沪教版五四制2017年秋六年级数学上册第一章数的整除全章教案(表格形式,共8份)

文档属性

名称 沪教版五四制2017年秋六年级数学上册第一章数的整除全章教案(表格形式,共8份)
格式 zip
文件大小 979.8KB
资源类型 教案
版本资源 沪教版
科目 数学
更新时间 2017-10-26 14:42:04

文档简介

素数、合数与分解素因数


1.4(2)素数、合数与分解素因数(第二课时)
设计依据(注:只在开始新章节教学课必填)
教材章节分析:第二课时主要任务是让学生学会分解素因数,首先让学生自己写出两个整数,再要求分别写成几个素数乘积的形式,这一过程实际上让学生初步建立了分解的过程,同时也让学生体验了只有合数才能分解成几个素数之积的形式,从而引出分解素因数的概念,很自然地提出如何分解素因数的问题,通过教师的介绍三种常用的方法,特别强调用短除法进行分解,从中让学生体会到数学方法的多样性及可选择性。学生学情分析:在整节课的教学实际中始终坚持教师引发、学生主动、师生共建的设计理念,特别是对概念课的教学,通过设计一些探究性问题,既澄清了学习中的一些模糊认识,又激发了学生的学习热情,使学生真正参与到教学中来,真正体现二期课改的理念。


新授课
教学目标
1、理解素数、合数、素因数、分解素因数的概念,掌握分解素因数的几种方法,熟练掌握用短除法分解素因数。
2、通过学习,进一步加深对整数的认识,理解整数的多种分类方法的异同,体现分类思想。


分解素因数


素数与分数、合数与偶数概念的辨析

学准

学生活动形式
教学过程
设计意图
课题引入:
每位同学写出两个整数,然后再将它们写成几个素数相乘的形式。(请几位同学板书)有没有哪位同学所写的整数不能写成几个素数的乘积?由此你能得出怎样的结论?(每个合数都可以写成几个素数相乘的形式……)教师总结:引出素因数、分解素因数。如何将一个合数分解素因数?分解素因数的方法1)“树枝分解法”
例:将48、35、60分解素因数(图省略)48=
35=
60=说明:先将该合数分解成两个因数之积,再将其中的合数分解,一直分到不能再分为止。短除法例2:把24、35、64分解素因数
说明:用短除法分解素因数的步骤如下:1,2,3。…
(见课本)特别强调这种方法的解题程序,并且设计多种形式的训练,以达到熟练掌握。计算器分解法例:将1334分解素因数
说明:首先用计算器将合数分成两个整数之积,再分别对两个整数进行分解,最终化为素数之积的形式。探讨;分解素因数与分解因数有何相同点和不同点?
知识呈现:探讨;分解素因数与分解因数有何相同点和不同点?
学生练习:P14
练习1、4(2)
课堂小结:
分解素因数与分解因数有何相同点和不同点?课堂总结:学生学习的感受。
课外作业
作业:练习册。
预习要求
1.5
教学后记与反思
1、课堂时间消耗:教师活动
分钟;学生活动
分钟)2、本课时实际教学效果自评(满分10分):
分3、本课成功与不足及其改进措施:1.1
整数和整除的意义


1.1
整数和整除的意义
设计依据(注:只在开始新章节教学课必填)
教材章节分析:整数和整除的意义是六年级的第一节课,为此在教学设计中比较注重学生学习兴趣的培养和数学学习方法的体验。学生学情分析:对于整数和整除这两个比较抽象的概念从学生的实际生活和年龄特点出发,体现数学知识的形成是从具体到抽象的过程。在理解概念的基础上,通过一些辨析题起到巩固知识的目的。


新授课
教学目标
1、在“分类——归纳”的过程中,理解自然数与整数的意义.2、在“实验——猜想——归纳“的过程中,理解和掌握整除的概念.3、通过各种方式,激发学生的交流、对话的意识,积极探索的精神,培养学生抽象概括与观察物的能力.并从而树立学好数学的自信心。


理解和掌握整除的概念。


理解和掌握整除的概念。

学准

学生活动形式
教学过程
设计意图
课题引入:一、
建立整数和自然数的概念:1、请你在本子上写上一个数字,然后把它写在黑板上。你能根据一定的依据把这些数来分一分类吗?并说明理由。(小组讨论)(小组讨论、归纳、交流)归纳:在数物体的时候,用来表示物体个数的数1、2、3、4……,叫做正整数。在正整数1、2、3、4……的前面添上“—”号,得到的数-1、-2、-3、-4……,叫做负整数。零和正整数统称为自然数。正整数、零和负整数,统称为整数。2、把下列各数填在适当的圈内:
12、-6、0、1.23、、2005、-19.6、9
正整数
自然数
整数建立整除的概念:1、你能在你的卡片上很快写出一个除法算式并贴上黑板吗?(学生写完后任意贴。)2、你能根据一定的依据把这些除法算式来分一分类吗?并说明理由。(小组讨论)我们小组的分类:(根据需要填写)1、____________________________________________________________2、____________________________________________________________3、____________________________________________________________分类的理由:1、____________________________________________________________2、____________________________________________________________3、____________________________________________________________3、请同学们仔细观察黑板上除法算式里的被除数、除数和商或结果,它们有什么不同的地方,每一组算式有什么特点?归纳:整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。2、判断下列哪一个算式的被除数能被除数整除10÷3
48÷8
6÷4(教师板演)3、互动游戏:一位同学说一个除法算式,同桌判断是不是整除?并说明谁能被谁整除?谁能整除谁?教师引导归纳;除数、被除数都是整数。被除数除以除数,商是整数而且没有余数。练习:
P
5
24、一展身手:有15位同学参加学校组织的夏令营活动,老师准备把她们平均分成若干小组,有几种分法能?有可能把他们平均分成4个小组吗?为什么?(2)一班同学分成四个小组糊纸盒,每组糊的个数同样多,小马虎统计时说:全班共糊纸盒342个,小马虎统计错了?为什么?知识小结:今天我学会了什么?在学习的过程中我学会了什么方法?布置作业;教学建议教学过程中设计了两个小组讨论的环节,在小组讨论的过程中教师要尊重学生的回答,也许同学的分类时不完整的,但是教师要以鼓励为主,这是小学生进入中学的第一节课,如何充分调动学生的学习积极性,养成积极探索新知的欲望,形成畅所欲言的学习气氛是这节课,也是今后数学课教师要关注的重点。
知识呈现:
整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。整除的要素:除数、被除数都是整数。被除数除以除数,商是整数而且没有余数。
课堂小结:
整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。整除的要素:除数、被除数都是整数。被除数除以除数,商是整数而且没有余数。
课外作业
练习册
预习要求
1.2
教学后记与反思
1、课堂时间消耗:教师活动
分钟;学生活动
分钟)2、本课时实际教学效果自评(满分10分):
分3、本课成功与不足及其改进措施:素数、合数与分解素因数


1.4(1)
素数、合数与分解素因数(第一课时)
设计依据(注:只在开始新章节教学课必填)
教材章节分析:素数、合数与分解素因数是整数部分学生学习的难点,因为前面学过奇数、偶数,现在又学习素数、合数,学生很容易混淆,因此在本节内容的教学设计中,注重学生的感悟,注重对一些概念的辨析、比较,体现以学生的主动学习为主的理念。学生学情分析:首先让学生写出整数的因数,提醒学生关注因数的个数,教师以表格的形式,列出一组整数因数的个数,目的是为了让学生比较、辨析,说明整数的因数的多样性,然后提出其中只含有因数1和本身的整数叫做素数或质数,除了1和它本身还有别的因数的整数叫合数,这样对照具体的事例,引导学生参与概念的形成,对概念加以阐述,使学生对概念的理解更加深刻,学习也更自然。通过两组问题的探讨加深对概念的理解,强化概念之间的辨析,使学生对相关概念更加清晰。作为一个开放性问题,要求学生对整数1进行总结,引导学生发散思维,通过此过程学生将会对整数的相关性质进一步地树立。


新授课
教学目标
1、理解素数、合数、素因数、分解素因数的概念,掌握分解素因数的几种方法,熟练掌握用短除法分解素因数。
2、通过学习,进一步加深对整数的认识,理解整数的多种分类方法的异同,体现分类思想。


分解素因数


素数与分数、合数与偶数概念的辨析

学准

学生活动形式
教学过程
设计意图
课题引入:素数、合数概念的引发每位同学写两个整数,并写出它们的因数。提问:你写出的整数有几个因数?(教师在黑板上列一张表)因数个数确定吗?整
数因数个数
由此可以发现,有些整数只有一个因数,有些有2个因数,即1和本身,有些有3个、4个……素数、合数概念的形成概念:我们把只含有因数1和本身的整数叫做素数或质数,如果除了1和它本身还有别的因数,这样的数叫做合数。你能写出几个素数?几个合数?对概念的认识
探讨一:1)1是素数还是合数?2是素数还是合数?除1外你能举出一个既不是素数也不是合数的整数吗?是否存在这样的正整数,既是素数,又是合数?按素数、合数对正整数分类,可分为几类?
探讨二:合数与偶数、素数与奇数相同吗?若不同,你能讲出区别吗?(举例说明)整数1到底是什么“身份”?你能讲清楚吗?课堂反馈:课本P12练习课堂小结:师生共同完成。作业:练习册
知识呈现:概念:我们把只含有因数1和本身的整数叫做素数或质数,如果除了1和它本身还有别的因数,这样的数叫做合数
课堂小结:概念:我们把只含有因数1和本身的整数叫做素数或质数,如果除了1和它本身还有别的因数,这样的数叫做合数。师生共同完成。
课外作业
作业:练习册
预习要求
1.4(2)
教学后记与反思
1、课堂时间消耗:教师活动
分钟;学生活动
分钟)2、本课时实际教学效果自评(满分10分):
分3、本课成功与不足及其改进措施:能被2、5整除的数


1.3
能被2、5整除的数
设计依据(注:只在开始新章节教学课必填)
教材章节分析:本节课的学习内容对学生来说并没有太大的困难,容易理解,教学的重点应该是如何引导学生揭示两类整数的特征、学习奇数、偶数的概念。学生学情分析:本节课的教学中学生首先在教师的引导下对自己所写的一些整数进行观察、分析,并归纳出一些特征。由于每个学生写出的10个数是不一样的,因此这一过程是一个开放型的过程,而通过组织学生自我分析哪些能被2整除、哪些能被5整除,更增强了学生学习的自主性、主动性,这比教师列出一组数让学生判断更能吸引学生参与。


新授课
教学目标
1、掌握能被2、5整除的数的特征,理解奇数、偶数的定义;
2、渗透由特征到一般的思想方法,让学生体验结论的探究过程。


对奇数、偶数的理解。


对能被2、5整除的整数特征的揭示。

学准

学生活动形式
教学过程
设计意图
课题引入:
教师引导、学生探究让每位同学各写10个整数;你所写的整数中哪些能被2整除?哪些能被5整除?你能发现被2整除的整数的特征吗?能被5整除的整数的特征?归纳总结、得出规律能被2整除的整数,个位上数字为0、2、4、6、8。能被5整除的整数,个位上数字为0、5。
2根据这一特征你能随意写出能被2整除或能被5整除的整数吗?既能被2整除又能被5整除的整数特征又是什么?偶数与奇数的概念定义:如果一个整数能被2整除,称该整数为偶数。
如果一个整数不能被2整除,称该整数为奇数。整数的分类奇、偶数经过运算后的变化情况:奇奇=偶
偶偶=偶
奇偶=奇奇奇=奇
偶偶=偶
奇偶=偶
注:相邻两个整数之和(之差)为奇数,之积为偶数。学生小结作业
知识呈现:能被2整除的整数,个位上数字为0、2、4、6、8。能被5整除的整数,个位上数字为0、5。
定义:如果一个整数能被2整除,称该整数为偶数。
如果一个整数不能被2整除,称该整数为奇数。整数的分类
课堂小结:能被2整除的整数,个位上数字为0、2、4、6、8。能被5整除的整数,个位上数字为0、5。定义:如果一个整数能被2整除,称该整数为偶数。
如果一个整数不能被2整除,称该整数为奇数。整数的分类
课外作业
练习册
预习要求
1.4(1)
教学后记与反思
1、课堂时间消耗:教师活动
分钟;学生活动
分钟)2、本课时实际教学效果自评(满分10分):
分3、本课成功与不足及其改进措施:1.2
因数和倍数


1.2
因数和倍数
设计依据(注:只在开始新章节教学课必填)
教材章节分析:因数和倍数是在整除基础上的进一步研究,因此在学生原有知识的基础上建立因数和倍数的概念,关键是使学生理解因数和倍数之间的相互依存关系,同时也是对整除概念的进一步巩固。学生学情分析:在教学设计中通过一些辨析题是学生更透彻的理解概念。在求一个数的因数和倍数的过程中培养学生的观察和归纳问题的能力,在学生学和解决问题的同时培养良好的学习习惯。


新授课
教学目标
1、理解和掌握因数和倍数的意义,了解因数和倍数相互依存的关系。会根据因数和倍数的意义描述两个数之间的关系。2、知道一个数的因数和倍数的求法.3.知道一个数的因数是有限个,一个数的倍数是无限个.4、渗透初步的辩证唯物主义思想教育。激发学生的交流、对话的意识,培养学生数学语言的表达能力。


1、理解和掌握因数和倍数的意义2、引导学生探索并理解因数和倍数之间的相互依存的关系。


1、理解和掌握因数和倍数的意义2、引导学生探索并理解因数和倍数之间的相互依存的关系。

学准

学生活动形式
教学过程
设计意图
课题引入:
一、创设情景,引出概念1、问题情景:有12块边长是1个单位长度的的正方形可以拼成几个形状不同的长方形?它们的长和宽分别是多少?(第一问先请学生独立画出草图,然后小组交流。第二问在第一问的基础上共同完成。)2、12与1、2、3、4、6、12有什么关系?看书
P6
(概念)3、说说12与1、2、3、4、6、12有的关系。(同桌互相交流)判断:能不能说12是倍数,3是因数?强调:因数与倍数是相互依存的。如果光说谁是倍数,或谁是因数是不完整的。4、火眼金睛:你认为哪些是对的,哪些是错的,错在哪儿?(1)42÷6=7,所以42是6的倍数,6是42的因数(2)
42÷6=7,所以42是倍数,6是因数(3)42÷9=4┄┄6,所以42是9的倍数,9是42的因数(4)4.2÷0.6=7
,所以4.2是0.6的倍数,0.6是4.2的因数(5)4.2÷0.6=7,所以4.2是0.6的7倍。通过检测,你对倍数和因数有什么新的认识?二、求一个数的因数和倍数1.例1
18的因数有哪几个?分析:18的因数是指什么样的数?18能被哪些数整除?试着求出20、9的因数。2、观察18、20、9的因数,你发现了什么?还发现了什么规律?归纳:一个数的因数是有限的。1、
最小的因数是1,最大的因数是它本身。2、
一个数的因数通常是成对出现的。 2.例2
2的倍数有哪些?分析:什么样的数是3的倍数?哪些数能被3整除?3×1=3
3÷3=13×2=6
6÷3=23×3=9
9÷3=3……
……提问:省略号表示什么意思?可以不写吗?试着求出4、5的倍数4、观察从上面几个例子,发现了什么?为什么一个数没有最大的倍数?归纳:一个数的倍数的个数是无限的。最小的倍数是它本身,没有最大的倍数。练习
P
7
4三、巩固练习判断(1)15的倍数一定大于15。…………………………………(
)(2)一个数的最大因数和它的最小倍数相等。……………

)(3)36的最小倍数和最大因数都是36。……………………(
)(4)1没有因数。………………………………………………(
)(5)40以内6的倍数有12、18、24、30、36这五个。……(
) 五、课堂小结1、因数和倍数有什么关系 2、如何求一个数的因、数?找一个数的因数时,如何防止遗漏?如何求一个数的倍数?六、布置作业
知识呈现:归纳:一个数的因数是有限的。1、
最小的因数是1,最大的因数是它本身。2、
一个数的因数通常是成对出现的。归纳:一个数的倍数的个数是无限的。最小的倍数是它本身,没有最大的倍数。
课堂小结:
1、因数和倍数有什么关系 2、如何求一个数的因、数?找一个数的因数时,如何防止遗漏?如何求一个数的倍数?
课外作业
练习册
预习要求
1.3
教学后记与反思
1、课堂时间消耗:教师活动
分钟;学生活动
分钟)2、本课时实际教学效果自评(满分10分):
分3、本课成功与不足及其改进措施:公倍数与最小公倍数


1.6(1)公倍数与最小公倍数
设计依据(注:只在开始新章节教学课必填)
教材章节分析:学生学情分析:


新授课
教学目标
1.通过解决实际问题的活动,理解公倍数、最小公倍数的意义,掌握求公倍数、最小公倍数的基本方法。2.经历分析数量关系、观察和讨论的过程,进一步体会公倍数、最小公倍数的意义,会合理使用列举法、分解素因数法、短除法求两个数的最小公倍数;会求是互素数或有倍数关系的两个数的最小公倍数,体会选择适当方法解决问题的优化思想,锻炼分析问题和解决问题的能力。3.在积极思考、积极参与讨论的活动中,自觉改进学习,促进良好学习习惯的养成和沟通、交流能力的提高。


会合理使用列举法、分解素因数法、短除法求两个数的最小公倍数


会合理使用列举法、分解素因数法、短除法求两个数的最小公倍数

学准

学生活动形式
教学过程
设计意图
课题引入:一、情景导入问题的提出:在上海南站,地铁1号线每隔3分钟发车,轨道交通3号线每隔4分钟发车,如果地铁1号线和轨道交通3号线早上6:00同时发车,那么至少再过多少时间它们又同时发车?问题的分析:早晨6点以后地铁1号线发车间隔的时间(分钟)是3的倍数,而轨道交通3号线发车的时间(分钟)是4的倍数,这个问题可以转化为求3和4的最小公倍数师(启发式):谁能用自己的话说一说什么叫公倍数?问题的探究:1、看了这个问题题,你想在这节课中了解些什么?请学生写在纸上,并贴到黑板上。2、四人一组合作解决1--2个问题,举例说明,组长笔录。3、成果汇报:(由学生任选一种方法)(1)公倍数有多少个?(2)求最小公倍数的方法问题的解决:3的倍数有:3,6,9,12,15,18,21,24,27…4的倍数有:4,8,12,16,20,24,28,36,40…3和4公有的倍数有:12,24…其中最小的一个是12所以12分钟后地铁1号线和轨道3号线再次同时发车二、新知识的探索几个整数的公有的倍数叫做他们的公倍数,其中最小的一个叫做它们的最小公倍数.例题1
求18和30的最小公倍数.(这个题可以让学生先做,在上个问题的分析的基础上,学生对这个问题会很感兴趣,可以采取比赛的方法)解法1:
18的倍数有18,36,54,72,90,…;
30的倍数有
30,60,90,120,160,….所以18和30的最小公倍数是90.拓展:又没有更快捷的方法呢?
解法2:把18和30分解素因数
18=2×3×3
30=2×3×5探究:18和30的公倍数里,应当既包含18
的所有素因数,又包括30的所有素因数,但相同的素因数可以只取一个,只要取出18,30的所有公有的素因数(1个2和1个3),再取各自剩余的素因数(3和5),将这些数连乘,所得得积2×3×3×5(90)就是30和18的最小公倍数所以18和30的最小公倍数是90(2×3×3×5)这个方法学生比较容易接受归纳:求两个整数的最小公倍数,只要取它们所有公有的素因数,再取它们各自剩余的素因数,将这些数连乘,所得得积就是这两个数的最小公倍数拓宽:在上面的问题中还有其它的方法吗?--------可以用短除法解法318和30的最小公倍数是2×3×3×5=90
三、巩固加深课堂练习
1.求36和84的最小公倍数在解这个题的时候,不要说明用哪一个方法好,学生们会在摸索的时候发现短除法的优势解:36和84的最小公倍数是2×2×3×3×7=2522.求30和45的最大公因数和最小公倍数在解这个题的时候,也是不要说明用哪一个方法好,学生们会在摸索的时候发现短除法的优势,他们开始理解这个方法30和45的最大公因数是3×5=1530和45的最小公倍数3×3×2×5=90
知识呈现:1.几个整数的公有的倍数叫做他们的公倍数,其中最小的一个叫做它们的最小公倍数.
2.求两个整数的最小公倍数,只要取它们所有公有的素因数,再取它们各自剩余的素因数,将这些数连乘,所得得积就是这两个数的最小公倍数
课堂小结:
1.几个整数的公有的倍数叫做他们的公倍数,其中最小的一个叫做它们的最小公倍数.2.求两个整数的最小公倍数,只要取它们所有公有的素因数,再取它们各自剩余的素因数,将这些数连乘,所得得积就是这两个数的最小公倍数
课外作业
1.求36和84的最小公倍数2.求30和45的最大公因数和最小公倍数
预习要求
练习册
教学后记与反思
1、课堂时间消耗:教师活动
分钟;学生活动
分钟)2、本课时实际教学效果自评(满分10分):
分3、本课成功与不足及其改进措施:1.6(2)公倍数与最小公倍数


1.6(2)公倍数与最小公倍数
设计依据(注:只在开始新章节教学课必填)
教材章节分析:学生学情分析:


新授课
教学目标
1.通过解决实际问题的活动,理解公倍数、最小公倍数的意义,掌握求公倍数、最小公倍数的基本方法。2.经历分析数量关系、观察和讨论的过程,进一步体会公倍数、最小公倍数的意义,会合理使用列举法、分解素因数法、短除法求两个数的最小公倍数;会求是互素数或有倍数关系的两个数的最小公倍数,体会选择适当方法解决问题的优化思想,锻炼分析问题和解决问题的能力。3.在积极思考、积极参与讨论的活动中,自觉改进学习,促进良好学习习惯的养成和沟通、交流能力的提高。


会合理使用列举法、分解素因数法、短除法求两个数的最小公倍数


会合理使用列举法、分解素因数法、短除法求两个数的最小公倍数

学准

学生活动形式
教学过程
设计意图
课题引入:1.问题的提出:
3和5的最小公倍数是
;18和36的最小公倍数是

8和9的最小公倍数是
;8和15的最小公倍数是
.通过求这四组数的最小公倍数,你发现了什么规律了吗?如果两个整数中某一个数是另一个数的倍数,那么这个数就是它们的最小公倍数,如果两个数互素,那么它们的乘积就是它们的最小公倍数2.问题的提出:最大公约数与最小公倍数之间有什么关系?
最小公倍数是两个数的最大公约数与各自独有素因数的乘积3.问题的提出:求最小公倍数与求最大公因数比较有什么异同之处?(分组讨论)短除法与分解素因数有什么联系?任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):16和20;65和130;4和15;18和24。再次强调:当两个数是互素数时,最小公倍数是这两个数的乘积;当两个数有倍数关系时,最小公倍数是较大的数。4.问题的提出::求两个数的最大公约数和最小公倍数在求法上有什么相同点?有什么不同点?相同点都是用短除法分解素因数,直到两个商是互素数为止。不同点是求最大公约数是把所有的除数乘起来,而求最小公倍数是把所有的除数和商乘起来。如图:求两个数的最大公约数求两个数的最小公倍数相同点用短除法分解素因数,直到两个商是互素数为止用短除法分解素因数,直到两个商是互素数为止不同点把所有的除数乘起来把所有的除数和商乘起来规律:这两种不同求法用的是同一个短除式,因此写一个短除式就可以了。要求最大公约数就把这两个数的除数相乘,要求最小公倍数就把除数和商乘起来。完成短除式后,求最大公约数是乘半边,求最小公倍数是乘半圈。
知识呈现:1.如果两个整数中某一个数是另一个数的倍数,那么这个数就是它们的最小公倍数,如果两个数互素,那么它们的乘积就是它们的最小公倍数
2.
最小公倍数是两个数的最大公约数与各自独有素因数的乘积
课堂小结:今天你们根据自己所提出的问题进行了研究学习,每个人的研究都非常成功,对于今天所学的内容还有什么疑问?
课外作业
1.
第21页练习1.6
1.2.32.复习所学的知识
预习要求
预习新课
教学后记与反思
1、课堂时间消耗:教师活动
分钟;学生活动
分钟)2、本课时实际教学效果自评(满分10分):
分3、本课成功与不足及其改进措施:1.5公因数和最大公因数


1.5公因数和最大公因数
设计依据(注:只在开始新章节教学课必填)
教材章节分析:学生学情分析:


新授课
教学目标
1.通过解决实际问题的活动,进一步理解公因数,最大公因数和素因数的意义,掌握求两个数的公因数,最大公因数的基本方法。2.经历对问题的分析,观察,找规律,讨论的过程,进一步加深对公因数,最大公因数和素因数意义的理解,体会选择适当方法解决问题的优化思想,锻炼分析问题和解决问题的能力。3.在积极思考、积极参与讨论的活动中,自觉改进学习,促进良好学习习惯的养成和沟通、交流能力的提高。


理解公因数,最大公因数和素因数的意义,并会求两个数的公因数,最大公因数,知道互素和素数有什么区别.


理解公因数,最大公因数和素因数的意义,并会求两个数的公因数,最大公因数,知道互素和素数有什么区别.

学准

学生活动形式
教学过程
设计意图
课题引入:
一、
情景引入练习:请大家拿出练习本,分别写出
6
的因数,
8
的因数
6
的因数:
1

2

3

6
8
的因数:
1

2

4

8
教师:太好了,我们已经学会找一个数的因数。那么请你们仔细看一看,
它们的公有的因数是什么?学生不难答出6

8
的公有的因数是1和2猜想:这样老师就可以让学生猜想几个数的公因数的定义:几个数共有的因数,叫做这几个数的公因数,其中最大的一个数叫做这几个数的最大公因数
二、学习新课问题的提出:植树节这天,老师带领24名女生和32名男生到植物园种树,老师把这些学生分成人数相等的若干个小组,每个小组的男生人数都相等,请问,这56名同学最多分成几组?问题的分析:1.24和32的因数是多少?2.24和32的公因数是多少?3.24和32的最大公因数是多少?问题的答案:24的因数有:1,2,3,4,6,8,12,2432的因数有:1,2,4,8,16,32
24和32的公因数是1,2,4,824和32的最大公因数是8问题的引伸:因此老师最多可以把这些学生分成8组,每组中分别有3名女生和4名男生例题1
求8和9的所有公因数,并求它们的最大公因数解:8的因数有1,2,4,89的因数有1,3,98和9只有公因数1,因此8和9的最大公因数是1如果两个整数只有公因数1,那么称这两个数互素例题1中的8和9就是互素的例题2
8和12各有哪些因数,它们公有的因数是哪几个?最大的公有的因数是多少?学生口答教师板书:8的因数有1,2,4,812的因数有1,2,3,4,6,128和12公有的因数有1,2,48和12的最大的公有的因数有4教师:下面用图表示(几何画板演示)教师:第二幅中阴影部分表示什么?(8和12公有的因数,4是最大的。)
再次强调:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数例题3
求18和30的最大公因数解法1
18的因数有1,2,3,6,9,1830的因数有1,2,3,5,6,10,15,3018和30的公因数有1,2,3,6最大的公因数是6拓展
以上的例题3有没有更快捷的方法呢?
解法2:把18和30分别分解素因数18=2×3×330=2×3×5可以看出,18和30全部共有的素因数是2和3,因此2和3的乘积6就是18和30的最大公因数
求几个整数的最大公因数,只要把它们所有的素因数连乘,所得的积就是它们的最大公因数
解法3
为了简便,也可以用短除法计算18和30的最大公因数是2×3=6例题4
求48和60的最大公因数解:48和60的最大公约数是2×2×3=12三、巩固练习1.口答填空:12的因数是(   
);18的因数是(   
);12和18的公因数是(   
);12和18的最大公因数是(   
)
2.把15和18的因数、公因数分别填在下面的圈里,再找出它们的最大公因数请找出下面各组数的公因数:5和7   
8和9  
 1和12
9和15  
 7和9 
16和20答案:学生口答后老师在每组后面标出公因数。5和7(1)      
8和9(1)     
 1和12(1)9和15(1,3)   
 7和9(1)    
16和20(1,2,4)3.快速回答:24的因数是(   
);36的因数是(   
);54的因数是(   
);24,36和54的公因数是(   
);24,36和54的最大公因数是(   
)
四、找规律观察:
(1)3和5的最大公因数是
;(2)18和36的最大公因数是
;(3)6和7的最大公因数是
;(4)8和15的最大公因数是
通过求这四组数中的最大公因数,你发现了什么规律?
规律:两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数,如果两个数互素,那么它们的最大公因数就是1
五、布置作业
1
.
练习1.5
1,2,32
.
复习所学的知识3
.
预习新课
知识呈现:
1、几个数共有的因数,叫做这几个数的公因数,其中最大的一个数叫做这几个数的最大公因数
2、如果两个整数只有公因数1,那么称这两个数互素。3、求几个整数的最大公因数,只要把它们所有的素因数连乘,所得的积就是它们的最大公因数
4、规律:两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数,如果两个数互素,那么它们的最大公因数就是1

课堂小结:
1、几个数共有的因数,叫做这几个数的公因数,其中最大的一个数叫做这几个数的最大公因数
2、如果两个整数只有公因数1,那么称这两个数互素。3、求几个整数的最大公因数,只要把它们所有的素因数连乘,所得的积就是它们的最大公因数
4、规律:两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数,如果两个数互素,那么它们的最大公因数就是1

课外作业
练习册
预习要求
预习新课1.6
教学后记与反思
1、课堂时间消耗:教师活动
分钟;学生活动
分钟)2、本课时实际教学效果自评(满分10分):
分3、本课成功与不足及其改进措施: