,这样做的目的是(
)
A.保证小球运动的轨道是一条抛物线B.保证小球在空中运动的时间每次都相等
C.保证小球飞出时,初速度水平D.保证小球飞出时,速度既不太大,也不太小
7.如图所示,一个物体在O点以初速度v开始作曲线运动,已知物体只受到x轴方向的恒力F作用,则物体速度大小变化情况是:(
)
A先减小后增大;
B先增大后减小;
C不断增大;
D不断减小。
8.铁路在弯道处的内外轨道高低是不同的,已知内外轨道对水平面倾角为θ,弯道处的圆弧半径为R,若质量为的火车转弯时速度小于,则 (
)
A内轨对内侧车轮轮缘有挤压;
B外轨对外侧车轮轮缘有挤压;
C这时铁轨对火车的支持力等于/cosθ;
D这时铁轨对火车的支持力大于/cosθ.
9.如图所示,甲、乙两球作匀速圆周运动,向心加速度随半径变化。由图像可以知道:(
)
A甲球运动时,线速度大小保持不变;
B甲球运动时,角速度大小保持不变;
C乙球运动时,线速度大小保持不变;
D乙球运动时,角速度大小保持不变。
10.如图所示,在光滑的轨道上,小球滑下经过圆孤部分的最高点A时,恰好不脱离轨道,此时小球受到的作用力是
(
)
A.重力、弹力、和向心力
B.重力和弹力
C.重力和向心力
D.重力
11.如图8所示,河水流速为v一定,船在静水中的速度为v,若船从A点出发船头分别朝AB、AC方向划行到达对岸,已知划行方向与河的垂线方向夹角相等,两次的划行时间分别为、,则有
(
)
A.>
B.<
C.=
D.无法确定
12.图中,M、N是两个共轴圆筒的横截面,外筒半径为R,内筒半径比R小很多,可以忽略不计,筒的两端是封闭的,两筒之间抽成真空。两筒以相同的角速度
ω绕其中心轴线(图中垂直于纸面)做匀速转动。设从M筒内部可以通过窄缝
s
(与M筒的轴线平行)不断地向外射出两种不同速率
v1
和v2
的微粒,从
s
处射出时的初速度的方向都是沿筒的半径方向,微粒到达N筒后就附着在N筒上。如果R、v1
和v2都不变,而ω取某一合适的值,则(
)
A有可能使微粒落在N筒上的位置都在
a
处一条与
s
缝平行的窄条上
B有可能使微粒落在N筒上的位置都在某一处如
b
处一条与
s
缝平行的窄条上
C有可能使微粒落在N筒上的位置分别在某两处如
b
处和c
处与
s
缝平行的窄条上
D
只要时间足够长,N筒上将到处都落有微粒
二、填空
13.如图甲所示是一个研究向心力与哪些因素有关的实验装置的示意图,其中做匀速圆周运动的圆柱体的质量为m,放置在未画出的圆盘上。圆周轨道的半径为r,力电传感器测定的是向心力,光电传感器测定的是圆柱体的线速度,以下是所得数据和图乙所示的F—v2,F—v,
F—v3三个图像:
(1)数据表和图乙的三个图像,是在用实验探究向心力F和圆柱体线速度v的关系时,并保持圆柱体质量不变,半径r=0.1m的条件下得到的。研究图像后,可得出向心力F和圆柱体速度v的关系是
。
(2)为了研究F与r成反比的关系,实验时除了保持圆柱体质量不变外,还应保持物理量
不变。
(3)根据你已经学习过的向心力公式以及上面的图线可以推算出,本实验中圆柱体的质量为
。
14.
如图a所示是“研究平抛物体的运动”的实验装置图。
(1)图b是正确实验后的数据,其中O为抛出点,则此小球做平抛运动的初速度为__________m/s。
(2)在另一次实验中将白纸换成方格纸,方格边长L=5
cm,通过实验,记录了小球在运动途中的三个位置,如图c所示,则该小球做平抛运动的初速度为_________m/s;B点的竖直分速度为___________m/s。
三、计算
15
如图所示,水平台AB距地面CD高h=0.8m。有一小滑块从A点以6.0m/s的初速度在平台上做匀变速直线运动,并从平台边缘的B点水平飞出,最后落在地面上的D点。已知AB=2.20
m,落地点到平台的水平距离为2.00
m。(不计空气阻力,g=10m/s2)求滑块从A到D所用的时间和滑块与平台的动摩擦因数。
16
如图所示,两绳系一质量为m=0.1kg的小球,两绳的另一端分别固定于轴的AB两处,上面绳长l=2m,两绳拉直时与轴的夹角分别为30°和45°,问球的角速度在什么范围内两绳始终有张力
17.如图所示,轻杆长2,中点装在水平轴O点,两端分别固定着小球A和B,A球质量为
,B球质量为2,两者一起在竖直平面内绕O轴做圆周运动。(1)若A球在最高点时,杆A端恰好不受力,求此时O轴的受力大小和方向;(2)若B球到最高点时的速度等于第(1)小题中A球到达最高点时的速度,则B球运动到最高点时,O轴的受力大小和方向又如何?(3)在杆的转速逐渐变化的过程中,能否出现O轴不受力的情况?若不能,请说明理由;若能,则求出此时A、B球的速度大小。
参考答案
一、选择题
1.
B
2.D 3.D 4.BC
5.B
6.
C 7.
A
8.
A 9.
AD
10.
D
11.
C
12.
ABC
13.D
14.B
15.B
C
二、填空题
16.
1:1
17.
18.
/2π
19.
(1)1:
(
2)7.9×102
/s2
三、计算题
20.
R
=
r
21.(1)只受弹簧弹力,设弹簧伸长,满足K=2(+)
∴弹簧伸长量=2(+)/K,对,受绳拉力T和弹簧弹力做匀速圆周运动,满足:T-=2绳子拉力T=2+2(+)
(2)线烧断瞬间:A球加速度a1=/=2(+)/。
B球加速度a2=/=2(+)
22.(1)A在最高点时,对A有g=,对B有TOB-2g=2,可得TOB=4g。根据牛顿第三定律,O轴所受有力大小为4g,方向竖直向下
(2)B在最高点时,对B有2g+
=2,代入(1)中的v,可得
=0;对A有-
g=,
=2g。根据牛顿第三定律,O轴所受的力的大小为2g,方向竖直向下
(3)要使O轴不受力,据B的质量大于A的质量,可判断B球应在最高点。对B有,对A有。轴O不受力时,,
可得。
23.设直尺的重心和直尺的O端到桌子边缘的距离分别为L1和L2,轻杆长为L,直尺的质量为M,A和B球的质量均为,A和B球经过图所示位置时的速度分别为vA和vB,OB段杆和AB段杆的张力分别为TOB和TAB。
对A球:TAB-g=
①
对B球:TOB-TAB-g=
②
又=
③
对直尺:MgL1=TOBL2
④
联立上述四式可得vA=1/s
O
P·
ω
B
A
m