24.1
旋转
第3课时
旋转的应用
1.理解并掌握旋转变化的特点,能够解决坐标平面内的旋转变换问题(重点,难点);
2.能够运用旋转、轴对称或平移进行简单的图案设计(难点).
一、情境导入
2016年里约热内卢奥运会会徽是由三人牵手相连的标志,以代表巴西的著名景点“面包山”作为图形的基础,融合充满激情的卡里奥克舞,并且呼应了巴西国旗的绿黄蓝三色.标志象征着团结、转变、激情及活力,在和谐动感中共同协力,同时也体现了里约的特色和这座城市多样的文化,展示了热情友好的里约人和这座美丽的上帝之城.
二、合作探究
探究点一:坐标平面内的旋转变换
【类型一】
坐标平面内图形的旋转变换
如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A′的坐标为( )
A.(3,1)
B.(3,2)
C.(2,3)
D.(1,3)
解析:根据网格结构找出点A、B旋转后的对应点A′、B′的位置,然后与点O顺次连接即可,再根据平面直角坐标系写出点A′的坐标.如图,点A′的坐标为(1,3),故选D.
方法总结:本题考查了坐标与图形旋转,根据网格结构作出旋转后的三角形,利用数形结合的思想求解.
变式训练:见《学练优》本课时练习“课堂达标训练”第2题
【类型二】
坐标平面内线段的旋转变换
如图,在平面直角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标是__________.
解析:过点A作AC⊥x轴,过点A′作A′D⊥x轴,垂足分别为C、D,显然Rt△ABC≌Rt△BA′D.∵点A的坐标为(a,b),点B的坐标是(1,0),∴OD=OB+BD=OB+AC=1+b,A′D=BC=OC-OB=a-1.∵点A′在第四象限,∴点A′的坐标是(b+1,-a+1).故答案为(b+1,-a+1).
方法总结:本题考查了坐标与线段的变化,作出全等三角形,利用全等三角形对应边相等求出点A′到坐标轴的距离是解题的关键,书写坐标时要注意点所在的象限.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题
探究点二:动态图形的操作与图案设计
【类型一】
图形的变换
用四块如图(1)所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法(要求三种画法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形).
解:解法不唯一.例如:
方法总结:求解时只要符合题意即可,另外,在平时的学习生活中一定要留意身边的各种形状的图案,这样才能在具体求解问题时如鱼得水,一蹴而就.
【类型二】
图案设计
如图,是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4.
解析:所给左上角的三角形的面积为×1×1=,故设计图案总共需要三角形4÷=8(个),以O为对称中心的中心对称图形,同时又是轴对称图形的设计方案有很多.
答案:答案不唯一,以下各图供参考:
方法总结:在读清要求后,进行方案的尝试设计,一般要经历一个不断修改的过程,使问题在修正中得以解决.
变式训练:见《学练优》本课时练习“课堂达标训练”第8题
三、板书设计
1.坐标平面内的旋转变换
2.动态图形的操作与图案设计
教学过程中,强调学生自主探索和合作交流,鼓励学生自己动手操作,经历运用平移、旋转、轴对称的组合进行简单的图案设计过程,体会图形的欣赏与设计的奇妙.24.1
旋转
第1课时
旋转的概念和性质
1.了解图形旋转的有关概念并理解它的基本性质(重点);
2.了解旋转对称图形的有关概念及特点(难点).
一、情境导入
飞行中的飞机的螺旋桨、高速运转中的电风扇等均属于旋转现象.你还能举出类似现象吗?
二、合作探究
探究点一:旋转的概念和性质
【类型一】
旋转的概念
下列事件中,属于旋转运动的是( )
A.小明向北走了4米
B.小朋友们在荡秋千时做的运动
C.电梯从1楼上升到12楼
D.一物体从高空坠下
解析:A.是平移运动;B.是旋转运动;C.是平移运动;D.是平移运动.故选B.
方法总结:本题考查了旋转的概念,图形的旋转即是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型二】
旋转的性质
如图,△ABC绕点A顺时针旋转80°得到△AEF,若∠B=100°,∠F=50°,则∠α的度数是( )
A.40°
B.50°
C.60°
D.70°
解析:∵△ABC绕点A顺时针旋转80°得到△AEF,∴△ABC≌△AEF,∠C=∠F=50°,∠BAE=80°.又∵∠B=100°,∴∠BAC=30°,∴∠α=∠BAE-∠BAC=50°.故选B.
方法总结:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点——旋转中心;②旋转方向;③旋转角度.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
【类型三】
与旋转有关的作图
在图中,将大写字母A绕它上侧的顶点按逆时针方向旋转90°,作出旋转后的图案,同时作出字母A向左平移5个单位的图案.
解:
方法总结:此题主要考查了旋转变换以及平移变换,得出对应点的位置是解题关键.
变式训练:见《学练优》本课时练习“课堂达标训练”第7题
探究点二:旋转对称图形
【类型一】
认识旋转对称图形
下图中不是旋转对称图形的是( )
解析:A.360°÷5=72°,图形旋转72°的整数倍即可与原图形重合,是旋转对称图形,故本选项错误;B.不是旋转对称图形,故本选项正确;C.360°÷8=45°,图形旋转45°的整数倍即可与原图形重合,是旋转对称图形,故本选项错误;D.360°÷4=90°,图形旋转90°的整数倍即可与原图形重合,是旋转对称图形,故本选项错误.故选B.
方法总结:本题考查了旋转对称图形的概念及性质,把一个旋转对称图形绕着一个定点旋转一个角度后与初始图形重合,可据此判定一个图形是否为旋转对称图形.
【类型二】
旋转对称图形的特点
如图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心按逆时针方向旋转的度数为( )
A.30°
B.60°
C.120°
D.180°
解析:图形可看作是正六边形被平分成六部分,故每部分被分成的角是60°,故旋转60°的整数倍就可以与自身重合.故选B.
方法总结:解题关键在于对旋转对称图形的旋转角的概念的理解,通过计算旋转角可得出答案.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
三、板书设计
1.旋转的概念
(1)旋转中心;(2)旋转角;(3)对应点.
2.旋转的性质
在一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中线的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点.
3.旋转对称图形
本课时所学习的内容概念性较强,在教学时可借助多媒体软件,形象生动的展示旋转的性质,使学生能够深刻理解,为接下来的学习打下基础.在教学设计中,应突出学生在课堂学习中的主体地位,强调学生自主探索和合作交流,增强动手能力,培养探究精神.24.1
旋转
第2课时
中心对称和中心对称图形
1.理解中心对称和中心对称图形的定义,掌握中心对称图形的性质(重点);
2.能够依据中心对称图形的定义判断某图形是否为中心对称图形(难点).
一、情境导入
剪纸,又叫刻纸,是中国汉族最古老的民间艺术之一,它的历史可追溯到公元6世纪.如图剪纸中两个金鱼之间有什么关系呢?
二、合作探究
探究点一:中心对称的性质
如图,已知△AOB与△DOC成中心对称,△AOB的面积是12,AB=3,则△DOC中CD边上的高是( )
A.3
B.6
C.8
D.12
解析:设AB边上的高为h,因为△AOB的面积是12,AB=3,所以×3×h=12,所以h=8.又因为△AOB与△DOC成中心对称,△COD≌△AOB,所以△DOC中CD边上的高是8.故选C.
方法总结:成中心对称的两个图形全等,全等三角形的对应高相等.
变式训练:见《学练优》本课时练习“课堂达标训练”第3题
探究点二:中心对称图形的性质与识别
【类型一】
中心对称图形的识别
下列标志图中,既是轴对称图形,又是中心对称图形的是( )
解析:根据轴对称和中心对称的概念和性质逐一进行判断,选项A是中心对称图形,不是轴对称图形;选项B既是中心对称图形,又是轴对称图形;选项C是轴对称图形,不是中心对称图形;选项D既不是中心对称图形,也不是轴对称图形.故选B.
方法总结:识别中心对称图形的方法是根据概念,将这个图形绕某一点旋转180°,如果旋转后的图形能够与自身重合,那么这个图形就是中心对称图形.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题
【类型二】
与中心对称图形有关的作图
如图,网格中有一个四边形和两个三角形.
(1)请你分别画出三个图形关于点O的中心对称图形;
(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?
解:(1)如图所示;
(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.
方法总结:作中心对称图形的一般步骤:(1)确定具有代表性的点(如线段的端点);(2)作出每个代表性点的对称点;(3)按照原图形的形状顺次连接各个对称点.
变式训练:见《学练优》本课时练习“课后巩固提升”第5题
【类型三】
中心对称图形的性质及应用
如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,试求图中阴影部分的面积.
解析:观察图中阴影部分,可以利用中心对称图形的性质进行转化,将复杂问题简单化.
解:因为矩形ABCD是中心对称图形,所以△BOF与△DOE关于点O成中心对称,所以图中阴影部分的三个三角形就可以转化到直角△ADC中.又因为AB=2,BC=3,所以Rt△ADC的面积为×3×2=3,即图中阴影部分的面积为3.
方法总结:利用中心对称的性质将阴影部分转化到一个直角三角形中来解决更简单.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
【类型四】
平面直角坐标系中的中心对称
已知:如图,E(-4,2),F(-1,-1),以O为中心,作△EFO的中心对称图形,则点E的对应点E′的坐标为________.
解析:由中心对称可得到新的点与原来的点关于原点对称.∵E(-4,2),∴点E的对应点E′的坐标为
(4,-2),故答案为(4,-2).
方法总结:两点关于原点中心对称,横纵坐标均互为相反数.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
三、板书设计
1.中心对称的定义与性质
成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.
2.中心对称图形
把一个图形绕某一个定点旋转180°,如果旋转后的图形能和原来图形重合,那么这个图形叫做中心对称图形,这个定点就是对称中心.
在教学过程中,应该鼓励学生进行自主探究,自己动手去探索中心对称和中心对称图形的特点,加深对新知识的认识和理解.教师在课堂上起辅助作用,引导学生自己解决问题,注重培养学生的独立意识.