高中数学全一册教学设计(打包18套)新人教A版必修1

文档属性

名称 高中数学全一册教学设计(打包18套)新人教A版必修1
格式 zip
文件大小 79.0MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2017-10-28 12:56:23

文档简介

1.1.3 集合的基本运算
教学分析
课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.
值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.
三维目标
1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.
2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.
重点难点
教学重点:交集与并集、全集与补集的概念.
教学难点:理解交集与并集的概念,以及符号之间的区别与联系.
课时安排
2课时
第1课时
导入新课
思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.
思路2.请同学们考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};
(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.
引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.
思路3.(1)①如图1甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?
图1
②观察集合A,B与集合C={1,2,3,4}之间的关系.
学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的基本运算.
(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.
②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.
推进新课
(1)通过上述问题中集合A,B与集合C之间的关系,类比实数的加法运算,你发现了什么?
(2)用文字语言来叙述上述问题中,集合A,B与集合C之间的关系.
(3)用数学符号来叙述上述问题中,集合A,B与集合C之间的关系.
(4)试用Venn图表示A∪B=C.
(5)请给出集合的并集定义.
(6)求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合A,B与集合C之间有什么关系?
①A={2,4,6,8,10},B={3,5,8,12},C={8};
②A={x|x是国兴中学2012年9月入学的高一年级女同学},B={x|x是国兴中学2012年9月入学的高一年级男同学},C={x|x是国兴中学2012年9月入学的高一年级同学}.
(7)类比集合的并集,请给出集合的交集定义,并分别用三种不同的语言形式来表达.
活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来表示.
讨论结果:(1)集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.
(2)所有属于集合A或属于集合B的元素组成了集合C.
(3)C={x|x∈A,或x∈B}.
(4)如图1所示.
(5)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1所示.
(6)集合之间还可以求它们的公共元素组成的集合,这种运算叫求集合的交集,记作A∩B,读作A交B.①A∩B=C,②A∪B=C.
(7)一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.
其含义用符号表示为:
A∩B={x|x∈A,且x∈B}.
用Venn图表示,如图2所示.
图2
例1
集合A={x|x<5},B={x|x>0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?
活动:学生先思考集合中元素的特征,明确集合中的元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.
解:因为A={x|x<5},B={x|x>0},C={x|x≥10},在数轴上表示,如图3所示,所以A∩B={x|0<x<5},B∪C={x|x>0},A∩B∩C=.
图3
点评:本题主要考查集合的交集和并集.求集合的并集和交集时,①明确集合中的元素;②依据并集和交集的含义,直接观察或借助于数轴或Venn图写出结果.
变式训练1.设集合A={x|x=2n,n∈N
},B={x|x=2n,n∈N},求A∩B,A∪B.解:对任意m∈A,则有m=2n=2·2n-1,n∈N
,因n∈N
,故n-1∈N,有2n-1∈N,那么m∈B,即对任意m∈A有m∈B,所以A B.而10∈B但10A,即AB,那么A∩B=A,A∪B=B.2.求满足{1,2}∪B={1,2,3}的集合B的个数.解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.3.设集合A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.解:∵A∩B={9},则9∈A,a-1=9或a2=9.∴a=10或a=±3.当a=10时,a-5=5,1-a=-9;当a=3时,a-1=2不合题意;当a=-3时,a-1=-4不合题意.故a=10.此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.4.设集合A={x|2x+1<3},B={x|-3<x<2},则A∩B等于(  )A.{x|-3<x<1}    B.{x|1<x<2}C.{x|x>-3}
D.{x|x<1}解析:集合A={x|2x+1<3}={x|x<1},观察或由数轴得A∩B={x|-3<x<1}.答案:A
例2
设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.
活动:明确集合A,B中的元素,教师和学生共同探讨满足A∩B=B的集合A,B的关系.集合A是方程x2+4x=0的解组成的集合,可以发现,B A,通过分类讨论集合B是否为空集来求a的值.利用集合的表示法来认识集合A,B均是方程的解集,通过画Venn图发现集合A,B的关系,从数轴上分析求得a的值.
解:由题意得A={-4,0}.
∵A∩B=B,∴B A.
∴B=或B≠.
当B=时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,
则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.
当B≠时,若集合B仅含有一个元素,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,
此时,B={x|x2=0}={0} A,即a=-1符合题意.
若集合B含有两个元素,则这两个元素是-4,0,
即关于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.
则有
解得a=1,则a=1符合题意.
综上所得,a=1或a≤-1.
变式训练1.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A (A∩B)成立的所有a值的集合是什么?解:由题意知A (A∩B),即A B,A非空,利用数轴得解得6≤a≤9,即所有a值的集合是{a|6≤a≤9}.2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m-1},且A∪B=A,试求实数m的取值范围.分析:由A∪B=A得B A,则有B=或B≠,因此对集合B分类讨论.解:∵A∪B=A,∴B A.又∵A={x|-2≤x≤5}≠,∴B=,或B≠.当B=时,有m+1>2m-1,∴m<2.当B≠时,观察图4:图4由数轴可得解得2≤m≤3.综上所述,实数m的取值范围是m<2或2≤m≤3,即m≤3.点评:本题主要考查集合的运算、分类讨论的思想,以及集合间关系的应用.已知两个集合的运算结果,求集合中参数的值时,由集合的运算结果确定它们的关系,通过深刻理解集合表示法的转换,把相关问题化归为其他常见的方程、不等式等数学问题.这称为数学的化归思想,是数学中的常用方法,学会应用化归和分类讨论的数学思想方法解决有关问题.
课本本节练习1,2,3.
【补充练习】
1.设集合A={3,5,6,8},B={4,5,7,8},
(1)求A∩B,A∪B.
(2)用适当的符号( , )填空:
A∩B________A,B________A∩B,A∪B________A,A∪B________B,A∩B________A∪B.
解:(1)因A,B的公共元素为5,8,故两集合的公共部分为5,8,
则A∩B={3,5,6,8}∩{4,5,7,8}={5,8}.
又A,B两集合的所有相异元素为3,4,5,6,7,8,故A∪B={3,4,5,6,7,8}.
(2)由Venn图可知
A∩B A,B A∩B,A∪B A,A∪B B,A∩B A∪B.
2.设A={x|x<5},B={x|x≥0},求A∩B.
解:因x<5及x≥0的公共部分为0≤x<5,
故A∩B={x|x<5}∩{x|x≥0}={x|0≤x<5}.
3.设A={x|x是锐角三角形},B={x|x是直角三角形},求A∩B.
解:因三角形按角分类时,锐角三角形和直角三角形彼此孤立,故A,B两集合没有公共部分.
所以A∩B={x|x是锐角三角形}∩{x|x是钝角三角形}=.
4.设A={x|x>-2},B={x|x≥3},求A∪B.
解:在数轴上将A,B分别表示出来,得A∪B={x|x>-2}.
5.设A={x|x是平行四边形},B={x|x是矩形},求A∪B.
解:因矩形是平行四边形,故由A及B的元素组成的集合为A∪B,A∪B={x|x是平行四边形}.
6.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B.
分析:M,N中的元素是数,A,B中的元素是平面内的点集,关键是找其元素.
解:∵M={1},N={1,2},∴A={(1,1),(1,2)},B={(1,1),(2,1)},故A∩B={(1,1)},A∪B={(1,1),(1,2),(2,1)}.
7.若A,B,C为三个集合,A∪B=B∩C,则一定有(  )
A.A C
B.C A
C.A≠C
D.A=
解析:思路一:∵(B∩C) B,(B∩C) C,A∪B=B∩C,
∴A∪B B,A∪B C.∴A B C.∴A C.
思路二:取满足条件的A={1},B={1,2},C={1,2,3},排除B,D,
令A={1,2},B={1,2},C={1,2},则此时也满足条件A∪B=B∩C,
而此时A=C,排除C.
答案:A
观察:(1)集合A={1,2},B={1,2,3,4}时,A∩B,A∪B这两个运算结果与集合A,B的关系;
(2)当A=时,A∩B,A∪B这两个运算结果与集合A,B的关系;
(3)当A=B={1,2}时,A∩B,A∪B这两个运算结果与集合A,B的关系.
由(1)(2)(3)你发现了什么结论?
图5
活动:依据集合的交集和并集的含义写出运算结果,并观察与集合A,B的关系.用Venn图来发现运算结果与集合A,B的关系.(1)(2)(3)中的集合A,B均满足A B,用Venn图表示,如图5所示,就可以发现A∩B,A∪B与集合A,B的关系.
解:A∩B=A A B A∪B=B.
用类似方法,可以得到集合的运算性质,归纳如下:
A∪B=B∪A,A (A∪B),B (A∪B);A∪A=A,A∪=A,A B A∪B=B;
A∩B=B∩A;(A∩B) A,(A∩B) B;A∩A=A;A∩=;A B A∩B=A.
本节主要学习了:
1.集合的交集和并集.
2.通常借助于数轴或Venn图来求交集和并集.
1.课外思考:对于集合的基本运算,你能得出哪些运算规律?
2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.
3.书面作业:课本习题1.1,A组,6,7,8.
由于本节课内容比较容易接受,也是历年高考的必考内容之一,所以在教学设计上注重加强练习和拓展课本内容.设计中通过借助于数轴或Venn图写出集合运算的结果,这是突破本节教学难点的有效方法.
第2课时
作者:赵冠明
导入新课
问题:①分别在整数范围和实数范围内解方程(x-3)(x-)=0,其结果会相同吗?
②若集合A={x|0<x<2,x∈Z},B={x|0<x<2,x∈R},则集合A,B相等吗?
学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题.
推进新课
①用列举法表示下列集合:
A={x∈Z|(x-2)=0};
B={x∈Q|(x-2)=0};
C={x∈R|(x-2)=0}.
②问题①中三个集合相等吗?为什么?
③由此看,解方程时要注意什么?
④问题①中,集合Z,Q,R分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.
⑤已知全集U={1,2,3},A={1},写出全集中不属于集合A的所有元素组成的集合B.
⑥请给出补集的定义.
⑦用Venn图表示 UA.
活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围.
讨论结果:①A={2},B=,C=.
②不相等,因为三个集合中的元素不相同.
③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.
④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U.
⑤B={2,3}.
⑥对于一个集合A,全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集.
集合A相对于全集U的补集记为 UA,即 UA={x|x∈U,且xA}.
⑦如图6所示,阴影表示补集.
图6
思路1
例1
设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求 UA, UB.
活动:让学生明确全集U中的元素,回顾补集的定义,用列举法表示全集U,依据补集的定义写出 UA, UB.
解:根据题意,可知U={1,2,3,4,5,6,7,8},
所以 UA={4,5,6,7,8}, UB={1,2,7,8}.
点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.
常见结论: U(A∩B)=( UA)∪( UB); U(A∪B)=( UA)∩( UB).
变式训练1.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则( UA)∩( UB)等于(  )A.{1,6}     B.{4,5}C.{2,3,4,5,7}
D.{1,2,3,6,7}解析:思路一:观察得( UA)∩( UB)={1,3,6}∩{1,2,6,7}={1,6}.思路二:A∪B={2,3,4,5,7},则( UA)∩( UB)= U(A∪B)={1,6}.答案:A2.设集合U={1,2,3,4,5},A={1,2,4},B={2},则A∩( UB)等于(  )A.{1,2,3,4,5}
B.{1,4}C.{1,2,4}
D.{3,5}答案:B3.设全集U={1,2,3,4,5,6,7},P={1,2,3,4,5},Q={3,4,5,6,7},则P∩( UQ)等于(  )A.{1,2}
B.{3,4,5}C.{1,2,6,7}
D.{1,2,3,4,5}答案:A
例2
设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形}.求A∩B, U(A∪B).
活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A∩B是由集合A,B中公共元素组成的集合, U(A∪B)是全集中除去集合A∪B中剩下的元素组成的集合.
解:根据三角形的分类可知A∩B=,
A∪B={x|x是锐角三角形或钝角三角形},
U(A∪B)={x|x是直角三角形}.
变式训练1.已知集合A={x|3≤x<8},求 RA.解: RA={x|x<3,或x≥8}.2.设S={x|x是至少有一组对边平行的四边形},A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},求B∩C, AB, SA.解:B∩C={x|x是正方形}, AB={x|x是邻边不相等的平行四边形}, SA={x|x是梯形}.3.已知全集I=R,集合A={x|x2+ax+12b=0},B={x|x2-ax+b=0},满足( IA)∩B={2},( IB)∩A={4},求实数a,b的值.解:a=,b=-.4.设全集U=R,A={x|x≤2+},B={3,4,5,6},则( UA)∩B等于(  )A.{4}   B.{4,5,6}   C.{2,3,4}   D.{1,2,3,4}解析:∵U=R,A={x|x≤2+},∴ UA={x|x>2+}.而4,5,6都大于2+,∴( UA)∩B={4,5,6}.答案:B
思路2
例1
已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求:
(1) UA, UB;
(2)( UA)∪( UB), U(A∩B),由此你发现了什么结论?
(3)( UA)∩( UB), U(A∪B),由此你发现了什么结论?
活动:学生回想补集的含义,教师指导学生利用数轴来解决.依据补集的含义,借助于数轴求得.
解:在数轴上表示集合A,B,如图7所示,
图7
(1)由图得 UA={x|x<-2,或x>4}, UB={x|x<-3,或x>3}.
(2)由图得( UA)∪( UB)={x|x<-2,或x>4}∪{x|x<-3,或x>3}={x|x<-2,或x>3};∵A∩B={x|-2≤x≤4}∩{x|-3≤x≤3}={x|-2≤x≤3},
∴ U(A∩B)= U{x|-2≤x≤3}={x|x<-2,或x>3}.
∴得出结论 U(A∩B)=( UA)∪( UB).
(3)由图得( UA)∩( UB)={x|x<-2,或x>4}∩{x|x<-3,或x>3}={x|x<-3,或x>4};∵A∪B={x|-2≤x≤4}∪{x|-3≤x≤3}={x|-3≤x≤4},∴ U(A∪B)= U{x|-3≤x≤4}={x|x<-3,或x>4}.∴得出结论 U(A∪B)=( UA)∩( UB).
变式训练1.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则( UA)∪( UB)等于(  )A.{1,6}     B.{4,5}C.{1,2,3,4,5,7}
D.{1,2,3,6,7}答案:D2.设集合I={x||x|<3,x∈Z},A={1,2},B={-2,-1,2},则A∪( IB)等于(  )A.{1}   
B.{1,2}
C.{2}   
D.{0,1,2}答案:D
例2
设全集U={x|x≤20,x∈N,x是质数},A∩( UB)={3,5},( UA)∩B={7,19},( UA)∩( UB)={2,17},求集合A,B.
活动:学生回顾集合的运算的含义,明确全集中的元素.利用列举法表示全集U,根据题中所给的条件,把集合中的元素填入相应的Venn图中即可.求集合A,B的关键是确定它们的元素,由于全集是U,则集合A,B中的元素均属于全集U,由于本题中的集合均是有限集并且元素的个数不多,可借助于Venn图来解决.
解:U={2,3,5,7,11,13,17,19},
由题意借助于Venn图,如图8所示,
图8
∴A={3,5,11,13},B={7,11,13,19}.
点评:本题主要考查集合的运算、Venn图以及推理能力.借助于Venn图分析集合的运算问题,使问题简捷地获得解决,将本来抽象的集合问题直观形象地表示出来,这正体现了数形结合思想的优越性.
变式训练1.设I为全集,M,N,P都是它的子集,则图9中阴影部分表示的集合是(  )图9A.M∩[( IN)∩P]B.M∩(N∪P)C.[( IM)∩( IN)]∩PD.M∩N∪(N∩P)解析:思路一:阴影部分在集合M内部,排除C;阴影部分不在集合N内,排除B,D.思路二:阴影部分在集合M内部,即是M的子集,又阴影部分在P内不在集合N内,即在( IN)∩P内,所以阴影部分表示的集合是M∩[( IN)∩P].答案:A2.设U={1,2,3,4,5,6,7,8,9},( UA)∩B={3,7},( UB)∩A={2,8},( UA)∩( UB)={1,5,6},则集合A=________,B=________.解析:借助Venn图,如图10,把相关运算的结果表示出来,自然地就得出集合A,B了.图10答案:{2,4,8,9} {3,4,7,9}
课本本节练习4.
【补充练习】
1.设全集U=R,A={x|2x+1>0},试用文字语言表述 UA的意义.
解:A={x|2x+1>0},即不等式2x+1>0的解集, UA中元素均不能使2x+1>0成立,即 UA中元素应当满足2x+1≤0.∴ UA即不等式2x+1≤0的解集.
2.如图11所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是________.
图11
解析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M,P的公共部分内,因此阴影部分表示的集合是集合S的补集与集合M,P的交集的交集,即( US)∩(M∩P).
答案:( US)∩(M∩P)
3.设集合A,B都是U={1,2,3,4}的子集,已知( UA)∩( UB)={2},( UA)∩B={1},则A等于(  )
A.{1,2}   B.{2,3}   C.{3,4}   D.{1,4}
解析:如图12所示.
图12
由于( UA)∩( UB)={2},( UA)∩B={1},则有 UA={1,2}.∴A={3,4}.
答案:C
4.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则 U(S∪T)等于(  )
A.
B.{2,4,7,8}
C.{1,3,5,6}
D.{2,4,6,8}
解析:直接观察(或画出Venn图),得S∪T={1,3,5,6},则 U(S∪T)={2,4,7,8}.
答案:B
5.已知集合I={1,2,3,4},A={1},B={2,4},则A∪( IB)等于(  )
A.{1}
B.{1,3}
C.{3}
D.{1,2,3}
解析:∵ IB={1,3},∴A∪( IB)={1}∪{1,3}={1,3}.
答案:B
问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有34人,解对乙题者有28人,两题均解对者有20人,问:
(1)至少解对其中一题者有多少人?
(2)两题均未解对者有多少人?
分析:先利用集合表示解对甲、乙两道数学题的各种类型,然后根据题意写出它们的运算,问题便得到解决.
解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生},则A∪C={解对甲题的学生},B∪C={解对乙题的学生},
A∪B∪C={至少解对一题的学生}, U(A∪B∪C)={两题均未解对的学生}.
由已知,A∪C有34个人,C有20个人,
从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.因此A∪B∪C有N1=14+8+20=42(人), U(A∪B∪C)有N2=50-42=8(人).
∴至少解对其中一题者有42个人,两题均未解对者有8个人.
本节课学习了:
①全集和补集的概念和求法.
②常借助于数轴或Venn图进行集合的补集运算.
课本习题1.1A组 9,10,B组 4.
本节教学设计注重渗透数形结合的思想方法,因此在教学过程中要重点指导学生借助于数轴或Venn图进行集合的补集运算.由于高考中集合常与以后学习的不等式等知识紧密结合,本节对此也予以体现,可以利用课余时间学习有关解不等式的知识.
【备选例题】
【例1】已知A={y|y=x2-4x+6,x∈R,y∈N},B={y|y=-x2-2x+7,x∈R,y∈N},求A∩B,并分别用描述法、列举法表示它.
解:y=x2-4x+6=(x-2)2+2≥2,A={y|y≥2,y∈N},
又∵y=-x2-2x+7=-(x+1)2+8≤8,∴B={y|y≤8,y∈N}.
故A∩B={y|2≤y≤8}={2,3,4,5,6,7,8}.
【例2】设S={(x,y)|xy>0},T={(x,y)|x>0,且y>0},则(  )
A.S∪T=S  
B.S∪T=T
 C.S∩T=S  
D.S∩T=
解析:S={(x,y)|xy>0}={(x,y)|x>0且y>0,或x<0且y<0},则T S,所以S∪T=S.
答案:A
【例3】某城镇有1
000户居民,其中有819户有彩电,有682户有空调,有535户彩电和空调都有,则彩电和空调至少有一种的有________户.
解析:设这1
000户居民组成集合U,其中有彩电的组成集合A,有空调的组成集合B,如图13所示.有彩电无空调的有819-535=284(户);有空调无彩电的有682-535=147(户),因此二者至少有一种的有284+147+535=966(户).填966.
图13
答案:966
【知识拓展】
差集与补集
有两个集合A,B,如果集合C是由所有属于A但不属于B的元素组成的集合,那么C就叫做A与B的差集,记作A-B(或A\B).
例如,A={a,b,c,d},B={c,d,e,f},C=A-B={a,b}.
也可以用Venn图表示,如图14所示(阴影部分表示差集).
图14
图15
特殊情况,如果集合B是集合I的子集,我们把I看作全集,那么I与B的差集I-B,叫做B在I中的补集,记作.
例如,I={1,2,3,4,5},B={1,2,3},=I-B={4,5}.
也可以用Venn图表示,如图15所示(阴影部分表示补集).
从集合的观点来看,非负整数的减法运算,就是已知两个不相交集合的并集的基数,以及其中一个集合的基数,求另一个集合的基数,也可以看作是求集合I与它的子集B的差集的基数.
PAGE
12.1.1 指数与指数幂的运算
教学分析
我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.
教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.
本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.
根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.
三维目标
1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.
2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.
3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.
4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.
重点难点
教学重点
(1)分数指数幂和根式概念的理解.
(2)掌握并运用分数指数幂的运算性质.
(3)运用有理指数幂的性质进行化简、求值.
教学难点
(1)分数指数幂及根式概念的理解.
(2)有理指数幂性质的灵活应用.
课时安排
3课时
第1课时
导入新课
思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.
思路2.同学们,我们在初中学方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.
推进新课
(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?
(3)根据上面的结论我们能得到一般性的结论吗?
(4)可否用一个式子表达呢?
活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.
讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.
(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.
(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.
(4)用一个式子表达是,若xn=a,则x叫a的n次方根.
教师板书n次方根的意义:
一般地,如果xn=a,那么x叫做a的n次方根(n
th
root),其中n>1且n∈N
.
可以看出数的平方根、立方根的概念是n次方根的概念的特例.
(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).
①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.
(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?
(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?
(4)任何一个数a的偶次方根是否存在呢?
活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.
(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.
(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.
(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.
类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:
①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用表示,如果是负数,负的n次方根用-表示,正的n次方根与负的n次方根合并写成±(a>0).
②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号表示.
③负数没有偶次方根;0的任何次方根都是零.
上面的文字语言可用下面的式子表示:
a为正数:
a为负数:
零的n次方根为零,记为=0.
可以看出数的平方根、立方根的性质是n次方根的性质的特例.
思考
根据n次方根的性质能否举例说明上述几种情况?
活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.
解:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为,而-27的4次方根不存在等.其中也表示方根,它类似于的形式,现在我们给式子一个名称——根式.
根式的概念:
式子叫做根式,其中a叫做被开方数,n叫做根指数.
如中,3叫根指数,-27叫被开方数.
思考
表示an的n次方根,式子=a一定成立吗?如果不一定成立,那么等于什么?
活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理.
〔如==-3,=|-8|=8〕.
解答:根据n次方根的意义,可得:()n=a.
通过探究得到:n为奇数,=a.
n为偶数,=|a|=
因此我们得到n次方根的运算性质:
①()n=a.先开方,再乘方(同次),结果为被开方数.
②n为奇数,=a.先奇次乘方,再开方(同次),结果为被开方数.
n为偶数,=|a|=先偶次乘方,再开方(同次),结果为被开方数的绝对值.
思路1

求下列各式的值:
(1);(2);(3);(4)(a>b).
活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.
解:(1)=-8;
(2)=10;
(3)=π-3;
(4)=a-b(a>b).
点评:不注意n的奇偶性对式子的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.
变式训练求出下列各式的值:(1);(2)(a≤1);(3).解:(1)=-2,(2)(a≤1)=3a-3,(3)=点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解.
思路2
例1
下列各式中正确的是(  )
A.=a
B.=
C.a0=1
D.=
活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.
解析:(1)=a,考查n次方根的运算性质,当n为偶数时,应先写=|a|,故A项错.
(2)=,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为=,故B项错.
(3)a0=1是有条件的,即a≠0,故C项也错.
(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确.所以答案选D.
答案:D
点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心.
例2
+=__________.
活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路.
解析:因为===+1,
===-1,
所以+=2.
答案:2
点评:不难看出与形式上有些特点,即是对称根式,是形式的式子,我们总能找到办法把其化成一个完全平方式.
思考
上面的例2还有别的解法吗?
活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.
另解:利用整体思想,x=+,
两边平方,得x2=3+2+3-2+2()()=6+2=6+2=8,所以x=2.
点评:对双重二次根式,特别是形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对±的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.
变式训练若=a-1,求a的取值范围.解:因为=a-1,而==|a-1|=a-1,即a-1≥0,所以a≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.
(教师用多媒体显示在屏幕上)
1.以下说法正确的是(  )
A.正数的n次方根是一个正数
B.负数的n次方根是一个负数
C.0的n次方根是零
D.a的n次方根用表示(以上n>1且n∈N
)
答案:C
2.化简下列各式:
(1);(2);(3);(4);(5).
答案:(1)2;(2);(3)x2;(4)|x|;(5)|x-y|.
3.计算+=__________.
解析:+
=+
=+
=++-
=2.
答案:2
问题:=a与()n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明.
活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义.
通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下.再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论.
解:(1)()n=a(n>1,n∈N).
如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=一定是它的一个n次方根,所以()n=a恒成立.
例如:()4=3,()3=-5.
(2)=
当n为奇数时,a∈R,=a恒成立.
例如:=2,=-2.
当n为偶数时,a∈R,an≥0,表示正的n次方根或0,所以如果a≥0,那么=a.例如=3,=0;如果a<0,那么=|a|=-a,如==3,
即()n=a(n>1,n∈N)是恒等式,=a(n>1,n∈N)是有条件的.
点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解.
学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上.
1.如果xn=a,那么x叫a的n次方根,其中n>1且n∈N
.用式子表示,式子叫根式,其中a叫被开方数,n叫根指数.
(1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用表示,如果是负数,负的n次方根用-表示,正的n次方根与负的n次方根合并写成±(a>0).
(2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号表示.
(3)负数没有偶次方根.0的任何次方根都是零.
2.掌握两个公式:n为奇数时,()n=a,n为偶数时,=|a|=
课本习题2.1A组 1.
补充作业:
1.化简下列各式:
(1);(2);(3).
解:(1)===;
(2)=-=-;
(3)==.
2.若5<a<8,则式子-的值为__________.
解析:因为5<a<8,所以-=a-5-8+a=2a-13.
答案:2a-13
3.+=__________.
解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,
不难看出==+.
同理==-.
所以+=2.
答案:2
学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.
第2课时
作者:郝云静
导入新课
思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5
730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.
思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂.
推进新课
(1)整数指数幂的运算性质是什么?
(2)观察以下式子,并总结出规律:a>0,
①;
②==a4=,;
③==a3=;
④==a5=.
(3)利用(2)的规律,你能表示下列式子吗?
,,,(x>0,m,n∈N
,且n>1).
(4)你能用方根的意义来解释(3)的式子吗?
(5)你能推广到一般的情形吗?
活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.
讨论结果:(1)整数指数幂的运算性质:an=a·a·a·…·a,a0=1(a≠0);00无意义;
a-n=(a≠0);am·an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.实质上①=,②=,③=,④=结果的a的指数是2,4,3,5分别写成了,,,,形式上变了,本质没变.
根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).
(3)利用(2)的规律,=,=,=,=.
(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是.
结果表明方根的结果和分数指数幂是相通的.
(5)如果a>0,那么am的n次方根可表示为=,即=(a>0,m,n∈N
,n>1).
综上所述,我们得到正数的正分数指数幂的意义,教师板书:
规定:正数的正分数指数幂的意义是=(a>0,m,n∈N
,n>1).
(1)负整数指数幂的意义是怎样规定的?
(2)你能得出负分数指数幂的意义吗?
(3)你认为应怎样规定零的分数指数幂的意义?
(4)综合上述,如何规定分数指数幂的意义?
(5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?
(6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?
活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价.
讨论结果:(1)负整数指数幂的意义是:a-n=(a≠0),n∈N
.
(2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.
规定:正数的负分数指数幂的意义是==(a>0,m,n∈N
,n>1).
(3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义.
(4)教师板书分数指数幂的意义.分数指数幂的意义就是:
正数的正分数指数幂的意义是=(a>0,m,n∈N
,n>1),正数的负分数指数幂的意义是==(a>0,m,n∈N
,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.
(5)若没有a>0这个条件会怎样呢?
如==-1,==1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子=,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.
(6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.
有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:
①ar·as=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
③(a·b)r=arbr(a>0,b>0,r∈Q).
我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题.
例1
求值:(1);(2);(3)-5;(4).
活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,写成2-1,写成4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来.
解:(1)=22=4;
(2)=5-1=;
(3)-5=(2-1)-5=2-1×(-5)=32;
(4)=-3=.
点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如===4.
例2
用分数指数幂的形式表示下列各式.
a3·;a2·;(a>0).
活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结.
解:a3·=a3·=;
a2·=a2·=;
=.
点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.
例3
计算下列各式(式中字母都是正数).
(1);
(2).
活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤.
解:(1)原式=[2×(-6)÷(-3)]=4ab0=4a;
(2)=m2n-3=.
点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了.
本例主要是指数幂的运算法则的综合考查和应用.
变式训练求值:(1)3··;(2).解:(1)3··==32=9;(2)===m2n-4.
例4
计算下列各式:
(1)(-)÷;
(2)(a>0).
活动:先由学生观察以上两个式子的特征,然后分析,化为同底.利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答.
解:(1)原式=
==-5;
(2)==.
课本本节练习 1,2,3.
【补充练习】
教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励.
1.(1)下列运算中,正确的是(  )
A.a2·a3=a6
B.(-a2)3=(-a3)2
C.(-1)0=0
D.(-a2)3=-a6
(2)下列各式①,②,③,④(各式的n∈N,a∈R)中,有意义的是(  )
A.①②
B.①③
C.①②③④
D.①③④
(3)()2·()2等于(  )
A.a
B.a2
C.a3
D.a4
(4)把根式-2改写成分数指数幂的形式为(  )
A.
B.
C.
D.
(5)化简的结果是(  )
A.6a
B.-a
C.-9a
D.9a
2.计算:(1)--2+-3-1+(-1)0=__________.
(2)设5x=4,5y=2,则52x-y=__________.
3.已知x+y=12,xy=9且x<y,求的值.
答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8
3.解:.
因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.
又因为x<y,所以x-y=-2×3=-6.
所以原式===-.
1.化简:.
活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到:
x-1=-13=;
x+1=+13=;

构建解题思路教师适时启发提示.
解:



=.
点拨:解这类题目,要注意运用以下公式,
=a-b,
=a±+b,
=a±b.
2.已知,探究下列各式的值的求法.
(1)a+a-1;(2)a2+a-2;(3).
解:(1)将,两边平方,得a+a-1+2=9,即a+a-1=7;
(2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+a-2=47;
(3)由于,
所以有=a+a-1+1=8.
点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值.
活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流.同时教师用投影仪显示本堂课的知识要点:
(1)分数指数幂的意义就是:正数的正分数指数幂的意义是=(a>0,m,n∈N
,n>1),正数的负分数指数幂的意义是==(a>0,m,n∈N
,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.
(2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数.
(3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:
①ar·as=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
③(a·b)r=arbr(a>0,b>0,r∈Q).
(4)说明两点:
①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系.
②整数指数幂的运算性质对任意的有理数指数幂也同样适用.因而分数指数幂与根式可以互化,也可以利用=am来计算.
课本习题2.1A组 2,4.
本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务.
第3课时
作者:郑芳鸣
导入新课
思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是无理数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂.
思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题.
推进新课
(1)我们知道=1.414
213
56…,那么1.41,1.414,1.414
2,1.414
21,…,是的什么近似值?而1.42,1.415,1.414
3,1.414
22,…,是的什么近似值?
(2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律?
的过剩近似值
的近似值
1.5
11.180
339
89
1.42
9.829
635
328
1.415
9.750
851
808
1.414
3
9.739
872
62
1.414
22
9.738
618
643
1.414
214
9.738
524
602
1.414
213
6
9.738
518
332
1.414
213
57
9.738
517
862
1.414
213
563
9.738
517
752


的近似值
的不足近似值
9.518
269
694
1.4
9.672
669
973
1.41
9.735
171
039
1.414
9.738
305
174
1.414
2
9.738
461
907
1.414
21
9.738
508
928
1.414
213
9.738
516
765
1.414
213
5
9.738
517
705
1.414
213
56
9.738
517
736
1.414
213
562


(3)你能给上述思想起个名字吗?
(4)一个正数的无理数次幂到底是一个什么性质的数呢?如,根据你学过的知识,能作出判断并合理地解释吗?
(5)借助上面的结论你能说出一般性的结论吗?
活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:
问题(1)从近似值的分类来考虑,一方面从大于的方向,另一方面从小于的方向.
问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.
问题(3)上述方法实际上是无限接近,最后是逼近.
问题(4)对问题给予大胆猜测,从数轴的观点加以解释.
问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般.
讨论结果:(1)1.41,1.414,1.414
2,1.414
21,…这些数都小于,称的不足近似值,而1.42,1.415,1.414
3,1.414
22,…,这些数都大于,称的过剩近似值.
(2)第一个表:从大于的方向逼近时,就从51.5,51.42,51.415,51.414
3,51.414
22,…,即大于的方向逼近.
第二个表:从小于的方向逼近时,就从51.4,51.41,51.414,51.414
2,51.414
21,…,即小于的方向逼近.
从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面从51.4,51.41,51.414,51.414
2,51.414
21,…,即小于的方向接近,而另一方面从51.5,51.42,51.415,51.414
3,51.414
22,…,即大于的方向接近,可以说从两个方向无限地接近,即逼近,所以是一串有理数指数幂51.4,51.41,51.414,51.414
2,51.414
21,…,和另一串有理数指数幂51.5,51.42,51.415,51.414
3,51.414
22,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示的点靠近,但这个点一定在数轴上,由此我们可得到的结论是一定是一个实数,即51.4<51.41<51.414<51.414
2<51.414
21<…<<…<51.414
22<51.414
3<51.415<51.42<51.5.
充分表明是一个实数.
(3)逼近思想,事实上里面含有极限的思想,这是以后要学的知识.
(4)根据(2)(3)我们可以推断是一个实数,猜测一个正数的无理数次幂是一个实数.
(5)无理数指数幂的意义:
一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.
也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂.
(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?
(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢?
(3)你能给出实数指数幂的运算法则吗?
活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳.
对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明.
对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通.
对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了.
讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱.
(2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则:
①ar·as=ar+s(a>0,r,s都是无理数).
②(ar)s=ars(a>0,r,s都是无理数).
③(a·b)r=arbr(a>0,b>0,r是无理数).
(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂.
实数指数幂的运算性质:
对任意的实数r,s,均有下面的运算性质:
①ar·as=ar+s(a>0,r,s∈R).
②(ar)s=ars(a>0,r,s∈R).
③(a·b)r=arbr(a>0,b>0,r∈R).
例1
利用函数计算器计算.(精确到0.001)
(1)0.32.1;(2)3.14-3;(3);(4).
活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按键,再按幂指数2.1,最后按,即可求得它的值;
对于(2),先按底数3.14,再按键,再按负号键,再按3,最后按即可;
对于(3),先按底数3.1,再按键,再按34,最后按即可;
对于(4),这种无理指数幂,可先按底数3,其次按键,再按键,再按3,最后按键.有时也可按或键,使用键上面的功能去运算.
学生可以相互交流,挖掘计算器的用途.
解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3)≈2.336;(4)≈6.705.
点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可.
例2
求值或化简.
(1)(a>0,b>0);
(2)(a>0,b>0);
(3)+-.
活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成()2+()2,22+()2,22+()2,并对学生作及时的评价,注意总结解题的方法和规律.
解:(1)==
.
点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.
(2)

=a0b0=.
点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数.
(3)+-
=+-
=-+2--2+=0.
点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.
例3
已知,n∈N
,求(x+)n的值.
活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性,与具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示.
=.
这时应看到1+x2=,
这样先算出1+x2,再算出,代入即可.
解:将代入1+x2,得1+x2=,
所以(x+)n=

==5.
点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法.
课本习题2.1A组 3.
利用投影仪投射下列补充练习:
1.化简:的结果是(  )
A.
B.
C.
D.
解析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形.
因为,所以原式的分子分母同乘以.
依次类推,所以.
答案:A
2.计算0.5+0.1-2+-3π0+9-0.5+490.5×2-4.
解:原式=
=+100+-3++=100.
3.计算+(a≥1).
解:原式=+=+1+|-1|(a≥1).
本题可以继续向下做,去掉绝对值,作为思考留作课下练习.
4.设a>0,,则(x+)n的值为__________.
解析:1+x2=.
这样先算出1+x2,再算出,
将代入1+x2,得1+x2=.
所以(x+)n=
==a.
答案:a
参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂的意义.
活动:教师引导学生回顾无理数指数幂的意义的过程,利用计算器计算出的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算的过剩近似值和不足近似值,利用逼近思想,“逼出”的意义,学生合作交流,在投影仪上展示自己的探究结果.
解:=1.732
050
80…,取它的过剩近似值和不足近似值如下表.
的过剩近似值
的过剩近似值
的不足近似值
的不足近似值
1.8
3.482
202
253
1.7
3.249
009
585
1.74
3.340
351
678
1.73
3.317
278
183
1.733
3.324
183
446
1.731
3.319
578
342
1.732
1
3.322
110
36
1.731
9
3.321
649
849
1.732
06
3.322
018
252
1.732
04
3.321
972
2
1.732
051
3.321
997
529
1.732
049
3.321
992
923
1.732
050
9
3.321
997
298
1.732
050
7
3.321
996
838
1.732
050
81
3.321
997
091
1.732
050
79
3.321
997
045




我们把用2作底数,的不足近似值作指数的各个幂排成从小到大的一列数
21.7,21.72,21.731,21.731
9,…,
同样把用2作底数,的过剩近似值作指数的各个幂排成从大到小的一列数:
21.8,21.74,21.733,21.732
1,…,不难看出的过剩近似值和不足近似值相同的位数越多,即的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为,
即21.7<21.73<21.731<21.731
9<…<<…<21.732
1<21.733<21.74<21.8.
也就是说是一个实数,=3.321
997
…也可以这样解释:
当的过剩近似值从大于的方向逼近时,2的近似值从大于的方向逼近;
当的不足近似值从小于的方向逼近时,2的近似值从小于的方向逼近.
所以就是一串有理指数幂21.7,21.73,21.731,21.731
9,…,和另一串有理指数幂21.8,21.74,21.733,21.732
1,…,按上述规律变化的结果,即≈3.321
997.
(1)无理指数幂的意义.
一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.
(2)实数指数幂的运算性质:
对任意的实数r,s,均有下面的运算性质:
①ar·as=ar+s(a>0,r,s∈R).
②(ar)s=ars(a>0,r,s∈R).
③(a·b)r=arbr(a>0,b>0,r∈R).
(3)逼近的思想,体会无限接近的含义.
课本习题2.1
B组 2.
无理数指数是指数概念的又一次扩充,教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力.
【备用习题】
1.以下各式中成立且结果为最简根式的是(  )
A.=
B.=y·
C.=
D.(-)3=5+125-2·
答案:B
2.对于a>0,r,s∈Q,以下运算中正确的是(  )
A.ar·as=ars
B.(ar)s=ars
C.r=ar·bs
D.arbs=(ab)r+s
答案:B
3.式子=成立当且仅当(  )
A.≥0
B.x≠1
C.x<1
D.x≥2
解析:方法一:
要使式子=成立,需x-1>0,x-2≥0,即x≥2.
若x≥2,则式子=成立.
故选D.
方法二:
对A,式子≥0连式子成立也保证不了,尤其x-2≤0,x-1<0时式子不成立.
对B,x-1<0时式子不成立.
对C,x<1时无意义.
对D正确.
答案:D
4.化简(1<b<2).
解:==-1(1<b<2).
5.计算+.
解:令x=+,
两边立方得x3=2++2-+3··(+),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0.
∵x2+x+4=2+>0,∴x-1=0,即x=1.
∴+=1.
PAGE
11.3.1 单调性与最大(小)值
第1课时
教学目标
1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.
2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.
重点难点
教学重点:函数单调性的概念、判断及证明.
教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性.
教学方法
教师启发讲授,学生探究学习.
教学手段
计算机、投影仪.
创设情境,引入课题
课前布置任务:
(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.
(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.
课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事.
下图是北京市某年8月8日一天24小时内气温随时间变化的曲线图.
图1
引导学生识图,捕捉信息,启发学生思考.
问题:观察图形,能得到什么信息?
预案:(1)当天的最高温度、最低温度以及何时达到;
(2)在某时刻的温度;
(3)某些时段温度升高,某些时段温度降低.
在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.
问题:还能举出生活中其他的数据变化情况吗?
预案:水位高低、燃油价格、股票价格等.
归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.
【设计意图】由生活情境引入新课,激发兴趣.
归纳探索,形成概念
对于自变量变化时,函数值是变大还是变小,初中时同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.
1.借助图象,直观感知
问题1:分别作出函数y=x+2,y=-x+2,y=x2,y=的图象,并且观察自变量变化时,函数值有什么变化规律?
图2
预案:(1)函数y=x+2在整个定义域内y随x的增大而增大;函数y=-x+2在整个定义域内y随x的增大而减小.
(2)函数y=x2在[0,+∞)上y随x的增大而增大,在(-∞,0)上y随x的增大而减小.
(3)函数y=在(0,+∞)上y随x的增大而减小,在(-∞,0)上y随x的增大而减小.
引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.
问题2:能不能根据自己的理解说说什么是增函数、减函数?
预案:如果函数f(x)在某个区间上随自变量x的增大,y也越来越大,我们说函数f(x)在该区间上为增函数;如果函数f(x)在某个区间上随自变量x的增大,y越来越小,我们说函数f(x)在该区间上为减函数.
教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观认识.
【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识.
2.探究规律,理性认识
问题1:下图是函数y=x+(x>0)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?
图3
学生的困难是难以确定分界点的确切位置.
通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.
【设计意图】使学生体会到用数量大小关系严格表述函数单调性的必要性.
问题2:如何从解析式的角度说明f(x)=x2在[0,+∞)为增函数?
预案:(1)在给定区间内取两个数,例如1和2,因为12<22,所以f(x)=x2在[0,+∞)为增函数.
(2)仿(1),取很多组验证均满足,所以f(x)=x2在[0,+∞)为增函数.
(3)任取x1,x2∈[0,+∞),且x1<x2,因为x12-x22=(x1+x2)(x1-x2)<0,即x12<x22,
所以f(x)=x2在[0,+∞)为增函数.
对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x1,x2.
【设计意图】把对单调性的认识由感性上升到理性的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好了铺垫.
3.抽象思维,形成概念
问题:你能用准确的数学符号语言表述出增函数的定义吗?
师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.
(1)板书定义
(2)巩固概念
判断题:
①已知f(x)=,因为f(-1)<f(2),所以函数f(x)是增函数.
②若函数f(x)满足f(2)<f(3),则函数f(x)在区间[2,3]上为增函数.
③若函数f(x)在区间(1,2]和(2,3)上均为增函数,则函数f(x)在区间(1,3)上为增函数.
④因为函数f(x)=在区间(-∞,0)和(0,+∞)上都是减函数,所以f(x)=在(-∞,0)∪(0,+∞)上是减函数.
通过判断题,强调三点:
①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.
②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).
③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在A∪B上是增(或减)函数.
思考:如何说明一个函数在某个区间上不是单调函数?
【设计意图】让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.
掌握证法,适当延展
【例】证明函数f(x)=x+在(,+∞)上是增函数.
1.分析解决问题
针对学生可能出现的问题,组织学生讨论、交流.
证明:任取x1,x2∈(,+∞),且x1<x2,设元
f(x1)-f(x2)=-求差
=(x1-x2)+
=(x1-x2)+=(x1-x2)=(x1-x2),变形
∵<x1<x2,
∴x1-x2<0,x1x2>2,∴f(x1)-f(x2)<0,即f(x1)<f(x2),断号
∴函数f(x)=x+在(,+∞)上是增函数.定论
2.归纳解题步骤
引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.
练习:证明函数f(x)=在[0,+∞)上是增函数.
问题:要证明函数f(x)在区间(a,b)上是增函数,除了用定义来证,如果可以证得对任意的x1,x2∈(a,b),且x1≠x2有>0可以吗?
引导学生分析这种叙述与定义的等价性,让学生尝试用这种等价形式证明函数f(x)=在[0,+∞)上是增函数.
【设计意图】初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.
归纳小结,提高认识
学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.
1.小结
(1)概念探究过程:直观到抽象、特殊到一般、感性到理性.
(2)证明方法和步骤:设元、作差、变形、断号、定论.
(3)数学思想方法和思维方法:数形结合,等价转化,类比等.
2.作业
书面作业:课本习题1.3 A组第1,2,3题.
课后探究:
(1)证明:函数f(x)在区间(a,b)上是增函数当且仅当对任意的x,x+h∈(a,b),且h≠0有>0.
(2)研究函数y=x+(x>0)的单调性,并结合描点法画出函数的草图.
1.教学内容的分析
函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其他性质提供了方法依据.
对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.
2.教学目标的确定
根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.
3.教学方法和教学手段的选择
本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.
4.教学过程的设计
为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:
(1)在探索概念阶段,让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.
(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.
(3)可对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.
第2课时
作者:方诚心
教学目标
1.知识与技能
(1)使学生理解函数的最值是在整个定义域上来研究的,它是函数单调性的应用.
(2)启发学生学会分析问题、认识问题和创造性地解决问题.
2.过程与方法
(1)通过渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.
(2)探究与活动,明白考虑问题要细致,说理要明确.
3.情感、态度与价值观
理性描述生活中的最大(小)、最多(少)等现象.
重点难点
教学重点:函数最大(小)值的定义和求法.
教学难点:如何求一个具体函数的最值.
导入新课
思路1.某工厂为了扩大生产规模,计划重新建造一个面积为10
000
m2的矩形新厂址,新厂址的长为x
m,则宽为m,所建围墙y
m,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y
最短?
学生先思考或讨论,教师指出此题意在求函数y=2,x>0的最小值.引出本节课题:在生产和生活中,我们非常关心花费最少、用料最省、用时最省等最值问题,这些最值对我们的生产和生活是很有帮助的.那么什么是函数的最值呢?这就是我们今天学习的课题.用函数知识解决实际问题,将实际问题转化为求函数的最值,这就是函数的思想,用函数解决问题.
思路2.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征?
①f(x)=-x+3;②f(x)=-x+3,x∈[-1,2];
③f(x)=x2+2x+1;④f(x)=x2+2x+1,x∈[-2,2].
学生回答后,教师引出课题:函数的最值.
推进新课
(1)如图4所示是函数y=-x2-2x、y=-2x+1,x∈[-1,+∞)、y=f(x)的图象.观察这三个图象的共同特征.
图4
(2)函数图象上任意点P(x,y)的坐标与函数有什么关系?
(3)你是怎样理解函数图象最高点的?
(4)问题(1)中,在函数y=f(x)的图象上任取一点A(x,y),如图5所示,设点C的坐标为(x0,y0),谁能用数学符号解释:函数y=f(x)的图象有最高点C
图5
(5)在数学中,形如问题(1)中函数y=f(x)的图象上最高点C的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义?
(6)函数最大值的定义中f(x)≤M即f(x)≤f(x0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征?
(7)函数最大值的几何意义是什么?
(8)函数y=-2x+1,x∈(-1,+∞)有最大值吗?为什么?
(9)点(-1,3)是不是函数y=-2x+1,x∈(-1,+∞)的最高点?
(10)由问题(9)你发现了什么值得注意的地方?
讨论结果:(1)函数y=-x2-2x的图象有最高点A,函数y=-2x+1,x∈[-1,+∞)的图象有最高点B,函数y=f(x)的图象有最高点C.也就是说,这三个函数的图象的共同特征是都有最高点.
(2)函数图象上任意点P的坐标(x,y)的意义:横坐标x是自变量的取值,纵坐标y是自变量为x时对应的函数值的大小.
(3)图象上最高点的纵坐标是所有函数值中的最大值,即函数的最大值.
(4)由于点C是函数y=f(x)图象上的最高点,则点A在点C的下方,即对定义域内任意x,都有y≤y0,即f(x)≤f(x0),也就是对函数y=f(x)的定义域内任意x,均有f(x)≤f(x0)成立.
(5)一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
①对于任意的x∈I,都有f(x)≤M;
②存在x0∈I,使得f(x0)=M.
那么,称M是函数y=f(x)的最大值.
(6)f(x)≤M反映了函数y=f(x)的所有函数值不大于实数M;这个函数的特征是图象有最高点,并且最高点的纵坐标是M.
(7)函数图象上最高点的纵坐标.
(8)函数y=-2x+1,x∈(-1,+∞)没有最大值,因为函数y=-2x+1,x∈(-1,+∞)的图象没有最高点.
(9)不是,因为该函数的定义域中没有-1.
(10)讨论函数的最大值,要坚持定义域优先的原则;函数图象上有最高点时,这个函数才存在最大值,最高点必须是函数图象上的点.
(1)类比函数的最大值,请你给出函数的最小值的定义及其几何意义.
(2)类比上面问题(9),你认为讨论函数最小值应注意什么?
活动:让学生思考函数最大值的定义,利用定义来类比定义.最高点类比最低点,不等号“≤”类比不等号“≥”.函数的最大值和最小值统称为函数的最值.
讨论结果:(1)函数最小值的定义是:
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
①对于任意的x∈I,都有f(x)≥M;
②存在x0∈I,使得f(x0)=M.
那么,称M是函数y=f(x)的最小值.
函数最小值的几何意义:函数图象上最低点的纵坐标.
(2)讨论函数的最小值,也要坚持定义域优先的原则;函数图象上有最低点时,这个函数才存在最小值,最低点必须是函数图象上的点.
例1
求函数y=在区间[2,6]上的最大值和最小值.
活动:先思考或讨论,再到黑板上书写.当学生没有解题思路时,才提示:图象最高点的纵坐标就是函数的最大值,图象最低点的纵坐标就是函数的最小值.根据函数的图象观察其单调性,再利用函数单调性的定义证明,最后利用函数的单调性求得最大值和最小值.利用变换法画出函数y=的图象,只取在区间[2,6]上的部分.观察可得函数的图象是上升的.
解:设2≤x1<x2≤6,则有
f(x1)-f(x2)=-==.
∵2≤x1<x2≤6,
∴x2-x1>0,(x1-1)(x2-1)>0.
∴f(x1)>f(x2),即函数y=在区间[2,6]上是减函数.
∴当x=2时,函数y=在区间[2,6]上取得最大值f(2)=2;
当x=6时,函数y=在区间[2,6]上取得最小值f(6)=.
变式训练1.求函数y=x2-2x(x∈[-3,2])的最大值和最小值.解:最大值是f(-3)=15,最小值是f(1)=-1.2.函数f(x)=x4+2x2-1的最小值是__________.解析:(换元法)转化为求二次函数的最小值.设x2=t,y=t2+2t-1(t≥0),又当t≥0时,函数y=t2+2t-1是增函数,则当t=0时,函数y=t2+2t-1(t≥0)取最小值-1.所以函数f(x)=x4+2x2-1的最小值是-1.答案:-13.画出函数y=-x2+2|x|+3的图象,指出函数的单调区间和最大值.分析:函数的图象关于y轴对称,先画出y轴右侧的图象,再对称到y轴左侧合起来得函数的图象;借助图象,根据单调性的几何意义写出单调区间.解:函数图象如图6所示.图6由图象得,函数的图象在区间(-∞,-1)和[0,1]上是上升的,在[-1,0]和(1,+∞)上是下降的,最高点是(±1,4),故函数在(-∞,-1),[0,1]上是增函数;函数在[-1,0],(1,+∞)上是减函数,最大值是4.点评:本题主要考查函数的单调性和最值,以及最值的求法.求函数的最值时,先画函数的图象,确定函数的单调区间,再用定义法证明,最后借助单调性写出最值,这种方法适用于做解答题.单调法求函数最值:先判断函数的单调性,再利用其单调性求最值;常用到下面的结论:①如果函数y=f(x)在区间(a,b]上单调递增,在区间[b,c)上单调递减,则函数y=f(x)在x=b处有最大值f(b);②如果函数y=f(x)在区间(a,b]上单调递减,在区间[b,c)上单调递增,则函数y=f(x)在x=b处有最小值f(b).
例2
“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h
m与时间t
s之间的关系为h(t)=-4.9t2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少?(精确到1
m)
活动:可以指定一位学生到黑板上书写,教师在下面巡视,并及时帮助做错的学生改错.并对学生的板书及时评价.将实际问题最终转化为求函数的最值,画出函数的图象,利用函数的图象求出最大值.“烟花冲出后什么时候是它爆裂的最佳时刻”就是当t取什么值时函数h(t)=-4.9t2+14.7t+18取得最大值;“这时距地面的高度是多少(精确到1
m)”就是函数h(t)=-4.9t2+14.7t+18的最大值;转化为求函数h(t)=-4.9t2+14.7t+18的最大值及此时自变量t的值.
解:作出函数h(t)=-4.9t2+14.7t+18的图象,如图7所示,
图7
显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.
由二次函数的知识,对于函数h(t)=-4.9t2+14.7t+18,我们有:
当t=-=1.5时,函数有最大值h=≈29.
即烟花冲出后1.5
s是它爆裂的最佳时刻,这时距地面的高度约是29
m.
点评:本题主要考查二次函数的最值问题,以及应用二次函数解决实际问题的能力.解应用题的步骤是:①审清题意读懂题;②将实际问题转化为数学问题来解决;③归纳结论.
注意:要坚持定义域优先的原则;求二次函数的最值要借助于图象即数形结合.
变式训练1.把长为12厘米的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是(  )A.cm2   B.4
cm2   C.3cm2   D.2cm2解析:设一个三角形的边长为x
cm,则另一个三角形的边长为(4-x)
cm,两个三角形的面积和为S,则S=x2+(4-x)2=(x-2)2+2≥2.当x=2时,S取最小值2cm2.故选D.答案:D2.某超市为了获取最大利润做了一番试验,若将进货单价为8元的商品按10元一件的价格出售时,每天可销售60件,现在采用提高销售价格减少进货量的办法增加利润,已知这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚取最大利润,并求出最大利润.分析:设未知数,引进数学符号,建立函数关系式,再研究函数关系式的定义域,并结合问题的实际意义作出回答.利润=(售价-进价)×销售量.解:设商品售价定为x元时,利润为y元,则y=(x-8)[60-(x-10)·10]=-10[(x-12)2-16]=-10(x-12)2+160(10<x<16),当且仅当x=12时,y有最大值160元,即售价定为12元时可获最大利润160元.
课本本节练习5.
【补充练习】
某厂2013年拟举行促销活动,经调查测算,该厂产品的年销售量(即该厂的年产量)x万件与去年促销费m(万元)(m≥0)满足x=3-.已知2013年生产的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2013年该产品的利润y万元表示为年促销费m(万元)的函数;
(2)求2013年该产品利润的最大值,此时促销费为多少万元?
分析:(1)年利润=销售价格×年销售量-固定投入-促销费-再投入,销售价格=1.5×每件产品平均成本;(2)利用单调法求函数的最大值.
解:(1)每件产品的成本为元,故2013年的利润为
y=1.5××x-(8+16x+m)=4+8x-m=4+8-m=28--m(万元)(m≥0).
(2)可以证明当0≤m≤3时,函数y=28--m是增函数,当m>3时,函数y=28--m是减函数,所以当m=3时,函数y=28--m取最大值21万元.
问题:求函数y=的最大值.
解:(方法一)利用计算机软件画出函数的图象,如图8所示,
故图象最高点是.
图8
则函数y=的最大值是.
(方法二)函数的定义域是R,
可以证明当x<-时,函数y=是增函数;
当x≥-时,函数y=是减函数.
则当x=-时,函数y=取最大值,
即函数y=的最大值是.
(方法三)函数的定义域是R,
由y=,得yx2+yx+y-1=0.
∵x∈R,∴关于x的方程yx2+yx+y-1=0必有实数根.
当y=0时,关于x的方程yx2+yx+y-1=0无实数根,即y=0不属于函数的值域.
当y≠0时,则关于x的方程yx2+yx+y-1=0是一元二次方程,
则有Δ=(-y)2-4×y(y-1)≥0.∴0<y≤.
∴函数y=的最大值是.
点评:方法三称为判别式法,形如函数y=(d≠0),当函数的定义域是R(此时e2-4df<0)时,常用判别式法求最值,其步骤是:①把y看成常数,将函数解析式整理为关于x的方程的形式mx2+nx+k=0;②分类讨论m=0是否符合题意;③当m≠0时,关于x的方程mx2+nx+k=0中有x∈R,则此一元二次方程必有实数根,得n2-4mk≥0,得关于y的不等式,解不等式组此不等式组的解集与②中y的值取并集得函数的值域,从而得函数的最大值和最小值.
本节课学习了:(1)函数的最值;(2)求函数最值的方法:①图象法,②单调法,③判别式法;(3)求函数最值时,要注意函数的定义域.
课本习题1.3A组 5,6.
为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下措施:
1.在探索概念阶段,让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对函数最值定义的三次认识,使得学生对概念的认识不断深入.
2.在应用概念阶段,通过对证明过程的分析,帮助学生掌握用图象和单调法求函数最值的方法和步骤.
基本初等函数的最值
1.正比例函数:y=kx(k≠0)在定义域R上不存在最值.在闭区间[a,b]上存在最值,当k>0时,函数y=kx的最大值为f(b)=kb,最小值为f(a)=ka;当k<0时,函数y=kx的最大值为f(a)=ka,最小值为f(b)=kb.
2.反比例函数:y=(k≠0)在定义域(-∞,0)∪(0,+∞)上不存在最值.在闭区间[a,b](ab>0)上存在最值,当k>0时,函数y=的最大值为f(a)=,最小值为f(b)=;当k<0时,函数y=的最大值为f(b)=,最小值为f(a)=.
3.一次函数:y=kx+b(k≠0)在定义域R上不存在最值.在闭区间[m,n]上存在最值,当k>0时,函数y=kx+b的最大值为f(n)=kn+b,最小值为f(m)=km+b;当k<0时,函数y=kx+b的最大值为f(m)=km+b,最小值为f(n)=kn+b.
4.二次函数:y=ax2+bx+c(a≠0):
当a>0时,函数y=ax2+bx+c在定义域R上有最小值f=,无最大值;
当a<0时,函数y=ax2+bx+c在定义域R上有最大值f=,无最小值.
二次函数在闭区间上的最值问题是高考考查的重点和热点内容之一.二次函数f(x)=ax2+bx+c(a>0)在闭区间[p,q]上的最值可能出现以下三种情况:
(1)若-<p,则f(x)在区间[p,q]上是增函数,则f(x)min=f(p),f(x)max=f(q).
(2)若p≤-≤q,则f(x)min=f,此时f(x)的最大值视对称轴与区间端点的远近而定:
①当p≤-<时,则f(x)max=f(q);
②当=-时,则f(x)max=f(p)=f(q);
③当<-<q时,则f(x)max=f(p).
(3)若-≥q,则f(x)在区间[p,q]上是减函数,则f(x)min=f(q),f(x)max=f(p).
由此可见,当-∈[p,q]时,二次函数f(x)=ax2+bx+c(a>0)在闭区间[p,q]上的最大值是f(p)和f(q)中的最大值,最小值是f;当-[p,q]时,二次函数f(x)=ax2+bx+c(a>0)在闭区间[p,q]上的最大值是f(p)和f(q)中的最大值,最小值是f(p)和f(q)中的最小值.
PAGE
11.1.2 集合间的基本关系
教学分析
课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.
值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与 的区别.
三维目标
1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.
2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.
重点难点
教学重点:理解集合间包含与相等的含义.
教学难点:理解空集的含义.
课时安排
1课时
导入新课
思路1.实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)欲知谁正确,让我们一起来观察、研探.
思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0____N;(2)____Q;(3)-1.5____R.
类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?
(答案:(1)∈;(2);(3)∈)
推进新课
(1)观察下面几个例子:
①A={1,2,3},B={1,2,3,4,5};
②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;
③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};
④E={2,4,6},F={6,4,2}.
你能发现两个集合间有什么关系吗?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?
(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?
(4)升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看到的,要想直观表示集合,联想集合还能用什么表示?
(5)试用Venn图表示例子①中集合A和集合B.
(6)已知A B,试用Venn图表示集合A和B的关系.
(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?
(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?
(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?
活动:教师从以下方面引导学生:
(1)观察两个集合间元素的特点.
(2)从它们含有的元素间的关系来考虑.规定:如果A B,但存在x∈B,且xA,我们称集合A是集合B的真子集,记作AB(或BA).
(3)实数中的“≤”类比集合中的 .
(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.
(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.
(6)分类讨论:当A B时,AB或A=B.
(7)方程x2+1=0没有实数解.
(8)空集记为,并规定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即A(A≠).
(9)类比子集.
讨论结果:(1)①集合A中的元素都在集合B中;②集合A中的元素都在集合B中;③集合C中的元素都在集合D中;④集合E中的元素都在集合F中.
(2)例子①中A B,但有一个元素4∈B,且4A;而例子④中集合E和集合F中的元素完全相同.
(3)若A B,且B A,则A=B.
(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.
(5)如图1所示表示集合A,如图2所示表示集合B.
图1
图2
(6)如图3和图4所示.
图3
图4
(7)不能.因为方程x2+1=0没有实数解.
(8)空集.
(9)若A B,B C,则A C;若AB,BC,则AC.
思路1
例1
某工厂生产的产品在重量和长度上都合格时,该产品才合格.若用A表示合格产品的集合,B表示重量合格的产品的集合,C表示长度合格的产品的集合.已知集合A,B,C均不是空集.
(1)则下列包含关系哪些成立?
A B,B A,A C,C A.
(2)试用Venn图表示集合A,B,C间的关系.
活动:学生思考集合间的关系以及Venn图的表示形式.当集合A中的元素都属于集合B时,则A B成立,否则A B不成立.用相同的方法判断其他包含关系是否成立.教师提示学生注意以下两点:
(1)重量合格的产品不一定是合格产品,但合格的产品一定重量合格;
长度合格的产品不一定是合格产品,但合格的产品一定长度合格.
(2)根据集合A,B,C间的关系来画出Venn图.
解:(1)包含关系成立的有:A B,A C.
(2)集合A,B,C间的关系用Venn图表示,如图5所示.
图5
变式训练课本本节练习3.点评:本题主要考查集合间的包含关系.其关键是首先明确两集合中的元素具体是什么.判断两个集合A,B之间是否有包含关系的步骤是:先明确集合A,B中的元素,再分析集合A,B中的元素之间的关系,得:集合A中的元素都属于集合B时,有A B;当集合A中的元素都属于集合B,集合B中至少有一个元素不属于集合A时,有AB;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有A=B;当集合A中至少有一个元素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有AB,且BA,即集合A,B互不包含.
例2
写出集合{a,b}的所有子集,并指出哪些是它的真子集.
活动:学生思考子集和真子集的定义,教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集.按集合{a,b}的子集所含元素的个数分类讨论.
解:集合{a,b}的所有子集为,{a},{b},{a,b}.真子集为,{a},{b}.
变式训练已知集合P={1,2},那么满足Q P的集合Q的个数是(  )A.4   B.3   C.2    .1解析:集合P={1,2}含有2个元素,其子集有22=4个,又集合Q P,所以集合Q有4个.答案:A点评:本题主要考查子集和真子集的概念,以及分类讨论的思想.通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏.思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?解:当n=0时,即空集的子集为,即子集的个数是1=20;当n=1时,即含有一个元素的集合如{a}的子集为,{a},即子集的个数是2=21;当n=2时,即含有两个元素的集合如{a,b}的子集为,{a},{b},{a,b},即子集的个数是4=22.…集合A中含有n个元素,那么集合A有2n个子集,由于一个集合不是其本身的真子集,所以集合A有(2n-1)个真子集.
思路2
例1
已知集合A={-1,3,2m-1},集合B={3,m2}.若B A,则实数m=________.
活动:先让学生思考B A的含义,根据B A,知集合B中的元素都属于集合A,由集合元素的互异性,列出方程求实数m的值.因为B A,所以3∈A,m2∈A.对m2的值分类讨论.
解析:∵B A,∴3∈A,m2∈A.∴m2=-1(舍去)或m2=2m-1.解得m=1.∴m=1.
答案:1
点评:本题主要考查集合和子集的概念,以及集合元素的互异性.本题容易出现m2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m的值后,再代入验证.
讨论两集合之间的关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.
变式训练已知集合M={x|2-x<0},集合N={x|ax=1},若NM,求实数a的取值范围.分析:集合N是关于x的方程ax=1的解集,集合M={x|x>2}≠,由于NM,则N=或N≠,要对集合N是否为空集分类讨论.解:由题意得M={x|x>2}≠,则N=或N≠.当N=时,关于x的方程ax=1无解,则有a=0;当N≠时,关于x的方程ax=1有解,则a≠0,此时x=,又∵NM,∴∈M.∴>2.∴0<a<.综上所得,实数a的取值范围是a=0或0<a<,即实数a的取值范围是.
例2
(1)分别写出下列集合的子集及其个数:,{a},{a,b},{a,b,c}.
(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?
活动:学生思考子集的含义,并试着写出子集.(1)按子集中所含元素的个数分类写出子集;(2)由(1)总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.
解:(1)的子集有:,即有1个子集;
{a}的子集有:,{a},即{a}有2个子集;
{a,b}的子集有:,{a},{b},{a,b},即{a,b}有4个子集;
{a,b,c}的子集有:,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c},即{a,b,c}有8个子集.
(2)由(1)可得:当n=0时,集合M有1=20个子集;
当n=1时,集合M有2=21个子集;
当n=2时,集合M有4=22个子集;
当n=3时,集合M有8=23个子集;
因此含有n个元素的集合M有2n个子集.
变式训练已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合A有(  )A.3个   B.4个   C.5个   D.6个解析:对集合A所含元素的个数分类讨论.A=或{2}或{3}或{7}或{2,3}或{2,7}共有6个.答案:D点评:本题主要考查子集的概念以及分类讨论和归纳推理的能力.集合M中含有n个元素,则集合M有2n个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.
课本本节练习1,2.
【补充练习】
1.判断正误:
(1)空集没有子集.(  )
(2)空集是任何一个集合的真子集.(  )
(3)任一集合必有两个或两个以上的子集.(  )
(4)若B A,那么凡不属于集合A的元素,则必不属于B.(  )
分析:关于判断题应确实把握好概念的实质.
解:该题的4个命题,只有(4)是正确的,其余全错.
对于(1),(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.
对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.
对于(4)来讲,当x∈B时必有x∈A,则xA时也必有xB.
2.集合A={x|-1<x<3,x∈Z},写出A的真子集.
分析:区分子集与真子集的概念,空集是任一非空集合的真子集,一个含有n个元素的集合的子集有2n个,真子集有2n-1个,则该题先找该集合的元素,后找真子集.
解:因-1<x<3,x∈Z,故x=0,1,2,
即A={x|-1<x<3,x∈Z}={0,1,2}.
真子集:,{1},{2},{0},{0,1},{0,2},{1,2},共7个.
3.(1)下列命题正确的是(  )
A.无限集的真子集是有限集
B.任何一个集合必定有两个子集
C.自然数集是整数集的真子集
D.{1}是质数集的真子集
(2)以下五个式子中,错误的个数为(  )
①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2} {1,0,2} ④∈{0,1,2} ⑤∈{0}
A.5   B.2   C.3   D.4
(3)M={x|3<x<4},a=π,则下列关系正确的是(  )
A.aM
B.aM
C.{a}∈M
D.{a}M
解析:(1)该题要在四个选择项中找到符合条件的选择项,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于只有一个子集,即它本身,排除B;由于1不是质数,排除D.
(2)该题涉及到的是元素与集合、集合与集合的关系.
①应是{1} {0,1,2},④应是 {0,1,2},⑤应是 {0}.
故错误的有①④⑤.
(3)M={x|3<x<4},a=π.
因3<a<4,故a是M的一个元素,
因此{a}是{x|3<x<4}的真子集,那么{a}M.
答案:(1)C (2)C (3)D
4.判断如下集合A与B之间有怎样的包含或相等关系:
(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};
(2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.
解:(1)因A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},
故A,B都是由奇数构成的,即A=B.
(2)因A={x|x=2m,m∈Z},B={x|x=4n,n∈Z},又x=4n=2·2n,
在x=2m中,m可以取奇数,也可以取偶数;而在x=4n中,2n只能是偶数.
故集合A,B的元素都是偶数,但B中元素是由A中部分元素构成,则有BA.
点评:此题是集合中较抽象的题目.要注意其元素的合理寻求.
5.已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足QP,求a所取的一切值.
解:因P={x|x2+x-6=0}={2,-3},当a=0时,Q={x|ax+1=0}=,QP成立.又当a≠0时,Q={x|ax+1=0}=,要QP成立,则有-=2或-=-3,a=-或a=.综上所述,a=0或a=-或a=.
点评:这类题目给的条件中含有字母,一般需分类讨论.本题易漏掉a=0,ax+1=0无解,即Q为空集的情况,而当Q=时,满足QP.
6.已知集合A={x∈R|x2-3x+4=0},B={x∈R|(x+1)(x2+3x-4)=0},要使AP B,求满足条件的集合P.
解:A={x∈R|x2-3x+4=0}=,
B={x∈R|(x+1)(x2+3x-4)=0}={-1,1,-4},
由AP B知集合P非空,且其元素全属于B,即有满足条件的集合P为
{1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}.
点评:要解决该题,必须确定满足条件的集合P的元素,而做到这点,必须明确A,B,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.
7.设A={0,1},B={x|x A},则A与B应具有何种关系?
解:因A={0,1},B={x|x A},
故x为,{0},{1},{0,1},即{0,1}是B中一元素.故A∈B.
点评:注意该题的特殊性,一集合是另一集合的元素.
8.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
(1)若B A,求实数m的取值范围;
(2)当x∈Z时,求A的非空真子集的个数;
(3)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.
解:(1)当m+1>2m-1即m<2时,B=满足B A.
当m+1≤2m-1即m≥2时,要使B A成立,需可得2≤m≤3.
综上所得实数m的取值范围为m≤3.
(2)当x∈Z时,A={-2,-1,0,1,2,3,4,5},
∴A的非空真子集的个数为28-2=254.
(3)∵x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},又没有元素x使x∈A与x∈B同时成立.
则①若B=即m+1>2m-1,得m<2时满足条件;
②若B≠,则要满足条件:或解之,得m>4.
综上有m<2或m>4.
点评:此问题解决要注意:不应忽略;找A中的元素;分类讨论思想的运用.
问题:已知A B,且A C,B={0,1,2,3,4},C={0,2,4,8},则满足上述条件的集合A共有多少个?
活动:学生思考A B,且A C所表达的含义.A B说明集合A是集合B的子集,即集合A中元素属于集合B,同理有集合A中元素属于集合C.因此集合A中的元素是集合B和集合C的公共元素.
思路1:写出由集合B和集合C的公共元素组成的集合,得满足条件的集合A;
思路2:分析题意,仅求满足条件的集合A的个数,转化为求集合B和集合C的公共元素所组成的集合的子集个数.
解法1:因A B,A C,B={0,1,2,3,4},C={0,2,4,8},由此,满足A B,有:,{0},{1},{2},{3},{4},{0,1},{0,2},{2,3},{2,4},{0,3},{0,4},{1,2},{1,3},{1,4},{3,4},{0,2,4},{0,1,2},{0,1,3},{0,1,4},{1,2,3},{1,2,4},{2,3,4},{0,3,4},{0,1,2,3},{1,2,3,4},{0,1,3,4},{0,2,3},{1,3,4},{0,1,2,4},{0,2,3,4},{0,1,2,3,4},共25=32(个).
又满足A C的集合A有:,{0},{2},{4},{8},{0,2},{0,4},{0,8},{2,4},{2,8},{4,8},{0,2,4},{0,2,8},{0,4,8},{2,4,8},{0,2,4,8},共24=16(个).
其中同时满足A B,A C的有8个:,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4},实际上到此就可看出,上述解法太繁.
解法2:题目只求集合A的个数,而未让说明A的具体元素,故可将问题等价转化为求B,C的公共元素组成集合的子集数是多少.显然公共元素有0,2,4,组成集合的子集有23=8(个).
点评:有关集合间关系的问题,常用分类讨论的思想来解决;关于集合的子集个数的结论要熟练掌握,其应用非常广泛.
本节课学习了:
①子集、真子集、空集、Venn图等概念;
②能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集;
③清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.
课本习题1.1A组 5.
本节教学设计注重引导学生通过类比来获得新知,在实际教学中,要留给学生适当的思考时间,使学生自己通过类比得到正确结论.丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念,学生的数学学习活动不能仅限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、合作交流、阅读自学等都应成为学生学习数学的重要方式.
【备选例题】
【例1】下面的Venn图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,问集合A,B,C,D,E分别是哪种图形的集合?
图6
思路分析:结合Venn图,利用平面几何中梯形、平行四边形、菱形、正方形的定义来确定.
解:梯形、平行四边形、菱形、正方形都是四边形,故A={四边形};梯形不是平行四边形、菱形、正方形,而菱形、正方形是平行四边形,故B={梯形},C={平行四边形};正方形是菱形,故D={菱形},E={正方形},即A={四边形},B={梯形},C={平行四边形},D={菱形},E={正方形}.
【例2】设集合A={x||x|2-3|x|+2=0},B={x|(a-2)x=2},则满足BA的a的值共有(  )
A.2个   B.3个   C.4个   D.5个
解析:由已知得A={x||x|=1,或|x|=2}={-2,-1,1,2},集合B是关于x的方程(a-2)x=2的解集,∵BA,∴B=或B≠.当B=时,关于x的方程(a-2)x=2无解,∴a-2=0.∴a=2.当B≠时,关于x的方程(a-2)x=2的解x=∈A,∴=-2或=-1或=1或=2.解得a=1或0或4或3,综上所得,a的值共有5个.
答案:D
【例3】集合A={x|0≤x<3,且x∈N}的真子集的个数是(  )
A.16
B.8
C.7
D.4
解析:A={x|0≤x<3,且x∈N}={0,1,2},则A的真子集有23-1=7(个).
答案:C
【例4】已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0},试判断集合B是不是集合A的子集?是否存在实数a使A=B成立?
思路分析:先在数轴上表示集合A,然后化简集合B,由集合元素的互异性,可知此时应考虑a的取值是否为1,要使集合B成为集合A的子集,集合B的元素在数轴上的对应点必须在集合A对应的线段上,从而确定字母a的分类标准.
解:当a=1时,B={1},所以B是A的子集;当1<a≤3时,B也是A的子集;当a<1或a>3时,B不是A的子集.综上可知,当1≤a≤3时,B是A的子集.
由于集合B最多只有两个元素,而集合A有无数个元素,故不存在实数a,使B=A.
点评:分类讨论思想,就是科学合理地划分类别,通过“各个击破”,再求整体解决(即先化整为零,再聚零为整)的策略思想.类别的划分必须满足互斥、无漏、最简的要求,探索划分的数量界限是分类讨论的关键.
【思考】
(1)空集中没有元素,怎么还是集合?(2)符号“∈”和“ ”有什么区别?
剖析:(1)疑点是总是对空集这个概念迷惑不解,并产生怀疑的想法.产生这种想法的原因是没有了解建立空集这个概念的背景,其突破方法是通过实例来体会.例如,根据集合元素的性质,方程的解能够组成集合,这个集合叫做方程的解集.对于=0,x2+4=0等方程来说,它们的解集中没有元素.也就是说确实存在没有任何元素的集合,那么如何用数学符号来刻画没有元素的集合呢?为此引进了空集的概念,把不含任何元素的集合叫做空集.这就是建立空集这个概念的背景.由此看出,空集的概念是一个规定.又例如,不等式|x|<0的解集也是不含任何元素,就称不等式|x|<0的解集是空集.
(2)难点是经常把这两个符号混淆,其突破方法是准确把握这两个符号的含义及其应用范围,并加以对比.符号∈只能适用于元素与集合之间,其左边只能写元素,其右边只能写集合,说明左边的元素属于右边的集合,表示元素与集合之间的关系,如-1∈Z,Z;符号 只能适用于集合与集合之间,其左右两边都必须写集合,说明左边的集合是右边集合的子集,表示集合与集合之间的关系,如{1} {1,0}, {x|x<0}.
PAGE
13.1.1 方程的根与函数的零点
整体设计
教学目标
知识与技能
1.结合方程根的几何意义,理解函数零点的定义;
2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;
3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.
过程与方法
1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;
2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;
3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;
4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力.
情感、态度与价值观
1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;
2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;
3.使学生感受学习、探索发现的乐趣与成功感.
教学重点与难点
教学重点:零点的概念及零点存在性的判定.
教学难点:探究判断函数的零点个数和所在区间的方法.
教学的方法与手段
授课类型
新授课
教学方法
启发式教学、探究式学习
教学课件
自制Powerpoint课件
多媒体设备
计算机
教学过程
【环节一:揭示意义,明确目标】揭示本章意义,指明课节目标
教师活动:用屏幕显示
第三章 函数的应用3.1.1 方程的根与函数的零点
教师活动:这节课我们来学习第三章 函数的应用.通过第二章的学习,我们已经认识了指数函数、对数函数、幂函数、分段函数等函数的图象和性质,而这一章我们就要运用函数思想,建立函数模型,去解决现实生活中的一些简单问题.为此,我们还要做一些基本的知识储备.方程的根,我们在初中已经学习过了,而我们在初中研究的“方程的根”只是侧重“数”的一面来研究,那么,我们这节课就主要从“形”的角度去研究“方程的根与函数零点的关系”.
教师活动:板书标题(方程的根与函数的零点).
【环节二:巧设疑云,轻松渗透】设置问题情境,渗透数学思想
教师活动:请同学们思考这个问题.用屏幕显示判断下列方程是否有实根,有几个实根?
(1)x2-2x-3=0;(2)ln
x+2x-6=0.
学生活动:回答,思考解法.
教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题.对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?
学生活动:思考作答.
教师活动:用屏幕显示函数y=x2-2x-3的图象.
学生活动:观察图象,思考作答.
教师活动:我们来认真地对比一下.用屏幕显示表格,让学生填写x2-2x-3=0的实数根和函数图象与x轴的交点.
学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论.
教师活动:我们就把使方程成立的实数x称为函数的零点.
【环节三:形成概念,升华认知】引入零点定义,确认等价关系
教师活动:这是我们本节课的第一个知识点.板书(一、函数零点的定义:对于函数y=f(x),使方程f(x)=0的实数x叫做函数y=f(x)的零点).
教师活动:我们可不可以这样认为,零点就是使函数值为0的点?
学生活动:对比定义,思考作答.
教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系?
学生活动:思考作答.
教师活动:这是我们本节课的第二个知识点.板书(二、方程的根与函数零点的等价关系).
教师活动:检验一下看大家是否真正理解了这种关系.如果已知函数y=f(x)有零点,你怎样理解它?
学生活动:思考作答.
教师活动:对于函数y=f(x)有零点,从“数”的角度理解,就是方程f(x)=0有实根,从“形”的角度理解,就是图象与x轴有交点.从我们刚才的探究过程中,我们知道,方程f(x)=0有实根和图象与x轴有交点也是等价的关系.所以函数零点实际上是方程f(x)=0有实根和图象与x轴有交点的一个统一体.
在屏幕上显示:
教师活动:下面就检验一下大家的实际应用能力.
【环节四:应用思想,小试牛刀】数学思想应用,基础知识强化
教师活动:用屏幕显示
求下列函数的零点.(1)y=3x;(2)y=log2x;(3)y=;(4)y=
学生活动:由四位同学分别回答他们确定零点的方法.画图象时要求用语言描述4个图象的画法.
教师活动:根据学生的描述,在黑板上作出图象(在接下来探究零点存在性定理时,图象会成为同学们思考问题的很好的参考).
教师活动:我们已经学习了函数零点的定义,还学习了方程的根与函数零点的等价关系,在这些知识的探究发现中,我们也有了一些收获,那我们回过头来看看能不能解决ln
x+2x-6=0的根的存在性问题?
学生活动:可受到化归思想的启发应用数形结合进行求解.
教师活动:用屏幕显示学生所论述的解题过程.这种解法充分运用了我们前面的解题思想,将未知问题转化成已知问题,将一个图象不会画的函数转化成了两个图象都会画的函数,利用两个函数图象的交点解决实根存在性问题.看来我们的探究过程是非常有价值的.
教师活动:如果不转化,这个问题就真的解决不了吗?现在最棘手的问题是y=ln
x+2x-6的图象不会画,那我们能不能不画图象就判断出零点的存在呢?
【环节五:探究新知,思形想数】探究图象本质,数形转化解疑
教师活动:我们看到,当函数图象穿过x轴时,图象就与x轴产生了交点,图象穿过x轴这是一种几何现象,那么如何用代数形式来描述呢?用屏幕显示y=x2-2x-3的函数图象,多次播放抛物线穿过x轴的画面.
学生活动:通过观察图象,得出函数零点的左右两侧函数值异号的结论.
教师活动:好!我们明确一下这个结论,函数y=f(x)具备什么条件时,能在区间(a,b)上存在零点?
学生活动:得出f(a)·f(b)<0的结论.
教师活动:若f(a)·f(b)<0,函数y=f(x)在区间(a,b)上就存在零点吗?
学生活动:可从黑板上的图象中受到启发,得出只有在[a,b]上连续不断的函数,在满足f(a)·f(b)<0的条件时,才会存在零点的结论.
【环节六:归纳定理,深刻理解】初识定理表象,深入理解实质
教师活动:其实同学们无形之中已经说出了我们数学中的一个重要定理,那就是零点存在性定理.这是我们本节课的第三个知识点.板书(三、零点存在性定理).
教师活动:用屏幕显示
(函数零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.)
教师活动:这个定理比较长,找个同学给大家读一下,让大家更好地体会定理的内容.
学生活动:读出定理.
教师活动:大家注意到了吗,定理中,开始时是在闭区间[a,b]上连续,结果推出时却是在开区间(a,b)上存在零点.你怎样理解这种差异?
学生活动:思考作答.
教师活动:虽然我们已经得到了零点存在性定理,但同学们真的那么坦然吗?结合黑板上的图象,再结合定理的叙述形式,你对定理的内容可有疑问?
学生活动:通过观察黑板上的板书图象,大致说出以下问题:
1.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)<0,则f(x)在区间(a,b)内会是只有一个零点吗?
2.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)>0,则f(x)在区间(a,b)内就一定没有零点吗?
3.在什么条件下,函数y=f(x)在区间(a,b)上可存在唯一零点?
教师活动:那我们就来解决一下这些问题.
学生活动:通过黑板上的图象举出反例,得出结论.
1.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)<0,则只能确定f(x)在区间(a,b)内有零点,有几个不一定.
2.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)>0,则f(x)在区间(a,b)内也可能有零点.
3.在零点存在性定理的条件下,如果函数再具有单调性,函数y=f(x)在区间(a,b)上可存在唯一零点.
【环节七:应用所学,答疑解惑】把握理论实质,解决初始问题
教师活动:现在我们不用画出图象也能判断函数零点是否存在,存在几个了.那解决ln
x+2x-6=0的根的存在性问题应该是游刃有余了.
用屏幕显示
判断下列方程是否有实根,有几个实根?ln
x+2x-6=0
学生活动:通过对零点存在性的探究和理解,表述该问题的解法.
【环节八:归纳总结,梳理提升】总结基础知识,提升解题意识
教师活动:本节课的知识点已经在黑板上呈现出来了,但最重要的,也是贯穿本节课始终,起到灵魂作用的却是三大数学思想,即化归与转化的数学思想,数形结合的数学思想,函数与方程的数学思想.数学思想才是数学的灵魂所在,也是数学的魅力所在,对我们解决问题起着绝对的指导作用.愿我们每个同学在今后的学习中体味、感悟、应用、升华!
【环节九:理论内化,巩固升华】整理思想方法,灵活应用解题
设置四个练习题,检验学生对本节课内容的掌握情况,增强学生对所学新知的应用意识.
1.函数f(x)=x(x2-16)的零点为(  )
A.(0,0),(4,0)    
B.0,4
C.(-4,0),(0,0),(4,0)
D.-4,0,4
2.已知函数f(x)是定义域为R的奇函数,且f(x)在(0,+∞)上有一个零点,则f(x)的零点个数为(  )
A.3
B.2
C.1
D.不确定
3.已知函数f(x)的图象是连续不断的,有如下对应值表:
x
1
2
3
4
5
6
7
f(x)
23
9
-7
11
-5
-12
-26
那么函数在区间[1,6]上的零点至少有(  )
A.5个
B.4个
C.3个
D.2个
4.函数f(x)=-x3-3x+5的零点所在的大致区间为(  )
A.(-2,0)
B.(1,2)
C.(0,1)
D.(0,0.5)
【环节十:布置作业,举一反三】延伸课堂思维,增强应用意识 
已知f(x)=|x2-2x-3|-a,求a取何值时能分别满足下列条件.
(1)有2个零点;(2)有3个零点;(3)有4个零点.
板书设计
屏幕
方程的根与函数的零点一、函数零点的定义:对于函数y=f(x),使方程f(x)=0的实数x叫做函数y=f(x)的零点.二、方程的根与函数零点之间的等价关系三、零点存在性定理
PAGE
11.2.2 函数的表示法
教学分析
课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.
三维目标
1.了解函数的一些基本表示法(列表法、图象法、解析法),会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想.
2.通过具体实例,了解简单的分段函数,并能简单应用,提高应用函数解决实际问题的能力,增加学习数学的兴趣.
3.会用描点法画一些简单函数的图象,培养学生应用函数的图象解决问题的能力.
4.了解映射的概念及表示方法,会利用映射的概念来判断“对应关系”是否是映射,感受对应关系在刻画函数和映射概念中的作用,提高对数学高度抽象性和广泛应用性的进一步认识.
重点难点
教学重点:函数的三种表示方法,分段函数和映射的概念.
教学难点:分段函数的表示及其图象,映射概念的理解.
课时安排
3课时
第1课时
导入新课
思路1.语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy
Birthday!法文是Bon
Anniversaire!德文是Alles
Gute
Zum
Geburtstag!印度尼西亚文是Selamat
Ulang
Tahun!……那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.
思路2.我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).
推进新课
初中学过的三种表示法:解析法、图象法和列表法各是怎样表示函数的?
讨论结果:(1)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.
(2)图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.
(3)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.
例1
某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).
活动:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素.
解:这个函数的定义域是数集{1,2,3,4,5},
用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.
用列表法可将函数y=f(x)表示为
笔记本数x
1
2
3
4
5
钱数y
5
10
15
20
25
用图象法可将函数y=f(x)表示为图1.
图1
点评:本题主要考查函数的三种表示法.解析法的特点是:简明、全面地概括了变量间的关系,可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;图象法的特点是:直观、形象地表示自变量变化时相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如企业生产图、股市走势图等;列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等.并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.例如:张丹的年龄n(n∈N
)每取一个值,那么他的身高y(单位:cm)总有唯一确定的值与之对应,因此身高y是年龄n的函数y=f(n),但是这个函数的解析式不存在,函数y=f(n)不能用解析法来表示.
注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;
②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;
③图象法:根据实际情境来决定是否连线;
④列表法:选取的自变量要有代表性,应能反映定义域的特征.
变式训练1.如图所示为y=ax2+bx+c的图象,下列结论正确的是(  )图2A.abc>0    
B.a+b+c<0C.a-b+c>0
D.2c<3b解析:由图象研究二次函数y=ax2+bx+c的性质,易知a<0,b>0,c>0.当x=1时,y=a+b+c>0;当x=-1时,a-b+c<0,故A,B,C都错.答案:D2.已知2f(x)+f(-x)=3x+2,则f(x)=________.解析:由题意得把f(x)和f(-x)看成未知数,解方程即得.答案:3x+
例2
下面是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:
第一次
第二次
第三次
第四次
第五次
第六次
王 伟
98
87
91
92
88
95
张 城
90
76
88
75
86
80
赵 磊
68
65
73
72
75
82
班平均分
88.2
78.3
85.4
80.3
75.7
82.6
请你对这三位同学在高一学年度的数学学习情况做一个分析.
活动:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.
解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图3所示.
图3
由图3可看到:
王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;
张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;
赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.
点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.
注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.
变式训练1.函数y=x2-4x+6,x∈[1,5)的值域是________.答案:[2,11)2.将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数关系式,并求定义域和值域,作出函数的图象.分析:解此题的关键是先把实际问题转化成数学问题,即把面积y表示为x的函数,用数学的方法解决,然后再回到实际中去.解:设矩形一边长为x,则另一边长为(a-2x),则面积y=(a-2x)x=-x2+ax.又得0<x<,即定义域为.由于y=-2+a2≤a2,如图4所示,结合函数的图象得值域为.图43.向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图5所示,那么水瓶的形状是(  )图5图6解析:要求由水瓶的形状识别容积V和高度h的函数关系,突出了对思维能力的考查.观察图象,根据图象的特点发现:取水深h=,注水量V′>,即水深为一半时,实际注水量大于水瓶总水量的一半.A中V′<,C、D中V′=,故排除A,C,D.答案:B
课本本节练习2,3.
【补充练习】
1.等腰三角形的周长是20,底边长y是一腰长x的函数,则(  )
A.y=10-x(0<x≤10)
B.y=10-x(0<x<10)
C.y=20-2x(5≤x≤10)
D.y=20-2x(5<x<10)
解析:根据等腰三角形的周长列出函数解析式.
∵2x+y=20,∴y=20-2x.则20-2x>0.∴x<10.由构成三角形的条件(两边之和大于第三边)可知2x>20-2x,得x>5,∴函数的定义域为{x|5<x<10}.
∴y=20-2x(5<x<10).
答案:D
2.定义在R上的函数y=f(x)的值域为[a,b],则y=f(x+1)的值域为(  )
A.[a,b]
B.[a+1,b+1]
C.[a-1,b-1]
D.无法确定
解析:将函数y=f(x)的图象向左平移一个单位得函数y=f(x+1)的图象,由于定义域均是R,则这两个函数图象上点的纵坐标的取值范围相同,所以y=f(x+1)的值域也是[a,b].
答案:A
3.函数f(x)=(x∈R)的值域是(  )
A.(0,1)
B.(0,1]
C.[0,1)
D.[0,1]
解析:(观察法)定义域是R,由于x2≥0,则1+x2≥1,从而0<≤1.
答案:B
问题:变换法画函数的图象都有哪些?
解答:变换法画函数的图象有三类:
1.平移变换:
(1)将函数y=f(x)的图象向左平移a(a>0)个单位得函数y=f(x+a)的图象;
(2)将函数y=f(x)的图象向右平移a(a>0)个单位得函数y=f(x-a)的图象;
(3)将函数y=f(x)的图象向上平移b(b>0)个单位得函数y=f(x)+b的图象;
(4)将函数y=f(x)的图象向下平移b(b>0)个单位得函数y=f(x)-b的图象.
简记为“左加(+)右减(-),上加(+)下减(-)”.
2.对称变换:
(1)函数y=f(x)与函数y=f(-x)的图象关于直线x=0即y轴对称;
(2)函数y=f(x)与函数y=-f(x)的图象关于直线y=0即x轴对称;
(3)函数y=f(x)与函数y=-f(-x)的图象关于原点对称.
3.翻折变换:
(1)函数y=|f(x)|的图象可以将函数y=f(x)的图象位于x轴下方部分沿x轴翻折到x轴上方,去掉原x轴下方部分,并保留y=f(x)的x轴上方部分即可得到.
(2)函数y=f(|x|)的图象可以将函数y=f(x)的图象位于y轴右边部分翻折到y轴左边替代原y轴左边部分并保留y=f(x)在y轴右边部分图象即可得到.
函数的图象是对函数关系的一种直观、形象的表示,可以直观地显示出函数的变化状况及其特性,它是研究函数性质时的重要参考,也是运用数形结合思想研究和运用函数性质的基础.另一方面,函数的一些特性又能指导作图,函数与图象是同一事物的两个方面,是函数的不同表现形式.函数的图象可以比喻成人的相片,观察函数的图象可以解决研究其性质,当然,也可以由函数的性质确定函数图象的特点.借助函数的图象来解决函数问题,函数的图象问题是高考的热点之一,应引起重视.
本节课学习了:函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数.
课本习题1.2A组 7,8,9.
本节教学设计容量较大,尽量借助于信息技术来完成.本节的设计重点是函数的三种表示方法,提出了表示法的应用,特别是用图象法求函数的值域,并对求函数值域的方法进行了总结以满足高考的要求.
第2课时
作者:刘菲
导入新课
思路1.当x>1时,f(x)=x+1;当x≤1时,f(x)=-x,请写出函数f(x)的解析式.这个函数的解析式有什么特点?教师指出本节课题.
思路2.化简函数y=|x|的解析式,说说此函数解析式的特点,教师指出本节课题.
推进新课
①函数h(x)=与f(x)=x-1,g(x)=x2在解析式上有什么区别?
②请举出几个分段函数的例子.
活动:学生讨论交流函数解析式的区别.所谓“分段函数”,习惯上指在定义域的不同部分,有不同对应法则的函数.
讨论结果:①函数h(x)是分段函数,在定义域的不同部分,其解析式不同.说明:分段函数是一个函数,不要把它误认为是几个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集;生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税额等等.
②例如:y=等.
例1
画出函数y=|x|的图象.
活动:学生思考函数图象的画法:①化简函数的解析式为基本初等函数;②利用变换法画出图象,根据绝对值的概念来化简解析式.
解法一:由绝对值的概念,我们有y=
所以,函数y=|x|的图象如图7所示.
图7
解法二:画函数y=x的图象,将其位于x轴下方的部分对称到x轴上方,与函数y=x的图象位于x轴上方的部分合起来得函数y=|x|的图象如图7所示.
点评:函数y=f(x)的图象位于x轴上方的部分和y=|f(x)|的图象相同,函数y=f(x)的图象位于x轴下方的部分对称到x轴上方就是函数y=|f(x)|图象的一部分.利用函数y=f(x)的图象和函数y=|f(x)|的图象的这种关系,由函数y=f(x)的图象画出函数y=|f(x)|的图象.
变式训练1.已知函数y=(1)求f{f[f(5)]}的值;(2)画出函数的图象.分析:本题主要考查分段函数及其图象.f(x)是分段函数,要求f{f[f(5)]},需要确定f[f(5)]的取值范围,为此又需确定f(5)的取值范围,然后根据所在定义域代入相应的解析式,逐步求解.画出函数在各段上的图象,再合起来就是分段函数的图象.解:(1)∵5>4,∴f(5)=-5+2=-3.∵-3<0,∴f[f(5)]=f(-3)=-3+4=1.∵0<1<4,∴f{f[f(5)]}=f(1)=12-2×1=-1,即f{f[f(5)]}=-1.(2)图象如图8所示:图82.课本本节练习3.3.画出函数y=的图象.步骤:①画整个二次函数y=(x+1)2的图象,再取其在区间(-∞,0]上的图象,其他部分删去不要;②画一次函数y=-x的图象,再取其在区间(0,+∞)上的图象,其他部分删去不要;③这两部分合起来就是所要画的分段函数的图象.如图9所示.图9
例2
某市“招手即停”公共汽车的票价按下列规则制定:
(1)乘坐汽车5千米以内(含5千米),票价2元;
(2)5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算),
如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.
活动:学生讨论交流题目的条件,弄清题意.本例是一个实际问题,有具体的实际意义,由于里程在不同的范围内,票价有不同的计算方法,故此函数是分段函数.
图10
解:设里程为x千米时,票价为y元,根据题意得x∈(0,20].
由“招手即停”公共汽车票价制定的规定,可得到以下函数解析式:
y=
根据这个函数解析式,可画出函数图象,如图10所示.
点评:本题主要考查分段函数的实际应用,以及应用函数解决问题的能力.生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税额等等.在列出其解析式时,要充分考虑实际问题的规定,根据规定来求得解析式.
注意:
①本例具有实际背景,所以解题时应考虑其实际意义;
②分段函数的解析式不能写成几个不同的方程,而应写成函数值不同的几种表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.
变式训练某客运公司确定车票价格的方法是:如果行程不超过100千米,票价是每千米0.5元,如果超过100千米,超过部分按每千米0.4元定价,则客运票价y(元)与行程x(千米)之间的函数关系式是________.解析:根据行程是否大于100千米来求出解析式.答案:y=
1.函数f(x)=|x-1|的图象是(  )
图11
解析:方法一:函数的解析式化为y=画出此分段函数的图象,故选B.
方法二:将函数f(x)=x-1位于x轴下方部分沿x轴翻折到x轴上方,与f(x)=x-1位于x轴上方部分合起来,即可得到函数f(x)=|x-1|的图象,故选B.
方法三:由f(-1)=2,知图象过点(-1,2),排除A,C,D,故选B.
答案:B
2.已知函数f(x)=
(1)画出函数的图象;
(2)求f(1),f(-1),f[f(-1)]的值.
解:分别作出f(x)在x>0,x=0,x<0上的图象,合在一起得函数的图象.
(1)如图12所示,画法略.
图12
(2)f(1)=12=1,f(-1)=-=1,f[f(-1)]=f(1)=1.
3.某人驱车以52千米/时的速度从A地驶往260千米远处的B地,到达B地并停留1.5小时后,再以65千米/时的速度返回A地.试将此人驱车走过的路程s(千米)表示为时间t的函数.
分析:本题中的函数是分段函数,要由时间t属于哪个时间段,得到相应的解析式.
解:从A地到B地,路上的时间为=5(小时);从B地回到A地,路上的时间为=4(小时).所以走过的路程s(千米)与时间t的函数关系式为
s=
问题:已知函数f(x)满足f(1)=1,f(n+1)=f(n)+2,n∈N
.
(1)求:f(2),f(3),f(4),f(5);
(2)猜想f(n),n∈N
.
探究:(1)由题意得f(1)=1,则有
f(2)=f(1)+2=1+2=3,
f(3)=f(2)+2=3+2=5,
f(4)=f(3)+2=5+2=7,
f(5)=f(4)+2=7+2=9.
(2)由(1)得
f(1)=1=2×1-1,
f(2)=3=2×2-1,
f(3)=5=2×3-1,
f(4)=7=2×4-1,
f(5)=9=2×5-1.
因此猜想f(n)=2n-1,n∈N
.
本节课学习了:画分段函数的图象;求分段函数的解析式以及分段函数的实际应用.
课本习题1.2B组 3,4.
本节教学设计容量较大,特别是例题涉及图象,建议使用信息技术来完成.本节重点为分段函数,这是课标明确要求也是高考的重点,通过分段函数问题能够区分学生的思维层次,因此教学中应予以重视.
第3课时
作者:林大华
导入新课
思路1.复习初中常见的对应关系
1.对于任何一个实数a,数轴上都有唯一的点P和它对应.
2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应.
3.对于任意一个三角形,都有唯一确定的面积和它对应.
4.某影院的某场电影的每一张电影票有唯一确定的座位与它对应.
5.函数的概念.
我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).
思路2.前面学习了函数的概念是:一般地,设A,B是两个非空数集,如果按照某种对应法则f,对于集合A中的每个元素x,在集合B中都有唯一的元素y和它对应.
(1)对于任意一个实数,在数轴上都有唯一的点与之对应.
(2)班级里的每一位同学在教室里都有唯一的座位与之对应.
(3)对于任意的三角形,都有唯一确定的面积与之对应.
那么这些对应又有什么特点呢?
这种对应称为映射,引出课题.
推进新课
①给出以下对应关系:
图13
这三个对应关系有什么共同特点?
②像问题①中的对应我们称为映射,请给出映射的定义?
③“都有唯一”是什么意思?
④函数与映射有什么关系?
讨论结果:①集合A,B均为非空集合,并且集合A中的元素在集合B中都有唯一的元素与之对应.
②一般地,设A,B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,记作“f:A→B”.
如果集合A中的元素x对应集合B中的元素y,那么集合A中的元素x叫集合B中元素y的原象,集合B中元素y叫集合A中的元素x的象.
③包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思,即是一对一或多对一.
④函数是特殊的映射,映射是函数的推广.
例题
下列哪些对应是从集合A到集合B的映射?
(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点与它所代表的实数对应;
(2)集合A={P|P是平面直角坐标系中的点},集合B={(x,y)|x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;
(3)集合A={x|x是三角形},集合B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;
(4)集合A={x|x是新华中学的班级},集合B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.
活动:学生思考映射的定义.判断一个对应是否是映射,要紧扣映射的定义.
(1)中数轴上的点对应着唯一的实数;
(2)中平面直角坐标系中的点对应着唯一的有序实数对;
(3)中每一个三角形都有唯一的内切圆;
(4)中新华中学的每个班级对应其班内的多个学生.
解:(1)是映射;(2)是映射;(3)是映射;
(4)不是映射.新华中学的每个班级对应其班内的多个学生,是一对多,不符合映射的定义.
变式训练1.图14(1),(2),(3)用箭头所标明的A中元素与B中元素的对应法则,是不是映射?图14答案:(1)不是;(2)是;(3)是.2.在图15中的映射中,A中元素60°对应的元素是什么?在A中的什么元素与B中元素对应?图15答案:A中元素60°对应的元素是,在A中的元素45°与B中元素对应.
1.下列对应是从集合S到T的映射的是(  )
A.S=N,T={-1,1},对应法则是(-1)n,n∈S
B.S={0,1,4,9},T={-3,-2,-1,0,1,2,3},对应法则是开平方
C.S={0,1,2,5},T={1,,},对应法则是取倒数
D.S={x|x∈R},T={y|y∈R},对应法则是x→y=
解析:判断映射的方法简单地说应考虑A中的元素是否都可以受对应法则f的作用,作用的结果是否一定在B中,作用的结果是否唯一这三个方面.很明显A符合定义;B是一对多的对应;C中集合S中的元素0没有象;D中集合S中的元素1也无象.
答案:A
2.已知集合M={x|0≤x≤6},P={y|0≤y≤3},则下列对应关系中不能看作从M到P的映射的是(  )
A.f:x→y=x
B.f:x→y=x
C.f:x→y=x
D.f:x→y=x
解析:选项C中,集合M中部分元素没有象,其他均是映射.
答案:C
3.已知集合A=N
,B={a|a=2n-1,n∈Z},映射f:A→B,使A中任一元素a与B中元素2a-1对应,则与B中元素17对应的A中元素是(  )
A.3
B.5
C.17
D.9
解析:利用对应法则转化为解方程.由题意得2a-1=17,解得a=9.
答案:D
4.若映射f:A→B的象的集合是Y,原象的集合是X,则X与A的关系是________;Y与B的关系是________.
解析:根据映射的定义,可知集合A中的元素必有象且唯一;集合B中的元素在集合A中不一定有原象.故象的集合是B的子集.所以X=A,Y B.
答案:X=A Y B
5.已知集合M={a,b,c,d},P={x,y,z},则从M到P能建立不同映射的个数是________.
解析:集合M中有4个元素,集合P中有3个元素,则从M到P能建立34=81个不同的映射.
答案:81
6.下列对应哪个是集合M到集合N的映射?哪个不是映射?为什么?
(1)设M={矩形},N={实数},对应法则f为矩形到它的面积的对应.
(2)设M={实数},N={正实数},对应法则f为x→.
(3)设M={x|0≤x≤100},N={x|0≤x≤100},对应法则f为开方再乘10.
解:(1)是M到N的映射,因为它是多对一的对应.
(2)不是映射,因为当x=0时,集合N中没有元素与之对应.
(3)是映射,因为它是一对一的对应.
7.设集合A和B都是自然数集,映射f:A→B把A中的元素n映射到B中的元素2n+n,则在映射f下,A中的元素________对应B中的元素3.(  )
A.1
B.3
C.9
D.11
解析:对应法则为f:n→2n+n,根据选项验证2n+n=3,可得n=1.
答案:A
8.已知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N,k∈N,x∈A,y∈B,映射f:A→B,使B中元素y=3x+1和A中元素x对应,求a及k的值.
分析:先从集合A和对应法则f入手,同时考虑集合中元素的互异性,可以分析出此映射必为一一映射,再由3→10,求得a值,进而求得k值.
解:∵B中元素y=3x+1和A中元素x对应,
∴A中元素1的象是4;2的象是7;3的象是10,即a4=10或a2+3a=10.
∵a∈N,
∴由a2+3a=10,得a=2.
∵k的象是a4,
∴3k+1=16,得k=5.
∴a=2,k=5.
9.已知集合A={(x,y)|x+y<3,x∈N,y∈N},B={0,1,2},f:(x,y)→x+y,则这个对应是否为映射?是否为函数?请说明理由.
解:是映射,不是函数.由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},显然对于A中的每一个有序实数对,它们的和是0或1或2,则在B中都有唯一一个数与它对应,所以是映射,因为集合A不是数集而是点集,所以不是函数.
问题:集合M中有m个元素,集合N中有n个元素,则从M到N能建立多少个不同的映射?
探究:当m=1,n=1时,从M到N能建立1=11个不同的映射;
当m=2,n=1时,从M到N能建立1=12个不同的映射;
当m=3,n=1时,从M到N能建立1=13个不同的映射;
当m=2,n=2时,从M到N能建立4=22个不同的映射;
当m=2,n=3时,从M到N能建立9=32个不同的映射.
集合M中有m个元素,集合N中有n个元素,则从M到N能建立nm个不同的映射.
本节课学习了:
(1)映射的对应是一种特殊的对应,元素之间的对应必须满足“一对一或多对一”.
(2)映射由三个部分组成:集合A,集合B及对应法则f,称为映射的三要素.
(3)映射中集合A,B中的元素可以为任意的.
课本本节练习4.
补充作业:
已知下列集合A到B的对应,请判断哪些是A到B的映射,并说明理由.
(1)A=N,B=Z,对应法则f为“取相反数”;
(2)A={-1,0,2},B=,对应法则:“取倒数”;
(3)A={1,2,3,4,5},B=R,对应法则:“求平方根”;
(4)A={0,1,2,4},B={0,1,4,9,64},对应法则f:a→b=(a-1)2;
(5)A=N
,B={0,1},对应法则:除以2所得的余数.
答案:(2)不是映射,(1)(3)(4)(5)是映射.
本节教学设计的内容拓展较深,在实际教学中根据学生实际选取例题和练习.本节重点为映射的概念,对于映射来说,只需要掌握概念即可,不要求拓展其内容,以免加重学生的负担,也偏离了课标要求和高考的方向.
【备选例题】
【例1】区间[0,m]在映射f:x→2x+m下所得的象集区间为[a,b],若区间[a,b]的长度比区间[0,m]的长度大5,则m等于(  )
A.5
B.10
C.2.5
D.1
解析:函数f(x)=2x+m在区间[0,m]上的值域是[m,3m],
则有[m,3m]=[a,b],则a=m,b=3m,
又区间[a,b]的长度比区间[0,m]的长度大5,
则有b-a=(m-0)+5,即b-a=m+5,
所以3m-m=m+5,
解得m=5.
答案:A
【例2】设x∈R,对于函数f(x)满足条件f(x2+1)=x4+5x2-3,那么对所有的x∈R,f(x2-1)=________.
解析:(换元法)设x2+1=t,
则x2=t-1,
则f(t)=(t-1)2+5(t-1)-3=t2+3t-7,
即f(x)=x2+3x-7.
所以f(x2-1)=(x2-1)2+3(x2-1)-7=x4+x2-9.
答案:x4+x2-9
【知识总结】
1.函数与映射的知识记忆口诀:
函数新概念,记准要素三;定义域值域,关系式相连;
函数表示法,记住也不难;图象和列表,解析最常见;
对应变映射,只是变唯一;映射变函数,集合变数集.
2.映射到底是什么?怎样理解映射的概念?
剖析:对于映射这个概念,可以从以下几点来理解:(1)映射中的两个集合A和B可以是数集、点集或由图形组成的集合等;(2)映射是有方向的,A到B的映射与B到A的映射往往是不一样的;(3)映射要求对集合A中的每一个元素在集合B中都有元素与之对应,而这个与之对应的元素是唯一的,这样集合A中元素的任意性和在集合B中对应的元素的唯一性构成了映射的核心;(4)映射允许集合B中存在元素在A中没有元素与其对应;(5)映射允许集合A中不同的元素在集合B中有相同的对应元素,即映射只能是“多对一”或“一对一”,不能是“一对多”;(6)映射是特殊的对应,函数是特殊的映射.
3.函数与映射的关系
函数是特殊的映射,对于映射f:A→B,当两个集合A,B均为非空数集时,则从A到B的映射就是函数,所以函数一定是映射,而映射不一定是函数.
PAGE
12.2.2 对数函数及其性质
教学分析
有了指数函数的图象和性质的学习经历,以及对数知识的知识准备,对数函数概念的引入、对数函数图象和性质的研究便水到渠成.
对数函数的概念是通过一个关于细胞分裂次数的确定的实际问题引入的,既说明对数函数的概念来自实践,又便于学生接受.在教学中,学生往往容易忽略对数函数的定义域,因此,在进行定义教学时,要结合指数式强调说明对数函数的定义域,加强对对数函数定义域为(0,+∞)的理解.在理解对数函数概念的基础上掌握对数函数的图象和性质,是本节的教学重点,而理解底数a的值对于函数值变化的影响(即对对数函数单调性的影响)是教学的一个难点,教学时要充分利用图象,数形结合,帮助学生理解.
为了便于学生理解对数函数的性质,教学时可以先让学生在同一坐标系内画出函数y=log2x和的图象,通过两个具体的例子,引导学生共同分析它们的性质.有条件的学校也可以利用《几何画板》软件,定义变量a,作出函数y=logax的图象,通过改变a的值,在动态变化的过程中让学生认识对数函数的图象和性质.
研究了对数函数的图象和性质之后,可以将对数函数的图象和性质与指数函数的图象和性质进行比较,以便加深学生对对数函数的概念、图象和性质的理解,同时也可以为反函数的概念的引出做一些准备.
三维目标
1.理解对数函数的概念,掌握对数函数的性质,了解对数函数在生产实践中的简单应用,培养学生的数学交流能力和与人合作的精神,用联系的观点分析问题,通过对对数函数的学习,渗透数形结合、分类讨论等数学思想.
2.能根据对数函数的图象,画出含有对数式的函数的图象,并研究它们的有关性质,使学生用联系的观点分析、解决问题.认识事物之间的相互转化,通过师生双边活动使学生掌握比较同底对数大小的方法,培养学生的数学应用的意识.
3.掌握对数函数的单调性及其判定,会进行同底数的对数和不同底数的对数的大小比较,加深对对数函数和指数函数的性质的理解,深化学生对函数图象变化规律的理解,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.
重点难点
重点:对数函数的定义、图象和性质;对数函数性质的初步应用,利用对数函数单调性比较同底对数大小,对数函数的特性以及函数的通性在解决有关问题中的灵活应用.
难点:底数a对对数函数性质的影响,不同底数的对数比较大小,单调性和奇偶性的判断和证明.
课时安排
3课时
第1课时
导入新课
思路1.如课本2.2.1的例6,考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用估算出土文物或古遗址的年代.根据问题的实际意义可知,对于每一个碳14含量P,通过对应关系都有唯一确定的年代t与它对应,所以t是P的函数.同理,对于每一个对数式y=logax中的x,任取一个正的实数值,y均有唯一的值与之对应,所以y是关于x的函数.这就是本节课的主要内容,教师点出课题:对数函数及其性质(1).
思路2.我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数y是分裂次数x的函数,这个函数可以用指数函数y=2x表示.现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个,……细胞,那么,分裂次数x就是细胞个数y的函数.根据对数的定义,这个函数可以写成对数的形式就是x=log2y.如果用x表示自变量,y表示函数,这个函数就是y=log2x.这一节,我们来研究与指数函数密切相关的函数——对数函数.教师点出课题:对数函数及其性质(1).
推进新课
提出问题
(1)用清水漂洗衣服,若每次能洗去污垢的,写出存留污垢x表示的漂洗次数y的关系式,请根据关系式计算若要使存留的污垢,不超过原有的,则至少要漂洗几次?
(2)你是否能根据上面的函数关系式,给出一个一般性的概念?
(3)为什么对数函数的概念中明确规定a>0,a≠1
(4)你能求出对数函数的定义域、值域吗?
(5)如何根据对数函数的定义判断一个函数是否是一个对数函数?请你说出它的步骤.
活动:先让学生仔细审题,交流讨论,然后回答,教师提示引导,及时鼓励表扬给出正确结论的学生,引导学生在不断探索中提高自己应用知识的能力,教师巡视,个别辅导,评价学生的结论.
讨论结果:(1)若每次能洗去污垢的,则每次剩余污垢的,漂洗1次存留污垢x=,漂洗2次存留污垢x=2,…,漂洗y次后存留污垢x=y,因此y用x表示的关系式是对上式两边取对数得,当x=时,y=3,因此至少要漂洗3次.
(2)对于式子,如果用字母a替代,这就是一般性的结论,即对数函数的定义:
函数y=logax(a>0且a≠1)叫做对数函数,对数函数y=logax(a>0且a≠1)的定义域为(0,+∞),值域为(-∞,+∞).
(3)根据对数式与指数式的关系,知y=logax可化为ay=x,由指数的概念,要使ay=x有意义,必须规定a>0且a≠1.
(4)因为y=logax可化为x=ay,不管y取什么值,由指数函数的性质ay>0,所以x∈(0,+∞),对数函数的值域为(-∞,+∞).
(5)只有形如y=logax(a>0且a≠1,x>0)的函数才叫做对数函数,
即对数符号前面的系数为1,底数是不为1的正常数,真数是x的形式,否则就不是对数函数.像y=loga(x+1),y=2logax,y=logax+1等函数,它们是由对数函数变化而得到的,都不是对数函数.
提出问题
(1)前面我们学习指数函数的时候,根据什么思路研究指数函数的性质,对数函数呢?
(2)前面我们学习指数函数的时候,如何作指数函数的图象?说明它的步骤.
(3)利用上面的步骤,作下列函数的图象:y=log2x,.
(4)观察上面两个函数的图象各有什么特点,再画几个类似的函数图象,看是否也有类似的特点?
(5)根据上述几个函数图象的特点,你能归纳出指数函数的性质吗?
(6)把y=log2x和的图象,放在同一坐标系中,你能发现这两个图象的关系吗?
(7)你能证明上述结论吗?
(8)能否利用y=log2x的图象画出的图象?请说明画法的理由.
活动:教师引导学生回顾需要研究的函数有哪些性质,共同讨论研究对数函数的性质的方法,强调数形结合,函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的运用,渗透概括能力的培养,进行课堂巡视,个别辅导,投影展示画的好的部分学生的图象,同时投影展示课本表2-3,及图2.2-1,2.2-2及2.2-3,及时评价学生,补充学生回答中的不足.学生独立思考,提出研究对数函数性质的思路,独立画图,观察图象及表格,表述自己的发现,同学们相互交流,形成对对数函数性质的认识,推荐代表发表本组的集体认识.
讨论结果:(1)我们研究函数时,根据图象研究函数的性质,由具体到一般,一般要考虑函数的定义域、值域、单调性、奇偶性,有时也通过画函数图象,从图象的变化情况来看函数的定义域、值域、单调性、奇偶性等性质.
(2)一般是列表、描点、连线,借助多媒体手段画出图象,用计算机作函数的图象.
(3)列表(学生自己完成):
x
0.25
0.5
1
2
4
8
16
32

y=log2x
-2
-1
0
1
2
3
4
5

2
1
0
-1
-2
-3
-4
-5

作图1、图2:
图1
图2
(4)通过观察图1,可知y=log2x的图象分布在y轴右边,说明定义域是正实数.图象上下延伸,无止境,说明值域是全体实数.图象自左至右是上升的,说明是增函数,图象经过点(1,0),当x>1时y>0,当0<x<1时y<0,图象不关于x轴对称,也不关于y轴对称.定义域不关于原点对称,说明函数既不是奇函数也不是偶函数.
通过观察图2,可知的图象分布在y轴右边,说明定义域是正实数.图象上下延伸,无止境,说明值域是全体实数.图象自左至右是下降的,说明是减函数,图象经过点(1,0),当x>1时y<0,当0<x<1时y>0,图象不关于x轴对称,也不关于y轴对称.定义域不关于原点对称,说明函数既不是奇函数也不是偶函数.
可以再画下列函数的图象:y=log6x,,以作比较,重新观察函数图象的特点,推广到一般的情形.
(5)通过以上观察我们得到对数函数图象的特点进而得出函数的性质.
图象的特征
函数的性质
(1)图象都在y轴的右边
(1)定义域是(0,+∞)
(2)函数图象都经过(1,0)点
(2)1的对数是0
(3)从左往右看,当a>1时,图象逐渐上升,当0<a<1时,图象逐渐下降
(3)当a>1时,y=logax是增函数,当0<a<1时,y=logax是减函数
(4)当a>1时,函数图象在(1,0)点右边的纵坐标都大于0,在(1,0)点左边的纵坐标都小于0;当0<a<1时,图象正好相反,在(1,0)点右边的纵坐标都小于0,在(1,0)点左边的纵坐标都大于0
(4)当a>1时,x>1,则logax>0,0<x<1,则logax<0;当0<a<1时,x>1,则logax<0,0<x<1,则logax>0
由上述表格可知,对数函数的性质如下:
a>1
0<a<1
图象
性质
定义域:(0,+∞)
值域:R
过点(1,0),即当x=1时,y=0
x∈(0,1)时,y<0;x∈(1,+∞)时,y>0
x∈(0,1)时,y>0;x∈(1,+∞)时,y<0
在(0,+∞)上是增函数
在(0,+∞)上是减函数
(6)在同一坐标系中作出y=log2x和
x两个函数的图象如图3.
经过仔细研究观察发现,它们的图象关于x轴对称.
图3
(7)证明:设点P(x1,y1)是y=log2x上的任意一点,它关于x轴的对称点是P1(x1,-y1),它满足方程y==-log2x,即点P1(x1,-y1)在的图象上,反之亦然,所以y=log2x和两个函数的图象关于x轴对称.
(8)因为y=log2x和两个函数的图象关于x轴对称,所以,可以根据y=log2x的图象,利用轴对称的性质画出的图象,同学们一定要掌握这种作图的方法,对以后的学习非常有好处.下面我们看它们的应用.
例1
求下列函数的定义域:
(1)y=logax2;(2)y=loga(4-x).
活动:学生回忆,教师提示,师生共同完成解题过程.此题主要利用对数函数y=logax的定义域为(0,+∞)求解.①若函数解析式中含有分母,分母不能为0;②若函数解析式中含有根号,要注意偶次根号下非负;③0的0次幂没有意义;④若函数解析式中含有对数式,要注意对数的真数大于0,底数大于0而不等于1.
解:(1)由x2>0得x≠0,所以函数y=logax2的定义域是{x|x≠0};
(2)由4-x>0得x<4,所以函数y=loga(4-x)的定义域是{x|x<4}.
点评:该题主要考查对数函数y=logax的定义域为(0,+∞)这一限制条件,根据函数的解析式,列出相应不等式或不等式组,解不等式或不等式组即可.
变式训练1.课本本节练习2.2.求下列函数的定义域:(1)y=log3(1-x);
(2)y=;(3)y=log7;
(4)y=.解:(1)由1-x>0得x<1,所以所求函数定义域为{x|x<1}.(2)由log2x≠0,得x≠1,又x>0,所以所求函数定义域为{x|x>0且x≠1}.(3)由得x<,所以所求函数定义域为{x|x<}.(4)由得所以x≥1.所以所求函数定义域为{x|x≥1}.
例2
溶液酸碱度的测量.
溶液酸碱度是通过pH刻画的.pH的计算公式为pH=-lg
[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升.
(1)根据对数函数性质及上述pH的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;
(2)已知纯净水中氢离子的浓度为[H+]=10-7摩尔/升,计算纯净水的pH.
活动:学生审题,教师巡视,学生展示思维过程.此题主要利用对数及对数函数的性质求解.首先利用对数的运算性质把pH=-lg
[H+]化为pH=lg,再利用对数函数的性质来说明.
解:(1)根据对数的运算性质,有pH=-lg
[H+]=lg
[H+]-1=lg.在(0,+∞)上,随着[H+]的增大,减小,相应地,lg也减小,即pH减小.所以,随着[H+]的增大,pH减小,即溶液中氢离子的浓度越大,溶液的酸度就越大.
(2)当[H+]=10-7时,pH=-lg
10-7=7,所以纯净水的pH是7.
点评:注意数学在实际问题中的应用.
课本本节练习1.
在同一坐标系中,画出函数y=log3x,,y=log2x,的图象,比一比,看它们之间有何区别与联系.
活动:教师引导学生回顾作函数图象的方法与步骤,共同讨论研究对数函数的性质的方法,强调数形结合,强调函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的运用,渗透概括能力的培养,进行课堂巡视,个别辅导,及时评价学生,学生独立思考,独立画图,观察图象及表格,表述自己的发现,同学们相互交流,形成对对数函数性质的认识.计算机画出如下图象(如图4).
图4
可以看到:所有图象都跨越一、四象限,任何两个图象都是交叉出现的,交叉点是(1,0);
当a>1时,图象向下与y轴的负半轴无限靠拢,在点(1,0)的右侧,函数值恒大于0,对同一自变量x而言,底数越大,函数值越小;在点(1,0)的左侧,函数值恒小于0,对同一自变量x而言,底数越大,函数值越大.
当0<a<1时,图象向上与y轴的正半轴无限靠拢,在点(1,0)的左侧,函数值恒大于0,对同一自变量x而言,底数越大,函数值越大;在点(1,0)的右侧,函数值恒小于0,对同一自变量x而言,底数越大,函数值越小.
以此为依据,可定性地分析在同一坐标系中,底数不同的若干个对数函数的底数的大小关系.
怎样定量分析同一坐标系中,底数不同的对数函数的底数的大小呢?我们知道,对于对数函数y=logax,当y=1时,x=a,而a恰好又是对数函数的底数,这就启发我们,不妨作直线y=1,它同各个图象相交,交点的横坐标恰好就是对数函数的底数,以此可比较底数的大小.
同时,根据不同图象间的关系,也可比较真数相同,底数不同的对数函数值的大小,如log23<log1.53,log20.5<log30.5,log0.52>log0.62等.
除了上述两种情况外,对于底数和真数都不同的函数值也可通过媒介值“0”或“1”去比较大小.
如log1.50.5与log0.50.3,因为log1.50.5<0,log0.50.3>0,
所以log1.50.5<log0.50.3;
又如log21.5与log0.50.4,因为log21<log21.5<log22,
所以0<log21.5<1.又因为log0.50.4>log0.50.5=1,所以log0.50.4>log21.5.
1.对数函数的概念.
2.对数函数的图象与性质.
3.函数定义域的求法及函数奇偶性的判定方法.
4.数形结合与转化的数学思想.
课本习题2.2A组 7,8,9,10.
本节课是在前面研究了对数及常用对数、指数函数的基础上,研究的第二类具体初等函数,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习的基础,鉴于这种情况,安排教学时,要充分利用函数图象,数形结合,无论是导入还是概念得出的过程,都比较详细,因此课堂容量大,要提高学生互动的积极性,特别是归纳出对数函数的图象和性质后,要与指数函数的图象和性质进行比较,加深对数函数的概念、图象和性质的理解,要提高课堂的效率和节奏,多运用信息化的教学手段,顺利完成本堂课的任务.
第2课时
作者:路致芳
导入新课
思路1.复习以下内容:(1)对数函数的定义;(2)对数函数的图象与性质.
这些定义与性质有什么作用呢?这就是我们本堂课的主讲内容,教师点出课题:对数函数及其性质(2)(在黑板上板书).
思路2.上一节,大家学习了对数函数y=logax的图象和性质,明确了对数函数的单调性,即当a>1时,在(0,+∞)上是增函数;当0<a<1时,在(0,+∞)上是减函数.这一节,我们主要通过对数函数的单调性解决有关问题.教师板书课题:对数函数及其性质(2).
推进新课
提出问题
(1)根据你掌握的知识,目前比较数的大小有什么方法?
(2)判断函数的单调性有哪些方法和步骤?
(3)判断函数的奇偶性有哪些方法和步骤?
活动:学生回忆,教师引导,教师提问,学生回答,学生之间可以相互交流讨论,学生有困难教师点拨.
问题(1)学生回顾数的大小的比较方法,有些数一眼就能看出大小,有些数比较抽象,又用到某些函数的图象和性质,要分别对待,具体问题具体分析.
问题(2)学生回顾判断函数的单调性的方法和步骤,严格按步骤与规定.
问题(3)学生回顾判断函数的奇偶性的方法和步骤,严格按步骤与规定.
讨论结果:(1)比较数的大小:
①作差,看两个数差的符号,若为正,则前面的数大.
②作商,但必须是同号数,看商与1的大小,再决定两个数的大小.
③计算出每个数的值,再比较大小.
④是两个以上的数,有时采用中间量比较.
⑤利用图象法.
⑥利用函数的单调性.
(2)常用的方法有定义法、图象法、复合函数的单调性的判断.
利用定义证明单调性的步骤:
①在给定的区间上任取两个自变量的值x1,x2,且x1<x2.
②作差或作商(同号数),注意变形.
③判断差的符号,商与1的大小.
④确定增减性.
对于复合函数y=f[g(x)]的单调性的判断步骤可以总结为:
当函数f(x)和g(x)的单调性相同时,复合函数y=f[g(x)]是增函数;
当函数f(x)和g(x)的单调性相异即不同时,复合函数y=f[g(x)]是减函数.
又简称为口诀“同增异减”.
(3)有两种方法:定义法和图象法.
利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域,并判断其定义域是否关于原点对称;
②确定f(-x)与f(x)的关系;
③作出相应结论:
若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;
若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.
图象法:
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.这也可以作为判断函数奇偶性的依据.下面看它们的应用.

比较下列各组数中两个值的大小:
(1)log23.4;log28.5;(2)log0.31.8,log0.32.7;
(3)loga5.1,loga5.9(a>0,且a≠1);(4)log75,log67.
活动:学生思考、交流,教师要求学生展示自己的思维过程,并及时评价.对(1)与(2)由数形结合的方法或直接利用对数函数的单调性来完成;作出图象,利用图象法比较;计算出结果;作差利用对数函数的性质.对(3)因为底数的大小不确定,因此要分类讨论,再利用对数函数的单调性;作差利用对数函数的性质;转化为指数函数,再由指数函数的单调性判断大小.对(4)所给的对数式的底数和真数都不相同,可以找一个中间量作为桥梁,通过比较中间量与这两个对数式的大小来比较对数式的大小,一般选择“0”或“1”作为中间量进行比较.
解:(1)解法一:用图形计算器或多媒体画出对数函数y=log2x的图象,如图5.
图5
在图象上,横坐标为3.4的点在横坐标为8.5的点的下方,
所以log23.4<log28.5.
解法二:由函数y=log2x在(0,+∞)上是单调增函数,且3.4<8.5,
所以log23.4<log28.5.
解法三:直接用计算器计算,得log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5.
解法四:作差log23.4-log28.5=log2,因为2>1,<1,根据对数函数的性质,
所以log2<0,即log23.4<log28.5.
(2)log0.31.8>log0.32.7.
(3)解法一:当a>1时,y=logax在(0,+∞)上是增函数,且5.1<5.9,所以loga5.1<loga5.9.
当0<a<1时,y=logax在(0,+∞)上是减函数,且5.1<5.9,所以loga5.1>loga5.9.
解法二:转化为指数函数,再由指数函数的单调性判断大小.
令b1=loga5.1,则,令b2=loga5.9,则.
当a>1时,y=ax在R上是增函数,且5.1<5.9,所以b1<b2,即loga5.1<loga5.9;
当0<a<1时,y=ax在R上是减函数,且5.1<5.9,所以b1>b2,即loga5.1>loga5.9.
解法三:作差loga5.1-loga5.9=loga,<1,由对数函数的性质,
当a>1时,loga<0,因此loga5.1<loga5.9;
当0<a<1时,loga>0,因此loga5.1>loga5.9.
(4)解法一:因为函数y=log7x和函数y=log6x都是定义域上的增函数,
所以log75<log77=1=log66<log67.
所以log75<log67.
解法二:直接利用对数的性质,log75<1,而log67>1,因此log75<log67.
点评:对数函数的单调性取决于对数的底数是大于1还是小于1.而已知条件并未指明时,需要对底数a进行讨论,体现了分类讨论的思想,要求学生逐步掌握.同时本题采用了多种解法,从中还体现了数形结合的思想方法,要注意体会和运用.
变式训练比较log20.7与两值的大小.解:考查函数y=log2x.因为2>1,所以函数y=log2x在(0,+∞)上是增函数.又0.7<1,所以log20.7<log21=0.再考查函数y=logx,因为0<<1,所以函数在(0,+∞)上是减函数.又1>0.8,所以.所以log20.7<.
课本本节练习3.
【补充练习】
函数y=的定义域是(  )
A.(3,+∞)  
B.[3,+∞)
C.(4,+∞)
D.[4,+∞)
答案:要使函数有意义,需log2x-2≥0,log2x≥2,x≥4,因此函数的定义域是[4,+∞),选D.
探究y=logax的图象随a的变化而变化的情况.
用计算机先画出y=log2x,y=log3x,y=log5x,,的图象,如图6.
图6
通过观察图象可总结如下规律:当a>1时,a值越大,y=logax的图象越靠近x轴;当0<a<1时,a值越大,y=logax的图象越远离x轴.
本节课复习了对数函数及其性质,借助对数函数的性质的运用,我们对函数的单调性和奇偶性又进行了复习巩固,利用单调性和奇偶性解决了一些问题,对常考的内容进行了学习,要高度重视,特别是要和高考接轨,注意题目的形式和难度.
课本习题2.2B组 2,3.
【补充作业】
1.求函数y=+lg
(5-2x)的定义域.
解:要使函数有意义,只需
即解得1≤x<.所以函数的定义域是eq
\b\lc\[\rc\)(eq
\a\vs4\al\co1(1,)).
2.已知y=loga(2-ax)在[0,1]上是x的减函数,求a的取值范围.
解:因为a>0且a≠1,
(1)当a>1时,函数t=2-ax是减函数;
由y=loga(2-ax)在[0,1]上是x的减函数,知y=logat是增函数,所以a>1;
由x∈[0,1]时,2-ax≥2-a>0,得a<2,所以1<a<2.
(2)当0<a<1时,函数t=2-ax是增函数;
由y=loga(2-ax)在[0,1]上是x的减函数,知y=logat是减函数,
所以0<a<1.由x∈[0,1]时,2-ax≥2-1>0,所以0<a<1.
综上所述,0<a<1或1<a<2.
本堂课主要是复习对数函数及其性质,是在以前基础上的提高与深化,它起着承上启下的作用,侧重于对数函数的单调性和奇偶性,同时又兼顾了高考常考的内容.对于对数函数的单调性需严格按定义来加以论证,对于对数函数的奇偶性的判定也要按定义来加以论证,这类问题不但技巧性较强,而且涉及面广、容量大,因此要集中精力,提高学生兴趣,加快速度,高质量完成教学任务.
第3课时
作者:高建勇
导入新课
思路1.复习指数函数与对数函数的关系,那么函数y=ax与函数y=logax到底还有什么关系呢?这就是本堂课的新内容——反函数,教师板书课题:对数函数及其性质(3).
思路2.在比较系统地学习对数函数的定义、图象和性质的基础上,利用对数函数的图象和性质研究一些含有对数式的、形式上比较复杂的函数的图象和性质,特别明确了对数函数的单调性,并且我们通过对数函数的单调性解决了有关问题.因此,应搞清y=ax与函数y=logax的关系,培养学生综合运用数学知识分析问题、解决问题的能力.教师点出课题:对数函数及其性质(3).
推进新课
提出问题
(1)用列表描点法在同一个直角坐标系中画出x=log2y、y=2x与y=log2x的函数图象.
(2)通过图象探索在指数函数y=2x中,x为自变量,y为因变量,如果把y当成自变量,x当成因变量,那么x是y的函数吗?
(3)如果是,那么对应关系是什么?如果不是,请说明理由.
(4)探索y=2x与x=log2y的图象间的关系.
(5)探索y=2x与y=log2x的图象间的关系.
(6)结合(2)与(5)推测函数y=ax与函数y=logax的关系.
讨论结果:(1)y=2x与x=log2y.
x

-3
-2
-1
0
1
2
3

y

1
2
4
8

y=log2x.
y

-3
-2
-1
0
1
2
3

x

1
2
4
8

图象如图7.
图7
(2)在指数函数y=2x中,x是自变量,y是x的函数(x∈R,y∈R+),而且其在R上是单调递增函数.过y轴的正半轴上任意一点作x轴的平行线,与y=2x的图象有且只有一个交点,即对任意的y都有唯一的x相对应,可以把y作为自变量,x作为y的函数.
(3)由指数式与对数式的关系,y=2x得x=log2y,即对于每一个y,在关系式x=log2y的作用之下,都有唯一确定的值x和它对应,所以,可以把y作为自变量,x作为y的函数,即x=log2y.这时我们把函数x=log2y〔y∈(0,+∞)〕叫做函数y=2x(x∈R)的反函数,但习惯上,通常以x表示自变量,y表示函数,对调x=log2y中的x,y写成y=log2x,这样y=log2x〔x∈(0,+∞)〕是指数函数y=2x(x∈R)的反函数.由上述讨论可知,对数函数y=log2x〔x∈(0,+∞)〕是指数函数y=2x(x∈R)的反函数;同时,指数函数y=2x(x∈R)也是对数函数y=log2x〔x∈(0,+∞)〕的反函数.因此,指数函数y=2x(x∈R)与对数函数y=log2x〔x∈(0,+∞)〕互为反函数.
以后,我们所说的反函数是x,y对调后的函数.如y=log3x,x∈(0,+∞)与y=3x(x∈R)互为反函数,y=log0.5x与y=0.5x(x∈R)互为反函数.
(4)从我们的列表中知道,y=2x与x=log2y的函数图象相同.
(5)通过观察图象可知,y=2x与y=log2x的图象关于直线y=x对称.
(6)通过(2)与(5)类比归纳知道,y=ax(a>0,且a≠1)的反函数是y=logax(a>0且a≠1),且它们的图象关于直线y=x对称.
由反函数的概念可知,同底的指数函数和对数函数互为反函数,它们的图象关于直线y=x对称.
提出问题
(1)用计算机在同一坐标系中作出下列函数的图象:①y=log3x;②y=log3(x+1);③y=log3(x-1).
(2)从图象上观察它们之间有什么样的关系?
(3)用计算机在同一坐标系中作出下列函数的图象:①y=log3x;②y=log3x+1;③y=log3x-1.
(4)从图象上观察它们之间有什么样的关系?
(5)你能推广到一般的情形吗?
活动:学生动手画出函数图象,教师点拨,学生没有思路教师可以提示.
学生回忆函数作图的方法与步骤,按规定作出图象,特别是关键点.
讨论结果:(1)如图8.
图8
(2)观察图8可以看出,y=log3x,y=log3(x+1),y=log3(x-1)的图象间有如下关系:
y=log3(x+1)的图象由y=log3x的图象向左移动1个单位得到;
y=log3(x-1)的图象由y=log3x的图象向右移动1个单位得到;
y=log3(x-1)的图象由y=log3(x+1)的图象向右移动2个单位得到;
y=log3(x+1)的图象由y=log3(x-1)的图象向左移动2个单位得到.
(3)如图9.
图9
(4)观察图9可以看出,y=log3x,y=log3x+1,y=log3x-1的图象间有如下关系:
y=log3x+1的图象由y=log3x的图象向上平移1个单位得到;
y=log3x-1的图象由y=log3x的图象向下平移1个单位得到;
y=log3x-1的图象由y=log3x+1的图象向下平移2个单位得到;
y=log3x+1的图象由y=log3x-1的图象向上平移2个单位得到.
(5)由上面的观察讨论可知,一般情况如下:
①由函数y=logax的图象得到函数y=loga(x+h)的图象的变化规律为:
当h>0时,只需将函数y=logax的图象向左平移h个单位就可得到函数y=loga(x+h)的图象;
当h<0时,只需将函数y=logax的图象向右平移|h|个单位就可得到函数y=loga(x+h)的图象.
②由函数y=logax的图象得到函数y=logax+b的图象的变化规律为:
当b>0时,只需将函数y=logax的图象向上平移b个单位就可得到函数y=logax+b的图象;
当b<0时,只需将函数y=logax的图象向下平移|b|个单位就可得到函数y=logax+b的图象.
③由函数y=logax的图象得到函数y=loga(x+h)+b的图象的变化规律为:
画出函数y=logax的图象,先将函数y=logax的图象向左(当h>0时)或向右(当h<0时)平移|h|个单位,可得到函数y=loga(x+h)的图象,再将函数y=loga(x+h)的图象向上(当b>0时)或向下(当b<0时)平移|b|个单位就可得到函数y=loga(x+h)+b的图象.
这样我们就可以很方便地将函数y=logax的图象进行平移得到与函数y=logax有关的函数图象.那么,你能很方便地由函数y=logax的图象得到函数y=loga|x|的图象吗?留作思考练习,同学们课下完成.
例1
已知a>0,a≠1,f(logax)=(x>0).
(1)求f(x)的表达式;
(2)求证:函数f(x)在R上是增函数.
活动:学生审题,教师指导,学生有困难,教师提示,并及时评价.(1)把logax看成一个整体,利用换元法处理.利用指数与对数的关系,求出logax中的x,然后代入求解.(2)证明函数的增减性要用函数单调性的定义.学生回顾单调性的证明方法与步骤,要按规定的格式书写.
(1)解:设t=logax,则x=at,f(t)=.
所以f(x)=.
(2)证明:设x1,x2∈R,x1<x2,
f(x1)-f(x2)=,
当a>1时,ax1-ax2<0,a2-1>0,
当0<a<1时,ax1-ax2>0,a2-1<0,
而ax1ax2及a·ax1·ax2+1均为正,
所以对一切a>0,a≠1,总有f(x1)<f(x2).
所以f(x)在R上是增函数.
点评:换元法是解题常用的数学方法,要注意体会.
例2
已知F(x)=f(x)-g(x),其中f(x)=loga(x-1),并当且仅当(x0,y0)在f(x)的图象上时,点(2x0,2y0)在y=g(x)的图象上.求y=g(x)的解析式.
活动:学生仔细审题,积极思考,探讨解题方法,教师及时提示引导.由已知函数的解析式利用代入法求函数的解析式.由于P0(x0,y0)与P1(2x0,2y0)是相关的,如果我们能把y=g(x)上的点P1(2x0,2y0)的坐标通过变换,表示为P0(x0,y0)的坐标的相关形式,代入即可,也称相关点法.
解:由点(x0,y0)在y=loga(x-1)的图象上,
得y0=loga(x0-1).
令2x0=u,2y0=v,则x0=,y0=,
所以=logaeq
\b\lc\(\rc\)(eq
\a\vs4\al\co1(-1)),即v=2logaeq
\b\lc\(\rc\)(eq
\a\vs4\al\co1(-1)).
由(2x0,2y0)在y=g(x)的图象上,即(u,v)在y=g(x)的图象上,
故y=g(x)=2logaeq
\b\lc\(\rc\)(eq
\a\vs4\al\co1(-1)).
已知集合M={x|x<3},N={x|log2x>1},则M∩N等于(  )
A.
B.{x|0<x<3}
C.{x|1<x<3}
D.{x|2<x<3}
答案:D
对于区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意的x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-3a)与f2(x)=loga(a>0,a≠1),给定区间[a+2,a+3].
(1)若f1(x)与f2(x)在给定区间[a+2,a+3]上都有意义,求a的取值范围;
(2)讨论f1(x)与f2(x)在给定区间[a+2,a+3]上是否是接近的.
活动:学生读题,理解题目的含义,教师引导学生,及时提示,严格把握新信息f(x)与g(x)在[m,n]上是接近的定义解题.
解:(1)依题意a>0,a≠1,a+2-3a>0,a+2-a>0,
所以0<a<1.
(2)|f1(x)-f2(x)|=|loga(x2-4ax+3a2)|.
令|f1(x)-f2(x)|≤1,得-1≤loga(x2-4ax+3a2)≤1.①
因为0<a<1,又[a+2,a+3]在x=2a的右侧,
所以g(x)=loga(x2-4ax+3a2)在[a+2,a+3]上为减函数.
从而g(x)max=g(a+2)=loga(4-4a),g(x)min=g(a+3)=loga(9-6a),
于是①成立,当且仅当解此不等式组得0<a≤.
故当0<a≤时,f1(x)与f2(x)在给定区间[a+2,a+3]上是接近的;
当a>且a≠1时,f1(x)与f2(x)在给定区间[a+2,a+3]上是非接近的.
1.互为反函数的概念及其图象间的关系.
2.对数函数图象的平移变换规律.
3.本节课又复习了对数函数的图象与性质,借助对数函数的性质的运用,我们对函数的单调性和奇偶性又进行了复习巩固,利用单调性和奇偶性解决了一些问题,对常考的函数图象的变换进行了学习,要高度重视,在不断学习中总结规律.
4.指数、对数函数图象性质对比.
课本习题2.2B组 1,4,5.
学生已经比较系统地掌握了对数函数的定义、图象和性质,因此本堂课首先组织学生回顾函数的通性,以及有关指数型函数的图象的变化规律以及与指数式有关的复合函数的奇偶性、单调性的讨论方法与步骤,为学生用类比法学习作好方法上的准备.由于本节课是本单元的最后一节,内容比较综合,量也较大,所以应响应高考要求,抓住关键,强化细节,努力使学生掌握与高考相适应的知识与能力,做到与高考接轨.
PAGE
13.2.2 函数模型的应用实例
整体设计
教学目标
知识与技能:(1)通过实例“汽车的行驶规律”,理解一次函数、分段函数的应用,提高学生的读图能力.
(2)通过“马尔萨斯的人口增长模型”,使学生学会指数型函数的应用,了解函数模型在社会生活中的广泛应用.
过程与方法:在实际问题的解决中,发展学生科学地提出问题、分析问题的能力,体会数学与物理、人类社会的关系.
情感、态度与价值观:通过学习,体会数学在社会生活中的应用价值,培养学生的兴趣和探究素养.
重点、难点
教学重点:分段函数和指数型函数的应用.
教学难点:函数模型的体验与建立.
教学过程
导入新课
思路1.(情境导入)
在课本第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们几乎占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛、羊是澳大利亚的主要牲口.这使澳大利亚人头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
与之相应,图中话道出了其中的意蕴:对于一个种群的数量,如果在理想状态(如没有天敌、食物充足等)下,那么它将呈指数增长;但在有限制的环境中,种群数量一般符合对数增长模型.上一节我们学习了不同的函数模型的增长差异,这一节我们将进一步讨论不同函数模型的应用.
思路2.(直接导入)
上一节我们学习了不同的函数模型的增长差异,这一节我们将进一步讨论不同函数模型的应用.
推进新课
提出问题
(1)我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40),试求f(x)和g(x).
(2)A,B两城相距100
km,在两地之间距A城x
km处的D地建一核电站,给A,B两城供电,为保证城市安全.核电站距城市的距离不得少于10
km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.把月供电总费用y表示成x的函数,并求定义域.
(3)分析以上实例属于那种函数模型.
讨论结果:(1)f(x)=5x(15≤x≤40);
g(x)=
(2)y=5x2+(100—x)2(10≤x≤90).
(3)分别属于一次函数模型、分段函数模型、二次函数模型.
例1
一辆汽车在某段路程中的行驶速率与时间的关系如图1所示.
图1
(1)求图1中阴影部分的面积,并说明所求面积的实际含义;
(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2
004
km,试建立行驶这段路程时汽车里程表读数s(km)与时间t(h)的函数解析式,并作出相应的图象.
活动:学生先思考讨论,再回答.教师可根据实际情况,提示引导.
图中横轴表示时间,纵轴表示速度,面积为路程;由于每个时间段速度不同,汽车里程表读数s(km)与时间t(h)的函数为分段函数.
解:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.
阴影部分的面积表示汽车在这5小时内行驶的路程为360
km.
(2)根据图1,有s=
这个函数的图象如图2所示.
图2
变式训练电信局为了满足客户不同需要,设有A,B两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间关系如图3所示(其中MN∥CD).(1)分别求出方案A,B应付话费(元)与通话时间x(分钟)的函数表达式f(x)和g(x);(2)假如你是一位电信局推销人员,你是如何帮助客户选择A,B两种优惠方案的?并说明理由.图3解:(1)两种优惠方案所对应的函数解析式:g(x)=(2)当f(x)=g(x)时,x-10=50,∴x=200.∴当客户通话时间为200分钟时,两种方案均可;当客户通话时间为0≤x<200分钟,g(x)>f(x),故选择方案A;当客户通话时间为x>200分钟时,g(x)<f(x),故选方案B.点评:在解决实际问题过程中,函数图象能够发挥很好的作用,因此,我们应当注意提高读图的能力.另外,本题用到了分段函数,分段函数是刻画实际问题的重要模型.
例2
人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型:y=y0ert,
其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.
下表是1950~1959年我国的人口数据资料:
年份
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
人数/万人
55
196
56
300
57
482
58
796
60
266
61
456
62
828
64
563
65
994
67
207
(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.000
1),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;
(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?
解:(1)设1951~1959年的人口增长率分别为r1,r2,r3,…,r9.
由55
196(1+r1)=56
300,可得1951年的人口增长率为r1≈0.020
0.
同理可得,r2≈0.021
0,r3≈0.022
9,r4≈0.025
0,r5≈0.019
7,r6≈0.022
3,r7≈0.027
6,r8≈0.022
2,r9≈0.018
4.
于是,1951~1959年期间,我国人口的年平均增长率为
r=(r1+r2+…+r9)÷9≈0.022
1.
令y0=55
196,则我国在1950~1959年期间的人口增长模型为y=55
196e0.022
1t,t∈N.
根据表中的数据作出散点图,并作出函数y=55
196e0.022
1t(t∈N)的图象(图4).
图4
由图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.
(2)将y=130
000代入y=55
196e0.022
1t,由计算器可得t≈38.76.
所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力.
变式训练一种放射性元素,最初的质量为500
g,按每年10%衰减.(1)求t年后,这种放射性元素质量ω的表达式;(2)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需的时间叫做半衰期).(精确到0.1.已知lg
2=0.301
0,lg
3=0.477
1)解:(1)最初的质量为500
g.经过1年后,ω=500(1-10%)=500×0.91;经过2年后,ω=500×0.9(1-10%)=500×0.92;由此推知,t年后,ω=500×0.9t.(2)解方程500×0.9t=250,则0.9t=0.5,所以t==≈6.6(年),即这种放射性元素的半衰期约为6.6年.
某电器公司生产A型电脑.1993年这种电脑平均每台的生产成本为5
000元,并以纯利润20%确定出厂价.从1994年开始,公司通过更新设备和加强管理,使生产成本逐年降低.到1997年,尽管A型电脑出厂价仅是1993年出厂价的80%,但却实现了50%纯利润的高效益.
(1)求1997年每台A型电脑的生产成本;
(2)以1993年的生产成本为基数,求1993年至1997年生产成本平均每年降低的百分数.(精确到0.01,以下数据可供参考:=2.236,=2.449)
活动:学生先思考讨论,再回答.教师根据实际情况,提示引导.
出厂价=单位商品的成本+单位商品的利润.
解:(1)设1997年每台电脑的生产成本为x元,依题意,得
x(1+50%)=5
000×(1+20%)×80%,解得x=3
200(元).
(2)设1993年至1997年间每年平均生产成本降低的百分率为y,则依题意,得5
000(1-y)4=3
200,解得y1=1-,y2=1+(舍去).所以y=1-≈0.11=11%,
即1997年每台电脑的生产成本为3
200元,1993年至1997年生产成本平均每年降低约为11%.
点评:函数与方程的应用是本章的重点,请同学们体会它们的关联性.
某家电企业根据市场调查分析,决定调整产品的生产方案:准备每周(按120个工时计算)生产空调、彩电、冰箱共360台,且冰箱至少生产60台.已知生产这些家电产品每台所需工时和每台产值如下表:
家电名称
空调
彩电
冰箱
每台所需工时
每台产值(千元)
4
3
2
问每周应生产空调、彩电、冰箱各多少台,才能使周产值最高?最高产值是多少?(以千元为单位)
解:设每周生产空调、彩电、冰箱分别为x台、y台、z台,每周产值为f千元,
则f=4x+3y+2z,其中
由①②可得y=360-3x,z=2x,代入③得则有30≤x≤120.
故f=4x+3(360-3x)+2·2x=1
080-x,当x=30时,fmax=1
080-30=1
050.
此时y=360-3x=270,z=2x=60.
答:每周应生产空调30台,彩电270台,冰箱60台,才能使每周产值最高,最高产值为1
050千元.
点评:函数、方程、不等式有着密切的关系,它们相互转化组成一个有机的整体.请同学们借助上面的实例细心体会.
本节重点学习了函数模型的实例应用,包括一次函数模型、二次函数模型、分段函数模型等;另外还应关注函数、方程、不等式之间的相互关系.
活动:学生先思考讨论,再回答.教师提示、点拨,及时评价.
引导方法:从基本知识和基本技能两方面来总结.
课本习题3.2A组 5,6.
设计感想
本节设计从有趣的故事开始,让学生从故事中体会函数模型的选择,然后通过几个实例介绍常用函数模型.接着通过最新题型,训练学生由图表转化为函数解析式的能力,从而解决实际问题.本节的每个例题的素材贴近现代生活,都是学生非常感兴趣的问题,很容易引起学生的共鸣.
第2课时
作者:王仁海,瓯海中学教师,本教学设计获浙江省教学设计大赛省一等奖.
整体设计
教学分析
本节课选自《普通高中课程标准实验教科书数学1必修(A版)》第三章的“3.2.2函数模型的应用实例”,即建立拟合函数模型解决实际问题.
函数模型的应用是中学数学的重要内容之一,它主要包含三个方面:利用给定的函数模型解决实际问题,建立确定性函数模型解决问题,建立拟合函数模型解决实际问题.而建立拟合函数模型解决实际问题是其重点,也是难点.函数模型的应用教学,既有不可替代的位置,又有重要的现实意义.
本节通过实例来说明函数模型的应用,是因为函数模型本身就来源于现实,能给学生提供更多从实际问题中发现或建立数学模型的机会,并体会数学在实际问题中的应用价值.因此在中学教学中有重要的地位.
学情分析
学生在学习本节内容之前,已经学习了函数的图象和性质,理解了函数的图象与性质之间的关系,尤其是学习了3.2.1几类不同的函数增长模型和3.2.2函数模型的应用实例.学会了如何利用给定的函数模型解决实际问题,建立确定性函数模型解决问题,已经具备了一定的函数模型应用能力.这为理解建立拟合函数模型解决实际问题提供了基础,也为深入理解如何建立合适的拟合函数模型提供了依据.但学生对于动态数据认识薄弱,对于综合应用函数图象与性质尚不够熟练,这些都给学生选择合适的模型造成一定的困难.因此,在教学时应该为学生创设熟悉的问题情境,充分利用学生熟悉的函数图象来选择合适的模型.引导学生观察、计算、思考和理解问题的本质.
教学目标
知识与技能:了解函数拟合的基本思想,学会建立拟合函数模型解决实际问题.
过程与方法:借助信息技术,利用数据画出函数图象,从拟合简单的一次函数模型入手,掌握多角度观察函数图象的技能,探究出各种合适的拟合函数模型.在建构知识的过程中体会数形结合的思想与从特殊到一般的归纳思想.
情感、态度与价值观:体验探究的乐趣,体验函数是描述变化规律的基本数学模型,培养学生分析解决问题的能力.
重点与难点
重点:将实际问题化为函数模型,建立合适的拟合函数模型解决简单的实际问题.
难点:如何建立适当的函数模型来解决实际问题.
教学过程
设计思想
一、创设应用情境,引出问题
前面我们学习过两种函数模型的应用,分别是利用给定函数模型解决实际问题,建立确定性的函数模型解决问题,那么在既没有给出函数模型又无法建立确定性函数模型的情况下,又该如何解决实际问题呢?
二、组织探究
例1
下表是我校从实施研究性学习以来,高一年级段学生的研究性学习小论文在我市每年一次的评比中获奖的相关数据.
年份
1
2
3
4
5
篇数
14
21
27
35
41
请描点画出获奖篇数随年份变化的图象,并写出一个能基本反映这个变化现象的函数解析式.
设计意图
以学生熟悉的实际问题为背景,激活学生的原有知识,形成学生的“再创造”欲望,让学生在熟悉的环境中发现新知识,使新知识和原知识形成联系,同时也体现了数学的应用价值.
探究:
(1)组织学生读、议,小组讨论该如何分析题目?
①列表
c1
c2
c3
c4
c5
c6
1
14
2
21
3
27
4
35
5
41
②描点
图1
③根据点的分布特征,可以考虑以一次函数y=kx+b(k≠0)作为描绘篇数与年份的变化趋势.取(1,14),(4,35),有解得这样,我们就得到函数模型y=7x+7.
作出此模型函数图象如下:
图2
根据上述图象,我们发现这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映我校获奖篇数与年份的变化趋势.
变式训练我校自实施研究性学习以来,全校三个年级段学生的研究性学习小论文在我市每年一次的评比中第1年、第2年、第3年的获奖篇数分别是52,61,68.为了预测以后每年的获奖篇数,甲同学选择了模型y=ax2+bx+c,乙同学选择了模型y=p·qx+r,其中y为篇数,x为年份.a,b,c,p,q,r都是常数.结果第4年、第5年、第6年的获奖篇数分别为74、78、83,你认为谁选择的模型较好?探究组织学生读、议,小组讨论分析、解决问题.解:(1)列表c1c2c3c4c5c6152261368474578683(2)画散点图图3(3)确定函数模型由前三组数据,用计算器确定函数模型:甲:y1=-x2+12x+41;乙:y2=-52.07×0.778x+92.5.(4)作出函数图象进行比较计算x=6时,y1=77,y2=81.0.图4可见,乙同学选择的模型较好.
设计意图
此变式训练是为进一步巩固例1的拟合函数思想,培养学生的应用数学意识与提高解决问题能力.
例2
我校不同身高的男、女同学的体重平均值如下表:
身高/cm
150
152
154
156
158
160
162
164
166
168
170
172
体重/kg
42.9
44.8
46.5
48.5
50.2
52.3
54.2
56.6
59.1
61.4
63.8
66.2
(1)根据表中提供的数据,能否建立恰当的函数模型,使它能比较近似地反映我校同学体重y
kg与身高x
cm的函数关系?试写出这个函数模型的解析式.
(2)若体重超过相同身高的同学体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,下面请各位同学对照拟合函数模型来测算自己的体重是否正常?
设计意图
本例题以学生熟悉的问题出发再创设情境,引起学生的学习兴趣,再次引发学生构建自身基础上的“再创造”,并通过小组合作学习,培养学生解决问题的能力,应用数学的意识.
问题(1)的探究:
①通过学生自主活动分析数据,发现本题只给出了通过测量得到的数据表,要想由这些数据直接发现函数模型是困难的.
②教师引导学生将表中的数据输入计算器或计算机,画出它们的散点图.教师提问所作散点图与已知的哪个函数图象最接近,从而选择这个函数模型.
图5
由图可发现指数型函数y=a×bx的图象可能与散点图的吻合较好,可选之.
③教师再问:如何确定拟合函数模型中a,b值.
④教师把学生每4人分成一小组合作探究,求出拟合函数模型中a,b的值,然后画出图形,得到的拟合函数效果如何?
⑤教师下去巡视后,请小组中的1名成员上台到实物投影处讲解.
组1:选取(168,61.4),(172,66.2)两组数据,用计算器算出a=2.6,b=1.019.
这样得到函数模型为y=2.6×1.019x,画出这个函数的图象与散点图.
图6
我们发现,函数y=2.6×1.019x不能很好地反映我校学生身高与体重关系.
组2:选取(154,46.5),(168,61.4)两组数据,用计算器算出a=2.2,b=1.02.
这样得出函数模型为y=2.2×1.02x,画出这个函数的图象与散点图.
图7
我们发现,散点图上的点基本上或大多数接近函数y=2.2×1.02x的图象,所以函数y=2.2×1.02x很好地刻画了我校学生身高与体重的关系.
教师引导学生回顾问题的特点及解决问题的过程与方法.本题需要判断选择的函数模型与问题所给数据的吻合程度,当取表中不同的两组数据时,得到的函数解析式可能会不一样,需不断修正.当然本题若运用计算器或计算机的拟合功能,那么获得的函数模型会更精确,下课后同学们自己试一试,并且本例题体现了一个完整的建立函数模型进而解决问题的过程.
在教师引导下,请一学生归纳解决问题的基本过程:
设计意图
引导学生进行反思和总结,并将之一般化,用流程的形式表达出来,培养了学生的反思能力及总结提升的能力.
问题(2)探究:
由于是研究学生自身的体重问题,因而学生的兴趣很高,每人很快都编好了自己的问题,解答起来.如一男生身高175
cm,体重80
kg,他的计算如下:
将x=175代入y=2.2×1.02x,得y=2.2×1.02175≈70.4.
由于80÷70.4≈1.136<1.2.
所以,该男生体重正常.
设计意图
采用师生平等对话交流,学生单独完成的模式.因为本题是测算自己本身体重的问题,所以学生兴趣很高.本题问题难度不大,但意义重大,是培养数学应用意识的重要素材,即用拟合函数来预测自己关心的日常生活问题,学生体验过程方式教学,体现了新课程的理念.
三、练习反馈
教材本节练习1.
学生完成后在小组中互相批改、交流.
设计意图
本环节以个别指导为主,体现面对全体学生的理念,使学生及时巩固所学知识、方法,以达到教学目标.
四、小结反思
以小组中1人总结,3人倾听的方式,对本课内容进行自主小结,教师归纳强调建立拟合函数模型解决实际问题的基本过程.
设计意图
提高学习主动性,培养学生表达、交流的数学能力,自主小结的形式是将课堂还给学生,是对所学内容的回顾与梳理.
五、课外作业
教材习题3.2A组1题,B组1题.
六、课外实践
通过拟合函数模型看温州经济发展.
上网收集1995~2005年温州的国内生产总值、财政收支、对外经济三项数据,建立适当的拟合函数模型,画出拟合函数模型的图象,并通过拟合函数图象来预测温州在2010年的经济发展状况.
设计意图
课外作业为巩固作业,课外实践为拓展作业,培养学生应用数学知识、提高解决问题的能力,培养学生的探究和再创造能力.
教学流程
——实际问题引入,激发学生兴趣.

——画出散点图,建立模型,体会不同函数模型拟合的准确程度.

——由数据画出散点图,建立拟合函数模型,尝试选择不同的函数拟合数据并不断修正.

——师生交流共同小结,归纳建立拟合函数模型应用题的求解方法与步骤.

——强化基本方法及过程,规范基本格式.

——收集生活中的具体实际问题,运用拟合函数思想来解决,培养问题意识及提高应用数学的能力.
知识结构
问题探讨
(1)第三章的3.2.2函数模型的应用实例是否可以设置为3课时,给定的函数模型、建立确定性函数模型、建立拟合函数模型解决实际问题各设置1课时,这样可以让学生感受到函数的广泛应用,真实体验到数学是有用的;体现新课程的问题性,应用性特点;培养学生的问题意识,更加拓展学生数学活动的空间,发展学生“做数学”“用数学”的意识.
(2)在函数模型的应用中,建立拟合函数模型解决实际问题是实际应用最广泛、学生最陌生、也是难度最大的,尤其是如何建立适当的拟合函数模型来解决实际问题.建议在教材中是否可安排更多的建立拟合函数模型解决实际问题的例题,加深学生对如何建立适当拟合函数模型的理解.并在练习中多安排渗透拟合函数思想的思考题.
PAGE
1第二章
基本初等函数(Ⅰ)
本章复习
教学分析
函数是描述客观世界变化规律的重要的数学模型,面对纷繁复杂的变化现象,我们还可以根据变化现象懂得对不同特征进行分类研究.而指数函数、对数函数以及幂函数是研究客观世界变化规律的三类重要且常用的基本初等函数,本章学习了这三类基本初等函数的概念和性质,因此我们对这一些基本知识和三类基本初等函数学完的前提下,综合复习所学知识,进行知识梳理和整合,同时通过进行知识梳理和整合,使学生形成知识网络,强化数学思想和方法的运用,通过复合函数和抽象函数的复习,提高学生的综合能力.
三维目标
1.理解指数与对数,指数函数与对数函数及幂函数的概念和联系,通过提问,提高学生的认知水平,为学生塑造良好的数学认知结构.
2.让学生熟悉,能更加熟练地解决与指数函数、对数函数、幂函数有关的问题,培养学生数形结合的思想观念及抽象思维能力.
3.对复合函数,抽象函数有一个新的认识,培养学生分析、解决问题和交流以及分类讨论的能力.
重点难点
教学重点:指数函数、对数函数及幂函数的图象和性质.
教学难点:灵活运用函数性质解决有关问题.
课时安排
1课时
教学过程
思路1
1计算:
(1);
(2).
活动:学生观察、思考,学生观察式子的特点,特别是指数和真数的特点,教师引导学生考虑题目的思路,对有困难的学生及时提示,组织学生讨论交流,并对学生作及时的评价.
解:(1)原式==eq
\b\lc\(\rc\)(eq
\a\vs4\al\co1(×+52÷))÷0.5=+10=.
(2)

==.
点评:在指数运算中,一定要注意运算顺序和灵活运用乘法公式,注意立方和立方差公式在分数指数幂当中的应用.
变式训练如果已知log5427=a,54b=3,如何用a,b表示log10881 解法一:由54b=3得log543=b.所以log10881====.解法二:由log5427=a,得54a=27,设x=log10881,则108x=81,所以(542×27-1)x=3×27,即(542×54-a)x=54b×54a.所以542x-ax=54a+b,即2x-ax=a+b.因此,得x=.点评:解法一是通过指数化成对数,再由对数的运算性质和换底公式计算结果;解法二是通过对数化成指数,再由指数的运算性质计算出结果,但解法二运算的技巧性较大.
例2
已知a>0,a≠1,x=,求(x+)n的值.
活动:学生思考,观察题目的特点,教师引导学生考虑问题的思路,从整体上看,应先化简,然后再求值,要有预见性,与具有对称性,它们的积是常数1,为我们解题提供了思路,必要时给予提示.
x2-1=-1===.
这时应看到=.
解:将x=代入x2-1,得x2-1=.
所以=,
x+==
所以(x+)n=
点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法.
3若函数f(x)的定义域是,求f(log3x)的定义域.
活动:学生思考,小组讨论,教师引导,学生展示思维过程,教师评价.根据你的学习经历,回顾求一个函数的定义域的方法.已知抽象函数f(x)的定义域,求抽象函数f[g(x)]的定义域,要借助于f(x)的定义域来求,由于函数f(x)的定义域是,所以f(log3x)中的log3x的范围就是,从中解出x,即为f(log3x)的定义域.
解:因为函数f(x)的定义域为,所以f(log3x)中的log3x的范围就是,
即0.5<log3x≤3,即<x≤27.因此函数f(log3x)的定义域为(,27].
点评:求函数的定义域就是求使函数解析式有意义的自变量的取值范围,对复合函数的定义域要严格注意对应法则.
变式训练1.求函数y=的定义域.2.求函数f(x)=的定义域.答案:1.{x|x≠0,且x≠1}.2.{x|x≤0}.
思路2
例1
求函数y=的定义域、值域和单调区间.
活动:学生观察,思考交流,独立解题,教师要求学生展示自己的思维过程.求函数的定义域就是求使函数解析式有意义的自变量的取值范围;函数的值域要根据定义域来求;求函数的单调区间一般用定义法,有时也借助复合函数的单调性.由于自变量处在指数位置上,分母是一个指数式,因此自变量取值无限制;值域转化为二次函数,单调区间用复合函数的单调性确定.
解:函数y=的定义域是全体实数,因为y==2-=2-≥-,所以函数的值域为eq
\b\lc\[\rc\)(eq
\a\vs4\al\co1(-,+∞)).
设u=x,则它在(-∞,+∞)上单调递减,
而二次函数y=u-2-在u≤时是减函数,在u≥时是增函数,
令x≤,则x≥1,令x≥,则x≤1,
所以函数y=在[1,+∞)上是增函数,在(-∞,1]上是减函数.
点评:这里求函数值域的方法是配方法,求单调区间是用复合函数的单调性确定的.
例2
已知函数f(x)=x.
(1)指出函数的奇偶性,并予以证明;
(2)求证:对任何x(x∈R且x≠0),都有f(x)>0.
(1)解:函数f(x)是偶函数,证明如下:因为f(x)的定义域是不为0的实数,关于原点对称,
又f(-x)=-x=x=x=x=f(x),所以f(x)是偶函数.
(2)证明:当x>0时,2x>1,所以f(x)>0.当x<0时,由f(x)为偶函数,有f(x)=f(-x)>0.
所以对一切x∈R,x≠0,恒有f(x)>0.
点评:利用函数的奇偶性常可使解法简化,如本题,当x<0时,证明f(x)>0较繁,若注意到f(x)为偶函数,则只需证明当x>0时,f(x)>0,而这是显然的.
课本本章复习参考题A组 1、3、4、6、8、10.
问题:已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,过A作x轴的垂线,垂足为E,过点B作y轴的垂线,交EA于C,若C恰好在函数y=log2x的图象上,试求A,B,C三点的坐标.
活动:学生先仔细审题,理解题目的含义,然后思考交流,教师适当时候提示指导.
画出函数的图象,设出点的坐标,由图形间的关系建立方程求解.
解:先画出函数的图象如图.
图1
设A(x1,log8x1)、B(x2,log8x2),则C(x1,log8x2).因为C在函数y=log2x的图象上,
所以log8x2=log2x1,即log2x2=log2x1.所以x2=x.又=,即=,
所以x1log8x=xlog8x1.所以3x1log8x1=xlog8x1.由x1>1,所以log8x1≠0.
从而有3x1=x.所以x1=,x2=3.
所以A,B,C三点的坐标分别为A(,log8),B(3,log83),C(,log2).
课本本章复习参考题A组 2,5,7,9.
设计感想
本堂课是对过去学过的一章知识进行复习,目的是构建知识体系,形成知识网络,总结解题的方法规律和思想,以便综合运用这些知识,使学生能够见题想法,见题有法,能够做到一题多解,触类旁通,由于涉及的知识点和方法思想较多,所以设计的题目也较多,要注意解题方法的总结和提炼,希望加快处理速度,提高课堂复习效果,做到以不变应万变,使全体同学在知识和技能上都有较大的提高.
备课资料
【备用习题】
1.函数y=的定义域是(  )
A.(3,+∞)
B.[3,+∞)
C.(4,+∞)
D.[4,+∞)
2.已知函数f(x)=a-,若f(x)为奇函数,则a=__________.
3.函数y=log2的值域是__________.
4.已知函数y=2x的图象与y=f(x)的图象关于直线y=x对称,则f(16)=__________.
5.若函数y=log2的定义域为R,则a的取值范围是__________.
参考答案:
1.D 2. 3.[2,+∞) 4.4 5.<a<
PAGE
1第一章
集合与函数概念
本章复习
教材分析
集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最基本的集合语言去表示有关的数学对象,发展运用数学语言进行交流的能力.
函数的学习促使学生的数学思维方式发生了重大的转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学的核心内容,是高中数学课程的一个基本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识的掌握更牢固一些.函数与不等式、数列、导数、立体几何、解析几何、算法、概率、选修中的很多专题内容有着密切的联系.用函数的思想去理解这些内容,是非常重要的出发点.反过来,通过这些内容的学习,加深了对函数思想的认识.函数的思想方法贯穿于高中数学课程的始终.高中数学课程中,函数有许多下位知识,如必修1第二章的幂、指、对数函数,在必修四将学习三角函数.函数是描述客观世界变化规律的重要数学模型.
学情分析
1.学生的作业与试卷部分缺失,导致易错问题分析不全面.通过布置易错点分析的任务,让学生意识到保留资料的重要性.
2.学生学习基本功较扎实,学习态度较端正,有一定的自主学习能力.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯.
3.在研究例4时,对分类的情况研究的不全面.为了突破这个难点,应用几何画板制作了课件,给学生形象、直观的感知,体会二次函数对称轴与所给的区间的位置关系是解决这类问题的关键.
设计思路
本节课中渗透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,教师没有把梳理好的知识展示给学生,而是让学生自己进行知识的梳理.一方面让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近发展区”发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想、函数与方程思想.在教学过程中通过恰当的应用信息技术,从而突破难点.
教学目标分析
(一)知识与技能
1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算.
A:能从集合间的运算分析出集合的基本关系.
B:对于分类讨论问题,能区分取交还是取并.
2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质.
A:会用定义证明函数的单调性、奇偶性.
B:会分析函数的单调性、奇偶性、对称性的关系.
(二)过程与方法
1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化.
2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质.
(三)情感态度与价值观
在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的信心.在例4的解答过程中,渗透动静结合的思想,让学生养成理性思维的品质.
重难点分析
教学重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题.
教学难点:含参问题的讨论,函数性质之间的关系.
知识梳理
(约10分钟)
问题1:把本章的知识结构用框图形式表示出来.
问题2:一个集合中的元素应当是确定的、互异的、无序的,你能结合具体实例说明集合的这些基本要求吗?
问题3:类比两个数的关系,思考两个集合之间的基本关系.类比两个数的运算,思考两个集合之间的基本运算——交、并、补.
问题4:通过本章学习,你对函数概念有什么新的认识和体会吗?
请结合具体实例分析表示函数的三种方法,每一种方法的特点.
问题5:分析研究函数的方向,它们之间的联系.
在前一次晚自习上,学生相互展示自己的结果,通过相互讨论,每组提供最佳的方案.在自己的原有方案的基础上进行补充与完善.
学生回答问题要点预设如下:
1.集合语言可以简洁准确的表达数学内容.
2.运用集合与对应进一步描述了函数的概念,与初中的函数的定义比较,突出了函数的本质——函数是描述变量之间依赖关系的重要数学模型.
3.函数的表示方法主要有三种,这三种表示方法有各自的适用范围,要根据具体情况选用.
4.研究函数的性质时,一般先从几何直观观察图象入手,然后运用自然语言描述函数的图象特征,最后抽象到用数学符号刻画相应的数量特征,也是数学学习和研究中经常使用的方法.
设计意图:通过布置任务,让学生充分的认识自己在学习的过程中,哪些知识学习的不透彻.让学生更有针对的进行复习,让复习进行的更有效.让学生体会到知识的横向联系与纵向联系.通过类比初中与高中两种函数的定义,让学生体会到两种函数的定义本质是一样的.
易错点分析
(约3分钟)
问题6:集合中的易错问题,函数中的易错问题,主要包括作业、训练、考试中出现的问题.
(任务提前布置,由课代表汇总,并且在教学课件中体现.教师不进行修改,呈现的是原始的)
教师展示学习成果并进行点评.
对于问题6主要由学生讨论分析,并回答,其他学生补充.这个过程尽量由学生来完成,教师可以适当的引导与点评.
设计意图:让学生学会避开命题者制造的陷阱,通过不断的分析,让学生了解问题出现的根源,充分暴露自己的思维,在交流与合作的过程中,改进自己的不足,加深对错误的认识.通过交流了解别人的错误,自己避免出现类似的错误.
考察点分析
(约5分钟)
问题7:分析集合中的考察点,函数中的考察点.
问题8:知识的横纵联系.
学生回答问题要点预设如下:
1.集合中元素的互异性.
2.A B,则集合A可以是空集.
3.交集与并集的区分,即何时取交,何时取并,特别是含参的分类讨论问题.
4.函数的单调性与奇偶性的证明.
5.作业与试卷中出现的问题.
6.学生分析本章的考察点,主要分析考察的知识点、思想方法等方面.
设计意图:让学生了解考察点,才能知道命题者的考察意图,才能选择合适的知识与思想方法来解答.例如如果试题中出现集合,无论试题以什么形式出现,考察点基本是集合间的基本关系、集合的运算.
典型问题分析
1设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},
(1)若B A,求实数a的值;
(2)若A∩B=B,求实数a的值;
(3)若A∪B=B,求实数a的值.
教师点评,同时板书.
答案:(1)a≤-1或a=1;(2)a=1或a≤-1;(3)a=1.
由学生分析问题的考察点,包括知识与数学思想.(预设有以下几个方面)从知识点来分析,这是集合问题.考察点主要为集合的表示方法、集合中元素的特性、集合间的基本关系、集合的运算等.学生在解第(1)问时,可能漏掉特殊情况.第(2)、(3)问可能会遇到一定的障碍,可以给学生时间进行充分的思考.
设计意图:让学生体会到分析考察点的好处,养成解题之前分析考察点的习惯,能顺利的找到问题的突破口,为后续的解答扫清障碍.通过一题多问、一题多解、多题归一,让学生主动地形成发散思维,主动应用转化与化归的思想.
2已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),求函数f(x)的解析式.
变式:若函数f(x)是偶函数,试求函数f(x)的解析式.
教师对学生回答进行点评,并板书.
答案:f(x)=
学生分析考察点、解题思路,如果不完善,其他学生补充.
学生回答问题要点预设如下:
1.考察点为函数的奇偶性与函数图象的关系.
2.函数的奇偶性的定义.
3.转化与化归的思想.
法一:本题即求x<0时函数的解析式,可先利用函数的奇偶性绘制函数的图象,把本题转化为二次函数的图象与解析式的问题.
法二:本法更具有一般性,已知x≥0时,函数的解析式,要分析x<0时的函数对应关系,即当一个数小于零时,函数值应当怎样计算.由于函数具有奇偶性,即一个数与它的相反数的函数值之间有关系,-x>0,所以可以研究-x的函数值.
设计意图:学生在思考的过程中,体会数形结合思想.函数的奇偶性与函数的图象的关系,可以根据奇偶性绘制函数图象,也可以通过函数的图象分析函数的奇偶性,两者是相辅相承的.体会转化与化归的思想,把要研究的转化为已知的.考察函数的单调性的证明,函数的奇偶性与单调性之间的关系,体会知识的纵向联系.体会转化与化归的思想、特殊与一般的数学思想,让学生体会到问题后面隐含的本质.
3已知f(x)是偶函数,而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.
变式1:若函数f(x)为奇函数,判断f(x)在(-∞,0)上的单调性.
变式2:你能分析奇函数(偶函数)在对称区间上的单调性的关系吗?试从数形两个方面来分析.
学生分析考察点、解题思路,如果不完善,其他学生补充.
学生回答问题要点预设如下:
1.考察点为函数的奇偶性与单调性的关系.
2.函数的单调性的定义.
3.数形结合、转化与化归的思想.
法一:通过函数的图象分析.
法二:把要研究的范围转化为已知的范围.
设计意图:明确函数的性质是一个有机的整体,不是一个个知识点的简单罗列.同时体会知识的纵向联系与横向联系,在第二个方法中进一步感受转化与化归的思想.通过两个变式的研究过程,学生体会研究探索性问题的一般思路,即通过特殊情况分析结果,再对结果的正确性进行证明.
4求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.
变式:f(x)=ax2+(2a-1)x-3在区间上的最大值是1,求a的值.
教师用几何画板演示,二次函数对称轴的变化对函数的最值的影响.
答案:a<0时,最大值是3-4a,最小值是-1;0≤a<1时,最大值是3-4a,最小值是-1-a2;1≤a≤2时,最大值是-1,最小值是-1-a2;a>2时,最大值是-1,最小值是3-4a.
学生通过直观的演示,思考问题的考察点与解答策略.
学生回答考察点分析(预设):
1.二次函数的图象与性质.
2.分类与整合.
3.逆向思维.
学生回答解题思路分析(预设):
研究二次函数的对称轴方程与所给的区间的关系.
设计意图:通过几何画板的动态性,给学生直观的感知,从而建立最近发展区,进而突破难点.
通过对二次函数的研究,学生巩固了上位知识函数的图象与性质,充分体会数形结合的优势.学生在解答变式的过程中,体会逆向思维与正向思维的关系,体会函数与方程思想,感受到动静结合.
课后小结
1.知识网络
2.知识的来龙去脉
3.问题中体现的数学思想
4.分析问题的基本思路
学生总结,教师板书.
设计意图:让学生把知识穿串,形成网络,能迅速而准确的选用知识来解答问题.
课后总结
巩固所学,补充课上的不足.主要是本节课中没有涉及的问题,本节课中理解有困难的问题.
1.已知f(x)是定义在R上的函数,设g(x)=,h(x)=.
(1)试判断g(x)与h(x)的奇偶性;(2)试判断g(x),h(x)与f(x)的关系;
(3)由此你猜想得出什么样的结论,并说明理由?
2.设函数f(x)=x2+|x-2|+1,x∈R,
(1)讨论f(x)的奇偶性;(2)求f(x)的最小值.
3.已知集合A={x|x2-mx+m2-19=0},B={y|y-5y+6=0},C={z|z2+2z-8=0},是否存在实数m,同时满足A∩B≠,A∩C=.
4.将长度为20
cm的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为多少?
教学反思
在复习课中,教师要充分调动学生学习的自主性,让学生独立制定出适合自己的知识结构、整理出自己在本章学习中出现的问题.在课堂上,学生通过交流与合作,体会解决问题成功的喜悦.从而养成良好的学习习惯、树立信心.感受知识的横向联系与纵向联系,洞悉知识的本质、问题的根源,从而形成深刻的印象,少出现或避免出现类似的问题.通过分析知识的来龙去脉,明确知识的用途.通过典型题分析,回顾主干知识,重要的数学思想,感受知识与数学思想的有机融合.
知识点总结——函数概念及性质
1.函数的概念:设A,B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|
x∈A
}叫做函数的值域.
如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.
能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:分式的分母不等于零;
偶次方根的被开方数不小于零;对数式的真数必须大于零;如果函数是由一些基本函数通过四则运算结合而成的,那么它的定义域是使各部分都有意义的x的值组成的集合;实际问题中的函数的定义域还要保证实际问题有意义.求出不等式组的解集即为函数的定义域.
2.构成函数的三要素:定义域、对应关系和值域.
构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数);两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备).
函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域;应熟悉掌握一次函数、二次函数,它是求解复杂函数值域的基础;求函数值域的常用方法有:直接法、换元法、配方法、判别式法、单调性法等.
3.函数图象知识归纳
定义:在平面直角坐标系中,以函数
y=f(x)(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x)(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上,即记为C={P(x,y)|y=f(x),x∈A}.图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行于y轴的直线最多只有一个交点的若干条曲线或离散点组成.
画法:(1)描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连结起来.
(2)图象变换法:常用变换方法有三种,即平移变换、伸缩变换和对称变换.
作用:直观地看出函数的性质;利用数形结合的方法分析解题的思路;提高解题的速度;发现解题中的错误.
4.区间的概念
区间的分类:开区间、闭区间、半开半闭区间;无穷区间;区间的数轴表示.
5.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,记作“f:A→B”.给定一个集合A到B的映射,如果a∈A,b∈B,且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象.
说明:函数是一种特殊的映射,映射是一种特殊的对应,(1)集合A,B及对应法则f是确定的;(2)对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;(3)对于映射f:A→B来说,则应满足:①集合A中的每一个元素,在集合B中都有象,并且象是唯一的;②集合A中不同的元素,在集合B中对应的象可以是同一个;③不要求集合B中的每一个元素在集合A中都有原象.
6.函数的表示法
函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.解析法便于算出函数值;列表法便于查出函数值;图象法便于量出函数值.
分段函数:在定义域的不同部分上有不同的解析表达式的函数,在不同的范围里求函数值时必须把自变量代入相应的表达式.分段函数的解析式不能写成几个不同的方程,而应写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.分段函数是一个函数,不要把它误认为是几个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
复合函数:如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f,g的复合函数.
7.函数的单调性
增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;必须是对于区间D内的任意两个自变量x1、x2;当x1<x2时,总有f(x1)<f(x2).
图象的特点:如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
函数单调区间与单调性的判定方法:定义法,任取x1、x2∈D,且x1<x2;作差f(x1)-f(x2);变形(通常是因式分解和配方);定号〔即判断差f(x1)-f(x2)的正负〕;下结论〔指出函数f(x)在给定的区间D上的单调性〕.图象法(从图象上看升降);复合函数的单调性,复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:
函数
单调性
u=g(x)




y=f(u)




y=f[g(x)]




注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间合在一起写成其并集.
8.函数的奇偶性
偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)就叫做奇函数.
注意:函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数.由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
总结:利用定义判断函数奇偶性的格式步骤:首先确定函数的定义域,并判断其定义域是否关于原点对称;确定f(-x)与f(x)的关系;作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称再根据定义判定:有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或=±1来判定:利用定理,或借助函数的图象判定.
9.函数的解析表达式
函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x).
10.函数最大(小)值方法
利用二次函数的性质(配方法);利用图象;利用函数单调性;如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b).
PAGE
12.2.1 对数与对数运算
教学内容分析
本节课是新课标高中数学A版必修1中第二章对数函数内容的第1课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起着十分重要的作用.通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数做好准备.同时,通过对对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.
学生学习情况分析
现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索、发现、研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.
设计思想
学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动,本节课可利用多媒体辅助教学,引导学生从实例中认识对数模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动、学生讨论的方式来加深理解,更好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.
教学目标
1.理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能.
2.通过实例使学生认识对数模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化.
3.通过学生分组进行探究活动,掌握对数的重要性质.通过做练习,使学生感受到理论与实践的统一.
4.培养学生的类比、分析、归纳能力,培养学生严谨的思维品质以及在学习过程中培养学生的探究意识.
重点难点
重点:(1)对数的概念;(2)对数式与指数式的相互转化.
难点:(1)对数概念的理解;(2)对数性质的理解.
教学环节
教学程序及设计
设计意图
创设情境,引入新课
引例(3分钟)1.一尺之锤,日取其半,万世不竭.(1)取5次,还有多长?(2)取多少次,还有0.125尺?分析:(1)为同学们熟悉的指数函数模型,易得5=,(2)可设取x次,则有x=0.125,抽象出:x=0.125 x=?2.2002年我国GDP为a亿元,如果每年平均增长8%,那么经过多少年GDP是2002年的2倍?分析:设经过x年,则有(1+8%)x=2,抽象出:(1+8%)x=2 x=?
让学生根据题意,设未知数,列出方程.这两个例子都出现指数是未知数x的情况,让学生思考如何表示x,激发其对对数的学习兴趣,培养学生的探究意识.生活及科研中还有很多这样的例子,因此引入对数是必要的.
讲授新课
一、对数的概念(3分钟)一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.注意:(1)底数的限制:a>0且a≠1;(2)对数的书写格式.
正确理解对数定义中底数的限制,为以后对数函数定义域的确定做准备.同时注意对数的书写格式,避免因书写不规范而产生的错误.
二、对数式与指数式的互化:(5分钟)幂底数←a→对数底数指数←b→对数幂←N→真数思考:(1)为什么对数的定义中要求底数a>0且a≠1 (2)是否是所有的实数都有对数呢?负数和零没有对数
让学生了解对数与指数的关系,明确对数式与指数式形式的区别,a,b和N位置的不同,及它们的含义.互化体现了等价转化这个重要的数学思想.
三、两个重要对数(2分钟)(1)常用对数:以10为底的对数log10N,简记为lg
N;(2)自然对数:以无理数e=2.718
28…为底的对数logeN,简记为lnN.(在科学技术中,常常使用以e为底的对数)注意:两个重要对数的书写
这两个重要对数一定要掌握,为以后的解题以及换底公式作准备.
课堂练习(7分钟)1.将下列指数式写成对数式:(1)24=16;(2)3-3=;(3)5a=20;(4)b=0.45.2.将下列对数式写成指数式:(1)log5125=3;(2)=-2;(3)log10a=-1.069.3.求下列各式的值:(1)log264;(2)log927.
本练习让学生独立阅读课本例1和例2后思考完成,从而熟悉对数式与指数式的相互转化,加深对对数概念的理解.并要求学生指出对数式与指数式互化时应注意哪些问题,培养学生严谨的思维品质.
四、对数的性质(12分钟)探究活动1求下列各式的值:(1)log31=0;(2)lg
1=0;(3)log0.51=0;(4)ln1=0.思考:你发现了什么?“1”的对数等于零,即loga1=0(a>0且a≠1),类比:a0=1(a>0且a≠1).
探究活动由学生独立完成后,通过思考,然后分小组进行讨论,最后得出结论.通过练习与讨论的方式,让学生自己得出结论,从而能更好地理解和掌握对数的性质.培养学生类比、分析、归纳的能力.
探究活动2求下列各式的值:(1)log33=1;(2)lg
10=1;(3)log0.50.5=1;(4)lne=1.思考:你发现了什么?底数的对数等于“1”,即logaa=1(a>0且a≠1),类比:a1=a(a>0且a≠1).
探究活动3求下列各式的值:(1)=3;(2)=0.6;(3)=89.思考:你发现了什么?对数恒等式:=N(a>0且a≠1).
探究活动4求下列各式的值:(1)log334=4;(2)log0.90.95=5;(3)lne8=8.思考:你发现了什么?对数恒等式:logaan=n(a>0且a≠1).
讲授新课
小结
负数和零没有对数;“1”的对数等于零,即loga1=0;底数的对数等于“1”,即logaa=1;对数恒等式:=N;对数恒等式:logaan=n.(a>0且a≠1)
将学生归纳的结论进行小结,从而得到对数的基本性质.
归纳小结,强化思想
(3分钟)1.引入对数的必要性——对数的概念一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN.2.指数与对数的关系3.对数的基本性质负数和零没有对数;loga1=0;logaa=1;对数恒等式:=N;logaan=n.
总结是一堂课内容的概括,有利于学生系统地掌握所学内容.同时,将本节内容纳入已有的知识体系中,发挥承上启下的作用.为下一课时对数的运算打下扎实的基础.
作业布置
一、课本习题2.2A组第1,2题.二、已知loga2=x,loga3=y,求a3x+2y的值.三、求下列各式的值:;;;.
作业是学生信息的反馈,教师可以在作业中发现学生在学习中存在的问题,弥补教学中的不足.
板书设计
2.2.1 对数与对数运算第1课时
引例1引例2一、对数的定义
二、对数式与指数式的互化练习
三、对数的基本性质四、小结五、作业布置
本教学设计先由引例出发,创设情境,激发学生对对数的学习兴趣;在讲授新课部分,通过结合多媒体教学以及一系列的课堂探究活动,加深学生对对数的认识;最后通过课堂练习来巩固学生对对数的掌握.
第2课时
教学目标
1.知识与技能
(1)通过实例推导对数的运算性质,准确地运用对数的运算性质进行运算、求值、化简,并掌握化简求值的技能.
(2)运用对数的运算性质解决有关问题.
(3)培养学生分析、解决问题的能力.
培养学生的数学应用意识和科学分析问题的精神和态度.
2.过程与方法
(1)让学生经历并推导出对数的运算性质.
(2)让学生归纳整理本节所学的知识.
3.情感态度与价值观
让学生感觉对数运算性质的重要性,增加学生的成功感,增强学习的积极性.
重点难点
重点:对数运算的性质与对数知识的应用.
难点:正确使用对数的运算性质.
导入新课
思路1.上节课我们学习了以下内容:
1.对数的定义.
2.指数式与对数式的互化.
ab=N logaN=b.
3.重要性质:
(1)负数与零没有对数;(2)loga1=0,logaa=1;(3)对数恒等式=N.
下面我们接着讲对数的运算性质〔教师板书课题:对数与对数运算(2)〕.
思路2.我们在学习指数的时候,知道指数有相应的运算法则,即指数运算法则:
am·an=am+n;am÷an=am-n;(am)n=amn;=.(a>0且a≠1)
从上节课我们还知道指数与对数都是一种运算,而且它们互为逆运算,对数是否也有和指数相类似的运算法则呢?答案是肯定的,这就是本堂课的主要内容,点出课题:对数与对数运算(2).
推进新课
(1)在上节课中,我们知道,对数运算可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算的性质,得出相应的对数运算的性质吗?
(2)如我们知道am=M,an=N,am·an=am+n,那m+n如何表示,能用对数式运算吗?
(3)在上述(2)的条件下,类比指数运算性质能得出其他对数运算性质吗?
(4)你能否用最简练的语言描述上述结论?如果能,请描述.
(5)上述运算性质中的字母的取值有什么限制吗?
(6)上述结论能否推广呢?
(7)学习这些性质能对我们进行对数运算带来哪些方便呢?
讨论结果:(1)通过问题(2)来说明.
(2)若am·an=am+n,M=am,N=an,于是MN=am+n,由对数的定义得到M=am m=logaM,N=an n=logaN,MN=am+n m+n=logaMN,logaMN=logaM+logaN.
因此m+n可以用对数式表示.
(3)令M=am,N=an,则=am÷an=am-n,所以m-n=loga.
又由M=am,N=an,所以m=logaM,n=logaN.
所以logaM-logaN=m-n=loga,即loga=logaM-logaN.
设M=am,则Mn=(am)n=amn.由对数的定义,
所以logaM=m,logaMn=mn.所以logaMn=mn=nlogaM,即logaMn=nlogaM.
这样我们得到对数的三个运算性质:
如果a>0,a≠1,M>0,N>0,则有
loga(MN)=logaM+logaN;①
loga=logaM-logaN;②
logaMn=nlogaM(n∈R).③
(4)以上三个性质可以归纳为:
性质①:两数积的对数,等于各数的对数的和;
性质②:两数商的对数,等于被除数的对数减去除数的对数;
性质③:幂的对数等于幂指数乘以底数的对数.
(5)利用对数运算性质进行运算,所以要求a>0,a≠1,M>0,N>0.
(6)性质①可以推广到n个数的情形:
即loga(M1M2M3…Mn)=logaM1+logaM2+logaM3+…+logaMn(其中a>0,a≠1,M1,M2,M3,…,Mn均大于0).
(7)纵观这三个性质我们知道,
性质①的等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算.
性质②的等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算.
性质③从左往右仍然是降级运算.
利用对数的性质①②可以使两正数的积、商的对数转化为两正数的各自的对数的和、差运算,方便了对数式的化简和求值.
例1
用logax,logay,logaz表示下列各式:
(1)loga;(2)loga.
活动:学生思考观察,教师巡视,检查学生解题情况,发现问题及时纠正.
利用对数的运算性质,把整体分解成部分.
对(1)loga,可先利用性质②,转化为两数对数的差,再利用性质①,把积的对数转化为两数对数的和.
对(2)loga,可先利用性质②,转化为两数对数的差,再利用性质①,把积的对数转化为两数对数的和,最后利用性质③,转化为幂指数与底数的对数的积.
解:(1)loga=loga(xy)-logaz=logax+logay-logaz;
(2)loga=loga(x2)-loga
=logax2+loga-loga=2logax+logay-logaz.
点评:对数的运算性质实质上是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.
变式训练1.若a>0,a≠1,x>0,y>0,x>y,下列式子正确的个数为(  )①logax·logay=loga(x+y);②logax-logay=loga(x-y);③loga=logax÷logay;④loga(xy)=logax·logay.A.0
B.1
C.2
D.3答案:A2.若a>0,a≠1,x>y>0,n∈N
,下列式子正确的个数为(  )①(logax)n=nlogax;②(logax)n=logaxn;③logax=-loga;④=loga;⑤=logax;⑥logax=loga;⑦logaxn=nlogax;⑧loga=-loga.A.3
B.4
C.5
D.6答案:B
例2
求值:(1);(2)log3.
解:(1)解法一:设,则()x=3=()3,所以x=3.
解法二:.
(2)解法一:令x=log3,则3x=,即3x=3-3,所以x=-3.
解法二:log3=log33-3=-3.
例3
计算:
(1)lg
14-2lg
+lg
7-lg
18;(2);(3).
解:(1)解法一:lg
14-2lg+lg
7-lg
18=lg(2×7)-2(lg
7-lg
3)+lg
7-lg(32×2)=lg
2+lg
7-2lg
7+2lg
3+lg
7-2lg
3-lg
2=0.
解法二:lg
14-2lg+lg
7-lg
18=lg
14-lg2+lg
7-lg
18=lg=lg
1=0.
(2)===.
(3)===.
点评:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系;(2)题要避免错用对数的运算性质.对数运算性质的灵活运用、运算性质的逆用常被学生所忽视.
例4
设x=log23,求的值.
活动:学生思考观察,教师引导,学生有困难及时提示并评价学生的思考过程.本题主要考查对数的定义及其运算性质.先利用对数的定义求2x,再求23x,从而可求,或先化简再代入求值.
解法一:由x=log23,得2x=3,2-x=,所以==32+3×+2=.
解法二:由x=log23,得2x=3,2-x=,所以==22x+1+2-2x=32+1+2=.
课本本节练习第1,2,3题.
【补充练习】
1.用logax,logay,logaz,loga(x+y),loga(x-y)表示下列各式:
(1)loga;(2)logaeq
\b\lc\(\rc\)();(3);(4)loga;
(5)logaeq
\b\lc\(\rc\)(eq
\a\vs4\al\co1(·y));(6)loga3.
解:(1)loga=loga-logay2z=logax-(2logay+logaz)=logax-2logay-logaz;
(2)logaeq
\b\lc\(\rc\)()=logax+loga=logax+(logaz3-logay2)
=logax-logay+logaz=logax-logay+logaz;
(3)=logax++=logax+logay-logaz;
(4)loga=logaxy-loga(x2-y2)=logax+logay-loga(x+y)(x-y)
=logax+logay-loga(x+y)-loga(x-y);
(5)logaeq
\b\lc\(\rc\)(eq
\a\vs4\al\co1(·y))=loga+logay=loga(x+y)-loga(x-y)+logay;
(6)loga3=3[logay-logax-loga(x-y)]=3logay-3logax-3loga(x-y).
2.已知f(x6)=log2x,则f(8)等于(  )
A.
B.8
C.18
D.
解析:因为f(x6)=log2x,x>0,令x6=8,得,所以f(8)==.
另解:因为f(x6)=log2x=log2x6,所以f(x)=log2x.
所以f(8)=log28=log223=.
答案:D
已知x,y,z>0,且lg
x+lg
y+lg
z=0,求的值.
活动:学生讨论、交流、思考,教师可以引导.大胆设想,运用对数的运算性质.由于所求的式子是三项积的形式,每一项都有指数,指数中又有对数,因此想到用对数的运算性质,如果能对所求式子取对数,那可能会好解决些,故想到用参数法,设所求式子的值为t.
解:令,则lg
t=lg
x+lg
y+lg
z=+++++=++=++=-3,所以t=10-3=即为所求.
1.对数的运算性质.
2.对数的运算性质的综合应用,特别是性质的逆向使用.
3.对数与指数形式比较:
式子
ab=N
logaN=b
名称
a——幂的底数b——幂的指数N——幂值
a——对数的底数b——以a为底的N的对数N——真数
运算性质
am·an=am+n;am÷an=am-n;(am)n=amn;(a>0,a≠1,m,n∈R)
loga(MN)=logaM+logaN;loga=logaM-logaN;logaMn=nlogaM(n∈R);(a>0,a≠1,M>0,N>0)
课本习题2.2A组 3,4,5.
在前面研究了对数概念的基础上,为了运算的方便,本节课我们借助指数的运算性质,推出了对数的运算性质,引导学生自己完成推导过程,加深对公式的理解和记忆,对运算性质的认识类比指数的运算性质来理解记忆,强化性质的使用条件,注意对数式中每一个字母的取值范围,由于它是以后学习对数函数的基础,所以安排教学时,要反复练习,加大练习的量,多结合信息化的教学手段,顺利完成本堂课的任务.
第3课时
作者:刘菲
教学目标
1.知识与技能
推导对数的换底公式,培养学生分析、解决问题的能力,培养学生的数学应用意识和科学分析问题的精神和态度.
2.过程与方法
让学生经历推导对数的换底公式的过程,归纳整理本节所学知识.
3.情感态度与价值观
通过对数的运算性质、对数换底公式的学习,培养学生的探究意识,培养学生的严谨的思维品质;感受对数的广泛应用.
重点难点
重点:对数的运算性质、换底公式及其应用.
难点:正确使用对数的运算性质和换底公式.
导入新课
思路1.问题:你能根据对数的定义推导出下面的换底公式吗?a>0,且a≠1,c>0,且c≠1,b>0,logab=.教师直接点出课题:对数与对数运算(3)——对数的换底公式及其应用.
思路2.前两节课我们学习了以下内容:1.对数的定义及性质;2.对数恒等式;3.对数的运算性质,用对数的运算性质我们能就同底数的对数进行运算,那么不同底数的对数集中在一起,如何解决呢?这就是本堂课的主要内容.教师板书课题:对数与对数运算(3)——对数的换底公式及其应用.
思路3.从对数的定义可以知道,任意不等于1的正数都可作为对数的底,数学史上,人们经过大量的努力,制作了常用对数表和自然对数表,只要通过查表就能求出任意正数的常用对数或自然对数,这样,如果能将其他底的对数转换为以10为底或以e为底的对数就能方便地求出任意不等于1的正数为底的对数,那么,怎么转化呢?这就需要一个公式,即对数的换底公式,从而引出课题:对数与对数运算(3)——对数的换底公式及其应用.
推进新课
(1)已知lg
2=0.301
0,lg
3=0.477
1,求log23的值;
(2)根据(1),如a>0,a≠1,你能用含a的对数式来表示log23吗?
(3)更一般地,我们有logab=,如何证明?
(4)证明logab=的依据是什么?
(5)你能用自己的话概括出换底公式吗?
(6)换底公式的意义是什么?有什么作用?
活动:学生针对提出的问题,交流讨论,回顾所学,力求转化,教师适时指导,必要时提示学生解题的思路,给学生创造一个互动的学习环境,培养学生的创造性思维能力.对(1)目前还没有学习对数的换底公式,它们又不是同底,因此可考虑对数的定义,转化成方程来解;对(2)参考(1)的思路和结果的形式,借助对数的定义可以表示;对(3)借助(1)(2)的思路,利用对数的定义来证明;对(4)根据证明的过程来说明;对(5)抓住问题的实质,用准确的语言描述出来,一般是按照从左到右的形式;对(6)换底公式的意义就在于对数的底数变了,与我们的要求接近了.
讨论结果:(1)因为lg
2=0.301
0,lg
3=0.477
1,根据对数的定义,所以100.301
0=2,100.477
1=3.
不妨设log23=x,则2x=3,所以(100.301
0)x=100.477
1,100.301
0×x=100.477
1,
即0.301
0x=0.477
1,x==.因此log23==≈1.585
0.
(2)根据(1)我们看到,最后的结果是log23用lg
2与lg
3表示,是通过对数的定义转化的,这就给我们以启发,本来是以2为底的对数转换成了以10为底的对数,
不妨设log23=x,由对数定义知道,2x=3,
两边都取以a为底的对数,得loga2x=loga3,xloga2=loga3,x=,
也就是log23=.
这样log23就表示成了以a为底的3的对数与以a为底的2的对数的商.
(3)证明logab=.
证明:设logab=x,由对数定义知道,ax=b;
两边取以c为底的对数,得logcax=logcb xlogca=logcb;
所以x=,即logab=.
一般地,logab=(a>0,a≠1,c>0,c≠1,b>0)称为对数的换底公式.
(4)由(3)的证明过程来看,换底公式的证明要紧扣对数的定义,证明的依据是:若M>0,N>0,M=N,则logaM=logaN.
(5)一个数的对数,等于同一底数的真数的对数与底数的对数的商,这样就把一个对数变成了与原来对数的底数不同的两个对数的商.
(6)换底公式的意义就在于把对数式的底数改变,把不同底问题转化为同底问题,为使用运算性质创造条件,更方便化简求值.
说明:我们使用的计算器中,“log”通常是常用对数,因此要使用计算器计算对数,一定要先用换底公式转化为常用对数.如log23=,
即计算log23的值的按键顺序为:“log”→“3”→“÷”→“log”→“2”→“=”.
再如:在前面要求我国人口达到18亿的年份,就是要计算x=log1.01,
所以x=log1.01==≈=32.883
7≈33(年).
可以看到运用对数换底公式,有时要方便得多.
例1
求log89·log2732的值.
活动:学生观察题目,思考讨论,互相交流,教师适时提示,学生板演,利用换底公式统一底数;根据题目的特点,底数不同,所以考虑把底数统一起来,可以化成常用对数或以2为底的对数,以3为底的对数也可.
解法一:log89·log2732=·=·=.
解法二:log89·log2732=·=·=.
解法三:log89·log2732=·=·=.
点评:灵活运用对数的换底公式是解决问题的关键.
例2
计算:(1);(2)log43·log92-.
活动:学生积极交流,教师引导,学生展示自己的思维过程,教师对学生的表现及时评价.先利用对数运算性质和换底公式进行化简,然后再求值;对(1)根据题目的特点,底数不同,所以考虑把底数统一起来,再利用对数的运算性质化简.对(2)利用换底公式把底数统一起来,再化简求值.
解:(1)原式===-3.
(2)log43·log92-=·-=log23·log32+log22
=+=.
点评:在利用对数的换底公式进行化简求值时,一般情况是根据题中所给的对数式的具体特点选择恰当的底数进行换底,如果题目中所给的真数和底数互不相同,我们常选择以10为底的对数进行换底.
例3
(1)证明=1+logab;
(2)已知==…==λ,求证:.
活动:学生思考、讨论,教师适当提示:(1)运用对数换底公式,统一成以a为底的对数可直接得解,或利用对数的定义,分别把三个式子设出,再由定义转化成指数形式,利用指数幂的性质得解;(2)这是条件证明问题,应在现有条件下利用换底公式,转化成积的形式,从题目的结论来看,真数是积的形式,因此要创造对数的和的形式,这就想到先换底,再利用等比性质来解.
(1)证法一:设logax=p,logabx=q,logab=r,则x=ap,x=(ab)q=aqbq,b=ar.
所以ap=(ab)q=aq(1+r),从而p=q(1+r).
因为q≠0,所以=1+r,即=1+logab.
证法二:显然x>0且x≠1,x可作为底数,左边===logaab=1+logab=右边.
(2)证明:因为loga1b1=loga2b2=…=loganbn=λ,所以由换底公式得==…==λ.由等比定理,所以=λ.所以=λ.
所以==λ.
点评:在解题过程中,根据题目的需要,把底数转化,换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简.
例4
20世纪30年代,里克特(C.F.Richter)制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M,其计算公式为M=lg
A-lg
A0,其中,A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).
(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);
(2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1)
活动:学生审题,教师引导,学生交流,展示自己的思维过程,教师强调实际问题的注意事项.根据题目给出的数学模型及其含义来解决.这是实际问题,但题目给出了数学模型即关系式,关系式是以常用对数的形式给出,因此要利用对数的定义和运算性质,同时注意要使实际问题有意义.
解:(1)M=lg
20-lg
0.001=lg=lg
20
000=lg
2+lg
104≈4.3.
因此,这是一次约为里氏4.3级的地震.
(2)由M=lg
A-lg
A0可得M=lg,即=10M,所以A=A0·10M.
当M=7.6时,地震的最大振幅为A1=A0·107.6;
当M=5时,地震的最大振幅为A2=A0·105.
所以,两次地震的最大振幅之比是==107.6-5=102.6≈398.
答:7.6级地震的最大振幅大约是5级地震的最大振幅的398倍.
点评:利用所学知识解决实际问题,是教学的一个难点.
课本本节练习4.
【补充练习】
(1)已知lg
2=a,lg
3=b,则等于(  )
A.
B.
C.
D.
(2)已知2lg(x-2y)=lg
x+lg
y,则的值为(  )
A.1
B.4
C.1或4
D.4或-1
(3)若3a=2,则log38-2log36=__________.
(4)lg
12.5-lg+lg
0.5=__________.
答案:(1)C (2)B (3)a-2 (4)1
探究换底公式的其他证明方法:
活动:学生讨论、交流、思考,教师可以引导,大胆设想,运用对数的定义及运算性质和指数幂的运算性质.
证法一:设logaN=x,则ax=N,两边取以c(c>0且c≠1)为底的对数,得logcax=logcN,所以xlogca=logcN,即x=.故logaN=.
证法二:由对数恒等式,得,两边取以c(c>0且c≠1)为底的对数,得logcN=logaN·logca,所以logaN=.
证法三:令logca=m,logaN=n,则a=cm,N=an,所以N=(cm)n=cmn.
两边取以c(c>0且c≠1)为底的对数,得mn=logcN,所以n=,即logaN=.
对数换底公式的应用:换底公式logaN=(c>0且c≠1,a>0且a≠1,N>0)的应用包括两个方面,即由左端到右端的应用和由右端到左端的应用,前者较为容易,而后者则易被学生忽视,因此,教学时应重视后者的用法,下面仅就后者举例说明:
例:化简:+++.
解:原式=logNM+logNM+logNM+logNM=4logNM.
1.对数换底公式;
2.换底公式可用于对数式的化简、求值或证明.若对数式的底数和真数可转化成同底数的幂的形式,则该幂底数可被选作换底公式的底数,也可把对数式转化成以10为底的常用对数或以任意数a(a>0且a≠1)为底的对数式的形式.
课本习题2.2A组 6,11,12.
【补充作业】
1.已知,,求log81175的值.
解:因为=log277=log37=a,所以log37=3a.
又因为=log35=b,
所以log81175=log3(25×7)=(log325+log37)=(2log35+log37)=.
2.求证:(log23+log49+log827+…+)log9=.
证明:左边=(log23+log49+log827+…+log2n3n)log9
=()·log932
=nlog23·log3=log23·log32==右边.
本堂课主要是学习对数的换底公式,它在以后的学习中有着非常重要的应用,由于对数的运算性质是在同底的基础上,因此利用对数换底公式把不同底数的对数转化为同底显得非常重要,有时也可以逆用对数的换底公式达到我们的目的,特别是实际问题的应用十分广泛,因此要反复训练,强化记忆,所以设计了大量的例题与练习,授课时要加快速度,激发学生学习的兴趣,多运用多媒体的教学手段.
【备选例题】
【例1】化简:···.
解:原式=···=logNM·logNM·logNM·logNM=(logNM)4.
【例2】求证:logab=(a>0,b>0且a≠1,b≠1).
证法一:logab==.
证法二:==logab.
【例3】试证:+++…+=.
证明:+++…+=logx(2×3×4×…×n)
=logx(1×2×3×4×…×n)=logxn!=.
【知识拓展】
对数的创立
对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是16世纪末到17世纪初的苏格兰数学家——纳皮尔(J.Napier,1550—1617)男爵.在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.
当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样.在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的.那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:
0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、…
1、2、4、8、16、32、64、128、256、512、1
024、2
048、4
096、8
192、16
384、…
这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现.
比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加起来:6+8=14;第一行中的14,对应第二行中的16
384,所以有64×256=16
384.纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了.回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗?计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出值的反对数值,就是原先那两个复杂数的乘积了.这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?
经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点.所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣.伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡儿的坐标、纳皮尔的对数、牛顿和莱布尼茨的微积分共同称为17世纪的三大数学发明.法国著名的数学家、天文学家拉普拉斯(Pierre
Simon
Laplace,1749—1827)曾说:“对数,可以缩短计算时间,在实效上等于把天文学家的寿命延长了许多倍”.
PAGE
11.1.1 集合的含义与表示
教学分析
集合语言是现代数学的基本语言,同时也是一种抽象的数学语言.教材将集合的初步知识作为初、高中数学课程的衔接,既体现出集合在高中数学课程中举足轻重的作用,又体现出集合在数学中的奠基性地位.
课本除了从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义、性质、表示方法之外,还特别注意渗透了“概括”与“类比”这两种常用的逻辑思考方法.因此,建议教学时,应引导学生从大量的实例中概括出集合的含义;多创设让学生运用集合语言进行表达和交流的情境和机会,以便学生在实际应用中逐渐熟悉自然语言、集合语言和图形语言各自的特点和表示方法,能进行相互转换并且灵活应用,充分掌握集合语言.与此同时,本小节作为高一数学教学的第一节新授课,知识体系中的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流、讨论,让学生在阅读与交流中理解概念并熟悉新符号的使用.这样,既能够培养学生自我阅读、共同探究的能力,又能提高学生主动学习、合作交流的精神.
三维目标
1.了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号.
2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.
3.能选择不同的形式表示具体问题中的集合.
重点难点
教学重点:集合的基本概念与表示方法.
教学难点:选择适当的方法表示具体问题中的集合.
课时安排
1课时
导入新课
思路1.集合对我们来说可谓是“最熟悉的陌生人”.说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一(4)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵.那么,在数学的领域中,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱.
思路2.你经常会谈论你的家庭,你的班级.其实在讲到你的家庭、班级的时候,你必定在联想构成家庭、班级的成员,例如:家庭成员就是被你称为父亲、母亲、哥哥、姐姐、妹妹、弟弟……的人;班级成员就是与你在同一个教室里一起上课、一起学习的人;一些具有特定属性的人构成的群体,在数学上就是一个集合.那么,在数学中,一些对象的总体怎样才可以构成集合、集合中的元素有哪些特性?集合又有哪些表示方法呢?
这就是本节课我们所要学习的内容.
思路3.“同学们,在小学和初中的学习过程中,我们已经接触过一些集合的例子,比如说:有理数集合,到一个定点的距离等于定长的点的集合(圆),那么大家是否能够举出更多关于集合的例子呢?”(通过两个简单的例子,引导大家进行类比,运用发散性思维思考说出更多的关于集合的实例,然后教师予以点评.)
“那么,集合的含义究竟是什么?它又该如何表示呢?这就是我们今天要研究的课题.”
推进新课
①中国有许多传统的佳节,那么这些传统的节日是否能构成一个集合?如果能,这个集合由什么组成?
②全体自然数能否构成一个集合?如果能,这个集合由什么组成?
③方程x2-3x+2=0的所有实数根能否构成一个集合?如果能,这个集合由什么组成?
④你能否根据上述几个问题总结出集合的含义?
讨论结果:①能.这个集合由春节、元宵节、端午节等有限个种类的节日组成,称为有限集.
②能.这个集合由0,1,2,3,……等无限个元素组成,称为无限集.
③能.这个集合由1,2两个数组成.
④我们把研究对象统称为“元素”,把一些元素组成的总体叫做“集合”.
通过以上的学习我们已经知道集合是由一些元素组成的总体,那么是否所有的元素都能构成集合呢?请看下面几个问题.
①近视超过300度的同学能否构成一个集合?
②“眼神很差”的同学能否构成一个集合?
③比较问题①②,说明集合中的元素具有什么性质?
④我们知道冬虫夏草既是一种植物,又是一种动物.那么在所有动植物构成的集合中,冬虫夏草出现的次数是一次呢还是两次?
⑤组成英文单词every的字母构成的集合含有几个元素?分别是什么?
⑥问题④⑤说明集合中的元素具有什么性质?
⑦在玩斗地主的时候,我们都知道3,4,5,6,7是一个顺子,那比如说老师出牌的时候把这五张牌的顺序摆成了5,3,6,7,4,那么这还是一个顺子么?类比集合中的元素,一个集合中的元素是3,4,5,6,7,另外一个集合中的元素是5,3,6,7,4,这两个集合中的元素相同么?集合相同吗?这体现了集合中的元素的什么性质?
讨论结果:①能.
②不能.
③确定性.问题②对“眼神很差”的同学没有一个确定的标准,到底怎样才算眼神差,是近视300度?400度?还是说“眼神很差”只是寓意?我们不得而知.因此通过问题①②我们了解到,对于给定的集合,它的元素必须是确定的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性.
④一次.
⑤4个元素.e,v,r,y这四个字母.
⑥互异性.一个集合中的元素是互不相同的,也就是说,集合中的元素不能重复出现.
⑦是.元素相同.集合相同.体现集合中元素的无序性,即集合中的元素的排列是没有顺序的.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.
①如果用A表示所有的自然数构成的集合,B表示所有的有理数构成的集合,a=1.58,那么元素a和集合A,B分别有着怎样的关系?
②大家能否从问题①中总结出元素与集合的关系?
③A表示“1~20内的所有质数”组成的集合,那么3__________A,4__________A.
讨论结果:①a是集合B中的元素,a不是集合A中的元素.
②a是集合B中的元素,就说a属于集合B,记作a∈B;a不是集合A中的元素,就说a不属于集合A,记作aA.因此元素与集合的关系有两种,即属于和不属于.
③3∈A,4A.
①从这堂课的开始到现在,你们注意到我用了几种方法表示集合吗?
②字母表示法中有哪些专用符号?
③除了自然语言法和字母表示法之外,课本还为我们提供了几种集合的表示方法?分别是什么?
④列举法的含义是什么?你能否运用列举法表示一些集合?请举例!
⑤能用列举法把下列集合表示出来吗?
小于10的质数;
不等式x-2>5的解集.
⑥描述法的含义是什么?你能否运用描述法表示一些集合?请举例!
⑦集合的表示方法共有几种?
讨论结果:①两种,自然语言法和字母表示法.
②非负整数集(或自然数集),记作N;
除0的非负整数集,也称正整数集,记作N
或N+;
整数集,记作Z;有理数集,记作Q;实数集,记作R.
③两种,列举法与描述法.
④把集合中的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.例如“地球上的四大洋”组成的集合可以用列举法表示为{太平洋,大西洋,印度洋,北冰洋},方程x2-3x+2=0的所有实数根组成的集合可以用列举法表示为{1,2}.
⑤“小于10的质数”可以用列举法表示出来;“不等式x-2>5的解集”不能够用列举法表示出来,因为这个集合是一个无限集.因此,当集合是无限集或者其元素数量较多而不便于无一遗漏地列举出来的时候,如果我们再用列举法来表示集合就显得不够简洁明了.
⑥用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例如,不等式x-2>5的解集可以表示为{x∈R|x>7};所有的正方形的集合可以表示为{x|x是正方形},也可写成{正方形}.
⑦自然语言法、字母表示法、列举法、描述法.
例1
下列所给对象不能构成集合的是__________.
(1)高一数学课本中所有的难题;
(2)某一班级16岁以下的学生;
(3)某中学的大个子;
(4)某学校身高超过1.80米的学生.
活动探究:教师首先引导学生通过读题、审题,了解本题考查的基本知识点——集合中元素的确定性;然后指导学生对4个选项进行逐一判断;判断所给元素是否能构成集合,关键是看是否满足集合元素的确定性.
解析:(1)不能构成集合.“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是“难题”无法客观地判断.实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合.
(2)能构成集合,其中的元素是某班级16岁以下的学生.
(3)因为未规定大个子的标准,所以(3)不能组成集合.
(4)由于(4)中的对象具备确定性,因此,能构成集合.
答案:(1)(3)
变式训练1.下列几组对象可以构成集合的是(  )A.充分接近π的实数的全体B.善良的人C.某校高一所有聪明的同学D.某单位所有身高在1.7
m以上的人答案:D2.已知集合S的三个元素a,b,c是△ABC的三边长,那么△ABC一定不是(  )A.锐角三角形   B.直角三角形C.钝角三角形
D.等腰三角形答案:D3.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是(  )A.1   B.-2
C.6   D.2答案:C点评:本题主要考查集合元素的性质.当所描述的对象明确的时候就能构成集合,若元素不明确就不能构成集合,称为元素的确定性;同时,一个集合中的元素是互不相同的,称为元素的互异性;此外还要注意元素的无序性.
例2
用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成的集合.
活动探究:讲解例2的过程中,可以设计如下问题引导学生:
针对例2(1):①自然数中是否含有0?②小于10的自然数有哪些?③如何用列举法表示小于10的所有自然数组成的集合?
针对例2(2):①解一元二次方程的方法有哪些?分别是什么?②方程x2=x的解是什么?③如何用列举法表示方程x2=x的所有实数根组成的集合?
针对例2(3):①如何判断一个数是否为质数(即质数的定义是什么)?②1~20以内的质数有哪些?③如何用列举法表示由1~20以内的所有质数组成的集合?
在用列举法表示集合的过程中,应让学生先明确集合中的元素,再把元素写入“{ }”内,并用逗号隔开.
解:(1)小于10的自然数有0,1,2,3,4,5,6,7,8,9,设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9};
(2)方程x2=x的两个实根为x1=0,x2=1,设方程x2=x的所有实数根组成的集合为B,那么B={0,1};
(3)1~20以内的质数有2,3,5,7,11,13,17,19,设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.
点评:本题主要考查了集合表示法中的列举法,通过本题的教学可以体会利用集合表示教学内容的严谨性和简洁性.
变式训练1.用列举法表示下列集合:(1)一年之中的四个季节组成的集合;(2)满足不等式1<1+2x<19的素数组成的集合.答案:(1){春季,夏季,秋季,冬季};(2){2,3,5,7}.2.已知集合A=,试用列举法表示集合A.解:由题意可知6-x是8的正约数,当6-x=1时,x=5;当6-x=2时,x=4;当6-x=4时,x=2;当6-x=8时,x=-2;而x≥0,∴x=2,4,5,即A={2,4,5}.点评:变式训练1主要对列举法进行了考查;变式训练2考查了两个方面的知识点,一是元素与集合的关系,二是列举法的应用,体现了对知识综合应用的能力.
例3
试分别用列举法和描述法表示下列集合:
(1)方程x2-2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
活动探究:讲解例3的过程中,可以设计如下问题引导学生:
针对例3(1)——列举法
①方程x2-2=0的解是什么?
②如何用列举法表示方程x2-2=0的所有实数根组成的集合?
针对例3(1)——描述法
①描述法的定义是什么?
②所求集合中元素有几个共同特征?分别是什么?
③如何用描述法表示所求集合?
针对例3(2)——列举法
①大于10小于20的所有整数有哪些?
②由大于10小于20的所有整数组成的集合用列举法如何表示?
针对例3(2)——描述法
①所求集合中元素有几个共同特征?分别是什么?
②如何用描述法表示所求集合?
解:(1)设方程x2-2=0的实数根为x,并且满足x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0};方程x2-2=0的两个实根为x1=-,x2=,因此,用列举法表示为A={-,}.
(2)设大于10小于20的整数为x,它满足条件x∈Z且10<x<20,因此,用描述法表示为B={x∈Z|10<x<20};大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为{11,12,13,14,15,16,17,18,19}.
点评:例2和例3是通过“问题引导”的方式,使学生逐步逼近答案的过程.在此过程中,既帮助学生理清了解答问题的基本思路,又使得列举法和描述法在实例中得到进一步的巩固.
变式训练用适当的方法表示下列集合:(1)Welcome中的所有字母组成的集合;(2)由所有小于20的既是奇数又是质数的正整数组成的集合;(3)由所有非负偶数组成的集合;(4)直角坐标系内第三象限的点组成的集合;(5)不等式2x-3>2的解集.解:(1)列举法:{W,e,l,c,o,m};(2)列举法:{3,5,7,11,13,17,19};(3)描述法:{x|x=2n,n∈N};(4)描述法:{(x,y)|x<0,且y<0};(5)描述法:{x|x>2.5}.
课后练习1,2.
【补充练习】
1.考查下列对象能否构成集合:
(1)著名的数学家;
(2)某校2013年在校的所有高个子同学;
(3)不超过20的非负数;
(4)方程x2-9=0在实数范围内的解;
(5)直角坐标平面内第一象限的一些点;
(6)的近似值的全体.
答案:(1)(2)(5)(6)不能组成集合,(3)(4)能组成集合.
2.用适当的符号填空:
(1)0__________N,__________N,__________N;
(2)-__________Q,π__________Q,e__________ RQ(e是个无理数);
(3)+=__________{x|x=a+b,a∈Q,b∈Q}.
答案:(1)∈  ∈  (2)∈  ∈  (3)∈
3.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,求实数m的值.
解:∵2∈A,
∴m=2或m2-3m+2=2.
若m=2,则m2-3m+2=0,不符合集合中元素的互异性,舍去.
若m2-3m+2=2,求得m=0或3.
m=0不合题意,舍去.
∴m只能取3.
4.用适当方法表示下列集合:
(1)函数y=ax2+bx+c(a≠0)的图象上所有点的集合;
(2)一次函数y=x+3与y=-2x+6的图象的交点组成的集合;
(3)不等式x-3>2的解集;
(4)自然数中不大于10的质数集.
答案:(1)描述法:{(x,y)|y=ax2+bx+c,x∈R,a≠0}.
(2)描述法:=.
列举法:{(1,4)}.
(3)描述法:{x|x>5}
(4)列举法:{2,3,5,7}.
问题1:设集合P={x-y,x+y,xy},Q={x2+y2,x2-y2,0},若P=Q,求x,y的值及集合P,Q.
活动探究:首先,应让学生思考两个数集相等的条件——集合中的元素分别对应相等;然后,再引导学生讨论:本题中集合P,Q对应相等时,其元素可能出现的几种情况,并根据讨论的结果进行计算;最后,应当指导学生自主探究,应用集合中元素的性质检验所求结果是否符合要求.
解:∵P=Q且0∈Q,
∴0∈P.
若x+y=0或x-y=0,则x2-y2=0,从而Q={x2+y2,0,0},与集合中元素的互异性矛盾,∴x+y≠0且x-y≠0;
若xy=0,则x=0或y=0.
当y=0时,P={x,x,0},与集合中元素的互异性矛盾,
∴y≠0;
当x=0时,P={-y,y,0},Q={y2,-y2,0},
由P=Q得 ①   或②
由①得y=-1,由②得y=1,
∴或
此时P=Q={1,-1,0}.
点评:本题综合性地考查了两数集相等的条件、集合中元素的性质以及学生的运算能力和分类讨论能力.
问题2:已知集合A={x|ax2-3x+2=0},若A中的元素至多只有一个,求a的取值范围.
活动探究:讨论关于x的方程ax2-3x+2=0实数根的情况,从中确定a的取值范围,依题意,方程有一个实数根或两个相等的实数根或无实数根.
解:(1)a=0时,原方程为-3x+2=0,x=,符合题意.
(2)a≠0时,方程ax2-3x+2=0为一元二次方程.
由Δ=9-8a≤0,得a≥.
∴当a≥时,方程ax2-3x+2=0无实数根或有两个相等的实数根.
综合(1)(2),知a=0或a≥.
点评:“a=0”这种情况最容易被忽视,只有在“a≠0”的条件下,方程ax2-3x+2=0才是一元二次方程,才能用判别式Δ解决问题.
问题3:设S={x|x=m+n,m,n∈Z}.
(1)若a∈Z,则a是否是集合S中的元素?
(2)对S中的任意两个x1,x2,则x1+x2,x1·x2是否属于S
活动探究:针对问题(1)——首先引导学生仔细观察集合S中元素的共同特征与构成方式;然后,再引导学生思考题中所给的元素a能否表示成m+n的形式;如果能,m和n分别是多少,如果不能,请说明理由;最后小结,判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.
针对问题(2)——首先引导学生将x1,x2分别表示出来,再引导大家根据正确的表示结果,推断x1+x2,x1·x2是否是集合S中的元素.
解:(1)a是集合S中的元素,a=a+×0∈S.
(2)不妨设x1=m+n,x2=p+q,m,n,p,q∈Z.
则x1+x2=(m+n)+(p+q)=(m+p)+(n+q),m,n,p,q∈Z.
∴x1+x2∈S;x1·x2=(m+n)·(p+q)=(mp+2nq)+(mq+np),m,n,p,q∈Z.
∴x1·x2∈S.综上,x1+x2,x1·x2都属于S.
点评:本题考查集合的描述法以及元素与集合间的关系.
本节学习了:(1)集合的含义;(2)集合中元素的性质;(3)元素与集合的关系;(4)集合的表示方法.
习题1.1A组 3,4.
本节教学设计是以数学课程标准的要求为指导,结合生活中的一些实例,重视引导学生积极思考,主动参与到教学中,体现了学生的主体地位.同时结合高考的要求适当拓展了教材,使学生的发散性思维得到拓展,最大限度地挖掘了学生的学习潜力,真正做到了对教材的“活学活用”.
集合论的诞生
集合论是德国著名数学家康托尔于19世纪末创立的.17世纪,数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.19世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.
康托尔把无穷集这一词汇引入数学.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合的所有人应该对这句话不会感到陌生.但在接受这句话时我们根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在的.这种关于无穷的观念在数学上被称为潜无限.18世纪数学王子高斯就持这种观点.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是不足为怪的.然而康托尔并未就此止步,他以前所未有的方式,继续正面探讨无穷.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应关系——也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了实数集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.
然而集合论前后经历二十余年,最终获得了世界公认.在1900年第二次国际数学家大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.“它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献.”
PAGE
11.3.2 奇偶性
教学分析
本节讨论函数的奇偶性是描述函数整体性质的.教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念.因此教学时,充分利用信息技术创设教学情境,会使数与形的结合更加自然.
值得注意的问题:对于奇函数,教材在给出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念.教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=与y=2x-1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明.
三维目标
1.理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力.
2.学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想.
重点难点
教学重点:函数的奇偶性及其几何意义.
教学难点:判断函数的奇偶性的方法与格式.
课时安排
1课时
导入新课
思路1.同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美……)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以麦当劳的标志为例,给它适当地建立平面直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y轴对称)数学中对称的形式也很多,这节课我们就同学们谈到的与y轴对称的函数展开研究.
思路2.结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x2和y=x3的图象各有怎样的对称性?引出课题:函数的奇偶性.
推进新课
(1)如图1所示,观察下列函数的图象,总结各函数之间的共性.
图1
(2)如何利用函数的解析式描述函数的图象关于y轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征?
表1
x
-3
-2
-1
0
1
2
3
f(x)=x2
表2
x
-3
-2
-1
0
1
2
3
f(x)=|x|
(3)请给出偶函数的定义.
(4)偶函数的图象有什么特征?
(5)函数f(x)=x2,x∈[-1,2]是偶函数吗?
(6)偶函数的定义域有什么特征?
(7)观察函数f(x)=x和f(x)=的图象,类比偶函数的推导过程,给出奇函数的定义和性质?
活动:教师从以下几点引导学生:
(1)观察图象的对称性.
(2)学生给出这两个函数的解析式具有什么共同特征后,教师指出:这样的函数称为偶函数.
(3)利用函数的解析式来描述.
(4)偶函数的性质:图象关于y轴对称.
(5)函数f(x)=x2,x∈[-1,2]的图象关于y轴不对称;对定义域[-1,2]内x=2,f(-2)不存在,即其函数的定义域中任意一个x的相反数-x不一定也在定义域内,即f(-x)=f(x)不恒成立.
(6)偶函数的定义域中任意一个x的相反数-x一定也在定义域内,此时称函数的定义域关于原点对称.
(7)先判断它们的图象的共同特征是关于原点对称,再列表格观察自变量互为相反数时,函数值的变化情况,进而抽象出奇函数的概念,再讨论奇函数的性质.
给出偶函数和奇函数的定义后,要指明:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称);③具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称,奇函数的图象关于原点对称;④可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法;⑤函数的奇偶性是函数在定义域上的性质,是“整体”性质,而函数的单调性是函数在定义域的子集上的性质,是“局部”性质.
讨论结果:(1)这两个函数之间的图象都关于y轴对称.
(2)
表1
x
-3
-2
-1
0
1
2
3
f(x)=x2
9
4
1
0
1
4
9
表2
x
-3
-2
-1
0
1
2
3
f(x)=|x|
3
2
1
0
1
2
3
这两个函数的解析式都满足:
f(-3)=f(3);
f(-2)=f(2);
f(-1)=f(1).
可以发现对于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说对于函数定义域内任一个x,都有f(-x)=f(x).
(3)一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.
(4)偶函数的图象关于y轴对称.
(5)不是偶函数.
(6)偶函数的定义域关于原点对称.
(7)一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.奇函数的图象关于原点中心对称,其定义域关于原点对称.
思路1
例1
判断下列函数的奇偶性:
(1)f(x)=x4;
(2)f(x)=x5;
(3)f(x)=x+;
(4)f(x)=.
活动:学生思考奇偶函数的定义,利用定义来判断其奇偶性.先求函数的定义域,并判断定义域是否关于原点对称,如果定义域关于原点对称,那么再判断f(-x)=f(x)或f(-x)=-f(x).
解:(1)函数的定义域是R,对定义域内任意一个x,都有f(-x)=(-x)4=x4=f(x),
所以函数f(x)=x4是偶函数.
(2)函数的定义域是R,对定义域内任意一个x,都有f(-x)=(-x)5=-x5=-f(x),
所以函数f(x)=x5是奇函数.
(3)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x,都有f(-x)=-x+=-=-f(x),
所以函数f(x)=x+是奇函数.
(4)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x,都有f(-x)===f(x),所以函数f(x)=是偶函数.
点评:本题主要考查函数的奇偶性.函数的定义域是使函数有意义的自变量的取值范围,对定义域内任意x,其相反数-x也在函数的定义域内,此时称为定义域关于原点对称.
利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域,并判断其定义域是否关于原点对称;
②确定f(-x)与f(x)的关系;
③作出相应结论:
若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;
若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.
变式训练设f(x)是R上的任意函数,则下列叙述正确的是(  )A.f(x)f(-x)是奇函数B.f(x)|f(-x)|是奇函数C.f(x)-f(-x)是偶函数D.f(x)+f(-x)是偶函数解析:A中设F(x)=f(x)f(-x),则F(-x)=f(-x)f(x)=F(x),即函数F(x)=f(x)f(-x)为偶函数;B中设F(x)=f(x)|f(-x)|,F(-x)=f(-x)|f(x)|,此时F(x)与F(-x)的关系不能确定,即函数F(x)=f(x)|f(-x)|的奇偶性不确定;C中设F(x)=f(x)-f(-x),F(-x)=f(-x)-f(x)=-F(x),即函数F(x)=f(x)-f(-x)为奇函数;D中设F(x)=f(x)+f(-x),F(-x)=f(-x)+f(x)=F(x),即函数F(x)=f(x)+f(-x)为偶函数.答案:D
例2
已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0,+∞)时,f(x)=__________.
活动:学生思考偶函数的解析式的性质,考虑如何将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值.利用偶函数的性质f(x)=f(-x),将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值.
解析:当x∈(0,+∞)时,则-x<0.
又∵当x∈(-∞,0)时,f(x)=x-x4,
∴f(x)=f(-x)=(-x)-(-x)4=-x-x4.
答案:-x-x4
点评:本题主要考查函数的解析式和奇偶性.已知函数的奇偶性,求函数的解析式时,要充分利用函数的奇偶性,将所求解析式的区间上自变量对应的函数值转化为已知解析式的区间上自变量对应的函数值.
变式训练已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+,求f(x).解:当x=0时,f(-0)=-f(0),则f(0)=0;当x<0时,-x>0,由于函数f(x)是奇函数,则f(x)=-f(-x)=-[(-x)2+]=-x2+,综上所得,f(x)=
思路2
例1
判断下列函数的奇偶性.
(1)f(x)=2x4,x∈[-1,2];
(2)f(x)=;
(3)f(x)=+;
(4)f(x)=.
活动:学生思考奇偶函数的定义和函数的定义域的求法.先判断函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系.在(4)中注意定义域的求法,对任意x∈R,有>=|x|≥-x,则+x>0.则函数的定义域是R.
解:(1)∵它的定义域关于原点不对称,∴函数f(x)=2x4,x∈[-1,2]既不是奇函数也不是偶函数.
(2)∵它的定义域为{x|x∈R,且x≠1},并不关于原点对称,∴函数f(x)=既不是奇函数也不是偶函数.
(3)∵x2-4≥0且4-x2≥0,
∴x=±2,
即f(x)的定义域是{-2,2}.
∵f(2)=0,f(-2)=0,
∴f(2)=f(-2),f(2)=-f(2).
∴f(-x)=-f(x),且f(-x)=f(x).
∴f(x)既是奇函数也是偶函数.
(4)函数的定义域是R.
∵f(-x)+f(x)
=+


=0,
∴f(-x)=-f(x).
∴f(x)是奇函数.
点评:本题主要考查函数的奇偶性.
定义法判断函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f(-x)与f(x)或-f(x)是否相等;(2)当f(-x)=f(x)时,此函数是偶函数;当f(-x)=-f(x)时,此函数是奇函数;(3)当f(-x)=f(x)且f(-x)=-f(x)时,此函数既是奇函数又是偶函数;(4)当f(-x)≠f(x)且f(-x)≠-f(x)时,此函数既不是奇函数也不是偶函数.
判断解析式复杂的函数的奇偶性时,如果定义域关于原点对称时,通常化简f(-x)+f(x)来判断f(-x)=f(x)或f(-x)=-f(x)是否成立.
变式训练函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=在区间(1,+∞)上一定(  )A.有最小值  
B.有最大值C.是减函数
D.是增函数解析:函数f(x)=x2-2ax+a的对称轴是直线x=a,由于函数f(x)在开区间(-∞,1)上有最小值,所以直线x=a位于区间(-∞,1)内,即a<1.g(x)==x+-2,下面用定义法判断函数g(x)在区间(1,+∞)上的单调性.设1<x1<x2,则g(x1)-g(x2)=(x1+-2)-=(x1-x2)+=(x1-x2)=(x1-x2).∵1<x1<x2,∴x1-x2<0,x1x2>1>0.又∵a<1,∴x1x2>a.∴x1x2-a>0.∴g(x1)-g(x2)<0.∴g(x1)<g(x2).∴函数g(x)在区间(1,+∞)上是增函数,函数g(x)在区间(1,+∞)上没有最值.答案:D
例2
已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1,
(1)求证:f(x)是偶函数;
(2)求证:f(x)在(0,+∞)上是增函数;
(3)试比较f与f的大小.
活动:(1)转化为证明f(-x)=f(x),利用赋值法证明f(-x)=f(x);(2)利用定义法证明单调性,证明函数单调性的步骤是“去比赛”;(3)利用函数的单调性比较它们的大小,利用函数的奇偶性,将函数值f和f转化为同一个单调区间上的函数值.
(1)证明:令x1=x2=1,得f(1)=2f(1),∴f(1)=0.
令x1=x2=-1,得f(1)=f[(-1)×(-1)]=f(-1)+f(-1),∴2f(-1)=0.
∴f(-1)=0.∴f(-x)=f(-1·x)=f(-1)+f(x)=f(x).∴f(x)是偶函数.
(2)证明:设x2>x1>0,则
f(x2)-f(x1)=f-f(x1)=f(x1)+f-f(x1)=f.
∵x2>x1>0,∴>1.∴f>0,即f(x2)-f(x1)>0.
∴f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.
(3)解:由(1)知f(x)是偶函数,则有f=f.
由(2)知f(x)在(0,+∞)上是增函数,则f>f.∴f>f.
点评:本题是抽象函数问题,主要考查函数的奇偶性和单调性及其综合应用.判断抽象函数的奇偶性和单调性通常应用定义法,比较抽象函数值的大小通常利用抽象函数的单调性来比较.其关键是将所给的关系式进行有效的变形和恰当的赋值.
变式训练已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判断f(x)的奇偶性,并说明理由.分析:(1)利用赋值法,令x=y=1得f(1)的值,令x=y=-1,得f(-1)的值;(2)利用定义法证明f(x)是奇函数,要借助于赋值法得f(-x)=-f(x).解:(1)∵f(x)对任意x,y都有f(xy)=yf(x)+xf(y),∴令x=y=1时,有f(1×1)=1×f(1)+1×f(1).∴f(1)=0.∴令x=y=-1时,有f[(-1)×(-1)]=(-1)×f(-1)+(-1)×f(-1).∴f(-1)=0.(2)是奇函数.∵f(x)对任意x,y都有f(xy)=yf(x)+xf(y),∴令y=-1,有f(-x)=-f(x)+xf(-1).将f(-1)=0代入得f(-x)=-f(x),∴函数f(x)是(-∞,+∞)上的奇函数.
课本本节练习,1,2.
【补充练习】
1.设函数y=f(x)是奇函数.若f(-2)+f(-1)-3=f(1)+f(2)+3,则f(1)+f(2)=__________.
解析:∵函数y=f(x)是奇函数,∴f(-2)=-f(2),f(-1)=-f(1).
∴-f(2)-f(1)-3=f(1)+f(2)+3.∴2[f(1)+f(2)]=-6.∴f(1)+f(2)=-3.
答案:-3
2.已知f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=__________,b=__________.
解析:∵偶函数的定义域关于原点对称,∴a-1+2a=0.∴a=.
∴f(x)=x2+bx+1+b.又∵f(x)是偶函数,∴b=0.
答案: 0
3.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为(  )
A.-1   B.0   C.1   D.2
解析:f(6)=f(4+2)=-f(4)=-f(2+2)=f(2)=f(2+0)=-f(0).
又f(x)是定义在R上的奇函数,∴f(0)=0.
∴f(6)=0.故选B.
答案:B
问题:基本初等函数的奇偶性.
探究:利用判断函数的奇偶性的方法:定义法和图象法,可得
正比例函数y=kx(k≠0)是奇函数;
反比例函数y=(k≠0)是奇函数;
一次函数y=kx+b(k≠0),当b=0时是奇函数,当b≠0时既不是奇函数也不是偶函数;
二次函数y=ax2+bx+c(a≠0),当b=0时是偶函数,当b≠0时既不是奇函数也不是偶函数.
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.
课本习题1.3A组 6,B组 3.
单调性与奇偶性的综合应用是本节的一个难点,而本节设计的题目不多,因此,在实际教学中,教师可以利用课余时间补充,让学生结合函数的图象充分理解好单调性和奇偶性这两个性质.在教学设计中,注意培养学生的综合应用能力,以便满足高考要求.
奇、偶函数的性质
(1)奇偶函数的定义域关于原点对称;奇函数的图象关于原点对称,偶函数的图象关于y轴对称.
(2)奇偶性是函数的整体性质,对定义域内任意一个x都必须成立.
(3)f(-x)=f(x) f(x)是偶函数,f(-x)=-f(x) f(x)是奇函数.
(4)f(-x)=f(x) f(x)-f(-x)=0,f(-x)=-f(x) f(x)+f(-x)=0.
(5)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.
奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数的积(商、分母不为零)为奇函数;如果函数y=f(x)和y=g(x)的奇偶性相同,那么复合函数y=f[g(x)]是偶函数,如果函数y=f(x)和y=g(x)的奇偶性相反,那么复合函数y=f[g(x)]是奇函数,简称为“同偶异奇”.
(6)如果函数y=f(x)是奇函数,那么f(x)在区间(a,b)和(-b,-a)上具有相同的单调性;如果函数y=f(x)是偶函数,那么f(x)在区间(a,b)和(-b,-a)上具有相反的单调性.
(7)定义域关于原点对称的任意函数f(x)可以表示成一个奇函数与一个偶函数的和,即f(x)=+.
(8)若f(x)是(-a,a)(a>0)上的奇函数,则f(0)=0;
若函数f(x)是偶函数,则f(x)=f(-x)=f(|x|)=f(-|x|).
若函数y=f(x)既是奇函数又是偶函数,则有f(x)=0.
PAGE
13.2.1 几类不同增长的函数模型
整体设计
教学分析
函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的.通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.
三维目标
1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.
2.恰当运用函数的三种表示方法(解析式、表格、图象)并借助信息技术解决一些实际问题.
3.让学生体会数学在实际问题中的应用价值,培养学生的学习兴趣.
重点难点
教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.
教学难点:应用函数模型解决简单问题.
课时安排
2课时
教学过程
第1课时
导入新课
思路1.(事例导入)
一张纸的厚度大约为0.01
cm,一块砖的厚度大约为10
cm,请同学们计算将一张纸对折n次的厚度和n块砖的厚度,列出函数关系式,并计算n=20时它们的厚度.你的直觉与结果一致吗?
解:纸对折n次的厚度:f(n)=0.01·2n(cm),n块砖的厚度:g(n)=10n(cm),f(20)≈105
m,g(20)=2
m.
也许同学们感到意外,通过对本节课的学习大家对这些问题会有更深的了解.
思路2.(直接导入)
请同学们回忆指数函数、对数函数以及幂函数的图象和性质,本节我们将通过实例比较它们的增长差异.
推进新课
提出问题
(1)如果张红购买了每千克1元的蔬菜x千克,需要支付y元,把y表示为x的函数.
(2)正方形的边长为x,面积为y,把y表示为x的函数.
(3)某保护区有1单位面积的湿地,由于保护区的努力,使湿地面积每年以5%的增长率增长,经过x年后湿地的面积为y,把y表示为x的函数.
(4)分别用表格、图象表示上述函数.
(5)指出它们属于哪种函数模型.
(6)讨论它们的单调性.
(7)比较它们的增长差异.
(8)另外还有哪种函数模型与对数函数相关.
活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
(1)总价等于单价与数量的积.
(2)面积等于边长的平方.
(3)由特殊到一般,先求出经过1年、2年…
(4)列表画出函数图象.
(5)引导学生回忆学过的函数模型.
(6)结合函数表格与图象讨论它们的单调性.
(7)让学生自己比较并体会.
(8)其他与对数函数有关的函数模型.
讨论结果:(1)y=x.
(2)y=x2.
(3)y=(1+5%)x.
(4)如下表
x
1
2
3
4
5
6
y=x
1
2
3
4
5
6
y=x2
1
4
9
16
25
36
y=(1+5%)x
1.05
1.10
1.16
1.22
1.28
1.34
它们的图象分别为图1,图2,图3.
  
图1
图2
图3
(5)它们分别属于:y=kx+b(直线型),y=ax2+bx+c(a≠0,抛物线型),y=kax+b(指数型).
(6)从表格和图象得出它们都为增函数.
(7)在不同区间增长速度不同,随着x的增大y=(1+5%)x的增长速度越来越快,会远远大于另外两个函数.
(8)另外还有与对数函数有关的函数模型,形如y=logax+b,我们把它叫做对数型函数.
例1
假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;
方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.
请问,你会选择哪种投资方案?
活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据.
解:设第x天所得回报是y元,则方案一可以用函数y=40(x∈N
)进行描述;方案二可以用函数y=10x(x∈N
)进行描述;方案三可以用函数y=0.4×2x-1(x∈N
)进行描述.三个模型中,第一个是常数函数,后两个都是递增函数模型.要对三个方案做出选择,就要对它的增长情况进行分析.我们先用计算机计算一下三种所得回报的增长情况.
x/天
方案一
方案二
方案三
y/元
增加量/元
y/元
增加量/元
y/元
增加量/元
1
40
10
0.4
2
40
0
20
10
0.8
0.4
3
40
0
30
10
1.6
0.8
4
40
0
40
10
3.2
1.6
5
40
0
50
10
6.4
3.2
6
40
0
60
10
12.8
6.4
7
40
0
70
10
25.6
12.8
8
40
0
80
10
51.2
25.6
9
40
0
90
10
102.4
51.2
10
40
0
100
10
204.8
102.4







30
40
0
300
10
214
748
364.8
107
374
182.4
再作出三个函数的图象(图4).
图4
由表和图4可知,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但方案二与方案三的函数的增长情况很不相同.可以看到,尽管方案一、方案二在第1天所得回报分别是方案三的100倍和25倍,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的,从第7天开始,方案三比其他两方案增长得快得多,这种增长速度是方案一、方案二无法企及的.从每天所得回报看,在第1~3天,方案一最多;在第4天,方案一和方案二一样多,方案三最少;在第5~8天,方案二最多;第9天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元.
下面再看累积的回报数.通过计算机或计算器列表如下:
因此,投资1~6天,应选择方案一;投资7天,应选择方案一或方案二;投资8~10天,应选择方案二;投资11天(含11天)以上,则应选择方案三.
针对上例可以思考下面问题:
①选择哪种方案是依据一天的回报数还是累积回报数.
②课本把两种回报数都列表给出的意义何在?
③由此得出怎样的结论.
答案:①选择哪种方案依据的是累积回报数.
②让我们体会每天回报数的增长变化.
③上述例子只是一种假想情况,但从中我们可以体会到,不同的函数增长模型,其增长变化存在很大差异.
变式训练某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟付话费0.4元;“神州行”不缴月基础费,每通话1分钟付话费0.6元,若设一个月内通话x分钟,两种通讯业务的费用分别为y1元和y2元,那么(1)写出y1、y2与x之间的函数关系式;(2)在同一直角坐标系中画出两函数的图象;(3)求出一个月内通话多少分钟,两种通讯业务费用相同;(4)若某人预计一个月内使用话费200元,应选择哪种通讯业务较合算.思路分析:我们可以先建立两种通讯业务所对应的函数模型,再通过比较它们的变化情况,为选择哪种通讯提供依据.(1)全球通的费用应为两种费用的和,即月基础费和通话费,神州行的费用应为通话费用;(2)运用描点法画图,但应注意自变量的取值范围;(3)可利用方程组求解,也可以根据图象回答;(4)求出当函数值为200元时,哪个函数所对应的自变量的值较大.解:(1)y1=50+0.4x(x≥0),y2=0.6x(x≥0).(2)图象如图5所示.图5(3)根据图中两函数图象的交点所对应的横坐标为250,所以在一个月内通话250分钟时,两种通讯业务的收费相同.(4)当通话费为200元时,由图象可知,y1所对应的自变量的值大于y2所对应的自变量的值,即选取全球通更合算.另解:当y1=200时有0.4x+50=200,∴x1=375;当y2=200时有0.6x=200,x2=.显然375>,∴选用“全球通”更合算.点评:在解决实际问题过程中,函数图象能够发挥很好的作用,因此,我们应当注意提高读图的能力.另外,本例题用到了分段函数,分段函数是刻画现实问题的重要模型.
例2
某公司为了实现1
000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?
活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金不超过利润的25%,由于公司总的利润目标为1
000万元,所以人员销售利润一般不会超过公司总的利润.于是只需在区间[10,1
000]上,检验三个模型是否符合公司要求即可.不妨先作出函数图象,通过观察函数的图象,得到初步结论,再通过具体计算,确认结果.
解:借助计算器或计算机作出函数y=0.25x,y=log7x+1,y=1.002x的图象(图6).
图6
观察函数的图象,在区间[10,1
000]上,模型y=0.25x,y=1.002x的图象都有一部分在直线y=5的上方,只有模型y=log7x+1的图象始终在y=5的下方,这说明只有按模型y=log7x+1进行奖励时才符合公司的要求.
下面通过计算确认上述判断.
首先计算哪个模型的奖金总数不超过5万.
对于模型y=0.25x,它在区间[10,1
000]上递增,而且当x=20时,y=5,因此,当x>20时,y>5,所以该模型不符合要求;
对于模型y=1.002x,由函数图象,并利用计算器,可知在区间(805,806)内有一个点x0满足1.002x0=5,由于它在区间[10,1
000]上递增,因此当x>x0时,y>5,所以该模型也不符合要求;
对于模型y=log7x+1,它在区间[10,1
000]上递增,而且当x=1
000时,y=log71
000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.
再计算按模型y=log7x+1奖励时,奖金是否不超过利润的25%,即当x∈[10,1
000]时,是否有=≤0.25成立.
图7
令f(x)=log7x+1-0.25x,x∈[10,1
000].利用计算器或计算机作出函数f(x)的图象(图7),由函数图象可知它是递减的,因此
f(x)<f(10)≈-0.316
7<0,即log7x+1<0.25x.
所以当x∈[10,1
000]时,<0.25.
说明按模型y=log7x+1奖励,奖金不超过利润的25%.
综上所述,模型y=log7x+1确实能符合公司的要求.
变式训练市场营销人员对过去几年某商品的价格及销售数量的关系做数据分析发现有如下规律:该商品的价格每上涨x%(x>0),销售数量就减少kx%(其中k为正实数).目前,该商品定价为a元,统计其销售数量为b个.(1)当k=时,该商品的价格上涨多少,就能使销售的总金额达到最大?(2)在适当的涨价过程中,求使销售总金额不断增加时k的取值范围.解:依题意,价格上涨x%后,销售总金额为y=a(1+x%)·b(1-kx%)=[-kx2+100(1-k)x+10
000].(1)取k=,y=-x2+50x+10
000,所以x=50,即商品价格上涨50%,y最大为ab.(2)因为y=[-kx2+100(1-k)x+10
000],此二次函数的开口向下,对称轴为x=,在适当涨价过程后,销售总金额不断增加,即要求此函数当自变量x在{x|x>0}的一个子集内增大时,y也增大.所以>0,解得0<k<1.点评:这类问题的关键在于列函数解析式建立函数模型,然后借助不等式进行讨论.
光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k,通过x块玻璃以后强度为y.
(1)写出y关于x的函数关系式;
(2)通过多少块玻璃以后,光线强度减弱到原来的以下.(lg
3≈0.477
1)
解:(1)光线经过1块玻璃后强度为(1-10%)k=0.9k;
光线经过2块玻璃后强度为(1-10%)·0.9k=0.92k;
光线经过3块玻璃后强度为(1-10%)·0.92k=0.93k;
光线经过x块玻璃后强度为0.9xk.
∴y=0.9xk(x∈N
).
(2)由题意:0.9xk<.∴0.9x<.
两边取以10为底的对数,xlg
0.9<lg.
∵lg
0.9<0,∴x>.
∵=≈10.4,∴xmin=11.
∴通过11块玻璃以后,光线强度减弱到原来的以下.
某池塘中野生水葫芦的面积与时间的函数关系的图象(如图8所示).假设其关系为指数函数,并给出下列说法:
①此指数函数的底数为2;
②在第5个月时,野生水葫芦的面积就会超过30
m2;
③野生水葫芦从4
m2蔓延到12
m2只需1.5个月;
④设野生水葫芦蔓延到2
m2、3
m2、6
m2所需的时间分别为t1、t2、t3,则有t1+t2=t3;
⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.
哪些说法是正确的?
图8
解:①说法正确.
∵关系为指数函数,
∴可设y=ax(a>0且a≠1).∴由图知2=a1.
∴a=2,即底数为2.
②∵25=32>30,∴说法正确.
③∵指数函数增长速度越来越快,
∴说法不正确.
④t1=1,t2=log23,t3=log26,∴说法正确.
⑤∵指数函数增长速度越来越快,∴说法不正确.
活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.
引导方法:从基本知识和基本技能两方面来总结.
答案:(1)建立函数模型;(2)利用函数图象性质分析问题、解决问题.
课本习题3.2A组1,2.
设计感想
本节设计由学生熟悉的素材入手,结果却出乎学生的意料,由此使学生产生浓厚的学习兴趣.课本中两个例题不仅让学生学会了函数模型的应用,而且体会到它们之间的差异;我们补充的例题与之相映生辉,其难度适中,是各地高考模拟经常选用的素材.其中拓展提升中的问题紧贴本节主题,很好地体现了指数函数的性质特点,是不可多得的素材.
第2课时
作者:张建国
导入新课
思路1.(情境导入)
国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,……,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40
g,据查,目前世界年度小麦产量为6亿吨,但这仍不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、二次函数的增长差异.
思路2.(直接导入)
我们知道,对数函数y=logax(a>1),指数函数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+∞)上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、二次函数的增长差异.
推进新课
提出问题
(1)在区间(0,+∞)上判断y=log2x,y=2x,y=x2的单调性.
(2)列表并在同一坐标系中画出三个函数的图象.
(3)结合函数的图象找出其交点坐标.
(4)请在图象上分别标出使不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围.
(5)由以上问题你能得出怎样的结论?
讨论结果:
(1)在区间(0,+∞)上函数y=log2x,y=2x,y=x2均为增函数.
(2)见下表与图9.
x
0.2
0.6
1.0
1.4
1.8
2.2
2.6
3.0
3.4

y=2x
1.149
1.516
2
2.639
3.482
4.595
6.063
8
10.556

y=x2
0.04
0.36
1
1.96
3.24
4.84
6.76
9
11.56

y=log2x
-2.322
-0.737
0
0.485
0.848
1.138
1.379
1.585
1.766

图9
(3)从图象看出y=log2x的图象与另外两函数的图象没有交点,且总在另外两函数的图象的下方,y=2x的图象与y=x2的图象有交点.
(4)不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围分别是(2,4)和(0,2)∪(4,+∞).
(5)我们在更大的范围内列表作函数图象(图10),
x
0
1
2
3
4
5
6
7
8

y=2x
1
2
4
8
16
32
64
128
256

y=x2
0
1
4
9
16
25
36
49
64

图10
容易看出:y=2x的图象与y=x2的图象有两个交点(2,4)和(4,16),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x<x2,有时x2<2x.
但是,当自变量x越来越大时,可以看到,y=2x的图象就像与x轴垂直一样,2x的值快速增长,x2比起2x来,几乎有些微不足道,如图11和下表所示.
x
0
10
20
30
40
50
60
70
80

y=2x
1
1
024
1.05E+06
1.07E+09
1.10E+12
1.13E+15
1.15E+18
1.18E+21
1.21E+24

y=x2
0
100
400
900
1
600
2
500
3
600
4
900
6
400

图11
一般地,对于指数函数y=ax(a>1)和幂函数y=xn(n>0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当x>x0时,就会有ax>xn.
同样地,对于对数函数y=logax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,随着x的增大,logax增长得越来越慢,图象就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,logax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当x>x0时,就会有logax<xn.
综上所述,尽管对数函数y=logax(a>1),指数函数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+∞)上都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=logax(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,就会有logax<xn<ax.虽然幂函数y=xn(n>0)增长快于对数函数y=logax(a>1)增长,但它们与指数增长比起来相差甚远,因此指数增长又称“指数爆炸”.
例1
某市的一家报刊摊点,从报社买进晚报的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?
活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:
设摊主每天从报社买进x份,显然当x∈[250,400]时,每月所获利润才能最大.而每月所获利润=卖报收入的总价-付给报社的总价.卖报收入的总价包含三部分:①可卖出400份的20天里,收入为20×0.30x;②可卖出250份的10天里,收入为10×0.30×250;③10天里多进的报刊退回给报社的收入为10×0.05×(x-250).付给报社的总价为30×0.20x.
解:设摊主每天从报社买进x份晚报,显然当x∈[250,400]时,每月所获利润才能最大.于是每月所获利润y为
y=20×0.30x+10×0.30×250+10×0.05×(x-250)-30×0.20x=0.5x+625,x∈[250,400].
因函数y在[250,400]上为增函数,故当x=400时,y有最大值825元.
图12
例2
某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y与时间t之间近似满足如图12所示的曲线.
(1)写出服药后y与t之间的函数关系式;
(2)据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假若某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药的时间(共4次)效果最佳?
解:(1)依题意,得y=
(2)设第二次服药时在第一次服药后t1小时,则-t1+=4,t1=4.因而第二次服药应在11:00;
设第三次服药在第一次服药后t2小时,则此时血液中含药量应为两次服药量的和,即有-t2+-(t2-4)+=4,解得t2=9,故第三次服药应在16:00;
设第四次服药在第一次后t3小时(t3>10),则此时第一次服进的药已吸收完,此时血液中含药量应为第二、三次的和,-(t3-4)+-(t3-9)+=4,解得t3=13.5,故第四次服药应在20:30.
变式训练通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间:讲座开始时,学生兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生接受概念的能力[f(x)的值愈大,表示接受的能力愈强],x表示提出和讲授概念的时间(单位:分钟),可有以下的公式:(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?(2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?解:(1)当0<x≤10时,f(x)=-0.1x2+2.6x+43=-0.1(x-13)2+59.9,知当x=10时,[f(x)]max=f(10)=59;当10<x≤16时,f(x)=59;当16<x≤30时,f(x)=-3x+107,知f(x)<-3×16+107=59.因此,开讲后10分钟,学生的接受能力最强,并能持续6分钟.(2)∵f(5)=-0.1×(5-13)2+59.9=53.5,f(20)=-3×20+107=47<53.5,∴开讲后5分钟时学生的接受能力比开讲后20分钟强.点评:解析式与图象的转换是函数应用的重点,关于分段函数问题更应重点训练.
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图13(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图13(2)的抛物线段表示.
(1)写出图13(1)表示的市场售价与时间的函数关系P=f(t);
写出图13(2)表示的种植成本与时间的函数关系式Q=g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
   
(1)           (2)
图13
(注:市场售价和种植成本的单位:元/102
kg,时间单位:天)
活动:学生在黑板上书写解答.教师在学生中巡视其他学生的解答,发现问题及时纠正.
解:(1)由图13(1)可得市场售价与时间的函数关系为f(t)=
由图13(2)可得种植成本与时间的函数关系为g(t)=(t-150)2+100,0≤t≤300.
(2)设t时刻的纯收益为h(t),
则由题意得h(t)=f(t)-g(t).
即h(t)=
当0≤t≤200时,配方整理,得h(t)=-(t-50)2+100,
所以当t=50时,h(t)取得区间[0,200]上的最大值100;
当200<t≤300时,配方整理,得h(t)=-(t-350)2+100,
所以当t=300时,h(t)取得区间[200,300]上的最大值87.5.
综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.
点评:本题主要考查由函数图象建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.
探究内容
①在函数应用中如何利用图象求解析式.
②分段函数解析式的求法.
③函数应用中的最大值、最小值问题.
举例探究:某跨国公司是专门生产健身产品的企业,第一批产品A上市销售40天内全部售完,该公司对第一批产品A上市后的国内外市场销售情况进行调研,结果如图14(1)、图14(2)、图14(3)所示.其中图14(1)的折线表示的是国外市场的日销售量与上市时间的关系;图14(2)的抛物线表示的是国内市场的日销售量与上市时间的关系;图14(3)的折线表示的是每件产品A的销售利润与上市时间的关系.
图14
(1)分别写出国外市场的日销售量f(t)、国内市场的日销售量g(t)与第一批产品A上市时间t的关系式;
(2)第一批产品A上市后的哪几天,这家公司的国内和国外日销售利润之和超过6
300万元?
分析:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式.
2.在t∈[0,40]上,有几个分界点,请同学们思考应分为几段.
3.回忆函数最值的求法.
解:(1)f(t)=
g(t)=-t2+6t(0≤t≤40).
(2)每件A产品销售利润h(t)=
该公司的日销售利润
当0≤t≤20时,F(t)=3t(-t2+8t),先判断其单调性.
设0≤t1<t2≤20,
则F(t1)-F(t2)=3t1(-t+8t1)-3t2(-t+8t2)<0.
∴F(t)在区间[0,20]上为增函数.
∴F(t)max=F(20)=6
000<6
300.
当20<t≤30时,
令60(-t2+8t)>6
300,
则<t<30;
当30<t≤40时,F(t)=60(-t2+240)<60(-×302+240)=6
300,
故在第24,25,26,27,28,29天日销售利润超过6
300万元.
点评:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式,重点是找出关键点.
2.在t∈[0,40]上,有几个分界点,t=20,t=30两点把区间分为三段.
3.二次函数的最值可用配方法,另外利用单调性求最值也是常用方法之一.
本节学习了:①指数函数、对数函数、二次函数的增长差异.②幂函数、指数函数、对数函数的应用.
课本习题3.2A组3,4.
设计感想
本节设计从精彩的故事开始,让学生从故事中体会数学带来的震撼,然后借助计算机感受不同函数模型的巨大差异.接着通过最新题型训练学生利用函数模型解决实际问题的能力;并且重点训练了由图象转化为函数解析式的能力,因为这是高考的一个重点.本节的每个例题都很精彩,可灵活选用.
备课资料
【备选例题】
【例1】某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府对该项特产的销售投资收益为:每年投入x万元,可获得利润P=-(x-40)2+100万元.当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在规划后对该项目每年都投入60万元的销售投资,在未来10年的前5年中,每年都从60万元中拨出30万元用于修建一条公路,5年修成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每年投入x万元,可获利润Q=-(60-x)2+(60-x)万元.
问从10年的累积利润看,该规划方案是否可行?
解:在实施规划前,由题设P=-(x-40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元.
则10年的总利润为W1=100×10=1
000(万元).
实施规划后的前5年中,由题设P=-(x-40)2+100,知每年投入30万元时,有最大利润Pmax=(万元).
前5年的利润和为×5=(万元).
设在公路通车的后5年中,每年用x万元投资于本地的销售,而用剩下的(60-x)万元用于外地区的销售投资,则其总利润为
W2=×5+-x2+x×5
=-5(x-30)2+4
950.
当x=30时,(W2)max=4
950(万元).
从而10年的总利润为+4
950(万元).
∵+4
950>1
000,
∴该规划方案有极大实施价值.
PAGE
12.1.2 指数函数及其性质
教学内容分析
本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》.根据实际情况,将《指数函数及其性质》划分为三节课〔指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)〕,这是第一节课“指数函数的图象及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.
学生学习情况分析
指数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上进行研究的,是学生对函数概念及性质的第一次应用.教材在之前的学习中给出了两个实际例子(GDP的增长问题和碳14的衰减问题),已经让学生感受到了指数函数的实际背景,但这两个例子的背景对于学生来说有些陌生.本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望.
设计思想
1.函数及其图象在高中数学中占有很重要的位置.如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机地结合起来,通过具有一定思考价值的问题,激发学生的求知欲望——持久的好奇心.我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的.本节课力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去.
2.在本节课的教学中我努力实践以下两点:
(1)在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.
(2)在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法.
3.通过课堂教学活动向学生渗透数学思想方法.
教学目标
根据学生的实际情况,本节课的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识.
重点难点
教学重点:指数函数的概念、图象和性质.
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质.
一、创设情境、提出问题(约3分钟)
师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……,按这样的规律,51号同学该准备多少粒米?
学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重.
师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……,按这样的规律,51号同学该准备多少粒米?
学情预设
学生可能说出很多或能算出具体数目.
师:大家能否估计一下51号同学该准备的米有多重吗?
教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨.
师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨.这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!
设计意图
用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望.
在以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用x表示,y与x之间的关系分别是什么?
学生很容易得出y=2x(x∈N
)和y=2x(x∈N
).
学情预设
学生可能会漏掉x的取值范围,教师要引导学生思考具体问题中x的取值范围.
二、师生互动、探究新知
1.指数函数的定义
师:其实,在本章开头的问题中,也有一个与y=2x类似的关系式y=1.073x(x∈N
,x≤20).
(1)让学生思考讨论以下问题(问题逐个给出,约3分钟):
①y=2x(x∈N
)和y=1.073x(x∈N
,x≤20)这两个解析式有什么共同特征?
②它们能否构成函数?
③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?
设计意图
引导学生从具体问题、实际问题中抽象出数学模型.学生对比已经学过的一次函数、反比例函数、二次函数,发现y=2x,y=1.073x是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣.
引导学生观察,两个函数中,底数是常数,指数是自变量.
师:如果可以用字母a代替其中的底数,那么上述两式就可以表示成y=ax的形式.自变量在指数位置,所以我们把它称作指数函数.
(2)让学生讨论并给出指数函数的定义(约6分钟).
对于底数的分类,可将问题分解为:
①若a<0,会有什么问题?(如a=-2,x=,则在实数范围内相应的函数值不存在)
②若a=0,会有什么问题?(对于x≤0,ax都无意义)
③若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要)
师:为了避免上述各种情况的发生,所以规定a>0且a≠1.
在这里要注意生生之间、师生之间的对话.
①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a>0,且a≠1;a=1为什么不行?
②若学生只给出y=ax,教师可以引导学生通过类比一次函数(y=kx+b,k≠0)、反比例函数(y=,k≠0)、二次函数(y=ax2+bx+c,a≠0)中的限制条件,思考指数函数中底数的限制条件.学情预设
设计意图
①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;
②讨论出a>0,且a≠1,也为下面研究性质时对底数的分类做准备.
接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y=2×3x,y=32x,y=-2x.
学情预设
学生可能只是关注指数是否是变量,而不考虑其他的.
设计意图
加深学生对指数函数定义和呈现形式的理解.
2.指数函数的性质
(1)提出两个问题(约3分钟)
①目前研究函数一般可以包括哪些方面?
设计意图
让学生在研究指数函数时有明确的目标:函数三要素(对应法则、定义域、值域)和函数的基本性质(单调性、奇偶性).
②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究?
可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考.
设计意图
①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)两个不同的角度对函数进行研究;
②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透.
(2)分组活动,合作学习(约8分钟)
师:下面我们就从图象和解析式这两个不同的角度对指数函数进行研究.
①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;
②每一大组再分为若干合作小组(建议4人一小组);
③每组都将研究所得到的结论或成果写出来以便交流.
学情预设
考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导.
通过自主探索、合作学习,不仅让学生充当学习的主人更可加深对所得到结论的理解.设计意图
(3)交流、总结(约10~12分钟)
师:下面我们开一个成果展示会!
教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果.
教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析.这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其他性质?
师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?
学情预设
①首先选一个从解析式的角度研究的小组上台汇报;
②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;
③问其他小组有没有不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化.
设计意图
①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的.
②让学生上台汇报研究成果,使学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;
③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题,使该难点的突破显得自然.
师:从图象入手我们很容易看出函数的单调性、奇偶性,以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到.
教师通过几何画板中改变参数a的值,追踪y=ax的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律.
师生共同总结指数函数的图象和性质,教师可以边总结边板书.
图象
0<a<1
a>1
定义域
R
值域
(0,+∞)
性质
过定点(0,1)
非奇非偶
在R上是减函数
在R上是增函数
三、巩固训练、提升总结(约8分钟)
1.例:已知指数函数f(x)=ax(a>0,且a≠1)的图象经过点(3,π),求f(0),f(1),f(-3)的值.
解:因为f(x)=ax的图象经过点(3,π),所以f(3)=π,
即a3=π.解得,于是f(x)=.
所以f(0)=1,f(1)=,f(-3)=.
设计意图
通过本题加深学生对指数函数的理解.
师:根据本题,你能说出确定一个指数函数需要什么条件吗?
师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了.
设计意图
让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想.
2.练习:(1)在同一平面直角坐标系中画出y=3x和y=x的大致图象,并说出这两个函数的性质;
(2)求下列函数的定义域:①;②.
3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?
学情预设
学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数.
设计意图
①让学生再一次复习对函数的研究方法(可以从多个角度进行),让学生体会本节课的研究方法,以便能将其迁移到其他函数的研究中去.
②总结本节课中所用到的数学思想方法.
③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通.
4.作业:课本习题2.1A组 5.
1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”.
2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本节课使用几何画板可以动态地演示出指数函数的底数的变化过程,让学生直观地观察底数对指数函数单调性的影响.
3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉地运用这些数学思想方法去分析、思考问题.
指数函数及其性质的应用
三维目标
1.知识与技能
理解指数函数的图象和性质,会利用性质来解决问题.
2.过程与方法
能利用指数函数的图象和性质来比较两个值的大小,图象间的平移,去探索利用指数函数的单调性来求未知字母的取值范围.
3.情感、态度与价值观
在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.
重点难点
教学重点:指数函数的图象和性质.
教学难点:指数函数的性质应用.
第2课时 指数函数及其性质的应用(1)
作者:王建波
导入新课
思路1.复习导入:我们前一节课学习了指数函数的概念和性质,下面我们一起回顾一下指数函数的概念、图象和性质.如何利用指数函数的图象和性质来解决一些问题,这就是本堂课要讲的主要内容.教师板书课题.
思路2.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在理论上,我们能否严格的证明(特别是指数函数的单调性),以便于我们在解题时应用这些性质,本堂课我们要解决这个问题.教师板书课题:指数函数及其性质的应用(1).
例1
比较下列各题中的两个值的大小:
(1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.
活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的方法,再写出答案(最好用实物投影仪展示写得正确的答案).比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;
图1
二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并评价.
解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y=1.7x的图象,如图1.
在图象上找出横坐标分别为2.5,3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.
解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91,
所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.
解法三:利用函数单调性,
(1)1.72.5与1.73的底数是1.7,它们可以看成函数y=1.7x,当x=2.5和3时的函数值;因为1.7>1,所以函数y=1.7x在R上是增函数,而2.5<3,所以1.72.5<1.73;
(2)0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y=0.8x,当x=-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y=0.8x在R上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2;
(3)因为1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1.
点评:在第(3)小题中,可以用解法一、解法二解决,但解法三不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值.
思考
在上面的解法中,你认为哪种方法更实用?
活动:学生对上面的三种解法作比较,解题有法但无定法,我们要采取多种解法,在多种解法中选择最优解法,这要通过反复练习强化来实现.
变式训练1.已知a=0.80.7,b=0.80.9,c=1.20.8,按大小顺序排列a,b,c.解:b<a<c(a、b可利用指数函数的性质比较,而c是大于1的).2.比较与的大小(a>0且a≠1).解:分a>1和0<a<1两种情况讨论:当0<a<1时,;当a>1时,.
例2
用函数单调性的定义证明指数函数y=ax(a>0,且a≠1)的单调性.
活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.
证法一:设x1,x2∈R,且x1<x2,则
y2-y1=.
因为a>1,x2-x1>0,所以,即-1>0.
又因为>0,所以y2-y1>0,即y1<y2.
所以当a>1时,y=ax,x∈R是增函数.
同理可证,当0<a<1时,y=ax是减函数.
证法二:设x1,x2∈R,且x1<x2,则y2与y1都大于0,则=.
因为a>1,x2-x1>0,所以>1,即>1,y1<y2.
所以当a>1时,y=ax,x∈R是增函数.
同理可证,当0<a<1时,y=ax是减函数.
变式训练若指数函数y=(2a-1)x是减函数,则a的取值范围是多少?解:由题可知0<2a-1<1,即<a<1.
例3
截止到1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)
活动:师生共同讨论,将实际问题转化为数学表达式,建立目标函数,常采用特殊到一般的方式,教师引导学生注意题目中自变量的取值范围,可以先考虑一年一年增长的情况,再从中发现规律,最后解决问题:
1999年底 人口约为13亿;
经过1年 人口约为13(1+1%)亿;
经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿;
经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿;
……
经过x年 人口约为13(1+1%)x亿;
经过20年 人口约为13(1+1%)20亿.
解:设今后人口年平均增长率为1%,经过x年后,我国人口数为y亿,则
y=13(1+1%)x,
当x=20时,y=13(1+1%)20≈16(亿).
答:经过20年后,我国人口数最多为16亿.
点评:类似此题,设原值为N,平均增长率为p,则对于经过时间x后总量y=N(1+p)x(x∈N),像y=N(1+p)x等形如y=kax(k∈R,且k≠0;a>0,且a≠1)的函数称为指数型函数.
1.函数y=a|x|(a>1)的图象是(  )
图2
解析:当x≥0时,y=a|x|=ax的图象过(0,1)点,在第一象限,图象下凸,是增函数.
答案:B
2.下列关系中正确的是(  )
A.
B.
C.
D.
答案:D
3.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是(  )
A.(0,1)
B.
C.(-∞,0)
D.(0,+∞)
解析:由题意得0<2x<1,即0<2x<20,所以x<0,即x∈(-∞,0).
答案:C
4.若集合A={y|y=2x,x∈R},B={y|y=x2,x∈R},则(  )
A.AB
B.AB
C.A=B
D.A∩B=
解析:A={y|y>0},B={y|y≥0},所以AB.
答案:A
5.对于函数f(x)定义域中的任意的x1、x2(x1≠x2),有如下的结论:
①f(x1+x2)=f(x1)·f(x2);②f(x1·x2)=f(x1)+f(x2);
③>0;④f<.
当f(x)=10x时,上述结论中正确的是__________.
解析:因为f(x)=10x,且x1≠x2,所以f(x1+x2)==f(x1)·f(x2),所以①正确;
因为f(x1·x2)==f(x1)+f(x2),②不正确;
因为f(x)=10x是增函数,所以f(x1)-f(x2)与x1-x2同号,
所以>0,所以③正确.
因为函数f(x)=10x图象如图3所示是上凹下凸的,可解得④正确.
图3
答案:①③④
另解:④.∵10x1>0,10x2>0,x1≠x2,
∴.∴,
即.∴>f.
在同一坐标系中作出下列函数的图象,讨论它们之间的联系.
(1)①y=3x,②y=3x+1,③y=3x-1;
(2)①y=x,②y=x-1,③y=x+1.
活动:学生动手画函数图象,教师点拨,学生没有思路,教师可以提示.学生回忆函数作图的方法与步骤,按规定作出图象,特别是关键点.
解:如图4及图5.
观察图4可以看出,y=3x,y=3x+1,y=3x-1的图象间有如下关系:
y=3x+1的图象由y=3x的图象左移1个单位得到;
y=3x-1的图象由y=3x的图象右移1个单位得到;
y=3x-1的图象由y=3x+1的图象向右移动2个单位得到.
观察图5可以看出,y=x,y=x-1,y=x+1的图象间有如下关系:
y=x+1的图象由y=x的图象左移1个单位得到;
y=x-1的图象由y=x的图象右移1个单位得到;
y=x-1的图象由y=x+1的图象向右移动2个单位得到.
你能推广到一般的情形吗?同学们留作思考.
思考
本节课我们主要学习了哪些知识,你有什么收获?把你的收获写在笔记本上.
活动:教师用多媒体显示以下内容,学生互相交流学习心得,看是否与多媒体显示的内容一致.
本节课,在复习旧知识的基础上学习了数形结合的思想、函数与方程的思想,加深了对问题的分析能力,形成了一定的能力与方法.
课本习题2.1
B组 1,3,4.
本节课主要是复习巩固指数函数及其性质,涉及的内容较多,要首先组织学生回顾指数函数的性质,为此,必须利用函数图象,数形结合,通过数与形的相互转化,借助形的直观性解决问题,本节课要训练学生能够恰当地构造函数,根据函数的单调性比较大小,有时要分a>1,0<a<1,这是分类讨论的思想,因此加大了习题和练习的量,目的是让学生在较短的时间内,掌握学习的方法,提高分析问题和解决问题的能力,要加快速度,多运用现代化的教学手段.
第3课时 指数函数及其性质的应用(2)
作者:刘玉亭
导入新课
思路1.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在上节课的探究中我们知道,函数①y=3x,②y=3x+1,③y=3x-1的图象之间的关系,由其中的一个可得到另外两个的图象,那么,对y=ax与y=ax+m(a>0,m∈R)有着怎样的关系呢?在理论上,含有指数函数的复合函数是否具有奇偶性呢?这是我们本堂课研究的内容.教师点出课题:指数函数及其性质的应用(2).
思路2.我们在第一章中,已学习了函数的性质,特别是单调性和奇偶性是某些函数的重要特点,我们刚刚学习的指数函数,严格地证明了指数函数的单调性,便于我们在解题时应用这些性质,在实际生活中,往往遇到的不单单是指数函数,还有其他形式的函数,有的是指数函数的复合函数,我们需要研究它的单调性和奇偶性,这是我们面临的问题,也是我们本节课要解决的问题——指数函数及其性质的应用(2).
推进新课
(1)指数函数有哪些性质?
(2)利用单调性的定义证明函数单调性的步骤有哪些?
(3)对复合函数,如何证明函数的单调性?
(4)如何判断函数的奇偶性,有哪些方法?
活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容.
讨论结果:(1)指数函数的图象和性质
一般地,指数函数y=ax在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:
a>1
0<a<1
图象
图象特征
图象分布在一、二象限,与y轴相交,落在x轴的上方
都过点(0,1)
第一象限的点的纵坐标都大于1;第二象限的点的纵坐标都大于0且小于1
第一象限的点的纵坐标都大于0且小于1;第二象限的点的纵坐标都大于1
从左向右图象逐渐上升
从左向右图象逐渐下降
性质
(1)定义域:R
(2)值域:(0,+∞)
(3)过定点(0,1),即x=0时,y=1
(4)x>0时,y>1;x<0时,0<y<1
(4)x>0时,0<y<1;x<0时,y>1
(5)在R上是增函数
(5)在R上是减函数
(2)依据函数单调性的定义证明函数单调性的步骤是:
①取值.即设x1,x2是该区间内的任意两个值且x1<x2.
②作差变形.即求f(x2)-f(x1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.
③定号.根据给定的区间和x2-x1的符号确定f(x2)-f(x1)的符号,当符号不确定时,可以进行分类讨论.
④判断.根据单调性定义作出结论.
(3)对于复合函数y=f(g(x))可以总结为:
当函数f(x)和g(x)的单调性相同时,复合函数y=f(g(x))是增函数;
当函数f(x)和g(x)的单调性相异即不同时,复合函数y=f(g(x))是减函数;
又简称为口诀“同增异减”.
(4)判断函数的奇偶性:
一是利用定义法,即首先是定义域关于原点对称,再次是考查式子f(x)与f(-x)的关系,最后确定函数的奇偶性;
二是作出函数图象或从已知图象观察,若图象关于原点或y轴对称,则函数具有奇偶性.
例1
在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系.
(1)y=2x+1与y=2x+2;(2)y=2x-1与y=2x-2.
活动:教师适当时候点拨,学生回想作图的方法和步骤,特别是指数函数图象的作法,学生回答并到黑板上作图,教师指点学生,列出对应值表,抓住关键点,特别是(0,1)点,或用计算机作图.
解:(1)列出函数数据表作出图象如图6.
x

-3
-2
-1
0
1
2
3

2x

0.125
0.25
0.5
1
2
4
8

2x+1

0.25
0.5
1
2
4
8
16

2x+2

0.5
1
2
4
8
16
32

图6
比较可知函数y=2x+1、y=2x+2与y=2x的图象的关系为:将指数函数y=2x的图象向左平行移动1个单位长度,就得到函数y=2x+1的图象;将指数函数y=2x的图象向左平行移动2个单位长度,就得到函数y=2x+2的图象.
(2)列出函数数据表作出图象如图7.
x

-3
-2
-1
0
1
2
3

2x

0.125
0.25
0.5
1
2
4
8

2x-1

0.062
5
0.125
0.25
0.5
1
2
4

2x-2

0.031
25
0.062
5
0.125
0.25
0.5
1
2

图7
比较可知函数y=2x-1、y=2x-2与y=2x的图象的关系为:将指数函数y=2x的图象向右平行移动1个单位长度,就得到函数y=2x-1的图象;将指数函数y=2x的图象向右平行移动2个单位长度,就得到函数y=2x-2的图象.
点评:类似地,我们得到y=ax与y=ax+m(a>0,a≠1,m∈R)之间的关系:
y=ax+m(a>0,m∈R)的图象可以由y=ax的图象变化而来.
当m>0时,y=ax的图象向左移动m个单位得到y=ax+m的图象;
当m<0时,y=ax的图象向右移动|m|个单位得到y=ax+m的图象.
上述规律也简称为“左加右减”.
变式训练为了得到函数y=2x-3-1的图象,只需把函数y=2x的图象(  )A.向右平移3个单位长度,再向下平移1个单位长度B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度D.向左平移3个单位长度,再向上平移1个单位长度答案:A点评:对于有些复合函数的图象,常用变换方法作出.
例2
已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
活动:学生审题,考虑解题思路.求值一般是构建方程,求取值范围一般要转化为不等式,如果有困难,教师可以提示,(1)从条件出发,充分利用奇函数的性质,由于定义域为R,所以f(0)=0,f(-1)=-f(1),(2)在(1)的基础上求出f(x),转化为关于k的不等式,利用恒成立问题再转化.
(1)解:因为f(x)是奇函数,
所以f(0)=0,即=0 b=1.所以f(x)=;
又由f(1)=-f(-1)知=- a=2.
(2)解法一:由(1)知f(x)==-+,易知f(x)在(-∞,+∞)上为减函数.
又因f(x)是奇函数,从而不等式:f(t2-2t)+f(2t2-k)<0
等价于f(t2-2t)<-f(2t2-k)=f(k-2t2),因f(x)为减函数,由上式推得:
t2-2t>k-2t2,即对一切t∈R有3t2-2t-k>0,
从而判别式Δ=4+12k<0,∴k<-.
解法二:由(1)知f(x)=.
又由题设条件得,
即.
整理得,因底数2>1,故3t2-2t-k>0,
上式对一切t∈R均成立,从而判别式Δ=4+12k<0,即k<-.
点评:记住下列函数的增减性,对解题是十分有用的,若f(x)为增(减)函数,则为减(增)函数.
求函数y=|1+2x|+|x-2|的单调区间.
活动:教师提示,因为指数含有两个绝对值,要去绝对值,要分段讨论,同时注意底数的大小,分析出指数的单调区间,再确定函数的单调区间,利用复合函数的单调性学生思考讨论,然后解答.
解:由题意可知2与-是区间的分界点.
当x<-时,因为y=-1-2x-x+2=1-3x=23x-1=·8x,
所以此时函数为增函数.
当-≤x<2时,因为y=1+2x-x+2=3+x=2-3-x=·x,
所以此时函数为减函数.
当x≥2时,因为y=1+2x+x-2=3x-1=21-3x=2·x,
所以此时函数为减函数.
当x1∈,x2∈[2,+∞)时,因为,
又因为1-3x2-(-3-x1)=4-3x2+x1=4+x1-3x2<0,所以1-3x2<-3-x1,
即.
所以此时函数为减函数.
综上所述,函数f(x)在上单调递增,在上单调递减.
设m<1,f(x)=,若0<a<1,试求:
(1)f(a)+f(1-a)的值;
(2)f+f+f+…+f的值.
活动:学生思考,观察,教师提示学生注意式子的特点,做这种题目,一定要有预见性,即第(2)问要用到第(1)问的结果,联系函数的知识解决.
解:(1)f(a)+f(1-a)=+=+=+=+==1.
(2)f+f+f+…+f
=++…+
=500×1=500.
点评:第(2)问是第(1)问的继续,第(1)问是第(2)问的基础,两个问题是衔接的,利用前一个问题解决后一个问题是我们经常遇到的情形,要注意问题与问题之间的联系.
本节课复习了指数函数的性质,借助指数函数的性质的运用,我们对函数的单调性和奇偶性又进行了复习巩固,利用单调性和奇偶性解决了一些问题,对常考的函数图象的变换进行了学习,要高度重视,在不断学习中升华提高.
课本习题2.1B组 2.
指数函数作为一类基本的初等函数,它虽然不具有函数通性中的奇偶性,但是它与其他函数复合构成具有比较复杂的单调性的函数,同时也可以复合出比较特殊的奇函数和偶函数,判断复合函数的单调性和奇偶性要十分小心,严格按规定的要求,有时借助数形结合可帮我们找到解题思路,本堂课是在以前基础上的提高与深化,同时又兼顾了高考常考的内容,因此涉及面广,容量大,要集中精力,加快速度,高质量完成教学任务.
富兰克林的遗嘱与拿破仑的诺言
富兰克林利用放风筝而感受到电击,从而发明了避雷针.这位美国著名的科学家死后留下了一份有趣的遗嘱:
“……一千英镑赠给波士顿的居民,如果他们接受了这一千英镑,那么这笔钱应该托付给一些挑选出来的公民,他们得把这些钱按每年5%的利率借给一些年轻的手工业者去生息.这些钱过了100年增加到131
000英镑.我希望那时候用100
000英镑来建立一所公共建筑物,剩下的31
000英镑拿去继续生息100年.在第二个100年末了,这笔钱增加到4
061
000英镑,其中1
061
000英镑还是由波士顿的居民来支配,而其余的3
000
000英镑让马萨诸塞州的公众来管理.过此之后,我可不敢主张了!”
你可曾想过:区区的1
000英镑遗产,竟立下几百万英镑财产分配的遗嘱,是“信口开河”,还是“言而有据”呢?事实上,只要借助于复利公式,同学们完全可以通过计算而作出自己的判断.
yn=m(1+a)n就是复利公式,其中m为本金,a为年利率,yn为n年后本金与利息的总和.在第一个100年末富兰克林的财产应增加到:y100=1
000(1+5%)100≈131
501(英镑),比遗嘱中写的还多出约501英镑.在第二个100年末,遗产就更多了:y100′=31
501(1+5%)100≈4
142
421(英镑).可见富兰克林的遗嘱是有科学根据的.
遗嘱故事启示我们:在指数效应下,微薄的财产,低廉的利率,可以变得令人瞠目结舌.威名显赫的拿破仑,由于陷进了指数效应的漩涡而使法国政府十分难堪!
1797年,拿破仑参观国立卢森堡小学,赠上了一束价值三个金路易的玫瑰花,并许诺只要法兰西共和国存在一天,他将每年送一束价值相等的玫瑰花,以作两国友谊的象征.由于连年征战,拿破仑忘却了这一诺言!1894年,卢森堡王国郑重地向法兰西共和国提出了“玫瑰花悬案”,要求法国政府在拿破仑的声誉和1
375
596法郎的债款中,二者选取其一.这笔巨款就是三个金路易的本金,以5%的年利率,在97年的指数效应下的产物.
PAGE
11.2.1 函数的概念
教学分析
函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.
在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念.
三维目标
1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.
2.掌握构成函数的三要素,会求一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性和重要性,激发学生学习的积极性.
重点难点
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.
教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值.
课时安排
2课时
第1课时
导入新课
问题:已知函数y=请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题.
推进新课
(1)给出下列三种对应:(幻灯片)
①一枚炮弹发射后,经过26
s落到地面击中目标.炮弹的射高为845
m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2.
时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应f:t→h=130t-5t2,t∈A,h∈B.
②近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106
km2)随时间t(单位:年)从1979~2001年的变化情况.
图1
根据图1中的曲线,可知时间t的变化范围是数集A={t|1979≤t≤2001},臭氧层空洞面积S的变化范围是数集B={S|0≤S≤26},则有对应:
f:t→S,t∈A,S∈B.
③国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.下表中的恩格尔系数y随时间t(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
“八五”计划以来我国城镇居民恩格尔系数变化情况
时间(t)
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
恩格尔系数(y)
53.8
52.9
50.1
49.9
49.9
48.6
46.4
44.5
41.9
39.2
37.9
根据上表,可知时间t的变化范围是数集A={t|1991≤t≤2001},恩格尔系数y的变化范围是数集B={y|37.9≤y≤53.8}.则有对应:f:t→y,t∈A,y∈B.
以上三个对应有什么共同特点?
(2)我们把这样的对应称为函数,请用集合的观点给出函数的定义.
(3)函数的定义域是自变量的取值范围,那么你是如何理解这个“取值范围”的?
(4)函数有意义又指什么?
(5)函数f:A→B的值域为C,那么集合B=C吗?
活动:让学生认真思考以上三个对应,也可以分组讨论交流,引导学生找出这三个对应的本质共性.
解:(1)共同特点是:集合A,B都是数集,并且对于数集A中的每一个元素x,在对应关系f:A→B下,在数集B中都有唯一确定的元素y与之对应.
(2)一般地,设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中x叫做自变量,x的取值范围A叫做函数的定义域,函数值的集合{f(x)|x∈A}叫做函数的值域.
在研究函数时常会用到区间的概念,设a,b是两个实数,且a<b,如下表所示:
定义
名称
符号
数轴表示
{x|a≤x≤b}
闭区间
[a,b]
{x|a<x<b}
开区间
(a,b)
{x|a≤x<b}
半开半闭区间
[a,b)
{x|a<x≤b}
半开半闭区间
(a,b]
{x|x≥a}
[a,+∞)
{x|x>a}
(a,+∞)
{x|x≤a}
(-∞,a]
{x|x<a}
(-∞,a)
R
(-∞,+∞)
(3)自变量的取值范围就是使函数有意义的自变量的取值范围.
(4)函数有意义是指:自变量的取值使分母不为0;被开方数为非负数;如果函数有实际意义时,那么还要满足实际取值等等.
(5)C B.
例题
题已知函数f(x)=+,
(1)求函数的定义域;
(2)求f(-3),f的值;
(3)当a>0时,求f(a),f(a-1)的值.
活动:(1)让学生回想函数的定义域指的是什么?函数的定义域是使函数有意义的自变量的取值范围,故转化为求使和有意义的自变量的取值范围.有意义,则x+3≥0,有意义,则x+2≠0,转化为解由x+3≥0和x+2≠0组成的不等式组.
(2)让学生回想f(-3),f表示什么含义?f(-3)表示自变量x=-3时对应的函数值,f表示自变量x=时对应的函数值.分别将-3,代入函数的对应法则中得f(-3),f的值.
(3)f(a)表示自变量x=a时对应的函数值,f(a-1)表示自变量x=a-1时对应的函数值.分别将a,a-1代入函数的对应法则中得f(a),f(a-1)的值.
解:(1)要使函数有意义,自变量x的取值需满足解得-3≤x<-2或x>-2,即函数的定义域是[-3,-2)∪(-2,+∞).
(2)f(-3)=+=-1;f=+=+.
(3)∵a>0,∴a∈[-3,-2)∪(-2,+∞),即f(a),f(a-1)有意义.
则f(a)=+;f(a-1)=+=+.
点评:本题主要考查函数的定义域以及对符号f(x)的理解.求使函数有意义的自变量的取值范围,通常转化为解不等式组.
f(x)是表示关于变量x的函数,又可以表示自变量x对应的函数值,是一个整体符号,分开符号f(x)没有什么意义.符号f可以看作是对“x”施加的某种法则或运算.例如f(x)=x2-x+5,当x=2时,看作对“2”施加了这样的运算法则:先平方,再减去2,再加上5;若x为某一代数式(或某一个函数记号时),则左右两边的所有x都用同一个代数式(或某一个函数)来代替.如:f(2x+1)=(2x+1)2-(2x+1)+5,f[g(x)]=[g(x)]2-g(x)+5等等.
符号y=f(x)表示变量y是变量x的函数,它仅仅是函数符号,并不表示y等于f与x的乘积.符号f(x)与f(m)既有区别又有联系:当m是变量时,函数f(x)与函数f(m)是同一个函数;当m是常数时,f(m)表示自变量x=m对应的函数值,是一个常量.
已知函数的解析式,求函数的定义域,就是求使得函数解析式有意义的自变量的取值范围,即
(1)如果f(x)是整式,那么函数的定义域是实数集R.
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合(即求各部分定义域的交集).
(5)对于由实际问题的背景确定的函数,其定义域还要受实际问题的制约.
变式训练1.函数y=-的定义域为__________.答案:{x|x≤1,且x≠-1}.点评:本题容易错解:化简函数的解析式为y=x+1-,得函数的定义域为{x|x≤1}.其原因是这样做违背了讨论函数问题要保持定义域优先的原则.化简函数的解析式容易引起函数的定义域发生变化,因此求函数的定义域之前,不要化简解析式.2.若f(x)=的定义域为M,g(x)=|x|的定义域为N,令全集U=R,则M∩N等于(  )A.M   
B.NC. UM
D. UN解析:由题意得M={x|x>0},N=R,则M∩N={x|x>0}=M.答案:A3.已知函数f(x)的定义域是[-1,1],则函数f(2x-1)的定义域是________.解析:要使函数f(2x-1)有意义,自变量x的取值需满足-1≤2x-1≤1,∴0≤x≤1.答案:[0,1]
1.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则++++=________.
解析:∵f(p+q)=f(p)f(q),∴f(x+x)=f(x)f(x),即f2(x)=f(2x).
令q=1,得f(p+1)=f(p)f(1),
∴=f(1)=3.
∴原式=++++=2(3+3+3+3+3)=30.
答案:30
2.若f(x)=的定义域为A,g(x)=f(x+1)-f(x)的定义域为B,那么(  )
A.A∪B=B
B.AB
C.A B
D.A∩B=
解析:由题意得A={x|x≠0},B={x|x≠0,且x≠-1}.则A∪B=A,则A错;A∩B=B,则D错;由于BA,则C错,B正确.
答案:B
问题:已知函数f(x)=x2+1,x∈R.
(1)分别计算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值;
(2)由(1)你发现了什么结论?并加以证明.
活动:让学生探求f(x)-f(-x)的值.分析(1)中各值的规律,归纳猜想出结论,再用解析式证明.
解:(1)f(1)-f(-1)=(12+1)-[(-1)2+1]=2-2=0;
f(2)-f(-2)=(22+1)-[(-2)2+1]=5-5=0;
f(3)-f(-3)=(32+1)-[(-3)2+1]=10-10=0.
(2)由(1)可发现结论:对任意x∈R,有f(x)=f(-x).证明如下:
由题意得f(-x)=(-x)2+1=x2+1=f(x).
∴对任意x∈R,总有f(x)=f(-x).
本节课学习了:函数的概念、函数定义域的求法和对函数符号f(x)的理解.
课本习题1.2A组 1,5.
本节教学中,在归纳函数的概念时,本节设计运用了大量的实例,如果不借助于信息技术,那么会把时间浪费在实例的书写上,会造成课时不足即拖堂现象.本节重点设计了函数定义域的求法,而函数值域的求法将放在函数的表示法中学习.由于函数是高中数学的重点内容之一,也是高考的重点和热点,因此对函数的概念等知识进行了适当的拓展,以满足高考的需要.
第2课时
作者:刘玉亭
复习
1.函数的概念.
2.函数的定义域的求法.
导入新课
思路1.当实数a,b的符号相同,绝对值相等时,实数a=b;当集合A,B中元素完全相同时,集合A=B;那么两个函数满足什么条件才相等呢?引出课题:函数相等.
思路2.我们学习了函数的概念,y=x与y=是同一个函数吗?这就是本节课学习的内容,引出课题:函数相等.
推进新课
①指出函数y=x+1的构成要素有几部分?
②一个函数的构成要素有几部分?
③分别写出函数y=x+1和函数y=t+1的定义域和对应关系,并比较异同.
④函数y=x+1和函数y=t+1的值域相同吗?由此可见两个函数的定义域和对应关系分别相同,值域相同吗?
⑤由此你对函数的三要素有什么新的认识?
讨论结果:①函数y=x+1的构成要素为:定义域R,对应关系x→x+1,值域是R.
②一个函数的构成要素为:定义域、对应关系和值域,简称为函数的三要素.其中定义域是函数的灵魂,对应关系是函数的核心.当且仅当两个函数的三要素都相同时,这两个函数才相同.
③定义域和对应关系分别相同.
④值域相同.
⑤如果两个函数的定义域和对应关系分别相同,那么它们的值域一定相等.因此只要两个函数的定义域和对应关系分别相同,那么这两个函数就相等.
例题
题下列函数中哪个与函数y=x相等?
(1)y=()2;(2)y=;(3)y=;(4)y=.
活动:让学生思考两个函数相等的条件后,引导学生求出各个函数的定义域,化简函数关系式为最简形式.只要它们的定义域和对应关系分别相同,那么这两个函数就相等.
解:函数y=x的定义域是R,对应关系是x→x.
(1)∵函数y=()2的定义域是[0,+∞),
∴函数y=()2与函数y=x的定义域不相同,
∴函数y=()2与函数y=x不相等.
(2)∵函数y=的定义域是R,
∴函数y=与函数y=x的定义域相同.
又∵y==x,
∴函数y=与函数y=x的对应关系也相同.
∴函数y=与函数y=x相等.
(3)∵函数y=的定义域是R,
∴函数y=与函数y=x的定义域相同.
又∵y==|x|,
∴函数y=与函数y=x的对应关系不相同.
∴函数y=与函数y=x不相等.
(4)∵函数y=的定义域是(-∞,0)∪(0,+∞),
∴函数y=与函数y=x的定义域不相同,
∴函数y=与函数y=x不相等.
点评:本题主要考查函数相等的含义.讨论函数问题时,要保持定义域优先的原则.对于判断两个函数是否是同一个函数,要先求定义域,若定义域不同,则不是同一个函数;若定义域相同,再化简函数的解析式,若解析式相同(即对应关系相同),则是同一个函数,否则不是同一个函数.
变式训练判断下列各组的两个函数是否相同,并说明理由.①y=x-1,x∈R与y=x-1,x∈N;②y=与y=·;③y=1+与u=1+;④y=x2与y=x;⑤y=2|x|与y=是同一个函数的是________.(把是同一个函数的序号填上即可)解析:只需判断函数的定义域和对应法则是否均相同即可.①前者的定义域是R,后者的定义域是N,由于它们的定义域不同,故不是同一个函数;②前者的定义域是{x|x≥2,或x≤-2},后者的定义域是{x|x≥2},它们的定义域不同,故不是同一个函数;③定义域相同均为非零实数,对应法则相同都是自变量取倒数后加1,那么值域必相同,故是同一个函数;④定义域是相同的,但对应法则不同,故不是同一个函数;⑤函数y=2|x|=则定义域和对应法则均相同,那么值域必相同,故是同一个函数.故填③⑤.答案:③⑤
1.下列给出的四个图形中,是函数图象的是(  )
图2
A.①
B.①③④
C.①②③
D.③④
答案:B
2.函数y=f(x)的定义域是R,值域是[1,2],则函数y=f(2x-1)的值域是________.
答案:[1,2]
3.下列各组函数是同一个函数的有________.
①f(x)=,g(x)=x;②f(x)=x0,g(x)=;
③f(x)=,g(u)=;④f(x)=-x2+2x,g(u)=-u2+2u.
答案:②③④
问题:函数y=f(x)的图象与直线x=m有几个交点?
探究:设函数y=f(x)定义域是D,
当m∈D时,根据函数的定义知f(m)唯一,
则函数y=f(x)的图象上横坐标为m的点仅有一个(m,f(m)),
即此时函数y=f(x)的图象与直线x=m仅有一个交点;
当mD时,根据函数的定义知f(m)不存在,
则函数y=f(x)的图象上横坐标为m的点不存在,
即此时函数y=f(x)的图象与直线x=m没有交点.
综上所得,函数y=f(x)的图象与直线x=m有交点时仅有一个,或没有交点.
(1)复习了函数的概念,总结了函数的三要素;
(2)判断两个函数是否是同一个函数.
1.设M={x|-2≤x≤2},N={y|0≤y≤2},给出下列4个图形,其中能表示以集合M为定义域,N为值域的函数关系的是(  )
图3
答案:B
2.某公司生产某种产品的成本为1
000元,以1
100元的价格批发出去,随生产产品数量的增加,公司收入________,它们之间是________关系.
解析:由题意,多生产一单位产品则多收入100元.生产产品数量看成是自变量,公司收入看成是因变量,容易得出对于自变量的每一个确定值,因变量都有唯一确定的值与之对应,从而判断两者是函数关系.
答案:增加 函数
3.函数y=x2与S=t2是同一函数吗?
答:函数的确定只与定义域与对应关系有关,而与所表示的字母无关,因此y=x2与S=t2表示的是同一个函数.因此并非字母不同便是不同的函数,这是由函数的本质决定的.
本节教学内容主要是依据高考说明,对课本内容适当拓展,重点对函数的相等问题进行了引申,设计时对拓展的内容采取渐进式,设计时本着逐步提高、拓展,不能急于求成,否则事倍功半.
【备选例题】
【例1】已知函数f(x)=,则函数f[f(x)]的定义域是________.
解析:∵f(x)=,∴x≠-1.∴f[f(x)]=f=.
∴1+≠0,即≠0.∴x≠-2.∴f[f(x)]的定义域为{x|x≠-2,且x≠-1}.
答案:{x|x≠-2,且x≠-1}
【例2】已知函数f(2x+3)的定义域是[-4,5),求函数f(2x-3)的定义域.
解:由函数f(2x+3)的定义域得函数f(x)的定义域,从而求得函数f(2x-3)的定义域.设2x+3=t,当x∈[-4,5)时,有t∈[-5,13),则函数f(t)的定义域是[-5,13),解不等式-5≤2x-3<13,得-1≤x<8,即函数f(2x-3)的定义域是[-1,8).
【知识拓展】
函数的传统定义和近代定义的比较
函数的传统定义(初中学过的函数定义)与它的近代定义(用集合定义函数)在实质上是一致的.两个定义中的定义域和值域的意义完全相同;两个定义中的对应法则实际上也一样,只不过叙述的出发点不同.传统定义是从运动变化的观点出发,其中对应法则是将自变量x的每一个取值与唯一确定的函数值对应起来;近代定义则是从集合、对应的观点出发,其中的对应法则是将原象集合中任一元素与象集合中的唯一确定的元素对应起来.
至于函数的传统定义向近代定义过渡的原因,从历史上看,函数的传统定义来源于物理公式,最初的函数概念几乎等同于解析式,要说清楚变量以及两个变量的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了不必要的限制.后来,人们认识到了定义域和值域的重要性,如果只根据变量的观点来解析,会显得十分勉强,如:符号函数sgn
x=用集合与对应的观点来解释,就显得十分自然了,用传统定义几乎无法解释,于是就有了函数的近代定义.由于传统的定义比较生动、直观,有时仍然会使用这一定义.
PAGE
13.1.2 用二分法求方程的近似解
教学设计(一)
作者:张兴娟,邯郸市第四中学高级教师.本教学设计获“卡西欧杯”第五届全国高中青年数学教师优秀课观摩与评比活动一等奖.
学习准备
教师需要明了:
1.新教材为什么增加求方程的近似解?
2.为什么用“二分法”求方程的近似解?
3.本节内容在教材中的地位和作用.
4.明确学生现有的水平和可能的发展水平.
学生需要复习:方程的根与函数的零点的相关知识.
在此基础上,根据学生“最近发展区”确定本课时教学和学习目标.
教学目标
1.了解二分法是求方程近似解的一种方法.
2.会用二分法求给定精确度的方程的近似解.
3.在具体问题情境中感受逐步逼近的过程.
4.培养学生观察、分析数据的能力.
5.培养学生合作与交流的意识和对新知探求的精神.
教学重点与难点
重点:二分法原理及其探究过程,用二分法求方程的近似解.
难点:对二分法原理的探究,对精确度、近似值的理解.
教学方法与教学手段
教学方法:“问题驱动”,启发、探究
学法:自主探究、分组合作、辨析讨论、深化理解
教辅工具:计算机、投影仪、计算器
教学过程
1.设置情境,提出问题
问题1:你会求哪些类型方程的解?
写一写你不会求解的方程.
设计意图
让学生感受有大量的方程不能求解,引起学生的认知冲突,激发学生的求知欲.
问题2:能不能求方程的近似解?
2.自主探究,获得新知
以求方程x3+3x-1=0的近似解(精确度0.1)为例进行探究.
探究1:怎样确定解所在的区间?
(1)图象法(数形结合):
(2)试值法:
设f(x)=x3+3x-1,f(0)=-1<0,f(1)=3>0.
复习:(1)方程的根与函数零点的关系;
(2)根的存在性定理.
探究2:怎样缩小解所在的区间?
幸运52中猜商品价格环节,让学生思考:
(1)主持人给出高了还是低了的提示有什么作用?
(2)如何猜才能最快猜出商品的价格?
设计意图
在学生“最近发展区”设置问题,搭建平台,拉近数学与现实的距离
,不仅激发学生学习兴趣,学生也在猜测的过程中逐步体会二分法思想.
问题3:为什么要取中点,好处是什么?
设计意图
体会二分法优于其他如“三分法”,“四分法”,华罗庚的“优选法”等.
探究3:区间缩小到什么程度满足要求?
设计意图
利用计算器进行了多次计算,逐步缩小实数解所在范围,精确度的确定就显得非常自然,突破了教学上的难点,提高了探究活动的有效性.
问题4:精确度0.1指的是什么?与精确到0.1一样吗?
通过对以上问题的探究,给出二分法的定义就水到渠成了.
二分法的定义:
对于在区间[a,b]上连续不断且满足f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
用二分法求零点近似值的步骤:
给定精确度ε,用二分法求函数f(x)的零点近似值的步骤如下:
(1)确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;
(2)求区间(a,b)的中点c;
(3)计算f(c);
①若f(c)=0,则c就是函数的零点;
②若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));
③若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).
(4)判断是否达到精确度ε:
即若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).
3.例题剖析,巩固新知
【例】借助计算器用二分法求方程ln
x+2x-6=0的近似解(精确度0.01).
两人一组,一人用计算器求值,一人记录结果;学生讲解缩小区间的方法和过程,教师点评.同时演示用Excel程序求方程的近似解.
设计意图
(1)演示Excel程序求方程的近似解,界画活泼,充分体现了信息技术与数学课程有机整合.进一步明确为什么用“二分法”求方程的近似解.(2)算法流程比较简洁,便于编写计算机程序,利用计算器和多媒体辅助教学,直观明了.
4.知识迁移,生活应用
(1)猜商品价格;
(2)从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查接点的个数为__________.
5.检验成果,巩固提升
(1)下列函数的图象与x轴均有交点,其中不能用二分法求其零点的是(  )
思维升华:在零点的附近连续且f(a)·f(b)<0.
(2)方程4x+2x-11=0的解在下列哪个区间内?你能给出一个满足精确度为0.1的近似解吗?
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
说明:二分法不仅能求方程的近似解,有时也能求方程的精确解.
6.回顾反思
本节课你学到了哪些知识?有哪些收获?还有什么疑问?
(1)预设课堂生成问题(有些同学可能会有这样的疑惑,若没有就作为课下拓展留给学生思考).
如图所示,区间[a,b]上有多个零点,还能否用二分法求方程的近似解?如果能,该怎样做?
(2)学生课堂生成新问题(不同的班级可能会有不同的问题,具体问题具体解决).
课外作业
1.书面作业
(1)习题3.1
A组3,4,5;
(2)求2x+3x=7的近似解(精确度0.1).
2.知识链接 阅读与思考“中外历史上的方程求解”.
板书设计
课题:(投影显示)
1.提出问题:
2.自主探究:
3.抽象概括:
4.巩固练习:
5.归纳总结:
教学反思
1.注重学生参与知识的形成过程;
2.注重培养学生的应用意识;
3.恰当地利用现代信息技术.
教学设计(二)
作者:冯红果,泉州市第七中学教师.本教学设计获福建省教学设计大赛一等奖.
整体设计
教学内容分析
本节选自《普通高中课程标准实验教科书·数学1》人教A版第三章第一节第二课,主要是分析函数与方程的关系.教材分三步来进行:第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应函数的零点的联系.然后推广为一般方程与相应函数的情形;第二步,在用二分法求方程近似解的过程中,通过函数图象和性质来研究方程的解,体现方程和函数的关系;第三步,在函数模型的应用过程中,通过函数模型以及模型的求解,更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.
本节课是这一小节的第二节课,即用二分法求方程的近似解.它以上节课的“连续函数的零点存在定理”为确定方程解所在区间的依据,从求方程近似解这个侧面来体现“方程与函数的关系”;而且在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法的内容埋下伏笔;充分体现新课程“渗透算学方法,关注数学文化以及重视信息技术应用”的理念.求方程近似解其中隐含“逼进”的数学思想,并且运用“二分法”来逼近目标是一种普通而有效的方法,其关键是逼近的依据.
学生学习情况分析
同学们有了第一节课的基础,对函数的零点具备基本的认识;而二分法来自生活,是由生活中抽象而来的,只要我们选材得当,能够激发学生的学习兴趣,达到渗透数学思想关注数学文化的目的,学生也能够很容易理解这种方法.其中运用“二分法”进行区间缩小的依据、总结出“运用二分法求方程的近似解”的步骤、将“二分法”运用到生活实际,是需要学生“跳跳”才能摘到的“桃子”.
设计理念
本节课倡导积极主动、勇于探索的学习方式,应用从生活实际——理论——实际应用的过程,应用数形结合、图表、信息技术,采用教师引导——学生探索相结合的教学方法,注重提高学生提出问题、分析问题和解决问题的能力,让学生经历直观感知、观察发现、抽象与概括、符号表示、运算求解、数据处理、反思与建构等思维过程.
教学目标
1.理解二分法的概念,掌握运用二分法求简单方程近似解的方法;利用信息技术辅助教学,让学生用计算器自己验证求方程近似值的过程;
2.体会二分法的思想和方法,使学生意识到二分法是求方程近似解的一种方法;让学生能够了解近似逼近思想,培养学生探究问题的能力和创新能力,以及严谨的科学态度;
3.体验并理解函数与方程的相互转化的数学思想方法;感受正面解决问题困难时,通过迂回的方法使问题得到解决的快乐.
教学重点与难点
教学重点:能够借用计算器用二分法求相应方程的近似解,根所在区间的确定及逼近的思想.
教学难点:对二分法的理论支撑的理解,区间长度的缩小.
教学过程
教学基本流程图
教学情境设计
教学设计
学情预设
设计意图 知识链接
创设情境·引出课题
1.大家都看过《幸运52》吧,今天咱也试一回(出示游戏).2.竞猜中,“高了”、“低了”的含义是什么?如何确定价格的最可能的范围?3.如何才能更快地猜中商品的预定价格?4.“二分”的思路是什么?
1.教师从学生熟悉的电视节目,引导学生体会、分析、归纳迅速猜价的方法.2.学生能够主动参与游戏,并且参与游戏的同学可以比较并总结经验.学生会有很多种方案.3.对于“问题2”学生能够顺利地得出“主持人的“高了,低了”的回答是判断价格所在区间的依据”这个结论.4.此时教师通过“问题3”引导学生进行比较哪种方法更快更好.从中学生可以得到用二分法解决问题的思路——二分指的是将解所在区间平均地分为两个区间.
1.利用视屏与游戏的形式,学生会踊跃参与;商品价格竞猜也是学生熟悉的,竞猜的方法会很多样,可以进行竞赛.2.通过问题2,启发学生寻找确定区间的依据,为后面探索“用二分法求方程近似解”的时候埋下伏笔.3.通过游戏,让学生经历游戏过程,感受数学来自生活,激发学生的学习兴趣;引导学生善于发现身边的数学,培养学生的归纳演绎的能力;学会将实际情境转化为数学模型.4.通过比较不同的方法得出最快的竞猜的方法——二分法.
师生探究·构建新知
1.上节课我们学了什么定理,它的作用是什么?还有什么问题没有解决?2.已知函数f(x)=ln
x+2x-6在区间(2,3)内存在一个零点;如何求出方程ln
x+2x-6=0在区间(2,3)的近似解(精确度为0.01)?与刚才的游戏是否有类似之处?3.精确度的含义是什么?怎样的区间才算满足设定的精确度?4.区间(2,3)的精确度为多少?5.如何将零点所在的范围缩小(即如何将精确度缩小)?缩小的依据是什么?6.如何利用今天“猜价格”——“二分法”的逼近思想来缩小区间?7.近似解是多少?
1.教师通过“问题1”对上节课的内容进行复习引入,点出今天的课题.并且有前面游戏作为伏笔,学生能够得出“连续函数零点存在定理”是判断方程的根所在区间的依据.2.通过“问题2”应用具体的题目引导学生进行思考.学生通过引导将方程的解与商品的价格联系到一起,运用刚才的游戏的经验,得到缩小区间的想法.3.学生对精确度的概念可能有所遗忘.教师可以借助数轴解释说明精确度的含义,引导学生思考什么时候停止操作.4.教师通过“问题4~6”引导学生将“二分法”与“零点存在定理”相结合得到正确的新的零点所在的区间.并确定结束的时间.5.学生按照游戏的方法也就是按照“二分法”的思路,不断缩小零点存在的区间,进行具体操作,填出(附录1)中的表格.表格刚开始的前几行学生可能会比较慢,也有可能会出错;通过多次的重复以及经验的总结,后面的表格可以正确地、快速地回答出来;使得最后的“应用二分法求函数的零点”的方法的总结更加顺利.6.对于“问题7”学生不太容易得到比较简洁的结论.教师可以进行解释说明:“由于整个区间内的数均满足精确度的条件,因此区间内的所有数均可以作为近似解,但区间端点a,b是已知的值,所以可以取a或b作为近似解.”,最后得到方程的近似解(附录1的表格后面的内容).
[设计意图]1.开门见山,延续上一节课的内容继续深入地研究,使得知识有一个链接,让学生能够很容易地将新知识建构到旧的知识体系中.2.运用问题1,将学生的思路与前面已解决的问题联系起来,引导学生层层深入,抽丝拨茧,学习如何分析问题、如何利用新的知识解决问题;培养学生分析问题、解决问题的能力,以及运用知识、驾驭知识的能力.3.师生的互动有利于一边引导一边总结.将二分法应用于解决实际问题,即将新的知识应用于解决新的问题.培养学生实际应用的能力,加强解决问题的严谨性,总结知识的逻辑性.使得最后方法的总结能够顺利进行.4.有了前面的商品竞猜过程的经历,学生比较容易入手,分析比较容易到位,从而降低思维的难度.[知识链接]1.函数零点存在定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.精确度是对同一个量的不同近似数的精确程度的度量.一般是:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.
形成概念·深化提高
1.我们刚才的求解过程中有哪些过程是一直重复出现的?2.我们取其一段,大家看如何用数学语言来描述?3.点明求方程的近似解的“二分法”:对于在区间(a,b)上连续不断、且f(a)·f(b)<0的函数y=f(x),通过不断地把方程的解所在的区间一分为二,使区间的两个端点逐步逼近近似解,进而得到近似解的方法叫二分法.
学生经过老师“问题1~2”的提示与引导,可以得到“取区间的中点,计算函数值,比较符号,确定新的区间”这样的相同的过程.学生根据“二分法”的定义进行归纳总结:运用二分法求方程的近似解的步骤(附录2).其中步骤①“画图或利用函数值的正负,确定初始区间(a,b),验证f(a)f(b)<0”;学生很有可能会有遗漏.此时可以提出“问题5”引导学生回忆、思考,从而得到运用二分法的前提——即步骤①.对于“问题6”,较好的学生才能回答出来.
[设计意图]1.不断的引导,将刚才的解题过程经过“自然语言——数学语言——去其糟粕取其精华——具体步骤”的过程,帮助学生学会归纳总结的方法.2.课间的及时总结有利于学生对当前所学的内容进行升华,了解自己掌握了什么知识,在后面的做题中可以有法可依,可以提高解题的正确率,增强自信.3.问题6的设计是将学生的思维进一步升华,不再停留在技能这一个层次,而是上升为数学思想方法的层次.
4.进一步提出问题:运用二分法求方程的近似解的步骤是什么?5.运用二分法的前提是什么(游戏开始时要先做什么工作)?引例条件的内涵是什么?6.二分法的实质是什么?它有什么作用?
[知识链接]1.运用二分法的前提是要先判断根在某个所在的区间.2.二分法实际上是通过缩小区间长度寻找解的一种方法.
课内练习·课后作业
1.练习:(1)(2)题为例题仿照题,由同桌协助完成.(3)(4)题考查二分法的含义,由同学独立完成,可以寻求帮助.(附录4)2.思考:两道题均为实际应用题,为学有余力的同学提高能力.(附录4)3.课后作业:习题3.1
A组3,4;B组1,2.
练习1.(1)(2)题经过同桌两位同学合作可以顺利完成.(3)(4)题独立完成如果有困难的同学在同伴或老师的帮助下可以完成.练习2实际应用:学有余力的同学与同伴合作探讨,也可以解决.
[设计意图]1.不同层次的题目,层层递进,不断提高学生的能力.不仅巩固新学的知识,而且让不同层次的学生得到不同的收获;2.培养合作、互助精神;3.培养学生应用与创新的能力,利用二分法的逼近思想解决实际问题.
本课小结
请同学们回顾一下本节课的教学过程,你觉得你已经掌握了哪些知识?
教师通过点名提问,学生借助教师的帮助对整节课进行最后的归纳总结,得到以下两点:(1)二分法是一种求一元方程近似解的通法.(2)利用二分法来解一元方程近似解的操作步骤(附录3).
[设计意图]学生的归纳总结的能力不强,需要不断的培养;课后的总结有利于学生对整节课的内容进行升华,了解自己掌握了什么知识,养成良好的学习习惯,建立自信心.
教学反思
1.本节课有两条线,明线:“从生活实际、从学生熟知的现实生活、从学生喜爱的游戏——“竞猜商品的价格”入手,引导学生进入深层的思考——如何才能更快更好地赢得游戏?与学生一道进行新知识的探索过程——二分法的得来;再将二分法充分地运用在函数零点的求解上;最后将二分法求解函数零点的过程程序化”;暗线:“生活实际(特殊)——二分法的理论(一般)——二分法的应用(特殊)”.让学生经历知识的形成与应用过程,培养发现问题、提出问题、解决问题的能力,体现数学的基础性、时代性、典型性和可接受性,体会数学来自生活,应用于生活的最高境界,感受数学之美.
2.引入课题的方式,(1)从生活中的常见现象——“商品价格的竞猜”引入;(2)开门见山——“继续前面的研究”引入.
(附录1)解:设f(x)=ln
x+2x-6,x∈(2,3),先取区间的中点,再计算中点的函数值,接着应用“零点存在定理”确定零点所在的区间,从而缩小精确度,得到下表:
区间
中点的值
中点函数近似值
精确度
(2,3)
2.5
-0.083
709
268
1
(2.5,3)
2.75
0.511
600
912
0.5
(2.5,2.75)
2.625
0.215
080
896
0.25
(2.5,2.625)
2.562
5
0.065
983
344
0.125
(2.5,2.562
5)
2.531
25
-0.008
786
748
0.062
5
(2.531
25,2.562
5)
2.546
875
0.028
617
117
0.031
25
(2.531
25,2.546
875)
2.539
062
5
0.009
919
918
0.015
625
(2.531
25,2.539
062
5)
2.535
156
25
0.000
567
772
0.007
813
(2.531
25,2.535
156
25)
2.533
203
125
-0.004
109
191
0.003
906
(2.533
203
125,2.535
156
25)
2.534
179
688
-0.001
770
634
0.001
953
(2.534
179
688,2.535
156
25)
2.534
667
969
-0.000
601
412
0.000
977
(2.534
667
969,2.535
156
25)
2.534
912
109
-1.681
66×10-5
0.000
488
所以,当精确度为0.01时,由于|2.539
062
5-2.531
25|=0.007
812
5<0.01,因此我们可以将x=2.531
25作为函数f(x)=ln
x+2x-6零点的近似值,也即方程ln
x+2x-6=0根的近似值.
(附录2)二分法求解方程f(x)=0〔或g(x)=h(x)〕近似解的基本步骤:
①画图或利用函数值的正负,确定初始区间(a,b),验证f(a)·f(b)<0;
②求区间(a,b)的中点x1x1=));
③计算f(x1):若f(x1)=0,则x1就是函数f(x)的零点,x1就是f(x)=0的根,计算终止;
若f(a)f(x1)<0,则选择区间(a,x1);
若f(a)f(x1)>0,则选择区间(x1,b);
④循环操作②、③,直到当区间的精确度达到事先指定的精确度ε(若是要求精确到ε,两端点精确到同一个近似值时才终止计算).
(附录3)
1.练习:(1)应用计算器,求方程x3+3x-1=0的一个正的近似解.
(2)应用计算器,求方程2x+x=4的近似解.
(3)用二分法判断方程2x=x2的根的个数(  )
A.1
B.2
C.3
D.4
(4)方程lg(x+4)=10x的根的情况是(  )
A.仅有一根
B.有一正根一负根
C.有两负根
D.无实根
2.思考:(1)从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查接点的个数为几个?
(2)一天,泉州七中校区与现代中学(分校)校区的电缆线路出了故障(相距大约10
km),电工是怎样检测的呢?
答案:略
教学设计(三)
作者:罗志强,长汀县第一中学教师.本教学设计获福建省教学设计大赛三等奖.
整体设计
三维目标
1.知识与技能:
①通过具体实例理解二分法的概念及其适用条件;
②借助科学计算器,掌握运用二分法求满足一定精确度要求的简单方程近似解的方法.
2.过程与方法:
①了解数学上的逼近思想、极限思想;
②体验二分法的算法思想,培养自主探究的能力,为学习算法做准备.
3.情感、态度与价值观:
①通过了解数学家的史料来提高数学素养,并增强学习数学的兴趣;
②体会数学逼近过程,感受精确与近似的相对统一;
③通过具体实例的探究,归纳发现的结论或规律,体会从具体到一般的认知过程.
教学重点与难点
教学重点:二分法的基本思想的理解,运用二分法求函数零点的近似值的步骤和过程;
教学难点:精确度概念的理解及恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.
教材分析
本节课在学生应用数形结合的数学思想指导下学习了方程的根与对应函数零点之间的关系的基础上,再介绍求函数零点的近似值的“二分法”,并在总结“用二分法求方程近似解步骤”中渗透算法的思想,为学生后续学习算法内容做准备.教科书不仅希望学生在数学思想与运用信息技术的能力上有所收获,而且希望学生通过了解古今中外数学家求方程的解的史料来渗透数学文化,提高数学素养.
学情分析
学生基础较好,学习的主动性较强,所以通过一节课掌握用二分法求方程的近似解的方法,体验二分法中的逼近思想、算法思想.但在求解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难,所以希望学生具备恰当地使用信息技术工具解决这一问题的能力.
信息技术分析
多媒体教室及几何画板、Visual
Basic
应用程序.
教学方法
动手操作、分组讨论、合作交流、课后实践.
教学过程
教学设计流程图
——由模仿中央电视台节目“幸运52”中的猜价游戏导入新课,提出二分法的思想

——回顾例题,复习零点存在性定理,提出新问题:能不能求出零点《几何画板》演示

——借助《几何画板》软件探究用二分法求方程的近似解

——总结出用二分法求方程近似解的步骤

——学生借助科学计算器,用二分法求方程的近似解

——介绍数学家求方程的近似解的历史

——利用Visual
Basic编写程序,渗透算法思想
教学设计理念
1.倡导积极主动、勇于探索的学习方式.
2.鼓励学生自主探究、合作交流.
3.注重信息技术与数学课程的整合.
4.体现数学的文化价值.
教学情境设计
一、创设情境,导入新课
问题情境:中央电视台有一档娱乐节目“幸运52”,主持人李咏会给选手在限定时间内猜某一物品的售价的机会,如果猜中,就把物品奖励给选手,同时获得一枚商标.某次猜一种品牌的手机,价格在500~1
000元之间,选手开始报价:1
000元,主持人回答:高了;紧接着报价900元,高了;700元,低了;800元,低了;880元,高了;850元,低了;851元,恭喜你,你猜中了.
设计意图
1.创设学生熟悉的游戏情境,制造悬念,引发学生的学习兴趣,并在教师的指导下设计猜价方案.
2.在学生设计猜价方案的基础上,提出设计此方案的思想后引入“二分法”,水到渠成.
师生活动:
师:表面上看猜价格具有很大的碰运气的成分,实际中,游戏的报价过程体现了“逼近”的数学思想,你能设计出可行的猜价方案来帮助选手猜价吗?请学生思考后,提问学生用你的猜价方案猜手机价格?
生:猜价方案
 区间   中点(取整)    高低
[500,1
000]
750
低了
[750,1
000]
875
高了
[750,875]
812
低了
[812,875]
843
低了
[843,875]
859
高了
[843,859]
851
ok
师:用几何画板配合学生演示猜价的过程后,提问此方案的设计思想(附图一).
生:关键是取区间的中点,不断地缩小价格所在的区间.
师:此方法在数学上称作“二分法”,并在黑板上板书,从而引入课题.
二、例题回顾
人教A版3.1.1节例1
求函数f(x)=ln
x+2x-6的零点的个数?方程ln
x+2x-6=0的实数解的个数?
问题1:如何来确定函数零点的存在性,即方程的实数解的存在性?
问题2:f(x)=ln
x+2x-6在区间(2,3)内有零点,如何找出?
设计意图
通过例题回顾,引导学生将找方程的实数解与找对应函数的零点的问题等同起来,体会数学模型之间的转换.
师生活动:
师:借助几何画板直观演示(附图二)函数零点所在区间,并复习零点存在性定理后,让学生思考问题2,提示学生回顾猜价方案的思想.
生:使用科学计算器进行计算,思考,交流思路.
师:提问学生.
生:1.取(2,3)的中点2.5,发现f(2.5)·f(3)<0,所以零点在(2.5,3)内.
2.以此类推,发现零点所在的区间在不断缩小.
三、合作探究
问题1:零点存在区间的大小能说明什么问题?
问题2:你能够总结出使零点存在的区间越来越小的规律吗?
问题3:当我们能够将零点所在的区间不断地缩小时,怎样确定零点的近似值?
设计意图
1.让学生在教师的指导下学会发现问题、分析问题,初步体会极限思想.
2.引导学生从具体的实例出发,总结出一般性的规律,符合学生的思维意识,并让学生充分体会二分法思想.
3.引导学生将函数零点的近似值求出来,让学生体会精确度的作用.
师生活动:
1.师:借助几何画板(附图三)引导学生思考,并让学生交流、讨论.
生:零点存在区间越小,区间两端点越接近该区间的实数解.
2.师:说明让零点存在区间越来越小是解决问题的关键,请思考问题2.
生:分组交流.
生:经合作整理,规律如下:
每次将区间二等分,留下区间端点函数值符号相反的区间.
师:实质是根据什么定理?
生:零点存在性定理.
3.师:顺势让学生思考问题3后,指出给定精确度ε,只要将上述步骤进行有限次重复后即区间两端点差的绝对值小于ε,则区间内的任意一点都可以作为函数零点的近似值.
几何画板直观演示(附图四).
四、师生小结
你能说出二分法的意义及用二分法求函数y=f(x)零点近似值的步骤吗?
1.二分法的意义
对于在区间[a,b]上连续不断且满足f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
2.给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:几何画板分布演示(附图五).
设计意图
引导学生小结二分法的适用条件及求方程近似解的具体步骤,培养学生从特殊到一般的思想,体验解决问题的成就感.
师生活动:
师:阐述二分法的逼近原理,引导学生理解二分法的算法思想,明确二分法求函数近似零点的具体步骤.
师:分析关键词:
f(a)·f(b)<0、m=、精确度ε、|a-b|<ε的意义.
生:结合求函数f(x)=ln(x)+2x-6在区间(2,3)内的零点,理解二分法的算法思想与计算原理.
五、学以致用
问题1:实际生活中有没有利用到二分法的思想方法的例子呢?试举例.
问题2:借助计算器或计算机用二分法求方程2x+3x=7的近似解.(精确度0.1)
设计意图
1.培养学生联系实际的能力,让学生体会数学与实际生活的密切联系.
2.培养学生的动手能力,让学生逐步掌握运用二分法求方程近似解的思想方法,并使学生的认识不断加深.
师生活动:
1.师:让学生讨论,学生思考联想实际生活,尝试举出运用二分法的例子.
生:电力工人检测电线,找故障.
2.(1)学生利用科学计算器动手操作、进行小组交流,老师作课堂巡视指导.
(2)师借助几何画板分布,直观演示(附图六).
六、数学文化
阅读本节阅读与思考“中外历史上的方程求解”.
设计意图
让学生感受数学文化方面的熏陶,增强数学素养.
七、知识迁移
问题:回忆用二分法求方程的近似解的步骤中,缩小零点所在的区间的步骤是否可以进行重复,如果给定精确度后重复的步骤是否是有限次的?
设计意图
初步介绍算法思想,为必修3的算法教学埋下伏笔.
师生活动:
师:如果一种计算方法对某一类问题都有效,计算可以一步一步地进行,每一步都能得到唯一的结果,我们常把这一类问题的求解过程叫做解决这一类问题的一种算法.它的优点是一种通法,更大的优点是,它可以让计算机来实现.例如我们可以编写用二分法求方程的近似解的程序,快速地求出一个函数的零点.
程序框图及程序(附图七)
八、课堂小结
问题:本节课学习了哪些知识、方法、思想?
设计意图
学生在回顾、总结、反思的过程中,将所学的知识条理化、系统化,使自己的认知结构更趋合理.注重数学方法的提炼,可使学生逐渐把经验化为能力.
师生活动:
师:引导学生从知识、方法两方面进行总结后板书:
1.要找方程的实数解可先利用函数的连续性判定方程实数解的存在性,再利用二分法求方程的近似解;
2.二分法的意义;
3.二分法求方程的近似解的步骤;
4.逼近、极限、二分法.
教学设计附图:
区间      中点(取整)   高低
[500,1
000]
750
低了
[750,1
000]
875
高了
[750,875]
812
低了
[812,875]
843
低了
[843,875]
859
高了
[843,859]
851
附图一
附图二
附图三
附图四
二分法求解方程近似解的基本步骤:(精确度ε)
1.利用计算或作图的方法,确定初始区间[a,b];
2.验证f(a)·f(b)<0;
3.求区间(a,b)的中点c=;
4.计算f(c):(1)若f(c)=0,则c就是函数的零点;(2)若f(a)·f(c)<0,则令b=c〔此时零点X0∈(a,c)〕;(3)若f(c)·f(b)<0,则令a=c〔此时零点X0∈(c,b)〕;
5.判断是否达到精确度ε:即若|a-b|<ε,则得到零点的近似值a(或b);否则重复3~4.
附图五
附图六
附visual
basic程序
Private
Sub
Command1_Click()
Dim
a
As
Single
Dim
b
As
Single
Dim
d
As
Single
a=InputBox(“a”,“区间左端点”)
b=InputBox(“b”,“区间右端点”)
d=InputBox(“d”,“精确度”)
Text1.Text=a
Text2.Text=b
Text3.Text=d
fa=2^a+3
a-7
fb=2^b+3
b-7
If
fa
fb>=0Then
Text4.Txet=“求解范围有错”
Else
Do
x=(a+b)/2
fx=2^x+3
x-7
If
fx
fa>0
Then
a=x:fa=fx
Else
b=x:fb=fx
End
If
Loop
Until
fx=0
or
Abs(a-b)<d
Text4.
Text=x
End
If
End
Sub
教学反思
1.创设有趣且适合学生认知的问题情境,调动课堂气氛,提高学生的学习兴趣,鼓励每个学生动手、动口、动脑,积极参与数学的学习过程.
2.教学中以问题为主线,重视二分法概念的形成,培养学生的探究意识,增强学生的问题意识,提高发现和解决问题的能力.
3.在整个教学过程中,教师注意发挥学生的主体性,给学生留下充分的时间与空间,让学生分组交流、合作探究.在课堂上,学生不仅学会了有条理地表述自己的观点,还学会了相互接纳、互助与赞赏,并不断对自己和别人的想法进行批判和反思.学生间的多向交流,可以使他们从多角度得出问题解决的途径.
4.重视知识的形成过程,注重思维方法,注重探索方法,让学生主动获取知识,让学生在学习过程中去体验数学和经历数学.这样才能体现“思想方法比知识更重要”这一新的教学价值观.
5.在教学中适当介绍数学家的奋斗历史,从而渗透数学文化,增强学生的数学素养.
不足之处
1.在分组交流,学生合作探究解决问题上显得经验不足,不够老到.
2.在使用《几何画板》演示教学内容时,学生学习《几何画板》基本操作的实际水平与本节课知识运用所要求的水平不符.可以在课外花点时间让学生学习数学常用的几种软件,从而提高学生的动手能力.
教学设计(四)
作者:王巨才,瓯海二高教师.本教学设计获浙江省教学设计大赛市二等奖.
整体设计
教材分析
本节课选自《普通高中课程标准实验教科书数学1必修本(A版)》第三章的3.1.2用二分法求方程的近似解.
由于在实际问题的解决中,列出的方程可能相当复杂.设f(x)是实系数多项式或是任一实数函数,方程f(x)=0称为代数方程或超越方程.一般说来,此类方程的根即使存在,也往往不能用公式表示,或者求出了根的表达式,却因比较复杂,难以用它来计算根的近似值.所以,当根存在时,研究求根的数值方法很有必要,本节教材向学生介绍了求零点近似值的实用且基本的方法——二分法.
教材在学生了解了函数的零点与方程根的联系的基础上,从实例入手介绍了求方程近似解的二分法.学生不难理解函数的零点及其求法,而困难的地方在于使用二分法求函数零点的计算过程相当繁杂.
在教学中应注意鼓励学生运用现代教育技术学习、探索和解决问题,借助计算器或计算机处理繁杂的计算、理解数学概念、探索数学结论.
学情分析
学生在学习了方程的根与函数的零点后,对于不能用公式法求根的方程f(x)=0来说,我们可以将它与函数y=f(x)联系起来,并利用函数的性质找出零点或零点所在的区间,从而求出方程的根,或者用二分法求出方程的近似解.
本节课的学习历经直观感知、观察发现、归纳类比等思维过程,有助于学生对客观事物中蕴涵的数学模式进行思考和作出判断,因此教师在教学过程中应力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,开拓他们的创新意识和“逐步逼近”的数学思想.
教学目标
知识与技能:
通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,并从中体会函数与方程之间的联系及其在实际问题中的应用.
过程与方法:
能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.
情感态度和价值观:
体会数学逼近过程,感受精确与近似的相对统一.
重点难点
重点:通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
难点:恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.
课前准备
1.学生要准备能进行较为复杂运算的计算器.
2.课前学习材料:分治算法.
分治是实际生活中使用比较广泛的一种解决问题的方法.在程序设计中,分治算法的设计思想是:将一个规模比较大的、难以直接解决的问题,分割成一些规模较小的子问题,这些子问题互相独立且与原问题相同;然后将这些子问题各个击破,分而治之.值得注意的是,分治算法的设计思想很自然地导致了递归算法的应用.它的一般设计模式如下:
if 问题规模小到可以直接解决 then 直接解决该问题
else 将问题分解成k个规模较小的子问题
end
if
for
i=1
to
k
递归调用该分治算法,分别解决每一个子问题
next
i
将各子问题的解合并为原问题的解.
设计意图
从学生感兴趣的计算机编程问题引入,引导学生分析分治算法的思想与方法,为后面引出二分法的思想与方法做铺垫.
教学环节
教学过程
创设情境,引出课题
问题:现有大小与形状完全相同的金属小球16个,其中有一个是实心的,其余都是空心的.用一架天平需测量几次一定能找出实心小球?(要求测量次数尽可能少)
让学生思考、讨论,并得出结论.
学生可能会得出这样的结论:先将这16个小球分成个数相等的两部分,将这两部分放在天平上称,实心球在较重的这部分球中,再将较重的这部分球分成个数相等的两部分,将这两部分放在天平上称,实心球又在较重的这部分球中,依此类推,所以只要四次一定能找到实心小球.
学生也有可能将小球分成相同的四部分,再两部分两部分地去称,也可得到结果,等等.教师根据学生得出的方法进行总结.
设计意图
以实际问题为载体,通过学生亲自产生的思维方法体会二分法查找的思想与方法.
组织探究,导出算法
1.问题:通过上一节课的学习,我们知道函数f(x)=ln
x+2x-6在区间(2,3)内有零点(如下图所示).那我们能否找出这个零点呢?或者能找出这个零点的近似值吗?
设计意图
上面的问题有着承上启下的作用,它既是对前面一节课结果的进一步深入,也揭示了本节课所要解决的问题.
2.将学生分成几组进行合作学习,并要求学生将自己的求解过程进行记录、归纳.
设计意图
由于这一任务具有一定的难度,问题又具有一定的挑战性,有利于激发学生的主动性与小组学习活动的激情及发挥学习共同体的创造性,因此采用了小组合作学习的方式进行教学.这一环节借助信息技术功能提倡学生通过观察、思考、讨论来归纳结论,体现了学生自主探究的学习方式.
3.通过学生的合作学习,由一个小组代表发言求函数f(x)=ln
x+2x-6零点的过程,可用下表反映:
区间
中点的值
中点函数近似值
(2,3)
2.5
-0.084
(2.5,3)
2.75
0.512
(2.5,2.75)
2.625
0.215
(2.5,2.625)
2.562
5
0.066
(2.5,2.562
5)
2.531
25
-0.009
(2.531
25,2.562
5)
2.546
875
0.029
(2.531
25,2.546
875)
2.539
062
5
0.010
(2.531
25,2.539
062
5)
2.535
156
25
0.001
当精确度为0.01时,由于|2.539
062
5-2.531
25|=0.007
812
5<0.01,所以我们可以将x=2.531
25作为函数f(x)=ln
x+2x-6零点的近似值,也即方程ln
x+2x-6=0根的近似值.
4.给定精确度ε,再请一个小组代表发言求函数f(x)零点近似值的基本步骤(教师引导,由其他小组补充,逐步完善)
(1)确定区间[a,b],验证f(a)·f(b)<0,给定精度ε;
(2)求区间(a,b)的中点x1;
(3)计算f(x1):①若f(x1)=0,则x1就是函数的零点;
②若f(a)·f(x1)<0,则令b=x1[此时零点x0∈(a,x1)];
③若f(x1)·f(b)<0,则令a=x1[此时零点x0∈(x1,b)];
(4)判断是否达到精度ε;
即若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤2~4.
设计意图
从特殊到一般,揭示数学通常的发现过程,给学生“数学创造”的体验.这种教学方式易于学生接受和形成二分法的算法思想与计算原理.
探索发现,寻找内涵
1.教师:通过前面的探究,我们得出了求函数f(x)零点近似值的一种方法,我们来给这种方法取个名字,叫什么好呢?(学生可能会取“分割法”、“二分法”、“中点法”等,教师最后进行评析)
设计意图
从学生探究创造中下定义,便于学生深刻理解定义的内涵,这也是新课程提倡的教学理念之一.
2.问题:是不是所有有零点的函数都适合用二分法求零点的近似值呢?请同学们先看下面几个函数的图象再回答.
    
图一
图二
图三
学生通过上图的比较与分析,可以得出上图中一、三两个函数是无法用二分法求零点的近似值的,因此要用二分法求零点的近似值的函数必须具备两个特征:函数f(x)在区间[a,b]上连续不断,且满足f(a)·f(b)<0.这时教师对二分法的定义进行完善:对于在区间[a,b]上连续不断,且满足f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
设计意图
通过学生自己的观察、比较、分析,深化学生对定义的认识与理解,进一步挖掘二分法的内涵,使学生对二分法的算法思想与计算原理有了新的感悟.
3.教师进一步指出,从“数”的角度看,函数的零点即是使f(x)=0的实数;从“形”的角度看,函数的零点即是函数f(x)的图象与x轴交点的横坐标.若函数f(x)的图象在x=x0处与x轴相切,则零点x0通常称为不变号零点;若函数f(x)的图象在x=x0处与x轴相交,则零点x0通常称为变号零点.二分法的条件f(a)·f(b)<0表明用二分法求函数的近似零点都是指变号零点.
设计意图
引导学生从“数”和“形”两个角度去体会函数零点的意义,掌握常见函数零点的求法,进一步明确二分法的适用范围.
尝试练习,体会应用
1.例题:借助计算器或计算机用二分法求方程2x+3x=7的近似解.(精确度0.1)
分析:首先利用函数性质或借助计算机、计算器画出函数图象,确定函数零点大致所在的区间,然后利用二分法逐步计算解答.
注意:
(1)第一步确定零点所在的大致区间(a,b),可利用函数性质,也可借助计算机或计算器,但尽量取端点为整数的区间,尽量缩短区间长度,通常可确定一个长度为1的区间.
(2)建议列表样式如下:
零点所在区间
中点函数值
区间长度
[1,2]
f(1.5)>0
1
[1,1.5]
f(1.25)<0
0.5
[1.25,1.5]
f(1.375)<0
0.25
如此列表的优势:计算步数明确,区间长度小于精度时,即为计算的最后一步.
(在教学中教师要引导学生利用二分法逐步寻求函数零点的近似值,注意规范方法、步骤与书写格式.学生要根据二分法的思想与步骤独立完成思考,并进行交流、讨论、评析.)
设计意图
该例题是对这节课前面所学知识和数学思想的综合运用和巩固,解题过程体现了数学表达的简洁性和数学思维的严谨性,也体现了函数思想在解方程中的应用.
2.学生练习:
已知f(x)=2+2x-x2,
(1)如果g(x)=f(2-x2),求g(x)的解析式;
(2)借助计算器或计算机,画出函数g(x)的图象;
(3)求出函数g(x)的零点.(精确到0.1)
分析:本题第(1)问是一道代入法复合函数解析式的问题,第(2)、(3)问需用本节知识进行解决.另外在求g(x)的零点时,不妨用函数g(x)的奇偶性,只需用二分法求出其中一个零点,另一个便知道了.
答案:(1)g(x)=2+2x2-x4;
(2)
(3)±1.7.
设计意图
利用课堂练习巩固所学的知识内容、数学思想、数学方法,以求达到教学目标.本环节以个别指导为主,体现面对全体学生的课改理念.
小结体会,教师归纳
以学生发言的形式对本堂课进行小结,教师归纳强调:
1.二分法求方程的近似解,要求函数f(x)在某一区间[a,b]内连续,并且在此区间端点的函数值异号.
2.用二分法不能求二次重根.
3.在学习中要注意运用函数与方程的思想、数形结合的思想和“逐步逼近”的数学思想.
设计意图
关注学生学习的主动性,培养学生表达交流数学的能力.学生的课堂小结既是对一节课的简单回顾与梳理,也是对所学内容的再次巩固.
作业回馈,巩固知识
1.教材习题3.1(A组)第3~6题、(B组)第4题.
2.提高作业:
(1)已知函数f(x)=2(m+1)x2+4mx+2m-1.
①m为何值时,函数的图象与x轴有两个交点?
②如果函数的一个零点在原点,求m的值.
(2)用二分法求的近似值(精确到0.01).
设计意图
1为巩固作业,2为课外拓展作业,培养学生的探究、创造能力.
课外活动,培养能力
查找有关资料或利用Internet查找有关高次代数方程的解的研究史料,追寻阿贝尔(Abel)和伽罗瓦(Galois).
设计意图
增强探索精神,培养创新意识.
利用函数图象解方程和函数问题
1.求方程x+lg
x=3的近似解.
求某些方程的解,不容易通过笔算来获得,可以通过函数图象,但往往不太容易直接画图,而且画出的图象也不准确,此时利用图形计算器帮助我们画出图象(很多复杂的函数都可以很快在图形计算器上画出),对于我们来说,方法是更重要的.
第一步:按键,输入函数:y1=lg
x,y2=3-x.
第二步:按键,画出两个函数的图象,如下图所示:
第三步:按键:intersection(求交点),屏幕会出现对话框:选择第一条曲线、第二条曲线、下限、上限之后,屏幕上会给出交点值:xc:2.587
17,yc:0.412
826,则x=2.587
17即为方程x+lg
x=3的近似解.
小结:利用函数图象的交点解方程是一个重要方法,而图形计算器为我们提供了一个强有力的工具.
2.一片树林中现有木材30
000米3,如果每年增长5%,经过x年树林中有木材y米3,写出x,y间的函数关系式,并且利用图象,求约经过多少年,木材可以增加到40
000米3?(结果保留一位有效数字)
画出函数图象后,可以通过用键移动光标,寻找当y=40
000时的x值;也可再作函数y2=40
000的图象,用求图象的交点即可.
PAGE
12.3 幂函数
教学分析
幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数.学生已经有了学习指数函数和对数函数的图象和性质的学习经历,幂函数概念的引入以及图象和性质的研究便水到渠成.因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习.本节通过实例,让学生认识到幂函数同样也是一种重要的函数模型,通过研究y=x,y=x2,y=x3,y=x-1,y=等函数的性质和图象,让学生认识到幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数α>0时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数α<0时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为渐近线.在方法上,我们应注意从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习.
将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质.其中,学生在初中已经学习了y=x,y=x2,y=x-1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识.现在明确提出幂函数的概念,有助于学生形成完整的知识结构.学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法.因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外,应让学生了解利用信息技术来探索函数图象及性质是一个重要途径.
学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析.
三维目标
1.通过生活实例引出幂函数的概念,会画幂函数的图象,通过观察图象,了解幂函数图象的变化情况和性质,加深学生对研究函数性质的基本方法和流程的经验,培养学生的概括抽象和识图能力,使学生体会到生活中处处有数学,激发学生的学习兴趣.
2.了解几个常见的幂函数的性质,通过这几个幂函数的性质,总结幂函数的性质,通过画图比较,使学生进一步体会数形结合的思想,利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望.
3.应用幂函数的图象和性质解决有关简单问题,培养学生观察分析归纳能力,了解类比法在研究问题中的作用,渗透辩证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法去分析和解决问题的能力.
重点难点
教学重点:从五个具体的幂函数中认识幂函数的概念和性质.
教学难点:根据幂函数的单调性比较两个同指数的指数式的大小.
课时安排
1课时
导入新课
思路1
1.如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?根据函数的定义可知,这里p是w的函数.
2.如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数.
3.如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数.
4.如果正方形场地面积为S,那么正方形的边长a=,这里a是S的函数.
5.如果某人t
s内骑车行进了1
km,那么他骑车的速度v=t-1
km/s,这里v是t的函数.
以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量).
(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题:幂函数).
思路2.我们前面学习了三类具体的初等函数:二次函数、指数函数和对数函数,这一节课我们再学习一种新的函数——幂函数,教师板书课题:幂函数.
推进新课
提出问题
(1)给出下列函数:y=x,y=,y=x2,y=x-1,y=x3,考察这些解析式的特点,总结出来,是否为指数函数?
(2)根据(1),如果让我们起一个名字的话,你将会给他们起个什么名字呢?请给出一个一般性的结论.
(3)我们前面学习指对数函数的性质时,用了什么样的思路?研究幂函数的性质呢?
(4)画出y=x,y=,y=x2,y=x-1,y=x3五个函数图象,完成下列表格.
(5)通过对以上五个函数图象的观察,哪个象限一定有幂函数的图象?哪个象限一定没有幂函数的图象?哪个象限可能有幂函数的图象,这时可以通过什么途径来判断?
(6)通过对以上五个函数图象的观察和填表,你能类比出一般的幂函数的性质吗?
活动:考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开,学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳,学生作图,教师巡视,学生小组讨论,得到结论,必要时,教师利用几何画板演示.
讨论结果:
(1)通过观察发现这些函数的变量在底数位置,解析式右边都是幂,因为它们的变量都在底数位置上,不符合指数函数的定义,所以都不是指数函数.
(2)由于函数的指数是一个常数,底数是变量,类似于我们学过的幂的形式,因此我们称这种类型的函数为幂函数,如果我们用字母α来表示函数的指数,就能得到一般的式子,即幂函数的定义:一般地,形如y=xα的函数称为幂函数,其中x是自变量,α是常数.
如y=x2,y=,y=x3等都是幂函数,幂函数与指数函数、对数函数一样,都是基本初等函数.
(3)我们研究指数、对数函数时,根据图象研究函数的性质,由具体到一般;一般要考虑函数的定义域、值域、单调性、奇偶性;有时也通过画函数图象,从图象的变化情况来看函数的定义域、值域、单调性、奇偶性等性质,研究幂函数的性质也应如此.
(4)学生用描点法,也可应用函数的性质,如奇偶性、定义域等,画出函数图象.利用描点法,在同一坐标系中画出函数y=x,y=,y=x2,y=x3,y=x-1的图象.
列表:
x

-3
-2
-1
0
1
2
3

y=x

-3
-2
-1
0
1
2
3

y=

0
1
1.41
1.73

y=x2

9
4
1
0
1
4
9

y=x3

-27
-8
-1
0
1
8
27

y=x-1



-1
1

描点、连线.画出以上五个函数的图象如图1.
图1
让学生通过观察图象,分组讨论,探究幂函数的性质和图象的变化规律,教师注意引导学生用类比研究指数函数、对数函数的方法研究幂函数的性质.
通过观察图象,完成表格.
(5)第一象限一定有幂函数的图象;第四象限一定没有幂函数的图象;而第二、三象限可能有,也可能没有图象,这时可以通过幂函数的定义域和奇偶性来判断.
(6)幂函数y=xα的性质.
①所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1)(原因:1x=1);
②当α>0时,幂函数的图象都通过原点,并且在[0,+∞)上是增函数(从左往右看,函数图象逐渐上升).
特别地,当α>1时,x∈(0,1),y=xα的图象都在y=x图象的下方,形状向下凸,α越大,下凸的程度越大.
当0<α<1时,x∈(0,1),y=xα的图象都在y=x的图象上方,形状向上凸,α越小,上凸的程度越大.
③当α<0时,幂函数的图象在区间(0,+∞)上是减函数.
思路1
例1
判断下列函数哪些是幂函数.
①y=0.2x;②y=x-3;③y=x-2;④y=.
活动:学生独立思考,讨论回答,教师巡视引导,及时评价学生的回答.根据幂函数的定义判别,形如y=xα的函数称为幂函数,变量x的系数为1,指数α是一个常数,严格按这个标准来判断.
解:①y=0.2x的底数是0.2,因此不是幂函数;
②y=x-3的底数是变量,指数是常数,因此是幂函数;
③y=x-2的底数是变量,指数是常数,因此是幂函数;
④y=的底数是变量,指数是常数,因此是幂函数.
点评:判断函数是否是幂函数要严格按定义来判断.
变式训练判别下列函数中有几个幂函数?①;②y=2x2;③;④y=x2+x;⑤y=-x3.解:①③的底数是变量,指数是常数,因此①③是幂函数;②的变量x2的系数为2,因此不是幂函数;④的变量是和的形式,因此也不是幂函数;⑤的变量x3的系数为-1,因此不是幂函数.
例2
求下列幂函数的定义域,并指出其奇偶性、单调性.
(1);(2);(3)y=x-2.
活动:学生思考,小组讨论,教师引导,学生展示思维过程,教师评价.根据你的学习经历,回顾求一个函数的定义域的方法,判断函数奇偶性、单调性的方法.判断函数奇偶性、单调性的方法,一般用定义法.解决有关函数求定义域的问题时,可以从以下几个方面来考虑:列出相应不等式或不等式组,解不等式或不等式组即可得到所求函数的定义域.
解:(1)要使函数有意义,只需y=有意义,即x∈R.所以函数的定义域是x∈R.又f(-x)=f(x),所以函数是偶函数,它在(-∞,0]上是减函数,在[0,+∞)上是增函数.
(2)要使函数有意义,只需y=有意义,即x∈R+,所以函数的定义域是R+,由于函数的定义域不关于原点对称,所以函数是非奇非偶函数,它在(0,+∞)上是减函数.
(3)要使函数y=x-2有意义,只需y=有意义,即x≠0,所以函数y=x-2的定义域是x≠0,又f(-x)=f(x),所以函数y=x-2是偶函数,它在(-∞,0)上是增函数,在(0,+∞)上是减函数.
点评:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据分式的分母不能为0这一限制条件来求出对应函数的定义域,求函数的定义域的本质是解不等式或不等式组.
例3
证明幂函数f(x)=在[0,+∞)上是增函数.
活动:学生先思考或讨论,再回答,教师根据实际,可以提示引导.证明函数的单调性一般用定义法,有时利用复合函数的单调性.
证明:任取x1,x2∈[0,+∞),且x1<x2,则f(x1)-f(x2)=-==,因为x1-x2<0,+>0,所以<0.所以f(x1)<f(x2),即f(x)=在[0,+∞)上是增函数.
点评:证明函数的单调性要严格按步骤和格式书写,利用作商的方法比较大小,f(x1)与f(x2)的符号要一致.
思路2
例1
函数y=的定义域是(  )
A.{x|x≠0,或x≠2}
B.(-∞,0)∪(2,+∞)
C.(-∞,0]∪[2,+∞)
D.(0,2)
解析:函数y=化为y=,要使函数有意义需x2-2x>0,即x>2或x<0,所以函数的定义域为{x|x>2,或x<0}.
答案:B
变式训练函数y=的值域是(  )A.[0,+∞)
B.(0,1]
C.(0,1)
D.[0,1]活动:学生独立解题,先思考,然后上黑板板演,教师巡视指导.函数的值域要根据函数的定义域来求.函数可化为根式形式,偶次方根号的被开方数大于零,转化为等式或不等式来解,可得定义域,这是复合函数求值域问题,利用换元法.分析:令t=1-x2,则y=,因为函数的定义域是{x|-1≤x≤1},所以0≤t≤1.所以0≤y≤1.答案:D点评:注意换元法在解题中的应用.
例2
比较下列各组数的大小:
(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.
活动:学生先思考或回忆,然后讨论交流,教师适时提示点拨.比较数的大小,常借助于函数的单调性.对(1)(2)可直接利用幂函数的单调性.对(3)只利用幂函数的单调性是不够的,还要利用指数函数的单调性,事实上,这里0.30.3可作为中间量.
解:(1)由于要比较的数的指数相同,所以利用幂函数的单调性,考察函数y=x0.1的单调性,在第一象限内函数单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.
(2)由于要比较的数的指数相同,所以利用幂函数的单调性,考察函数y=x-0.2的单调性,在第一象限内函数单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.
(3)首先比较指数相同的两个数的大小,考察函数y=x0.3的单调性,在第一象限内函数单调递增,又因为0.2<0.3,所以0.20.3<0.30.3.
再比较同底数的两个数的大小,考察函数y=0.3x的单调性,在定义域内函数单调递减,又因为0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.
另外,本题还有图象法,计算结果等方法,留作同学们自己完成.
点评:指数相同的幂的大小比较可以利用幂函数的单调性;底数相同的幂的大小比较可以利用指数函数的单调性.
1.下列函数中,是幂函数的是(  )
A.y=2x
B.y=2x3
C.y=
D.y=2x
2.下列结论正确的是(  )
A.幂函数的图象一定过原点
B.当α<0时,幂函数y=xα是减函数
C.当α>0时,幂函数y=xα是增函数
D.函数y=x2既是二次函数,也是幂函数
3.下列函数中,在(-∞,0)是增函数的是(  )
A.y=x3
B.y=x2
C.y=
D.
4.已知某幂函数的图象经过点(2,),则这个函数的解析式为__________.
答案:1.C 2.D 3.A 4.
分别在同一坐标系中作出下列函数的图象,通过图象说明它们之间的关系.
①y=x-1,y=x-2,y=x-3;②,;
③y=x,y=x2,y=x3;④,.
活动:学生思考或交流,探讨作图的方法,教师及时提示,必要时,利用几何画板演示.
解:利用描点法,在同一坐标系中画出上述四组函数的图象如图2、图3,图4、图5.
  
图2
图3
 
 
图4
图5
①观察图2得到:
函数y=x-1、y=x-2、y=x-3的图象都过点(1,1),且在第一象限随x的增大而下降,函数在区间(0,+∞)上是单调减函数,且向右无限接近x轴,向上无限接近y轴,指数越小,向右无限接近x轴的图象在下方,向上离y轴越远.
②观察图3得到:
函数、的图象都过点(1,1),且在第一象限随x的增大而下降,函数在区间(0,+∞)上是单调减函数,且向右无限接近x轴,向上无限接近y轴,指数越小,向右无限接近x轴的图象在下方,向上离y轴越远.
③观察图4得到:
函数y=x、y=x2、y=x3的图象过点(1,1)、(0,0),且在第一象限随x的增大而上升,函数在区间[0,+∞)上是单调增函数,指数越大图象下凸越大,从第一象限来看,图象向上离y轴近,向下离x轴近.
④观察图5得到:
函数、的图象过点(1,1)、(0,0),且在第一象限随x的增大而上升,函数在区间[0,+∞)上是单调增函数,指数越小图象上凸越大,从第一象限来看,图象在点(1,1)的左边离y轴近,在点(1,1)的右边离x轴近.
根据上述规律可以判断函数图象的分布情况.
1.幂函数的概念.
2.幂函数的性质.
3.幂函数的性质的应用.
课本习题2.3 1,2,3.
幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数,课本内容较少,但高考内容不少,应适当引申,所以设计了一些课本上没有的题目类型,以扩展同学们的视野,同时由于作图的内容较多,建议抓住关键点作图,要会熟练地运用计算机或计算器作图,强化对知识的理解.
历史上数学计算方面的三大发明
你知道数学计算方面的三大发明吗?这就是阿拉伯数字、十进制和对数.
研究自然数遇到的第一个问题是计数法和进位制的问题,我们采用的十进制是中国人的一大发明.在商代中期的甲骨文中已有十进制,其中最大的数是3万,印度最早到六世纪末才有十进制.但是,目前使用的计数法和阿拉伯数字1,2,3,4,5,6,7,8,9,0是印度人最早开始使用,后来传到阿拉伯,由阿拉伯人传到欧洲,并被欧洲人所接受.
十进制位置计数法的诞生,是自然数发展史上的一次飞跃,同一个数字由于它所在的位置不同而有不同的值.无穷多个自然数可以用有限个符号来驾驭,所有的自然数都可以方便清楚地表示出来.
16世纪前半叶,由于实际的需要,对计算技术的改进提出了前所未有的要求.这一时期计算技术最大的改进是对数的发明和应用,它的产生主要是由于天文和航海计算的迫切需要.为了简化天文航海方面所遇到的繁杂数值计算,自然希望将乘除法归结为简单的加减法.苏格兰数学家纳皮尔(J.Napier,1550—1617)在球面天文学的三角学研究中,首先发明了对数方法.1614年他在题为《奇妙的对数定理说明书》一书中,阐述了他的对数方法,对数的使用价值为纳皮尔的朋友——英国数学家布里格斯(H.Birggs,1561—1630)所认识,他与纳皮尔合作,并于1624年出版了《对数算术》一书,公布了以10为底的14位对数表,并称以10为底的对数为常用对数.常用对数曾经在简化计算上为人们做过重大贡献,而自然对数以及以e为底的指数函数成了研究科学、了解自然的必不可少的工具.恩格斯曾把对数的发明与解析几何的创始,微积分学的建立并称为17世纪数学的三大成就.法国著名的数学家、天文学家拉普拉斯曾说:“对数的发明以其节省劳力而延长了天文学家的寿命.”
一直到18世纪,瑞士数学家欧拉(L.Euler,1707—1783)才发现了指数与对数的关系,他指出“对数源出于指数”,这个见解很快被人们所接受.
PAGE
1