高中数学全一册教案(打包35套)新人教A版必修2

文档属性

名称 高中数学全一册教案(打包35套)新人教A版必修2
格式 zip
文件大小 3.1MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2017-11-09 10:22:14

文档简介

3.2.2
直线的两点式方程
教学目标
1.让学生掌握直线方程两点式和截距式的发现和推导过程,并能运用这两种形式求出直线的方程.培养学生数形结合的数学思想,为今后的学习打下良好的基础.2.了解直线方程截距式的形式特点及适用范围,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.
教学重、难点
教学重点:直线方程两点式和截距式.教学难点:关于两点式的推导以及斜率k不存在或斜率k=0时对两点式方程的讨论及变形.
教学准备
多媒体课件
教学过程
导入新课要学生求直线的方程,题目如下:①A(8,-1),B(-2,4);②A(6,-4),B(-1,2);③A(x1,y1),B(x2,y2)(x1≠x2).(分别找3个同学说上述题的求解过程和答案,并着重要求说求k及求解过程)这个答案对我们有何启示?求解过程可不可以简化?我们可不可以把这种直线方程取一个什么名字呢 提出问题①已知两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2),求通过这两点的直线方程.②若点P1(x1,y1),P2(x2,y2)中有x1=x2或y1=y2,此时这两点的直线方程是什么?③两点式公式运用时应注意什么?④已知直线l与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中a≠0,b≠0,求直线l的方程.⑤a、b表示截距是不是直线与坐标轴的两个交点到原点的距离?⑥截距式不能表示平面坐标系下哪些直线?活动:①教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程.师生共同归纳:已知直线上两个不同点,求直线的方程步骤:a.利用直线的斜率公式求出斜率k;b.利用点斜式写出直线的方程.∵x1≠x2,k=,∴直线的方程为y-y1=(x-x1).∴l的方程为y-y1=(x-x1).①当y1≠y2时,方程①可以写成.②由于②这个方程是由直线上两点确定的,因此叫做直线方程的两点式.注意:②式是由①式导出的,它们表示的直线范围不同.①式中只需x1≠x2,它不能表示倾斜角为90°的直线的方程;②式中x1≠x2且y1≠y2,它不能表示倾斜角为0°或90°的直线的方程,但②式相对于①式更对称、形式更美观、更整齐,便于记忆.如果把两点式变成(y-y1)(x2-x1)=(x-x1)(y2-y1),那么就可以用它来求过平面上任意两已知点的直线方程.②使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式.教师引导学生通过画图、观察和分析,发现当x1=x2时,直线与x轴垂直,所以直线方程为x=x1;当y1=y2时,直线与y轴垂直,直线方程为y=y1.③引导学生注意分式的分母需满足的条件.④使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形.教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线l的方程?哪种方法更为简捷?然后求出直线方程.因为直线l经过(a,0)和(0,b)两点,将这两点的坐标代入两点式,得.①就是=1.②注意:②这个方程形式对称、美观,其中a是直线与x轴交点的横坐标,称a为直线在x轴上的截距,简称横截距;b是直线与y轴交点的纵坐标,称b为直线在y轴上的截距,简称纵截距.因为方程②是由直线在x轴和y轴上的截距确定的,所以方程②式叫做直线方程的截距式.⑤注意到截距的定义,易知a、b表示的截距分别是直线与坐标轴x轴交点的横坐标,与y轴交点的纵坐标,而不是距离.⑥考虑到分母的原因,截距式不能表示平面坐标系下在x轴上或y轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.讨论结果:①若x1≠x2且y1≠y2,则直线l方程为.②当x1=x2时,直线与x轴垂直,直线方程为x=x1;当y1=y2时,直线与y轴垂直,直线方程为y=y1.③倾斜角是0°或90°的直线不能用两点式公式表示(因为x1≠x2,y1≠y2).④=1.⑤a、b表示的截距分别是直线与坐标轴x轴交点的横坐标,与y轴交点的纵坐标,而不是距离.⑥截距式不能表示平面坐标系下在x轴上或y轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.应用示例例1
求出下列直线的截距式方程:(1)横截距是3,纵截距是5;(2)横截距是10,纵截距是-7;(3)横截距是-4,纵截距是-8.答案:(1)5x+3y-15=0;(2)7x-10y-70=0;(3)3x+4y+12=0.变式训练
已知Rt△ABC的两直角边AC=3,BC=4,直角顶点C在原点,直角边AC在x轴负方向上,BC在y轴正方向上,求斜边AB所在的直线方程.答案:4x-3y+12=0.例2
如图1,已知三角形的顶点是A(-5,
0)、B(3,-3)、C(0,2),求这个三角形三边所在直线的方程.图1活动:根据A、B、C三点坐标的特征,求AB所在的直线的方程应选用两点式;求BC所在的直线的方程应选用斜截式;求AC所在的直线的方程应选用截距式.解:AB所在直线的方程,由两点式,得,即3x+8y+15=0.BC所在直线的方程,由斜截式,得y=-x+2,即5x+3y-6=0.AC所在直线的方程,由截距式,得=1,即2x-5y+10=0.变式训练
如图2,已知正方形的边长是4,它的中心在原点,对角线在坐标轴上,求正方形各边及对称轴所在直线的方程.图2活动:由于正方形的顶点在坐标轴上,所以可用截距式求正方形各边所在直线的方程.而正方形的对称轴PQ,MN,x轴,y轴则不能用截距式,其中PQ,MN应选用斜截式;x轴,y轴的方程可以直接写出.解:因为|AB|=4,所以|OA|=|OB|=.因此A、B、C、D的坐标分别为(2,0)、(0,2)、(-2,0)、(0,-2).所以AB所在直线的方程是=1,即x+y-2=0.BC所在直线的方程是=1,即x-y+2=0.CD所在直线的方程是=1,即x+y+2=0.DA所在直线的方程是=1,即x-y-2=0.对称轴方程分别为x±y=0,x=0,y=0.课堂小结
通过本节学习,要求大家:掌握直线方程两点式和截距式的发现和推导过程,并能运用这两种形式求出直线的方程.理解数形结合的数学思想,为今后的学习打下良好的基础.了解直线方程截距式的形式特点及适用范围,树立辩证统一的观点,形成严谨的科学态度和求简的数学精神.作业课本习题3.2
A组9、10.
板书设计
教学反思
PAGE
1第三章
直线与方程
教学目标
通过总结和归纳直线与方程的知识,对全章知识内容进行一次梳理,突出知识间的内在联系,进一步提高学生综合运用知识解决问题的能力.能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力.
教学重、难点
教学重点:①直线的倾斜角和斜率.②直线的方程和两直线的位置关系的应用.③激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力.教学难点:①数形结合和分类讨论思想的渗透和理解.②处理直线综合问题的策略.
教学准备
多媒体课件
教学过程
导入新课
为了系统掌握第三章的知识,教师直接点出课题.提出问题①第一节是直线的倾斜角和斜率,需要注意什么?②第二节是直线的方程,有几种形式?各自的适用范围怎样?③第三节是两直线的位置关系,分为哪些内容?如何判断?④画出本章的知识结构图.活动:
让学生自己回顾所学知识或结合教材,重新对知识整合,对没有思路的学生,教师可以提示按教材的章节标题来分类.对于画知识结构图,可让学生合作交流,待学生有了不同画法后,先对比分析,再画本章的知识结构图.讨论结果:①直线的倾斜角(α)和斜率(k):倾斜角范围:0°≤α<180°,斜率:k∈R.k与α的关系:k=,α∈[0°,90°)∪(90°,180°).注意倾斜角为90°的直线的斜率不存在(分类讨论).②直线方程的五种形式及适用范围:(a)斜截式:y=kx+b,不含与x轴垂直的直线.(b)点斜式:y-y0=k(x-x0),不含与x轴垂直的直线.(c)两点式:,不含与x轴、y轴垂直的直线.(d)截距式:=1,不含过原点和与x轴、y轴垂直的直线.(e)一般式:Ax+By+C=0(A2+B2≠0),无限制(可表示任何直线).注:两点式的“改良”(x-x1)(y2-y1)-(y-y1)(x2-x1)=0,可表示任何直线.③分为:两条直线的位置关系及点到直线的距离和两条平行线间的距离.判定两条直线的位置关系(三种:相交、平行、重合).设l1:y=k1x+b1,A1x+B1y+C1=0;l2:y=k2x+b2,A2x+B2y+C2=0.(a)l1∩l2=Pk1≠k2或仅有一个不存在A1B2-A2B1≠0;l1⊥l2k1k2=-1或一个为零一个不存在A1A2+B1B2=0.(b)l1∥l2k1=k2且b1≠b2或k1,k2均不存在A1B2-A2B1=0且A1C2-A2C1≠0.(c)l1与l2重合k1=k2且b1=b2或k1,k2均不存在A1B2-A2B1=0且A1C2-A2C1=0.④第三章的知识结构图如图1所示.从几何直观到代数表示(建立直线的方程)从代数表示到几何直观(通过方程研究几何性质和度量)
图1应用示例例1
求满足下列条件的直线方程:(1)经过点P(2,-1)且与直线2x+3y+12=0平行;(2)经过点Q(-1,3)且与直线x+2y-1=0垂直;(3)经过点R(-2,3)且在两坐标轴上截距相等;(4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;(5)经过点N(-1,3)且在x轴的截距与它在y轴上的截距的和为零.解:(1)2x+3y-1=0.(2)2x-y+5=0.(3)x+y-1=0或3x+2y=0.(4)4x+y-6=0或3x+2y-7=0.(5)3x+y=0或x-y+4=0.变式训练
求经过点P(2,3)且被两条平行直线3x+4y-7=0和3x+4y+8=0截得线段长为3的直线方程.解:因为已知两条平行直线间的距离d==3,所以所求直线与直线3x+4y-7=0的夹角为45°.设所求直线的斜率为k,则tan45°=.解得k=或k=-7.因此x-7y+19=0或7x+y-17=0为所求.例2
已知直线l与直线3x+4y-7=0平行,并且与两坐标轴围成的三角形的面积为24,求直线l的方程.解:设l:3x+4y+m=0,则当y=0时,x=-;当x=0时,y=-.∵直线l与两坐标轴围成的三角形面积为24,∴·|-|·|-|=24.∴m=±24.∴直线l的方程为3x+4y±24=0.变式训练1.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y-2m+6=0,根据下列条件求m的值.(1)直线l的斜率为1;(2)直线l经过定点P(-1,-1).解:(1)由题意得-(m2-2m-3)=2m2+m-1,即3m2-m-4=0,解之,得m=-1(舍去)或m=.(2)由题意得(m2-2m-3)×(-1)+(2m2+m-1)×(-1)-2m+6=0,即3m2+m-10=0,解之,得m=-2或m=.2.过点(1,3)作直线l,若l经过点(a,0)和(0,b),且a、b∈N
,则可作出的l的条数为(
)A.1
B.2
C.3
D.多于3解析:(方法一)设过点(1,3)的直线l的方程为=1,则+=1.∴a=.由a、b∈N
逐步试解可得或,所以选B.(方法二)设过点(1,3)的直线l的方程为y-3=k(x-1),则a=-+1,b=3-k.由a、b∈N
得k=-1或k=-3,相应的有或所以选B.答案:B知能训练1.如果直线x+2ay-1=0与直线(3a-1)x-ay-1=0平行,则a等于(
)A.0
B.
C.0或1
D.0或2.已知直线l过点P(5,10),且原点到它的距离为5,则直线l的方程为_____________.3.直线x-2y+b=0与两坐标轴所围成的三角形的面积不大于1,那么b的取值范围是_____________.4.经过点P(0,-1)作直线l,若直线l与连接A(1,-2)、B(2,1)的线段没有公共点,则直线l的斜率k的取值范围为_____________.5.直线l1:mx+(m-1)y+5=0与l2:(m+2)x+my-1=0互相垂直,则m的值是_____________.答案:1.D
2.x=5或3x-4y+25=0
3.[-2,0)∪(0,2]
4.(-∞,-1)∪(1,+∞)
5.m=0或m=-拓展提升问题:过点M(2,4)作l1交x正半轴于A,作l2交y正半轴于B,若l1⊥l2,且AB恰平分四边形OAMB面积,求直线AB方程.图2解:如图2,设l1:y-2=k(x-1),即kx-y+2-k=0,l2:y-2=-(x-1),即x+ky-2k-1=0.则A(1-,0),B(0,2+).则|OA|·|OB|=|MA|·|MB|,∴|1-|·|2+|=·.解得k=或k=-.则A(-,0),B(0,)或A(,0),B(0,).∴AB方程为=1或=1,即6x-3y+10=0或2x+4y-10=0.课堂小结
本节课总结了第三章的基本知识并形成知识网络,归纳了常见的解题方法,渗透了几种重要的数学思想方法.作业课本本章复习参考题A组8、9、10.
板书设计
教学反思
PAGE
13.3.1
两条直线的交点坐标
教学目标
1.掌握两直线方程联立方程组解的情况与两直线不同位置的对立关系,并且会通过直线方程系数判定解的情况,培养学生树立辩证统一的观点.2.当两条直线相交时,会求交点坐标.培养学生思维的严谨性,注意学生语言表述能力的训练.3.学生通过一般形式的直线方程解的讨论,加深对解析法的理解,培养转化能力.4.以“特殊”到“一般”,培养学生探索事物本质属性的精神,以及运动变化的相互联系的观点.
教学重、难点
教学重点:根据直线的方程判断两直线的位置关系和已知两相交直线求交点.教学难点:对方程组系数的分类讨论与两直线位置关系对应情况的理解.
教学准备
多媒体课件
教学过程
导入新课作出直角坐标系中两条直线,移动其中一条直线,让学生观察这两条直线的位置关系.课堂设问:由直线方程的概念,我们知道直线上的一点与二元一次方程的解的关系,那如果两直线相交于一点,这一点与这两条直线的方程有何关系?你能求出它们的交点坐标吗?说说你的看法.提出问题①已知两直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,如何判断这两条直线的关系?②如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?③解下列方程组(由学生完成):(ⅰ);
(ⅱ);
(ⅲ).如何根据两直线的方程系数之间的关系来判定两直线的位置关系?④当λ变化时,方程3x+4y-2+λ(2x+y+2)=0表示什么图形,图形有什么特点?求出图形的交点坐标.讨论结果:①教师引导学生先从点与直线的位置关系入手,看下表,并填空.几何元素及关系代数表示点AA(a,b)直线ll:Ax+By+C=0点A在直线上直线l1与l2的交点A②学生进行分组讨论,教师引导学生归纳出两直线是否相交与其方程所组成的方程组的关系.设两条直线的方程是l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,如果这两条直线相交,由于交点同时在这两条直线上,交点的坐标一定是这两个方程的唯一公共解,那么以这个解为坐标的点必是直线l1和l2的交点,因此,两条直线是否有交点,就要看这两条直线方程所组成的方程组是否有唯一解.(ⅰ)若二元一次方程组有唯一解,则l1与l2相交;(ⅱ)若二元一次方程组无解,则l1与l2平行;(ⅲ)若二元一次方程组有无数解,则l1与l2重合.即直线l1、l2联立得方程组
(代数问题)
(几何问题)③引导学生观察三组方程对应系数比的特点:(ⅰ)≠;(ⅱ);(ⅲ)≠.一般地,对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1B1C1≠0,A2B2C2≠0),有方程组.注意:(a)此关系不要求学生作详细的推导,因为过程比较繁杂,重在应用.(b)如果A1,A2,B1,B2,C1,C2中有等于零的情况,方程比较简单,两条直线的位置关系很容易确定.④(a)可以用信息技术,当λ取不同值时,通过各种图形,经过观察,让学生从直观上得出结论,同时发现这些直线的共同特点是经过同一点.(b)找出或猜想这个点的坐标,代入方程,得出结论.(c)结论:方程表示经过这两条直线l1与l2的交点的直线的集合.应用示例例1
求下列两直线的交点坐标,l1:3x+4y-2=0,l2:2x+y+2=0.解:解方程组得x=-2,y=2,所以l1与l2的交点坐标为M(-2,2).变式训练
求经过原点且经过以下两条直线的交点的直线方程.l1:x-2y+2=0,l2:2x-y-2=0.解:解方程组x-2y+2=0,2x-y-2=0,得x=2,y=2,所以l1与l2的交点是(2,2).设经过原点的直线方程为y=kx,把点(2,2)的坐标代入以上方程,得k=1,所以所求直线方程为y=x.点评:此题为求直线交点与求直线方程的综合运用,求解直线方程也可应用两点式.例2
判断下列各对直线的位置关系.如果相交,求出交点坐标.(1)l1:x-y=0,l2:3x+3y-10=0.(2)l1:3x-y+4=0,l2:6x-2y-1=0.(3)l1:3x+4y-5=0,l2:6x+8y-10=0.活动:教师让学生自己动手解方程组,看解题是否规范,条理是否清楚,表达是否简洁,然后再进行讲评.解:(1)解方程组得所以l1与l2相交,交点是(,).(2)解方程组①×2-②得9=0,矛盾,方程组无解,所以两直线无公共点,l1∥l2.(3)解方程组①×2得6x+8y-10=0.因此,①和②可以化成同一个方程,即①和②表示同一条直线,l1与l2重合.变式训练
判定下列各对直线的位置关系,若相交,则求交点.(1)l1:7x+2y-1=0,l2:14x+4y-2=0.(2)l1:(-)x+y=7,l2:x+(+)y-6=0.(3)l1:3x+5y-1=0,l2:4x+3y=5.答案:(1)重合,(2)平行,(3)相交,交点坐标为(2,-1).例3
求过点A(1,-4)且与直线2x+3y+5=0平行的直线方程.解法一:∵直线2x+3y+5=0的斜率为-,∴所求直线斜率为-.又直线过点A(1,-4),由直线方程的点斜式易得所求直线方程为2x+3y+10=0.解法二:设与直线2x+3y+5=0平行的直线l的方程为2x+3y+m=0,∵l经过点A(1,-4),∴2×1+3×(-4)+m=0.解之,得m=10.∴所求直线方程为2x+3y+10=0.点评:解法一求直线方程的方法是通法,须掌握.解法二是常常采用的解题技巧.一般地,直线Ax+By+C=0中系数A、B确定直线的斜率.因此,与直线Ax+By+C=0平行的直线方程可设为Ax+By+m=0,其中m待定.经过点A(x0,y0),且与直线Ax+By+C=0平行的直线方程为A(x-x0)+B(y-y0)=0.变式训练
求与直线2x+3y+5=0平行,且在两坐标轴上截距之和为的直线方程.答案:2x+3y-1=0.知能训练课本本节练习1、2.拓展提升问题:已知a为实数,两直线l1:ax+y+1=0,l2:x+y-a=0相交于一点,求证:交点不可能在第一象限及x轴上.分析:先通过联立方程组将交点坐标解出,再判断交点横、纵坐标的范围.解:解方程组,得.若>0,则a>1.当a>1时,-<0,此时交点在第二象限内.又因为a为任意实数时,都有a2+1≥1>0,故≠0.因为a≠1(否则两直线平行,无交点),所以交点不可能在x轴上,交点(-)不在x轴上.课堂小结
本节课通过讨论两直线方程联立方程组来研究两直线的位置关系,得出了方程系数比的关系与直线位置关系的联系.培养了同学们的数形结合思想、分类讨论思想和转化思想.通过本节学习,要求学生掌握两直线方程联立方程组解的情况与两直线不同位置的对立关系,并且会通过直线方程系数判定解的情况,培养学生树立辩证统一的观点.当两条直线相交时,会求交点坐标.注意语言表述能力的训练.通过一般形式的直线方程解的讨论,加深对解析法的理解,培养转化能力.以“特殊”到“一般”,培养探索事物本质属性的精神,以及运动变化的相互联系的观点.作业课本习题3.3
A组1、2、3,选做4题.
板书设计
教学反思
PAGE
12.1.1
平面
教学目标
1.正确理解平面的几何概念,掌握平面的基本性质.2.熟练掌握三种数学语言的转换与翻译,结合三个公理的应用会证明共点、共线、共面问题.3.通过三种语言的学习让学生感知数学语言的美,培养学生学习数学的兴趣.
教学重、难点
三种数学语言的转换与翻译,利用三个公理证明共点、共线、共面问题.
教学准备
多媒体课件
教学过程
观察长方体(图1),你能发现长方体的顶点、棱所在的直线,以及侧面、底面之间的关系吗?图1
长方体由上、下、前、后、左、右六个面围成.有些面是平行的,有些面是相交的;有些棱所在的直线与面平行,有些棱所在的直线与面相交;每条棱所在的直线都可以看成是某个面内的直线等等.空间中的点、直线、平面之间有哪些位置关系呢?本节我们将讨论这个问题.提出问题①怎样理解平面这一最基本的几何概念;②平面的画法与表示方法;③如何描述点与直线、平面的位置关系?④直线与平面有一个公共点,直线是否在平面内?直线与平面至少有几个公共点才能判断直线在平面内?⑤根据自己的生活经验,几个点能确定一个平面?⑥如果两个不重合的平面有一个公共点,它们的位置关系如何?请画图表示;⑦描述点、直线、平面的位置关系常用几种语言?⑧自己总结三个公理的有关内容.活动:让学生先思考或讨论,然后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.对有困难的学生可提示如下:①回忆我们学过的最基本的概念(原始概念),如点、直线、集合等.②我们的桌面看起来像什么图形?表示平面和表示点、直线一样,通常用英文字母或希腊字母表示.③点在直线上和点在直线外;点在平面内和点在平面外.④确定一条直线需要几个点?⑤引导学生观察教室的门由几个点确定.⑥两个平面不可能仅有一个公共点,因为平面有无限延展性.⑦文字语言、图形语言、符号语言.⑧平面的基本性质小结.讨论结果:①平面与我们学过的点、直线、集合等概念一样都是最基本的概念(不加定义的原始概念),只能通过对它描述加以理解,可以用它定义其他概念,不能用其他概念来定义它,因为它是不加定义的.平面的基本特征是无限延展性,很像如来佛的手掌(吴承恩的立体几何一定不错).②我们的桌面看起来像平行四边形,因此平面通常画成平行四边形,有些时候我们也可以用圆或三角形等图形来表示平面,如图2.平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.如果一个平面被另一个平面遮挡住,为了增强它的立体感,我们常把它遮挡的部分用虚线画出来,如图3.
图2
图3
平面的表示法有如下几种:(1)在一个希腊字母α、β、γ的前面加“平面”二字,如平面α、平面β、平面γ等,且字母通常写在平行四边形的一个锐角内(图4);(2)用平行四边形的四个字母表示,如平面ABCD(图5);(3)用表示平行四边形的两个相对顶点的字母来表示,如平面AC(图5).
图4
图5③下面我们总结点与直线、平面的位置关系如下表:点A在直线a上(或直线a经过点A)A∈a元素与集合间的关系点A在直线a外(或直线a不经过点A)Aa点A在平面α内(或平面α经过点A)A∈α点A在平面α外(或平面α不经过点A)Aα④直线上有一个点在平面内,直线没有全部落在平面内(图7),直线上有两个点在平面内,则直线全部落在平面内.例如用直尺紧贴着玻璃黑板,则直尺落在平面内.公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内.这是用文字语言描述,我们也可以用符号语言和图形语言(图6)描述.
空间图形的基本元素是点、直线、平面.从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示.公理1也可以用符号语言表示:若A∈a,B∈a,且A∈α,B∈α,则aα.
图6
图7请同学们用符号语言和图形语言描述直线与平面相交.若A∈a,B∈a,且Aα,B∈α,则aα.如图(图7).⑤在生活中,我们常常可以看到这样的现象:三脚架可以牢固地支撑照相机或测量用的平板仪等等.
上述事实和类似的经验可以归纳为下面的公理.公理2:经过不在同一直线上的三点,有且只有一个平面.如图(图8).图8公理2刻画了平面特有的性质,它是确定一个平面位置的依据之一.⑥我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?不是,因为平面是无限延展的.直线是可以落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.现在我们根据平面的无限延展性来观察一个现象(课件演示给学生看).问:两个平面会不会只有一个公共点?不会,因为平面是无限延展的,应当有很多公共点.正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?可见,这无数个公共点在一条直线上.
这说明,如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图(图9),用符号语言表示为:P∈α,且P∈βα∩β=l,且P∈l.图9
公理3告诉我们,如果两个不重合的平面有一个公共点,那么这两个平面一定相交,且其交线一定过这个公共点.也就是说,如果两个平面有一个公共点,那么它们必定还有另外一个公共点,只要找出这两个平面的两个公共点,就找出了它们的交线.
由此看出公理3不仅给出了两个平面相交的依据,还告诉我们所有交点在同一条直线上,并给出了找这条交线的方法.⑦描述点、直线、平面的位置关系常用3种语言:文字语言、图形语言、符号语言.⑧“平面的基本性质”小结:名称作用公理1判定直线在平面内的依据公理2确定一个平面的依据公理3两平面相交的依据应用示例例1
如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.图10活动:学生自己思考或讨论,再写出(最好用实物投影仪展示写的正确的答案).教师在学生中巡视,发现问题及时纠正,并及时评价.解:在(1)中,α∩β=l,a∩α=A,a∩β=B.在(2)中,α∩β=l,aα,bβ,a∩l=P,b∩l=P.变式训练1.画图表示下列由集合符号给出的关系:(1)A∈α,Bα,A∈l,B∈l;(2)aα,bβ,a∥c,b∩c=P,α∩β=c.解:如图11.图112.根据下列条件,画出图形.(1)平面α∩平面β=l,直线ABα,AB∥l,E∈AB,直线EF∩β=F,Fl;(2)平面α∩平面β=a,△ABC的三个顶点满足条件:A∈a,B∈α,Ba,C∈β,Ca.答案:如图12.图12点评:图形语言与符号语言的转换是本节的重点,主要有两种题型:(1)根据图形,先判断点、直线、平面的位置关系,然后用符号表示出来.(2)根据符号,想象出点、直线、平面的位置关系,然后用图形表示出来.例2
已知直线a和直线b相交于点A.求证:过直线a和直线b有且只有一个平面.图13证明:如图13,点A是直线a和直线b的交点,在a上取一点B,b上取一点C,根据公理2经过不在同一直线上的三点A、B、C有一个平面α,因为A、B在平面α内,根据公理1,直线a在平面α内,同理直线b在平面α内,即平面α是经过直线a和直线b的平面.又因为A、B在a上,A、C在b上,所以经过直线a和直线b的平面一定经过点A、B、C.于是根据公理2,经过不共线的三点A、B、C的平面有且只有一个,所以经过直线a和直线b的平面有且只有一个.变式训练求证:两两相交且不共点的四条直线在同一平面内.证明:如图14,直线a、b、c、d两两相交,交点分别为A、B、C、D、E、F,图14∵直线a∩直线b=A,∴直线a和直线b确定平面设为α,即a,bα.∵B、C∈a,E、F∈b,∴B、C、E、F∈α.而B、F∈c,C、E∈d,∴c、dα,即a、b、c、d在同一平面内.点评:在今后的学习中经常遇到证明点和直线共面问题,除公理2外,确定平面的依据还有:(1)直线与直线外一点.(2)两条相交直线.(3)两条平行直线.课堂小结1.平面是一个不加定义的原始概念,其基本特征是无限延展性.2.通过三个公理介绍了平面的基本性质,及作用.名称作用公理1判定直线在平面内的依据公理2确定一个平面的依据公理3两平面相交的依据3.利用三个公理证明共面、共线、共点问题.作业课本习题2.1
A组5、6.
板书设计
教学反思
PAGE
1第1章
空间几何体
教学目标
通过总结和归纳空间几何体的知识,能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养其分类讨论的思想和提高其抽象思维能力.
教学重、难点
教学重点:①空间几何体的结构特征.②由三视图还原为实物图.③面积和体积的计算.教学难点:①由三视图还原为实物图.②组合体的结构特征.
教学准备
多媒体课件
教学过程
一、导入新课:我们生活的世界,存在各式各样的物体,它们大多是由具有柱、锥、台、球等形状的物体组成的.认识和把握柱体、锥体、台体、球体的几何结构特征,是我们认识空间几何体的基础.教师引出课题.二、讲授新课:提出问题1.本章接触到的空间几何体是单一的柱体、锥体、台体、球体,或者是它们的简单组合体.你能说出较复杂的几何体(如你身边的建筑物)的结构吗?2.对于空间几何体,可以有不同的分类标准.你能从不同的方面认识柱、锥、台、球等空间几何体吗?你分类的依据是什么?3.为了研究空间几何体,我们需要在平面上画出空间几何体.空间几何体有哪些不同的表现形式?4.利用斜二测画法,我们可以画出空间几何体的直观图.你能回顾用斜二测画法画空间几何体的基本步骤吗?5.计算空间几何体的表面积和体积时,要充分利用平面几何知识,把空间图形转化为平面图形,特别是柱、锥、台体侧面展开图.请同学们回顾柱、锥、台体的侧面展开图是什么?如何计算它们的表面积?柱、锥、台体的体积之间是否存在一定的关系?6.球是比较特殊的空间几何体,它的表面积公式和体积公式是什么?7.画出本章的知识结构图.活动:让学生自己回顾所学知识或结合课本,重新对知识整合,对没有思路的学生,教师可以提示按课本的章节标题来分类.对于画知识结构图,学生可能比较陌生,教师可以引导学生先画一个本班班委的结构图或学校各个处室的关系结构图,待学生了解了简单的画法后,再画本章的知识结构图.讨论结果:1.略.以实际情况来确定.2.按围成几何体的面是否是平面分为:
按底面的情况分为:
3.空间几何体有两种表现形式:三视图和直观图.4.略.5.结构特征棱柱棱锥棱台圆柱圆锥圆台球侧面展开图平行四边形由三角形拼接成由梯形拼接成矩形扇形扇环不可展开表面积的计算方法各个面的面积之和就是表面积
柱、锥、台体的体积之间的关系:
柱体和锥体可以看作由台体变化得到.柱体可以看作是上、下底面相同的台体,锥体可以看作是有一个底面是一个点的台体.柱体和锥体的体积公式都可以看作由台体的体积公式演变而来.6.半径为R的球,其表面积为S表=4πR2,体积V=.7.本章的知识结构图如图1所示.图1应用示例例1
下列几何体是台体的是(
)图2活动:学生回顾台体的结构特征.分析:A中的“侧棱”没有相交于一点,所以A不是台体;B中的几何体没有两个平行的面,所以B不是台体;很明显C是棱锥,D是台体.答案:D点评:本题主要考查台体的结构特征.像这样的概念辨析题,主要是依靠对简单几何体的结构特征的准确把握.变式训练1.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括(
)A.一个圆台、两个圆锥
B.两个圆台、一个圆柱C.两个圆台、一个圆柱
D.一个圆柱、两个圆锥分析:因为梯形的两底平行,故另一底旋转形成了圆柱面,而两条腰由于与旋转轴相交,故旋转形成了锥体,因此得到一个圆柱、两个圆锥.答案:D2.下列三视图表示的几何体是(
)图3A.圆台
B.棱锥
C.圆锥
D.圆柱分析:由于俯视图是两个同心圆,则这个几何体是旋转体,又侧视图和正视图均是等腰梯形,所以该几何体是圆台.答案:A3.下列有关棱柱的说法:①棱柱的所有的棱长都相等;②棱柱的所有的侧面都是长方形或正方形;③棱柱的侧面的个数与底面的边数相等;④棱柱的上、下底面形状、大小相同.正确的有______________.分析:棱柱的所有面都是平的,所有侧棱长都相等,但底面上的棱与侧棱不一定相等,其侧面都是平行四边形,只有当棱柱是直棱柱时,侧面才是矩形,侧面个数与底面边数相等,棱柱的上、下底面是全等的多边形,由此可知③④正确.答案:③④例2
(2006福建高考,理5)已知正方体外接球的体积是,那么正方体的棱长等于(
)A.
B.
C.
D.活动:学生思考交流正方体和球的结构特征,教师可以借助于信息技术,展示图形.分析:过正方体的相对侧棱作球的截面,可得正方体的对角线是球的直径.设正方体的棱长为a,球的半径为R,则有2R=,所以R=,则,解得a=.答案:D点评:球与其他几何体的简单组合体问题,通常借助于球的截面来明确构成组合体的几何体的结构特征及其联系,本题利用正方体外接球的直径是正方体的对角线这一隐含条件使得问题顺利获解.
空间几何体的表面积和体积问题是高考考查的热点之一.主要以选择题或填空题形式出现,也不排除作为解答题中的最后一问,题目难度属于中、低档题,以考查基础知识为主,不会出现难题.其解决策略是利用截面或展开图等手段,转化为讨论平面图形问题,结合平面几何的知识来求解.变式训练1.(2005全国高考卷Ⅰ,理5)如图4(1)所示,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为(
)A.
B.
C.
D.
(1)
(2)图4分析:如图4(2)所示,过B作BG⊥EF于G,连接CG,则CG⊥EF,BF=1,△BCG中,
BG=,BC边上的高为,而S△BCG=×1×=,∴VF—BCG=.同理过A作AH⊥EF于H,则有VE—AHD=,显然BCG—ADH为三棱柱,∴VBCG—ADH=×1=,则由图4(2)可知VADE—BCF=VF—BCG
+VE—AHD+VBCG—ADH=.答案:A点评:本题求几何体体积的方法称为割补法,经常应用这种方法求多面体体积.割补法对空间想象能力的要求很高且割补法的目的是化不规则为规则.因此可以说割补法是一种综合的方法,这和我们高考的理念和命题原则是相通的,高考题中出现这样的问题也是很正常的,所以这将是高考对立体几何这部分知识命题的方向.2.(2007广东中山高三期末统考,文6)某个容器的底部为圆柱,顶部为圆锥,其正视图如图5所示,则这个容器的容积为(
)图5A.
B.
C.3π
m3
D.12π
m3分析:由该容器的正视图可知,圆柱的底面半径为1
m,高为2
m,圆锥的底面半径为1
m,高为1
m.则圆柱的体积为2π
m3,圆锥的体积为m3,所以该容器的容积为.答案:A点评:三视图是新课标高考的新增内容,在高考中会重点考查,在该知识点出题的可能性非常大,应予以重视.此类题目的解题关键是利用三视图获取体积公式中所涉及的基本量的有关信息,这要依靠对三视图的理解和把握.3.(2007广东佛山一模,理4)如图6所示,一个简单空间几何体的三视图其正视图与侧视图是边长为2的正三角形、俯视图轮廓为正方形,则其体积是(
)图6A.
B.
C.
D.分析:根据三视图可知该几何体是正四棱锥,且底面积是4,高为正视图等边三角形的高,所以体积为.答案:B课堂小结:本节课复习了:1.第一章知识及其结构图.2.三视图和体积、面积的有关问题.3.空间几何体的概念.布置作业:课本本章复习参考题A组
7、8、9.
板书设计
教学反思
PAGE
12.2.2
平面与平面平行的判定
教学目标
1.通过图形探究平面与平面平行的判定定理及其性质定理.2.熟练掌握平面与平面平行的判定定理和性质定理的应用.3.进一步培养学生的空间想象能力,以及逻辑思维能力.
教学重、难点
教学重点:平面与平面平行的判定与性质.教学难点:平面与平面平行的判定.
教学准备
多媒体课件
教学过程
导入新课
三角板的一条边所在直线与桌面平行,这个三角板所在的平面与桌面平行吗?三角板的两条边所在直线分别与桌面平行,情况又如何呢?下面我们讨论平面与平面平行的判定问题.提出问题①回忆空间两平面的位置关系.②欲证线面平行可转化为线线平行,欲判定面面平行可如何转化?③找出恰当空间模型加以说明.④用三种语言描述平面与平面平行的判定定理.⑤应用面面平行的判定定理应注意什么?⑥利用空间模型探究:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么位置关系?⑦回忆线面平行的性质定理,结合模型探究面面平行的性质定理.⑧用三种语言描述平面与平面平行的性质定理.⑨应用面面平行的性质定理的难点在哪里?⑩应用面面平行的性质定理口诀是什么?活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.问题①引导学生回忆两平面的位置关系.问题②面面平行可转化为线面平行.问题③借助模型锻炼学生的空间想象能力.问题④引导学生进行语言转换.问题⑤引导学生找出应用平面与平面平行的判定定理容易忽视哪个条件.问题⑥引导学生画图探究,注意考虑问题的全面性.问题⑦注意平行与异面的区别.问题⑧引导学生进行语言转换.问题⑨作辅助面.问题⑩引导学生自己总结,把握面面平行的性质.讨论结果:①如果两个平面没有公共点,则两平面平行若α∩β=,则α∥β.如果两个平面有一条公共直线,则两平面相交若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图1.图1②由两个平面平行的定义可知:其中一个平面内的所有直线一定都和另一个平面平行.这是因为在这些直线中,如果有一条直线和另一平面有公共点,这点也必是这两个平面的公共点,那么这两个平面就不可能平行了.
另一方面,若一个平面内所有直线都和另一个平面平行,那么这两个平面平行,否则,这两个平面有公共点,那么在一个平面内通过这点的直线就不可能平行于另一个平面.
由此将判定两个平面平行的问题转化为一个平面内的直线与另一个平面平行的问题,但事实上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一平面,到底要多少条直线(且直线与直线应具备什么位置关系)与另一面平行,才能判定两个平面平行呢?③如图2,如果一个平面内有一条直线与另一个平面平行,两个平面不一定平行.图2例如:AA′平面AA′D′D,AA′∥平面DCC′D′;但是,平面AA′D′D∩平面DCC′D′=DD′.如图3,如果一个平面内有两条直线与另一个平面平行,两个平面也不一定平行.图3例如:AA′平面AA′D′D,EF平面AA′D′D,AA′∥平面DCC′D′,EF∥平面DCC′D′;但是,平面AA′D′D∩平面DCC′D′=DD′.如图4,如果一个平面内有两条相交直线与另一个平面平行,则这两个平面一定平行.图4例如:A′C′平面A′B′C′D′,B′D′平面A′B′C′D′,A′C′∥平面ABCD,B′D′∥平面ABCD;直线A′C′与直线B′D′相交.可以判定,平面A′B′C′D′∥平面ABCD.④两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.以上是两个平面平行的文字语言,另外面面平行的判定定理的符号语言为:若aα,bα,a∩b=A,且a∥α,b∥β,则α∥β.图形语言为:如图5,图5⑤利用判定定理证明两个平面平行,必须具备:(Ⅰ)有两条直线平行于另一个平面;(Ⅱ)这两条直线必须相交.尤其是第二条学生容易忽视,应特别强调.⑥如图6,借助长方体模型,我们看到,B′D′所在的平面A′C′与平面AC平行,所以B′D′与平面AC没有公共点.也就是说,B′D′与平面AC内的所有直线没有公共点.因此,直线B′D′与平面AC内的所有直线要么是异面直线,要么是平行直线.图6⑦直线与平面平行的性质定理用文字语言表示为:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.因为,直线B′D′与平面AC内的所有直线要么是异面直线,要么是平行直线,只要过B′D′作平面BDD′B′与平面AC相交于直线BD,那么直线B′D′与直线BD平行.
如图7.图7⑧两个平面平行的性质定理用文字语言表示为:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.两个平面平行的性质定理用符号语言表示为:a∥b.两个平面平行的性质定理用图形语言表示为:如图8.图8⑨应用面面平行的性质定理的难点是:过某些点或直线作一个平面.⑩应用线面平行性质定理的口诀:“见到面面平行,先过某些直线作两个平面的交线.”应用示例例1
已知正方体ABCD—A1B1C1D1,如图9,求证:平面AB1D1∥平面BDC1.图9活动:学生自己思考或讨论,再写出正确的答案.教师在学生中巡视学生的解答,发现问题及时纠正,并及时评价.证明:∵ABCD—A1B1C1D1为正方体,∴D1C1∥A1B1,D1C1=A1B1.又∵AB∥A1B1,AB=A1B1,∴D1C1∥AB,D1C1=AB.∴四边形ABC1D1为平行四边形.∴AD1∥BC1.又AD1平面AB1D1,BC1平面AB1D1,∴BC1∥平面AB1D1.同理,BD∥平面AB1D1.又BD∩BC1=B,∴平面AB1D1∥平面BDC1.变式训练
如图10,在正方体ABCD—EFGH中,
M、N、P、Q、R分别是EH、EF、BC、CD、AD的中点,求证:平面MNA∥平面PQG.图10证明:∵M、N、P、Q、R分别是EH、EF、BC、CD、AD的中点,∴MN∥HF,PQ∥BD.∵BD∥HF,∴MN∥PQ.∵PR∥GH,PR=GH;MH∥AR,MH=AR,∴四边形RPGH为平行四边形,四边形ARHM为平行四边形.∴AM∥RH,RH∥PG.∴AM∥PG.∵MN∥PQ,MN平面PQG,PQ平面PQG,∴MN∥平面PQG.同理可证,AM∥平面PQG.又直线AM与直线MN相交,∴平面MNA∥平面PQG.点评:证面面平行,通常转化为证线面平行,而证线面平行又转化为证线线平行,所以关键是证线线平行.例2
证明两个平面平行的性质定理.解:如图11,已知平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,求证:a∥b.图11证明:∵平面α∥平面β,∴平面α和平面β没有公共点.又aα,bβ,∴直线a、b没有公共点.又∵α∩γ=a,β∩γ=b,∴aγ,bγ.∴a∥b.变式训练
如果两个平面分别平行于第三个平面,那么这两个平面互相平行.解:已知α∥β,γ∥β,求证:α∥γ.证明:如图12,作两个相交平面分别与α、β、γ交于a、c、e和b、d、f,图12.知能训练已知:a、b是异面直线,a平面α,b平面β,a∥β,b∥α.求证:α∥β.证明:如图13,在b上任取点P,显然Pa.于是a和点P确定平面γ,且γ与β有公共点P.图13设γ∩β=a′,∵a∥β,∴a′∥a.∴a′∥α.这样β内相交直线a′和b都平行于α,∴α∥β.拓展提升1.如图14,两条异面直线AB、CD与三个平行平面α、β、γ分别相交于A、E、B及C、F、D,又AD、BC与平面的交点为H、G.图14求证:EHFG为平行四边形.证明:AC∥EG.同理,AC∥HF.EG∥HF.同理,EH∥FG.故EHFG是平行四边形.课堂小结知识总结:利用面面平行的判定定理和面面平行的性质证明线面平行.方法总结:见到面面平行,利用面面平行的性质定理转化为线线平行,本节是“转化思想”的典型素材.作业
课本习题2.2
A组7、8.
板书设计
教学反思
PAGE
11.1.1
柱、锥、台、球的结构特征
教学目标
1.掌握柱、锥、台、球的结构特征,学会观察、分析图形,提高空间想象能力和几何直观?能力.2.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想.
教学重、难点
教学重点:柱、锥、台、球的结构特征.教学难点:归纳柱、锥、台、球的结构特征.
教学准备
多媒体课件
教学过程
一、导入新课:在我们的生活中会经常发现一些具有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流.教师对学生的活动及时给予评价.引出课题:柱、锥、台、球的结构特征.二、讲授新课:提出问题1.观察下面的图片,请将这些图片中的物体分成两类,并说明分类的标准是什么?图12.你能给出多面体和旋转体的定义吗?活动:让学生分组讨论,根据初中已有的知识,学生很快就能分成两类,对没有思路的学生,教师予以提示.1.根据围成几何体的面是否都是平面来分类.2.根据围成几何体的面的特点来定义多面体,利用动态的观点来定义旋转体.讨论结果:1.通过观察,可以发现,(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)具有同样的特点:组成几何体的每个面都是平面图形,并且都是平面多边形,像这样的几何体称为多面体;(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)具有同样的特点:组成它们的面不全是平面图形,像这样的几何体称为旋转体.2.多面体:一般地,由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.按围成多面体的面数分为:四面体、五面体、六面体、……,一个多面体最少有4个面,四面体是三棱锥.棱柱、棱锥、棱台均是多面体.旋转体:由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体,这条定直线叫做旋转体的轴.圆柱、圆锥、圆台、球均是旋转体.提出问题1.与其他多面体相比,图片中的多面体(5)、(7)、(9)具有什么样的共同特征?2.请给出棱柱的定义?3.与其他多面体相比,图片中的多面体(14)、(15)具有什么样的共同特征?4.请给出棱锥的定义.5.利用同样的方法给出棱台的定义.活动:学生先思考或讨论,如果学生没有思路时,教师再提示.对于1、3,可根据围成多面体的各个面的关系来分析.对于2,利用多面体(5)、(7)、(9)的共同特征来定义棱柱.对于4,利用多面体(14)、(15)的共同特征来定义棱锥.对于5,利用图片中的多面体(13)、(16)的共同特征来定义棱台.讨论结果:1.特点是:有两个面平行,其余的面都是平行四边形.像这样的几何体称为棱柱.2.定义:两个平面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体称为棱柱.棱柱中,两个互相平行的面叫做棱柱的底面;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.表示法:用表示底面各顶点的字母表示棱柱.分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱……3.其中一个面是多边形,其余各面是三角形,这样的几何体称为棱锥.4.定义:有一面为多边形,其余各面都是有一个公共顶点的三角形,这些面围成的多面体叫做棱锥.这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.表示法:用顶点和底面各顶点的字母表示.分类:按底面多边形的边数分为三棱锥、四棱锥、五棱锥……5.定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台.原棱锥的底面和截面叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻侧面的公共边叫做棱台的侧棱;底面多边形与侧面的公共顶点叫做棱台的顶点.表示法:用表示底面各顶点的字母表示棱台.分类:按底面多边形的边数分为三棱台、四棱台、五棱台……提出问题1.与其他旋转体相比,图片中的旋转体(1)、(8)具有什么样的共同特征?2.请给出圆柱的定义.3.其他旋转体相比,图片中的旋转体(3)、(6)具有什么样的共同特征?4.请给出圆锥的定义.5.类比圆锥和圆柱的定义方法,请给出圆台的定义.6.用同样的方法给出球的定义.讨论结果:1.静态的观点:有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体.像这样的旋转体称为圆柱.2.定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面,圆柱的侧面又称为圆柱面,无论转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.表示:圆柱用表示轴的字母表示.规定:圆柱和棱柱统称为柱体.3.静态的观点:有一平面,其他的面是曲面;动态的观点:直角三角形绕其一直角边旋转形成的面围成的旋转体.像这样的旋转体称为圆锥.4.定义:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转而形成的面所围成的旋转体叫做圆锥.旋转轴叫做圆锥的轴;垂直于旋转轴的边旋转而成的圆面称为圆锥的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆锥的侧面,圆锥的侧面又称为圆锥面,无论转到什么位置,这条边都叫做圆锥侧面的母线.表示:圆锥用表示轴的字母表示.规定:圆锥和棱锥统称为锥体.5.定义:以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.还可以看成是用平行于圆锥底面的平面截这个圆锥,截面与底面之间的部分.旋转轴叫做圆台的轴;垂直于旋转轴的边旋转而成的圆面称为圆台的底面;不垂直于旋转轴的边旋转而成的曲面叫做圆台的侧面,无论转到什么位置,这条边都叫做圆台侧面的母线.表示:圆台用表示轴的字母表示.规定:圆台和棱台统称为台体.6.定义:以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的旋转体称为球体,简称球.半圆的圆心称为球心,连接球面上任意一点与球心的线段称为球的半径,连接球面上两点并且过球心的线段称为球的直径.表示:用表示球心的字母表示.知识总结:1.棱柱、棱锥、棱台的结构特征比较,如下表所示:结构特征棱柱棱锥棱台定义两个平面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体称为棱柱有一面为多边形,其余各面是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台底面两底面是全等的多边形多边形两底面是相似的多边形侧面平行四边形三角形梯形侧棱平行且相等相交于顶点延长线交于一点平行于底面的截面与两底面是全等的多边形与底面是相似的多边形与两底面是相似的多边形过不相邻两侧棱的截面平行四边形三角形梯形2.圆柱、圆锥、圆台、球的结构特征比较,如下表所示:结构特征圆柱圆锥圆台球定义以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆柱以直角三角形的一条直角边为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥以直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面称为球面,球面所围成的几何体称为球体,简称球底面两底面是平行且半径相等的圆圆两底面是平行但半径不相等的圆无侧面展开图矩形扇形扇环不可展开母线平行且相等相交于顶点延长线交于一点无平行于底面的截面与两底面是平行且半径相等的圆平行于底面且半径不相等的圆与两底面是平行且半径不相等的圆球的任何截面都是圆轴截面矩形等腰三角形等腰梯形圆3.简单几何体的分类:应用示例例1
下列几何体是棱柱的有(
)图2A.5个
B.4个
C.3个
D.2个活动:判断一个几何体是哪种几何体,一定要紧扣柱、锥、台、球的结构特征,注意定义中的特殊字眼,切不可马虎大意.棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形面中,每相邻两个面的公共边都互相平行.当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱.很明显,几何体②④⑤⑥均不符合,仅有①③符合.答案:D点评:本题主要考查棱柱的结构特征.本题容易错认为几何体②也是棱柱,其原因是忽视了棱柱必须有两个面平行这个结构特征,避免出现此类错误的方法是将教材中的各种几何体的结构特征放在一起对比,并且和图形对应起来记忆,要做到看到文字叙述就想到图,看到图形就想到文字叙述.变式训练1.下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱.其中正确的有__________个.(
)A.1
B.2
C.3
D.4分析:①中两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以①是错误的;②中两个底面互相平行,其余四个面都是等腰梯形,也有可能两底面根本就不相似,所以②不正确;③中底面不一定是正方形,所以③不正确;很明显④是正确的.答案:A2.下列命题中正确的是(
)A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥D.棱台各侧棱的延长线交于一点答案:D3.下列命题中正确的是(
)A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径分析:以直角梯形垂直于底的腰为轴,旋转所得的旋转体才是圆台,所以B不正确;圆锥仅有一个底面,所以C不正确;圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长,所以D不正确.很明显A正确.答案:A练习:课本P.7
练习1、2(1)(2)课堂小结:由学生整理学习了哪些内容布置作业:习题1.1
A组
第1、2、3题
板书设计
教学反思
PAGE
12.2.3
直线与平面平行的性质
教学目标
1.探究直线与平面平行的性质定理.2.体会直线与平面平行的性质定理的应用.3.通过线线平行与线面平行转化,培养学生的学习兴趣.
教学重、难点
教学重点:直线与平面平行的性质定理.教学难点:直线与平面平行的性质定理的应用.
教学准备
多媒体课件
教学过程
复习
回忆直线与平面平行的判定定理:(1)文字语言:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(2)符号语言为:(3)图形语言为:如图1.图1导入新课观察长方体(图2),可以发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面平行,你能在侧面C′D′DC所在平面内作一条直线与A′B平行吗?图2提出问题①回忆空间两直线的位置关系.②若一条直线与一个平面平行,探究这条直线与平面内直线的位置关系.③用三种语言描述直线与平面平行的性质定理.④试证明直线与平面平行的性质定理.⑤应用线面平行的性质定理的关键是什么?⑥总结应用线面平行性质定理的要诀.活动:问题①引导学生回忆两直线的位置关系.问题②借助模型锻炼学生的空间想象能力.问题③引导学生进行语言转换.问题④引导学生用排除法.问题⑤引导学生找出应用的难点.问题⑥鼓励学生总结,教师归纳.讨论结果:①空间两条直线的位置关系:相交、平行、异面.②若一条直线与一个平面平行,这条直线与平面内直线的位置关系不可能是相交(可用反证法证明),所以,该直线与平面内直线的位置关系还有两种,即平行或异面.
怎样在平面内作一条直线与该直线平行呢(排除异面的情况)?经过这条直线的平面和这个平面相交,那么这条直线和交线平行.③直线与平面平行的性质定理用文字语言表示为:
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.
这个定理用符号语言可表示为:这个定理用图形语言可表示为:如图3.图3④已知a∥α,aβ,α∩β=b.求证:a∥b.证明:⑤应用线面平行的性质定理的关键是:过这条直线作一个平面.⑥应用线面平行性质定理的要诀:“见到线面平行,先过这条直线作一个平面找交线”.应用示例思路1例1
如图4所示的一块木料中,棱BC平行于面A′C′.图4(1)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与面AC是什么位置关系?活动:先让学生思考、讨论再回答,然后教师加以引导.分析:经过木料表面A′C′内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P作截面,也就是找出平面与平面的交线.我们可以由线面平行的性质定理和公理4、公理2作出.解:(1)如图5,在平面A′C′内,过点P作直线EF,使EF∥B′C′,图5并分别交棱A′B′、C′D′于点E、F.连接BE、CF.则EF、BE、CF就是应画的线.(2)因为棱BC平行于面A′C′,平面BC′与平面A′C′交于B′C′,所以BC∥B′C′.由(1)知,EF∥B′C′,所以EF∥BC.因此BE、CF显然都与平面AC相交.变式训练
如图6,a∥α,A是α另一侧的点,B、C、D∈a,线段AB、AC、AD交α于E、F、G点,若BD=4,CF=4,AF=5,求EG.图6解:Aa,∴A、a确定一个平面,设为β.∵B∈a,∴B∈β.又A∈β,∴ABβ.同理ACβ,ADβ.∵点A与直线a在α的异侧,∴β与α相交.∴面ABD与面α相交,交线为EG.∵BD∥α,BD面BAD,面BAD∩α=EG,∴BD∥EG.∴△AEG∽△ABD.∴.(相似三角形对应线段成比例)∴EG=.点评:见到线面平行,先过这条直线作一个平面找交线,直线与交线平行,如果再需要过已知点,这个平面是确定的.例2
已知平面外的两条平行直线中的一条平行于这个平面,求证另一条也平行于这个平面.如图7.图7已知直线a,b,平面α,且a∥b,a∥α,a,b都在平面α外.求证:b∥α.证明:过a作平面β,使它与平面α相交,交线为c.∵a∥α,aβ,α∩β=c,∴a∥c.∵a∥b,∴b∥c.∵cα,bα,∴b∥α.变式训练
如图8,E、H分别是空间四边形ABCD的边AB、AD的中点,平面α过EH分别交BC、CD于F、G.求证:EH∥FG.图8证明:连接EH.∵E、H分别是AB、AD的中点,∴EH∥BD.又BD面BCD,EH面BCD,∴EH∥面BCD.又EHα、α∩面BCD=FG,∴EH∥FG.点评:见到线面平行,先过这条直线作一个平面找交线,则直线与交线平行.课堂小结
知识总结:利用线面平行的性质定理将直线与平面平行转化为直线与直线平行.
方法总结:应用直线与平面平行的性质定理需要过已知直线作一个平面,是最难应用的定理之一;应让学生熟记:“过直线作平面,把线面平行转化为线线平行”.作业
课本习题2.2
A组5、6.
板书设计
教学反思
PAGE
13.2.1
直线的点斜式方程
教学目标
1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例;培养学生思维的严谨性和相互合作意识,注意学生语言表述能力的训练.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.培养学生形成严谨的科学态度和求简的数学精神.3.掌握直线方程的点斜式的特征及适用范围,培养和提高学生联系、对应、转化等辩证思维能力.
教学重、难点
教学重点:引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.教学难点:在理解的基础上掌握直线方程的点斜式的特征及适用范围.
教学准备
多媒体课件
教学过程
导入新课在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾:
一次函数y=kx+b的图象是一条直线,它是以满足y=kx+b的每一对x、y的值为坐标的点构成的.由于函数式y=kx+b也可以看作二元一次方程,所以我们可以说,这个方程的解和直线上的点也存在这样的对应关系.这节课我们就来学习直线的方程(宣布课题).提出问题①如果把直线当做结论,那么确定一条直线需要几个条件?如何根据所给条件求出直线的方程?②已知直线l的斜率k且l经过点P1(x1,y1),如何求直线l的方程 ③方程导出的条件是什么?④若直线的斜率k不存在,则直线方程怎样表示?⑤k=与y-y1=k(x-x1)表示同一直线吗?⑥已知直线l的斜率k且l经过点(0,b),如何求直线l的方程?讨论结果:①确定一条直线需要两个条件:a.确定一条直线只需知道k、b即可;b.确定一条直线只需知道直线l上两个不同的已知点.②设P(x,y)为l上任意一点,由经过两点的直线的斜率公式,得k=,化简,得y-y1=k(x-x1).③方程导出的条件是直线l的斜率k存在.④a.x=0;b.x=x1.⑤启发学生回答:方程k=表示的直线l缺少一个点P1(x1,y1),而方程y-y1=k(x-x1)表示的直线l才是整条直线.⑥y=kx+b.应用示例例1
一条直线经过点P1(-2,3),倾斜角α=45°,求这条直线方程,并画出图形.图1解:这条直线经过点P1(-2,3),斜率是k=tan45°=1.代入点斜式方程,得y-3=x+2,即x-y+5=0,这就是所求的直线方程,图形如图1所示.点评:此例是点斜式方程的直接运用,要求学生熟练掌握,并具备一定的作图能力.变式训练
求直线y=-(x-2)绕点(2,0)按顺时针方向旋转30°所得的直线方程.解:设直线y=-(x-2)的倾斜角为α,则tanα=-,又∵α∈[0°,180°),∴α=120°.∴所求的直线的倾斜角为120°-30°=90°.∴直线方程为x=2.例2
如果设两条直线l1和l2的方程分别是l1:y=k1x+b1,l2:y=k2x+b2,试讨论:(1)当l1∥l2时,两条直线在y轴上的截距明显不同,但哪些量是相等的?为什么?(2)l1⊥l2的条件是什么?活动:学生思考:如果α1=α2,则tanα1=tanα2一定成立吗?何时不成立?由此可知:如果l1∥l2,当其中一条直线的斜率不存在时,则另一条直线的斜率必定不存在.反之,问:如果b1≠b2且k1=k2,则l1与l2的位置关系是怎样的?由学生回答,重点说明α1=α2得出tanα1=tanα2的依据.解:(1)当直线l1与l2有斜截式方程l1:y=k1x+b1,l2:y=k2x+b2时,直线l1∥l2k1=k2且b1≠b2.(2)l1⊥l2k1k2=-1.变式训练
判断下列直线的位置关系:(1)l1:y=x+3,l2:y=x-2;(2)l1:y=x,
l2:y=-x.答案:(1)平行;(2)垂直.例3
已知直线l1:y=4x和点P(6,4),过点P引一直线l与l1交于点Q,与x轴正半轴交于点R,当△OQR的面积最小时,求直线l的方程.活动:因为直线l过定点P(6,4),所以只要求出点Q的坐标,就能由直线方程的两点式写出直线l的方程.解:因为过点P(6,4)的直线方程为x=6和y-4=k(x-6),当l的方程为x=6时,△OQR的面积为S=72;当l的方程为y-4=k(x-6)时,有R(,0),Q(,),此时△OQR的面积为S=××=.变形为(S-72)k2+(96-4S)k-32=0(S≠72).因为上述方程根的判别式Δ≥0,所以得S≥40.当且仅当k=-1时,S有最小值40.因此,直线l的方程为y-4=-(x-6),即x+y-10=0.点评:本例是一道有关函数最值的综合题.如何恰当选取自变量,建立面积函数是解答本题的关键.怎样求这个面积函数的最值,学生可能有困难,教师宜根据学生的实际情况进行启发和指导.变式训练
如图2,要在土地ABCDE上划出一块长方形地面(不改变方向),问如何设计才能使占地面积最大?并求出最大面积(精确到1
m2)(单位:m).图2解:建立如图直角坐标系,在线段AB上任取一点P分别向CD、DE作垂线,划得一矩形土地.∵AB方程为=1,则设P(x,20-)(0≤x≤30),则S矩形=(100-x)[80-(20-)]=-(x-5)2+6
000+(0≤x≤30),当x=5时,y=,即P(5,)时,(S矩形)max=6
017(m2).例2
设△ABC的顶点A(1,3),边AB、AC上的中线所在直线的方程分别为x-2y+1=0,y=1,求△ABC中AB、AC各边所在直线的方程.活动:为了搞清△ABC中各有关元素的位置状况,我们首先根据已知条件,画出简图3,帮助思考问题.解:如图3,设AC的中点为F,AC边上的中线BF:y=1.图3AB边的中点为E,AB边上中线CE:x-2y+1=0.设C点坐标为(m,n),则F().又F在AC中线上,则=1,∴n=-1.又C点在中线CE上,应当满足CE的方程,则m-2n+1=0.∴m=-3.∴C点为(-3,-1).设B点为(a,1),则AB中点E(),即E(,2).又E在AB中线上,则-4+1=0.∴a=5.∴B点为(5,1).由两点式,得到AB,AC所在直线的方程AC:x-y+2=0,AB:x+2y-7=0.点评:此题思路较为复杂,应使同学们做完后从中领悟到两点:(1)中点分式要灵活应用;(2)如果一个点在直线上,则这点的坐标满足这条直线的方程,这一观念必须牢牢地树立起来.课堂小结通过本节学习,要求大家:1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.作业习题3.2
A组2、3、5.
板书设计
教学反思
PAGE
1第四章
圆与方程
教学目标
1.了解解析几何的基本思想,了解用坐标法研究几何问题;掌握圆的标准方程和一般方程,加深对圆的方程的认识.2.能根据给定的直线、圆的方程判断直线与圆、圆与圆的位置关系,能用直线与圆的方程解决一些简单问题.3.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,会用空间两点间的距离公式.4.通过本节的复习,使学生形成系统的知识结构,掌握几种重要的数学思想方法,形成一定的分析问题和解决问题的能力.
教学重、难点
教学重点:解析几何解题的基本思路和解题方法的形成.教学难点:整理形成本章的知识系统和网络.
教学准备
多媒体课件
教学过程
导入新课
同学们,我们前面学习了圆、直线与圆、空间坐标系等知识,那么我们具体学了哪些知识点,有哪些重要的思想方法,哪些知识高考常考,应形成什么样的理念呢 为此我们利用一节课的时间进行系统的整理,帮助同学们构建知识系统和网络,掌握解题的思路和方法.推进新课新知探究提出问题①圆的方程有哪几种形式 它们各自有什么特点 ②点与圆、直线与圆、圆与圆分别有什么样的位置关系 如何判断 ③如何用坐标法解决平面几何问题 ④怎样在平面直角坐标系的基础上建立空间直角坐标系 平面直角坐标系与空间直角坐标系中两点间的距离公式有何异同 讨论结果:①圆的方程有标准方程和一般方程两种形式.圆的标准方程:(x-a)2+(y-b)2=r2.它给出了圆心位置和半径大小.圆的标准方程含有三个参数a、b、r,因此必须具备三个独立条件,才能确定圆的标准方程.对于方程x2+y2+Dx+Ey+F=0只有当D2+E2-4F>0时才表示圆.圆的一般方程:x2+y2+Dx+Ey+F=0也含有三个参变数D、E、F,因此必须具备三个独立条件,才能确定圆的一般方程.②点与圆的位置关系有点在圆外、在圆上、在圆内.用点到圆心的距离和半径的大小及坐标与方程来说明的话应为:当点到圆心的距离大于半径,点在圆外
(x0-a)2+(y0-b)2>r2,点在圆外;当点到圆心的距离等于半径,点在圆上
(x0-a)2+(y0-b)2=r2,点在圆上;当点到圆心的距离小于半径,点在圆内
(x0-a)2+(y0-b)2<r2,点在圆内.直线与圆的位置关系有相离、相切、相交.判断方法有:一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.当Δ>0时,直线和圆相交.当Δ=0时,直线和圆相切.当Δ<0时,直线和圆相离.方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.当d<R时,直线和圆相交.当d=R时,直线和圆相切.当d>R时,直线和圆相离.圆与圆的位置关系有相离、相切、相交.判断方法有:一是可以利用几何法,即两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置关系.二是看两圆的方程组成的方程组的实数解的情况,解两个圆的方程所组成的二元二次方程组.若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离.③用坐标法解决平面几何问题有三步曲:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.④过平面直角坐标系的原点作一条垂直于坐标平面的直线,则就建立了空间直角坐标系,平面直角坐标系中两点之间的距离公式是d=,空间两点之间的距离公式是d=,它们形式上相同,其不同点是多了一项,即与竖坐标有关的一项.应用示例例1
求圆心在直线2x-y-3=0上,且过点A(5,
2)和点B(3,-2)的圆的方程.活动:学生阅读题目,理解题意,相互交流或讨论,教师引导学生考虑解题的方法,注意总结,因为条件与圆心有关系,因此可设圆的标准方程,利用圆心在直线2x-y-3=0上,同时也在线段AB的垂直平分线上,由两直线的交点得出圆心坐标,再由两点间的距离公式得出圆的半径,从而得到方程.解:方法一:设圆的方程为(x-a)2+(y-b)2=r2,由已知条件得解得所以圆的方程为(x-2)2+(y-1)2=10.方法二:因为圆过点A(5,2)和点B(3,-2),所以圆心在线段AB的垂直平分线上,线段AB的垂直平分线方程为y=-(x-4).设所求圆的圆心C的坐标为(a,b),则有解得所以圆心C(2,1),r=|CA|=所以所求圆的方程为(x-2)2+(y-1)2=10.点评:本题介绍了几何法求圆的标准方程,利用圆心在弦的垂直平分线上或者利用两圆相切时连心线过切点,可得圆心满足的一条直线方程,结合其他条件可确定圆心,由两点间的距离公式得出圆的半径,从而得到圆的标准方程.其实求圆的标准方程,就是求圆的圆心和半径,有时借助于弦心距、圆半径之间的关系计算,可大大简化计算的过程与难度.如果用待定系数法求圆的方程,则需要三个独立的条件,“选标准,定参数”是解题的基本方法,其中选标准是根据已知条件选择恰当的圆的方程形式,进而确定其中三个参数.变式训练
圆:x2+y2-4x+6y=0和圆:x2+y2-6x=0交于A、B两点,则AB的垂直平分线的方程是(
)A.x+y+3=0
B.2x-y-5=0
C.3x-y-9=0
D.4x-3y+7=0答案:C(由平面几何知识知AB的垂直平分线就是连心线.)例2
两定点A、B相距为8,求到A、B的距离的平方和为50的点P的轨迹方程.(1)
(2)图1活动:学生先思考或讨论,回忆求轨迹方程的方法,教师及时引导,首先建立适当的直角坐标系,根据题中的等量关系即同一点出发的两切线间的关系,由直线与圆相切及勾股定理得出切线长,构成方程即可.解:方法一:以AB中点O为原点,直线AB为x轴建立平面直角坐标系,如图1(1).设动点P(x,y)、A(-4,0)、B(4,0).∵PA2+PB2=50,∴(x+4)2+y2+(x-4)2+y2=50.∴动点P的轨迹方程为x2+y2=9.方法二:以A为原点,直线AB为x轴建立平面直角坐标系,如图1(2).设动点P(x,y)、A(0,0)、(8,0).∵PA2+PB2=50,∴x2+y2+(x-8)2+y2=50.∴动点P的轨迹方程为(x-4)2+y2=9.点评:求轨迹方程注意:(1)求哪个点的轨迹,设哪个点的坐标为(x,y);(2)求轨迹方程与求轨迹有区别,求轨迹方程得出方程即可,求轨迹得出方程后还要指出方程的曲线是什么图形;(3)建立的坐标系不同,同一曲线的轨迹方程不同,但轨迹图形相同.求轨迹方程的方法有两大类——直接法和间接法.本题为直接法,将几何关系式PA2+PB2=50,直接“翻译”为含x、y的方程,这是最基本最重要的方法.例3
用解析法证明等边三角形内任意一点到三边的距离之和为定值.活动:学生审题,教师引导,解析法证明实质上是坐标法,建立适当的坐标系是关键,同时要紧扣坐标法解题的三步曲.图2解:建立如图2的直角坐标系,设边长为2a,则A(0,a)、B(-a,0)、C(a,0),直线AB的方程为x+y+a=0,直线AC的方程为x+y-a=0,直线BC的方程为y=0.设P(x0,y0)为△ABC内的任一点,则P在AC、AB的下方,在BC的上方,于是有|PD|+|PE|+|PF|=
=a.所以是定值.点评:注意坐标法解题的步骤.知能训练复习参考题A组2、4、6、8.拓展提升
设有半径为3
km的圆形村落,A、B两人同时从村落中心出发,A向东而B向北前进,A出村后不久,改变前进方向,斜着沿切于村落周界的方向前进,后来恰好与B相遇,设A、B两人的速度都一定,其比为3∶1,问A、B两人在何处相遇?活动:学生阅读题目,理解题意,这是一个应用题,应首先建立适当的坐标系,结合几何知识解题.由于是圆形村落,A、B两人同时从村落中心出发,于是可以以村落中心为原点,以开始时A、B两人的前进方向为x、y轴,建立坐标系,这就为建立解析几何模型创造了条件,然后再准确设元,列出方程.图3解:以开始时A、B两人的前进方向为x、y轴,建立坐标系,由题意可设A、B两人的速度分别为3v
km/h,v
km/h,再设A出发x0
h后在点P处改变前进方向,又经y0
h在点Q处与B相遇,则P、Q两点的坐标为(3vx0,0),(0,v(x0+y0)),如图3所示.由于A从点P到Q行走的时间是y0
h,于是由勾股定理有|OP|2+|OQ|2=|PQ|2,有(3vx0)2+[v(x0+y0)]2=(3vy0)2.化简整理得(x0+y0)
(5x0-4y0)=0.又x0+y0>0,所以5x0=4y0.
①于是kPQ=.
②把①代入②得kPQ=-.由于切线PQ与y轴的交点Q对应的纵坐标v(x0+y0)的值就是问题的答案,于是转化为“当直线y=-x+b与圆相切时,求纵截距b的值”.利用圆心到切线的距离等于圆的半径,得=3,解得b=(b>0).因此A、B两人相遇的位置是离村落中心正北3km处.课堂小结
本章的知识点主要是实现由形到数的一种转变,所以在今后的学习中要把握关键,寻求规律,掌握方法,要时刻把握好直线与圆的综合问题、相交及求交点等问题的应用以及直线与圆的实际应用.作业复习参考题
B组2、3、5、6.
板书设计
本章复习本章知识结构框图
例1
变式
例2归纳、总结
教学反思
本节复习课是对已学知识进行归纳、总结,以形成更系统、更完整的知识体系;对已学知识进一步加深理解,强化记忆,是一个再认识、再学习的过程,对已掌握的技能、规律、方法进行深化和进一步熟悉,提高学生分析、理解问题的能力.以圆的方程与直线与圆的位置关系以及圆与圆的位置关系和坐标法的复习来加深体会数与形的内在联系.变式训练在于考查、培养学生的应变能力,是否能抓住问题的本质举一反三;通过新旧知识联系,加强横向沟通,考查学生是否具有多角度思考问题,利用不同的方法解决问题的能力.在课堂上进行解题方法的讨论有助于活跃学生思维,促进发散思维的培养,提高思维灵活性,抓住数形结合的数学思想,总结解题规律,充分体现解析几何的研究方法.
PAGE
11.1.2
简单组合体的结构特征
教学目标
1.掌握简单组合体的概念,学会观察、分析图形,提高空间想象能力和几何直观能力.2.能够描述现实生活中简单物体的结构,学会通过建立几何模型来研究空间图形,培养学生的数学建模思想.
教学重、难点
教学重点:描述简单组合体的结构特征.教学难点:描述简单组合体的结构特征.
教学准备
多媒体课件
教学过程
一、导入新课:现实世界中的物体表示的几何体,除柱体、锥体、台体和球体等简单几何体外,还有大量的几何体是由简单几何体组合而成的,这些几何体叫做简单组合体,这节课学习的课题是:简单几何体的结构特征.二、讲授新课:提出问题①请指出下列几何体是由哪些简单几何体组合而成的.图1②观察图1,结合生活实际经验,简单组合体有几种组合形式?③请你总结长方体与球体能组合成几种不同的组合体.它们之间具有怎样的关系?活动:让学生仔细观察图1,教师适当时候再提示.①略.②图1中的三个组合体分别代表了不同形式.③学生可以分组讨论,教师可以制作有关模型展示.讨论结果:①由简单几何体组合而成的几何体叫做简单组合体.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.图1(1)是一个四棱锥和一个长方体拼接成的,这是多面体与多面体的组合体;图1(2)是一个圆台挖去一个圆锥构成的,这是旋转体与旋转体的组合体;图1(3)是一个球和一个长方体拼接成的,这是旋转体与多面体的组合体.
②常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合.其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体,如图1(1)和(3)所示的组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体,如图1(2)所示的组合体.
③常见的球与长方体构成的简单组合体及其结构特征:1°长方体的八个顶点在同一个球面上,此时长方体称为球的内接长方体,球是长方体的外接球,并且长方体的对角线是球的直径;2°一球与正方体的所有棱相切,则正方体每个面上的对角线长等于球的直径;3°一球与正方体的所有面相切,则正方体的棱长等于球的直径.应用示例例1
请描述如图2所示的组合体的结构特征.图2活动:回顾简单几何体的结构特征,再将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.解:图2(1)是由一个圆锥和一个圆台拼接而成的组合体;图2(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;图2(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.点评:本题主要考查简单组合体的结构特征和空间想象能力.变式训练
如图3所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.
图3答案:一个大球内部挖去一个同球心且半径较小的球.例2
连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.活动:先画出正方体,然后取各个面的中心,并依次连成线观察即可.连接相应点后,得出图形如图4(1),再作出判断.(1)
(2)图4解:如图4(1),正方体ABCD—A1B1C1D1,O1、O2、O3、O4、O5、O6分别是各表面的中心.由点O1、O2、O3、O4、O5、O6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图4(2)所示.点评:本题中的八面体,事实上是正八面体——八个面都是全等的正三角形,并且以每个顶点为其一端,都有相同数目的棱.由图还可见,该八面体可看成是由两个全等的四棱锥经重合底面后而得到的,而且中间一个四边形O2O3O4O5还是正方形,当然其他的如O1O2O6O4等也是正方形.为了增强立体效果,正方体应画得“正”些,而八面体的放置应稍许“倾斜”些,并且“后面的”线,即被前面平面所遮住的线,如图中的O1O5、O6O5、O5O2、O5O4应画成虚线.课堂小结:本节课学习了简单组合体的概念和结构特征.布置作业:习题1.1
A组
第4题;B组
第2题.
板书设计
教学反思
PAGE
14.1.2
圆的一般方程
教学目标
1.在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心、半径.掌握方程x2+y2+Dx+Ey+F=0表示圆的条件,通过对方程x2+y2+Dx+Ey+F=0表示圆的条件的探究,培养学生探索发现及分析、解决问题的能力.2.能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定系数法和轨迹法求圆的方程,同时渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索,培养学生探索发现及分析解决问题的实际能力.
教学重、难点
教学重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确定方程中的系数D、E、F.教学难点:对圆的一般方程的认识、掌握和运用
教学准备
多媒体课件
教学过程
导入新课①说出圆心为(a,b),半径为r的圆的标准方程.②学生练习:将以C(a,b)为圆心,r为半径的圆的标准方程展开并整理得x2+y2-2ax-2by+a2+b2-r2=0.③指出:如果D=-2a,E=-2b,F=a2+b2-r2,得到方程x2+y2+Dx+Ey+F=0,这说明圆的方程还可以表示成另外一种非标准方程形式.④能不能说方程x2+y2+Dx+Ey+F=0所表示的曲线一定是圆呢 这就是我们本堂课的内容,教师板书课题:圆的一般方程.推进新课新知探究提出问题①前一章我们研究直线方程用的什么顺序和方法 ②这里我们研究圆的方程是否也能类比研究直线方程的顺序和方法呢 ③给出式子x2+y2+Dx+Ey+F=0,请你利用配方法化成不含x和y的一次项的式子.④把式子(x-a)2+(y-b)2=r2与x2+y2+Dx+Ey+F=0配方后的式子比较,得出x2+y2+Dx+Ey+F=0表示圆的条件.⑤对圆的标准方程与圆的一般方程作一比较,看各自有什么特点 讨论结果:①以前学习过直线,我们首先学习了直线方程的点斜式、斜截式、两点式、截距式,最后学习一般式.大家知道,我们认识一般的东西,总是从特殊入手.如探求直线方程的一般形式就是通过把特殊的公式(点斜式、两点式、…)展开整理而得到的.②我们想求圆的一般方程,可仿照直线方程试一试!我们已经学习了圆的标准方程,把标准形式展开,整理得到,也是从特殊到一般.③把式子x2+y2+Dx+Ey+F=0配方得(x+)2+(y+)2=.④(x-a)2+(y-b)2=r2中,r>0时表示圆,r=0时表示点(a,b),r<0时不表示任何图形.因此式子(x+)2+(y+)2=.(ⅰ)当D2+E2-4F>0时,表示以(-,-)为圆心,为半径的圆;(ⅱ)当D2+E2-4F=0时,方程只有实数解x=-,y=-,即只表示一个点(-,-);(ⅲ)当D2+E2-4F<0时,方程没有实数解,因而它不表示任何图形.
综上所述,方程x2+y2+Dx+Ey+F=0表示的曲线不一定是圆,由此得到圆的方程都能写成x2+y2+Dx+Ey+F=0的形式,但方程x2+y2+Dx+Ey+F=0表示的曲线不一定是圆,只有当D2+E2-4F>0时,它表示的曲线才是圆.因此x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F>0.
我们把形如x2+y2+Dx+Ey+F=0表示圆的方程称为圆的一般方程.
⑤圆的一般方程形式上的特点:
x2和y2的系数相同,不等于0.没有xy这样的二次项.
圆的一般方程中有三个待定的系数D、E、F,因此只要求出这三个系数,圆的方程就确定了.
与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.应用示例例1
判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1)4x2+4y2-4x+12y+9=0;(2)4x2+4y2-4x+12y+11=0.解:(1)由4x2+4y2-4x+12y+9=0,得D=-1,E=3,F=,而D2+E2-4F=1+9-9=1>0,所以方程4x2+4y2-4x+12y+9=0表示圆的方程,其圆心坐标为(,-),半径为;(2)由4x2+4y2-4x+12y+11=0,得D=-1,E=3,F=,D2+E2-4F=1+9-11=-1<0,所以方程4x2+4y2-4x+12y+11=0不表示圆的方程.点评:对于形如Ax2+By2+Dx+Ey+F=0的方程判断其方程是否表示圆,要化为x2+y2+Dx+Ey+F=0的形式,再利用条件D2+E2-4F与0的大小判断,不能直接套用.另外,直接配方也可以判断.变式训练
求下列圆的半径和圆心坐标:(1)x2+y2-8x+6y=0;(2)x2+y2+2by=0.解:(1)把x2+y2-8x+6y=0配方,得(x-4)2+(y+3)2=52,所以圆心坐标为(4,-3),半径为5;(2)x2+y2+2by=0配方,得x2+(y+b)2=b2,所以圆心坐标为(0,-b),半径为|b|.例2
求过三点O(0,0)、M1(1,1)、M2(4,2)的圆的方程,并求圆的半径长和圆心坐标.解:方法一:设所求圆的方程为x2+y2+Dx+Ey+F=0,由O、M1、M2在圆上,则有解得D=-8,E=6,F=0,故所求圆的方程为x2+y2-8x+6y=0,即(x-4)2+(y+3)2=52.所以圆心坐标为(4,-3),半径为5.方法二:先求出OM1的中点E(,),M1M2的中点F(,),再写出OM1的垂直平分线PE的直线方程y-=-(x-),
①AB的垂直平分线PF的直线方程y-=-3(x-),
②联立①②得得则点P的坐标为(4,-3),即为圆心.OP=5为半径.方法三:设所求圆的圆心坐标为P(a,b),根据圆的性质可得|OP|=|AP|=|BP|,即x2+y2=(x-1)2+(y-1)2=(x-4)2+(y-2)2,解之得P(4,-3),OP=5为半径.方法四:设所求圆的方程为(x-a)2+(y-b)2=r2,因为O(0,0)、A(1,1)、B(4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于a、b、r的方程组,即解此方程组得所以所求圆的方程为(x-4)2+(y+3)2=52,圆心坐标为(4,-3),半径为5.点评:请同学们比较,关于何时设圆的标准方程,何时设圆的一般方程.一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.例3
已知点P(10,0),Q为圆x2+y2=16上一动点.当Q在圆上运动时,求PQ的中点M的轨迹方程.活动:学生回想求曲线方程的方法与步骤,思考讨论,教师适时点拨提示,本题可利用平面几何的知识,见中点作中线,利用中线定长可得方程,再就是利用求曲线方程的办法来求.图1解法一:如图1,作MN∥OQ交x轴于N,则N为OP的中点,即N(5,0).因为|MN|=|OQ|=2(定长).所以所求点M的轨迹方程为(x-5)2+y2=4.点评:用直接法求轨迹方程的关键在于找出轨迹上的点应满足的几何条件,然后再将条件代数化.但在许多问题中,动点满足的几何条件较为隐蔽复杂,将它翻译成代数语言时也有困难,这就需要我们探讨求轨迹问题的新方法.转移法就是一种很重要的方法.用转移法求轨迹方程时,首先分析轨迹上的动点M的运动情况,探求它是由什么样的点控制的.解法二:设M(x,y)为所求轨迹上任意一点Q(x0,y0).因为M是PQ的中点,所以
(
)又因为Q(x0,y0)在圆x2+y2=16上,所以x02+y02=16.将(
)代入得(2x-10)2+(2y)2=16.故所求的轨迹方程为(x-5)2+y2=4.点评:相关点法步骤:①设被动点M(x,y),主动点Q(x0,y0).②求出点M与点Q坐标间的关系
(Ⅰ)③从(Ⅰ)中解出
(Ⅱ)④将(Ⅱ)代入主动点Q的轨迹方程(已知曲线的方程),化简得被动点的轨迹方程.这种求轨迹方程的方法也叫相关点法,以后要注意运用.变式训练
已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的中点M的轨迹方程.解:设点M的坐标是(x,y),点A的坐标是(x0,y0).由于点B的坐标是(4,3)且M是线段AB的中点,所以x=,y=.于是有x0=2x-4,y0=2y-3.
①因为点A在圆(x+1)2+y2=4上运动,所以点A的坐标满足方程(x+1)2+y2=4,即(x0+1)2+y02=4.②把①代入②,得(2x-4+1)2+(2y-3)2=4,整理,得(x-)2+(y-)2=1.所以点M的轨迹是以(,)为圆心,半径长为1的圆.知能训练课本练习1、2、3.拓展提升问题:已知圆x2+y2-x-8y+m=0与直线x+2y-6=0相交于P、Q两点,定点R(1,1),若PR⊥QR,求实数m的值.解:设P(x1,y1)、Q(x2,y2),由消去y得5x2+4m-60=0.
①由题意,方程①有两个不等的实数根,所以60-4m>0,m<15.由韦达定理因为PR⊥QR,所以kPRkQR=-1.所以=-1,即(x1-1)(x2-1)+(y1-1)(y2-1)=0,即x1x2-(x1+x2)+y1y2-(y1+y2)+2=0.
②因为y1=3-,y2=3,所以y1y2=(3-)(3)=9-(x1+x2)+=9+,y1+y2=6,代入②得x1x2+5=0,即(m-12)+5=0.所以m=10,适合m<15.所以实数m的值为10.课堂小结1.任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0的形式,但方程x2+y2+Dx+Ey+F=0表示的曲线不一定是圆,只有D2+E2-4F>0时,方程表示圆心为(-,-),半径为r=的圆.2.求圆的方程,应根据条件特点选择合适的方程形式:若条件与圆心、半径有关,则宜用标准方程;若条件主要是圆所经过的点的坐标,则宜用一般方程.3.要画出圆的图像,必须要知道圆心坐标和半径,因此应掌握利用配方法将圆的一般方程化为标准方程的方法.作业习题4.1
A组1、6,B组1、2、3.
板书设计
4.1.2
圆的一般方程圆的一般方程:x2+y2+Dx+Ey+F=0
例1D2+E2-4F>0
变式
例2
例3
变式
教学反思
这是一节介绍新知识的课,而且这节课还非常有利于展现知识的形成过程.因此,在设计这节课时,力求“过程、结论并重;知识、能力、思想方法并重”.在展现知识的形成过程中,尽量避免学生被动接受,引导学生探索,重视探索过程.一方面,把直线一般方程探求过程进行回顾、类比,学生从中领会探求方法;另一方面,“把标准方程展开→认识一般方程”这一过程充分运用了“通过特殊认识一般”的科学思想方法.同时,通过类比进行条件的探求——“D2+E2-4F”与“Δ”(判别式)类比.在整个探求过程中充分利用了“旧知识”及“旧知识的形成过程”,并用它探求新知识.这样的过程,既是学生获得新知识的过程,更是培养学生能力的过程.
PAGE
13.1.1
直线的倾斜角与斜率
教学目标
1.理解直线的倾斜角和斜率的定义,充分利用斜率和倾斜角是从数与形两方面刻划直线相对于x轴倾斜程度的两个量这一事实,在教学中培养学生数形结合的数学思想.2.掌握经过两点P1(x1,y1)和P2(x2,y2)的直线的斜率公式:k=(x1≠x2),培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.3.培养和提高学生联系、对应、转化等辩证思维能力,认识事物之间的相互联系,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练.
教学重、难点
教学重点:直线的倾斜角和斜率概念以及过两点的直线的斜率公式.教学难点:斜率公式的推导.
教学准备
多媒体课件
教学过程
导入新课我们知道,经过两点有且只有(确定)一条直线.那么,经过一点P的直线l的位置能确定吗 这些直线有什么联系和区别呢 教师引入课题:倾斜角与斜率.提出问题①怎样描述直线的倾斜程度呢?②图2中标出的直线的倾斜角α对不对?如果不对,违背了定义中的哪一条?图2③直线的倾斜角能不能是0°?能不能是锐角?能不能是直角?能不能是钝角?能不能是平角?能否大于平角?④日常生活中,还有没有表示倾斜程度的量?⑤正切函数的定义域是什么?⑥任何直线都有斜率么?⑦我们知道两点确定一条直线,那么已知直线上两点坐标,如何才能求出它的倾斜角和斜率呢?如:已知A(2,3)、B(-1,4),则直线AB的斜率是多少 活动:①与交角有关.当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.可见:平面上的任一直线都有唯一的一个倾斜角,并且倾斜角定了,直线的方向也就定了.②考虑正方向.③动手在坐标系中作多条直线,可知倾斜角的取值范围是0°≤α<180°.在此范围内,坐标平面上的任何一条直线都有唯一的倾斜角,而每一个倾斜角都能确定一条直线的方向.倾斜角直观地表示了直线对x轴正方向的倾斜程度.规定:当直线和x轴平行或重合时,直线倾斜角为0°,所以倾斜角的范围是0°≤α<180°.④联想小时候玩的滑梯,结合坡度比给出斜率定义,直线斜率的概念.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示,即k=tanα.⑤教师介绍正切函数的相关知识.⑥说明:直线与斜率之间的对应不是映射,因为垂直于x轴的直线没有斜率.(倾斜角是90°的直线没有斜率)⑦已知直线l上的两点P1(x1,y1),P2(x2,y2),且直线l与x轴不垂直,如何求直线l的斜率?教学时可与教材上的方法一样推出.讨论结果:①用倾斜角.②都不对.与定义中的x轴正方向、直线向上方向相违背.③直线的倾斜角能是0°,能是锐角,能是直角,能是钝角,不能是平角,不能大于平角.④有,常用的有坡度比.⑤90°的正切值不存在.⑥倾斜角是90°的直线没有斜率.⑦过两点P1
(x1,y1)、P2(x2,y2)的直线的斜率公式k=.应用示例例1
已知A(3,2),B(-4,1),C(0,-1),求直线AB,BC,CA的斜率,并判断它们的倾斜角是钝角还是锐角.活动:引导学生明确已知两点坐标,由斜率公式代入即可求得k的值;而当k=tanα<0时,倾斜角α是钝角;而当k=tanα>0时,倾斜角α是锐角;而当k=tanα=0时,倾斜角α是0°.解:直线AB的斜率k1=>0,所以它的倾斜角α是锐角;直线BC的斜率k2=-0.5<0,所以它的倾斜角α是钝角;直线CA的斜率k3=1>0,所以它的倾斜角α是锐角.变式训练
已知A(1,3),B(0,2),求直线AB的斜率及倾斜角.解:kAB=,∵直线倾斜角的取值范围是0°—180°,∴直线AB的倾斜角为60°.例2
在平面直角坐标系中,画出经过原点且斜率分别为1,-1,2及-3的直线a,b,c,l.活动:要画出经过原点的直线a,只要再找出a上的另外一点M.而M的坐标可以根据直线a的斜率确定.解:设直线a上的另外一点M的坐标为(x,y),根据斜率公式有:1=,所以x=y.可令x=1,则y=1,于是点M的坐标为(1,1).此时过原点和点M(1,1),可作直线a.同理,可作直线b,c,l.变式训练1.已知直线的倾斜角,求直线的斜率:(1)α=0°;(2)α=60°;(3)α=90°.活动:指导学生根据定义直接求解.解:(1)∵tan0°=0,∴倾斜角为0°的直线斜率为0.(2)∵tan60°=,∴倾斜角为60°的直线斜率为.(3)∵tan90°不存在,∴倾斜角为90°的直线斜率不存在.点评:通过此题训练,意在使学生熟悉特殊角的斜率.2.关于直线的倾斜角和斜率,下列哪些说法是正确的(
)A.任一条直线都有倾斜角,也都有斜率B.直线的倾斜角越大,它的斜率就越大C.平行于x轴的直线的倾斜角是0或π;两直线的倾斜角相等,它们的斜率也相等D.直线斜率的范围是(-∞,+∞)答案:D课堂小结通过本节学习,要求大家:(1)掌握已知直线的倾斜角求斜率;(2)直线倾斜角的概念及直线倾斜角的范围;(3)直线斜率的概念;(4)已知直线的倾斜角(或斜率),求直线的斜率(或倾斜角)的方法.作业习题3.1
A组3、4、5.
板书设计
教学反思
PAGE
12.1.2
空间中直线与直线之间的位置关系
教学目标
1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系.2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用.3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质.
教学重、难点
两直线异面的判定方法,以及两异面直线所成角的求法.
教学准备
多媒体课件
教学过程
导入新课观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何?图1提出问题①什么叫做异面直线?②总结空间中直线与直线的位置关系.③两异面直线的画法.④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗?⑤什么是空间等角定理?⑥什么叫做两异面直线所成的角?⑦什么叫做两条直线互相垂直?活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形式给出的,以否定形式给出的问题一般用反证法证明.②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系:③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图2.图2④组织学生思考:长方体ABCD—A′B′C′D′中,如图1,BB′∥AA′,DD′∥AA′,BB′与DD′平行吗?通过观察得出结论:BB′与DD′平行.再联系其他相应实例归纳出公理4.公理4:平行于同一条直线的两条直线互相平行.符号表示为:a∥b,b∥ca∥c.强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用.公理4是:判断空间两条直线平行的依据,不必证明,可直接应用.⑤等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.⑥怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢?生:可以把异面直线所成角转化为平面内两直线所成角来表示.如图3,异面直线a、b,在空间中任取一点O,过点O分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.图3针对这个定义,我们来思考两个问题.问题1:这样定义两条异面直线所成的角,是否合理?对空间中的任一点O有无限制条件?答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′(图4),过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等,即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O取在a或b上(如图3).图4问题2:这个定义与平面内两相交直线所成角是否矛盾?答:没有矛盾.当a、b相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.⑦在定义中,两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面(图5).图5应用示例例1
如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.图6求证:四边形EFGH是平行四边形.证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=.同理,FG∥BD,且FG=.所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.变式训练1.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD.求证:四边形EFGH是菱形.证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=.同理,FG∥BD,EF∥AC,且FG=,EF=.所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.因为AC=BD,所以EF=EH.所以四边形EFGH为菱形.2.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD,AC⊥BD.求证:四边形EFGH是正方形.证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=.同理,FG∥BD,EF∥AC,且FG=,EF=.所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.因为AC=BD,所以EF=EH.因为FG∥BD,EF∥AC,所以∠FEH为两异面直线AC与BD所成的角.又因为AC⊥BD,所以EF⊥EH.所以四边形EFGH为正方形.点评:“见中点找中点”构造三角形的中位线是证明平行常用的方法.例2
如图7,已知正方体ABCD—A′B′C′D′.图7(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在直线与直线AA′垂直?解:(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与BA′是异面直线.(2)由BB′∥CC′可知,∠B′BA′是异面直线BA′和CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°.(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.变式训练
如图8,已知正方体ABCD—A′B′C′D′.图8(1)求异面直线BC′与A′B′所成的角的度数;(2)求异面直线CD′和BC′所成的角的度数.解:(1)由A′B′∥C′D′可知,∠BC′D′是异面直线BC′与A′B′所成的角,∵BC′⊥C′D′,∴异面直线BC′与A′B′所成的角的度数为90°.(2)连接AD′,AC,由AD′∥BC′可知,∠AD′C是异面直线CD′和BC′所成的角,∵△AD′C是等边三角形.∴∠AD′C=60°,即异面直线CD′和BC′所成的角的度数为60°.点评:“平移法”是求两异面直线所成角的基本方法.课堂小结
本节学习了空间两直线的三种位置关系:平行、相交、异面,其中异面关系是重点和难点.
为了准确理解两异面直线所成角的概念,我们学习了公理4和等角定理.作业
课本习题2.1
A组3、4.
板书设计
教学反思
PAGE
12.1.3
空间中直线与平面之间的位置关系
教学目标
1.结合图形正确理解空间中直线与平面之间的位置关系.2.进一步熟悉文字语言、图形语言、符号语言的相互转换.3.进一步培养学生的空间想象能力.
教学重、难点
正确判定直线与平面的位置关系.
教学准备
多媒体课件
教学过程
导入新课
观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的六个面所在平面有几种位置关系?图1提出问题
①什么叫做直线在平面内?
②什么叫做直线与平面相交
③什么叫做直线与平面平行
④直线在平面外包括哪几种情况
⑤用三种语言描述直线与平面之间的位置关系.活动:教师提示、点拨从直线与平面的交点个数考虑,对回答正确的学生及时表扬.讨论结果:①如果直线与平面有无数个公共点叫做直线在平面内.②如果直线与平面有且只有一个公共点叫做直线与平面相交.③如果直线与平面没有公共点叫做直线与平面平行.④直线与平面相交或平行的情况统称为直线在平面外.⑤直线在平面内aα直线与平面相交a∩α=A直线与平面平行a∥α应用示例思路1例1
下列命题中正确的个数是(
)①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线都平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点A.0
B.1
C.2
D.3分析:如图2,图2
我们借助长方体模型,棱AA1所在直线有无数点在平面ABCD外,但棱AA1所在直线与平面ABCD相交,所以命题①不正确;
A1B1所在直线平行于平面ABCD,A1B1显然不平行于BD,所以命题②不正确;
A1B1∥AB,A1B1所在直线平行于平面ABCD,但直线AB平面ABCD,所以命题③不正确;
l与平面α平行,则l与α无公共点,l与平面α内所有直线都没有公共点,所以命题④正确.答案:B变式训练
请讨论下列问题:
若直线l上有两个点到平面α的距离相等,讨论直线l与平面α的位置关系.图3解:直线l与平面α的位置关系有两种情况(如图3),直线与平面平行或直线与平面相交.点评:判断直线与平面的位置关系要善于找出空间模型,结合图形来考虑,注意考虑问题要全面.例2
已知一条直线与三条平行直线都相交,求证:这四条直线共面.已知直线a∥b∥c,直线l∩a=A,l∩b=B,l∩c=C.求证:l与a、b、c共面.证明:如图4,∵a∥b,图4∴a、b确定一个平面,设为α.∵l∩a=A,l∩b=B,∴A∈α,B∈α.又∵A∈l,B∈l,∴ABα,即lα.同理b、c确定一个平面β,lβ,∴平面α与β都过两相交直线b与l.∵两条相交直线确定一个平面,∴α与β重合.故l与a、b、c共面.变式训练
已知aα,bα,a∩b=A,P∈b,PQ∥a,求证:PQα.证明:∵PQ∥a,∴PQ、a确定一个平面,设为β.∴P∈β,aβ,Pa.又P∈α,aα,Pa,由推论1:过P、a有且只有一个平面,∴α、β重合.∴PQα.点评:证明两个平面重合是证明直线在平面内问题的重要方法.课堂小结
本节主要学习直线与平面的位置关系,直线与平面的位置关系有三种:①直线在平面内——有无数个公共点,②直线与平面相交——有且只有一个公共点,③直线与平面平行——没有公共点.
另外,空间想象能力的培养是本节的重点和难点.作业
课本习题2.1
A组7、8.
板书设计
教学反思
PAGE
13.3.4
两条平行直线间的距离
教学目标
1.让学生掌握点到直线的距离公式,并会求两条平行线间的距离.2.引导学生构思距离公式的推导方案,培养学生观察、分析、转化、探索问题的能力,鼓励创新.培养学生勇于探索、善于研究的精神,学会合作.
教学重、难点
教学重点:点到直线距离公式的推导和应用.教学难点:对距离公式推导方法的感悟与数学模型的建立.
教学准备
多媒体课件
教学过程
导入新课点P(0,5)到直线y=2x的距离是多少?更进一步在平面直角坐标系中,如果已知某点P的坐标为(x0,y0),直线l的方程是Ax+By+C=0,怎样由点的坐标和直线的方程直接求点P到直线l的距离呢 这节课我们就来专门研究这个问题.提出问题①已知点P(x0,y0)和直线l:Ax+By+C=0,求点P到直线l的距离.你最容易想到的方法是什么 各种做法的优缺点是什么 ②前面我们是在A、B均不为零的假设下推导出公式的,若A、B中有一个为零,公式是否仍然成立?③回顾前面证法一的证明过程,同学们还有什么发现吗?(如何求两条平行线间的距离)活动:①请学生观察上面三种特殊情形中的结论:(ⅰ)x0=0,y0=0时,d=;(ⅱ)x0≠0,y0=0时,d=;(ⅲ)x0=0,y0≠0时,d=.观察、类比上面三个公式,能否猜想:对任意的点P(x0,y0),d= 学生应能得到猜想:d=.启发诱导:当点P不在特殊位置时,能否在距离不变的前提下适当移动点P到特殊位置,从而可利用前面的公式?(引导学生利用两平行线间的距离处处相等的性质,作平行线,把一般情形转化为特殊情形来处理)证明:设过点P且与直线l平行的直线l1的方程为Ax+By+C1=0,令y=0,得P′(,0).∴P′N=.
(
)∵P在直线l1:Ax+By+C1=0上,∴Ax0+By0+C1=0.∴C1=-Ax0-By0.代入(
)得|P′N|=即d=,.②可以验证,当A=0或B=0时,上述公式也成立.③引导学生得到两条平行线l1:Ax+By+C1=0与l2:Ax+By+C2=0的距离d=.证明:设P0(x0,y0)是直线Ax+By+C2=0上任一点,则点P0到直线Ax+By+C1=0的距离为d=.又Ax0+By0+C2=0,即Ax0+By0=-C2,∴d=.讨论结果:①已知点P(x0,y0)和直线l:Ax+By+C=0,求点P到直线l的距离公式为d=.②当A=0或B=0时,上述公式也成立.③两条平行线Ax+By+C1=0与Ax+By+C2=0的距离公式为d=.应用示例例1
求点P0(-1,2)到下列直线的距离:(1)2x+y-10=0;(2)3x=2.解:(1)根据点到直线的距离公式得d=.(2)因为直线3x=2平行于y轴,所以d=|-(-1)|=.点评:例1(1)直接应用了点到直线的距离公式,要求学生熟练掌握;(2)体现了求点到直线距离的灵活性,并没有局限于公式.变式训练
点A(a,6)到直线3x-4y=2的距离等于4,求a的值.解:=4|3a-6|=20a=20或a=.例2
已知点A(1,3),B(3,1),C(-1,0),求△ABC的面积.解:设AB边上的高为h,则S△ABC=|AB|·h.|AB|=,AB边上的高h就是点C到AB的距离.AB边所在的直线方程为,即x+y-4=0.点C到x+y-4=0的距离为h=,因此,S△ABC=×=5.点评:通过这两道简单的例题,使学生能够进一步对点到直线的距离理解应用,能逐步体会用代数运算解决几何问题的优越性.变式训练
求过点A(-1,2),且与原点的距离等于的直线方程.解:已知直线上一点,故可设点斜式方程,再根据点到直线的距离公式,即可求出直线方程为x+y-1=0或7x+y+5=0.例3
求平行线2x-7y+8=0和2x-7y-6=0的距离.解:在直线2x-7y-6=0上任取一点,例如取P(3,0),则点P(3,0)到直线2x-7y+8=0的距离就是两平行线间的距离.因此,d=.点评:把求两平行线间的距离转化为点到直线的距离.变式训练
求两平行线l1:2x+3y-8=0,l2:2x+3y-10=0的距离.答案:.知能训练课本本节练习.拓展提升问题:已知直线l:2x-y+1=0和点O(0,0)、M(0,3),试在l上找一点P,使得||PO|-|PM||的值最大,并求出这个最大值.解:点O(0,0)关于直线l:2x-y+1=0的对称点为O′(-,),则直线MO′的方程为y-3=x.直线MO′与直线l:2x-y+1=0的交点P()即为所求,相应的||PO|-|PM||的最大值为|MO′|=.课堂小结通过本节学习,要求大家:1.掌握点到直线的距离公式,并会求两条平行线间的距离.2.构思距离公式的推导方案,培养学生观察、分析、转化、探索问题的能力,鼓励创新.培养学生勇于探索、善于研究的精神,学会合作.3.本节课重点讨论了平面内点到直线的距离和两条平行线之间的距离,后者实际上可作为前者的变式应用.作业课本习题3.3
A组9、10;B组2、4.
板书设计
教学反思
PAGE
12.2.1
直线与平面平行的判定
教学目标
1.探究直线与平面平行的判定定理.2.直线与平面平行的判定定理的应用.
教学重、难点
如何判定直线与平面平行.
教学准备
多媒体课件
教学过程
复习直线与平面平行的定义:如果直线与平面没有公共点叫做直线与平面平行.导入新课观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面的位置关系吗?图1提出问题①回忆空间直线与平面的位置关系.②若平面外一条直线平行平面内一条直线,探究平面外的直线与平面的位置关系.③用三种语言描述直线与平面平行的判定定理.④试证明直线与平面平行的判定定理.活动:问题①引导学生回忆直线与平面的位置关系.问题②借助模型锻炼学生的空间想象能力.问题③引导学生进行语言转换.问题④引导学生用反证法证明.讨论结果:①直线在平面内、直线与平面相交、直线与平面平行.②直线a在平面α外,是不是能够断定a∥α呢?不能!直线a在平面α外包含两种情形:一是a与α相交,二是a与α平行,因此,由直线a在平面α外,不能断定a∥α.若平面外一条直线平行平面内一条直线,那么平面外的直线与平面的位置关系可能相交吗?既然不可能相交,则该直线与平面平行.③直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.符号语言为:.图形语言为:如图2.图2④证明:∵a∥b,∴a、b确定一个平面,设为β.∴aβ,bβ.∵aα,aβ,∴α和β是两个不同平面.∵bα且bβ,∴α∩β=b.假设a与α有公共点P,则P∈α∩β=b,即点P是a与b的公共点,这与已知a∥b矛盾.∴假设错误.故a∥α.应用示例例1
求证空间四边形相邻两边中点的连线平行于经过另外两边的平面.已知空间四边形ABCD中,E、F分别是AB、AD的中点.求证:EF∥面BCD.活动:先让学生思考或讨论,后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.证明:如图3,连接BD,图3EF∥面BCD.所以,EF∥面BCD.变式训练
如图4,在△ABC所在平面外有一点P,M、N分别是PC和AC上的点,过MN作平面平行于BC,画出这个平面与其他各面的交线,并说明画法.图4画法:过点N在面ABC内作NE∥BC交AB于E,过点M在面PBC内作MF∥BC交PB于F,连接EF,则平面MNEF为所求,其中MN、NE、EF、MF分别为平面MNEF与各面的交线.证明:如图5,图5.所以,BC∥平面MNEF.点评:“见中点,找中点”是证明线线平行常用方法,而证明线面平行往往转化为证明线线平行.例2
如图6,已知AB、BC、CD是不在同一平面内的三条线段,E、F、G分别为AB、BC、CD的中点.图6求证:AC∥平面EFG,BD∥平面EFG.证明:连接AC、BD、EF、FG、EG.在△ABC中,∵E、F分别是AB、BC的中点,∴AC∥EF.又EF面EFG,AC面EFG,∴AC∥面EFG.同理可证BD∥面EFG.变式训练
已知M、N分别是△ADB和△ADC的重心,A点不在平面α内,B、D、C在平面α内,求证:MN∥α.证明:如图7,连接AM、AN并延长分别交BD、CD于P、Q,连接PQ.图7∵M、N分别是△ADB、△ADC的重心,∴=2.∴MN∥PQ.又PQα,MNα,∴MN∥α.点评:利用平面几何中的平行线截比例线段定理,三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.课堂小结知识总结:利用线面平行的判定定理证明线面平行.方法总结:利用平面几何中的平行线截比例线段定理,三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.作业
课本习题2.2
A组3、4.
板书设计
教学反思
PAGE
11.3.2
球的体积和表面积
教学目标
掌握球的表面积和体积公式,并能应用其解决有关问题,提高学生解决问题的能力,培养转化与化归的数学思想方法.
教学重、难点
教学重点:球的表面积和体积公式的应用.教学难点:关于球的组合体的计算.
教学准备
多媒体课件
教学过程
一、导入新课:球既没有底面,也无法像柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小与球的半径有关,如何用球半径来表示球的体积和面积?教师引出课题:球的体积和表面积.二、讲授新课:
球的半径为R,它的体积和表面积只与半径R有关,是以R为自变量的函数.事实上,如果球的半径为R,那么S=4πR2,V=.应用示例例1
如图1所示,圆柱的底面直径与高都等于球的直径,求证:图1(1)球的体积等于圆柱体积的;(2)球的表面积等于圆柱的侧面积.活动:学生思考圆柱和球的结构特征,并展开空间想象.教师可以使用信息技术帮助学生读懂图形.证明:(1)设球的半径为R,则圆柱的底面半径为R,高为2R.则有V球=,V圆柱=πR2·2R=2πR3,所以V球=.(2)因为S球=4πR2,S圆柱侧=2πR·2R=4πR2,所以S球=S圆柱侧.点评:本题主要考查有关球的组合体的表面积和体积的计算.解决此类问题的关键是明确组合体的结构特征.变式训练1.如图2(1)所示,表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.图2解:设球的半径为R,正四棱柱底面边长为a,则轴截面如图2(2),所以AA′=14,AC=,又∵4πR2=324π,∴R=9.∴AC=.∴a=8.∴S表=64×2+32×14=576,即这个正四棱柱的表面积为576.2有一种空心钢球,质量为142
g,测得外径(直径)等于5
cm,求它的内径(钢的密度为7.9
g/cm3,精确到0.1
cm).解:设空心球内径(直径)为2x
cm,则钢球质量为7.9·[]=142,∴x3=≈11.3,∴x≈2.24,∴直径2x≈4.5.答:空心钢球的内径约为4.5
cm.例2
如图3所示,表示一个用鲜花做成的花柱,它的下面是一个直径为1
m、高为3
m的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.1) 图3活动:学生思考和讨论如何计算鲜花的朵数.鲜花的朵数等于此几何体的表面积(不含下底面)与每朵鲜花占用的面积.几何体的表面积等于圆柱的侧面积再加上半球的表面积.解:圆柱形物体的侧面面积S1≈3.1×1×3=9.3(m2),半球形物体的表面积为S2≈2×3.1×()2≈1.6
(m2),所以S1+S2≈9.3+1.6=10.9(m2).10.9×150≈1
635(朵).答:装饰这个花柱大约需要1
635朵鲜花.点评:本题主要考查球和圆柱的组合体的应用,以及解决实际问题的能力.变式训练
有一个轴截面为正三角形的圆锥容器,内放一个半径为R的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?分析:转化为求水的体积.画出轴截面,充分利用轴截面中的直角三角形来解决.解:作出圆锥和球的轴截面图如图4所示,图4圆锥底面半径r=,圆锥母线l=2r=,圆锥高为h==3R,∴V水=·3R2·3R,球取出后,水形成一个圆台,下底面半径r=,设上底面半径为r′,则高h′=(r-r′)tan60°=,∴(r2+r′2+rr′),∴5R3=,∴5R3=,解得r′=,∴h′=()R.答:容器中水的高度为()R.课堂小结:本节课学习了:1.球的表面积和体积.2.计算组合体的体积时,通常将其转化为计算柱、锥、台、球等常见的几何体的体积.布置作业:课本本节练习
1、2、3.
板书设计
教学反思
PAGE
14.1.1
圆的标准方程
教学目标
1.使学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,注意培养学生观察问题、发现问题和解决问题的能力.2.会用待定系数法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力,从而激发学生学习数学的热情和兴趣,培养学生分析、概括的思维能力.3.理解掌握圆的切线的求法.包括已知切点求切线,从圆外一点引切线,已知切线斜率求切线等.把握运动变化原则,培养学生树立相互联系、相互转化的辩证唯物主义观点,欣赏和体验圆的对称性,感受数学美.
教学重、难点
教学重点:圆的标准方程的推导过程和圆的标准方程特点的明确.教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.
教学准备
多媒体课件
教学过程
导入新课同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢 这就是本堂课的主要内容,教师板书本节课题:圆的标准方程.推进新课新知探究提出问题①已知两点A(2,-5),B(6,9),如何求它们之间的距离 若已知C(3,-8),D(x,y),又如何求它们之间的距离 ②具有什么性质的点的轨迹称为圆?③图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?图1④我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么 ⑤如果已知圆心坐标为C(a,b),圆的半径为r,我们如何写出圆的方程 ⑥圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?讨论结果:①根据两点之间的距离公式,得|AB|=,|CD|=.②平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆).③圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.④确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了.⑤确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a,b),半径为r(其中a、b、r都是常数,r>0).设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件=r.①将上式两边平方得(x-a)2+(y-b)2=r2.化简可得(x-a)2+(y-b)2=r2.②若点M(x,y)在圆上,由上述讨论可知,点M的坐标满足方程②,反之若点M的坐标满足方程②,这就说明点M与圆心C的距离为r,即点M在圆心为C的圆上.方程②就是圆心为C(a,b),半径长为r的圆的方程,我们把它叫做圆的标准方程.⑥这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x2+y2=r2.提出问题①根据圆的标准方程说明确定圆的方程的条件是什么 ②确定圆的方程的方法和步骤是什么 ③坐标平面内的点与圆有什么位置关系 如何判断 讨论结果:①圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,只要求出a、b、r且r>0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.②确定圆的方程主要方法是待定系数法,即列出关于a、b、r的方程组,求a、b、r或直接求出圆心(a,b)和半径r,一般步骤为:1°根据题意,设所求的圆的标准方程(x-a)2+(y-b)2=r2;2°根据已知条件,建立关于a、b、r的方程组;3°解方程组,求出a、b、r的值,并把它们代入所设的方程中去,就得到所求圆的方程.③点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:当点M(x0,y0)在圆(x-a)2+(y-b)2=r2上时,点M的坐标满足方程(x-a)2+(y-b)2=r2.当点M(x0,y0)不在圆(x-a)2+(y-b)2=r2上时,点M的坐标不满足方程(x-a)2+(y-b)2=r2.用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径,点在圆外(x0-a)2+(y0-b)2>r2,点在圆外;2°点到圆心的距离等于半径,点在圆上(x0-a)2+(y0-b)2=r2,点在圆上;3°点到圆心的距离小于半径,点在圆内(x0-a)2+(y0-b)2<r2,点在圆内.应用示例例1
写出下列各圆的标准方程:(1)圆心在原点,半径是3;⑵圆心在点C(3,4),半径是;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.解:(1)由于圆心在原点,半径是3,所以圆的标准方程为(x-0)2+(y-0)2=32,即x2+y2=9.(2)由于圆心在点C(3,4),半径是5,所以圆的标准方程是(x-3)2+(y-4)2=(5)2,即(x-3)2+(y-4)2=5.(3)方法一:圆的半径r=|CP|==5,因此所求圆的标准方程为(x-8)2+(y+3)2=25.方法二:设圆的标准方程为(x-8)2+(y+3)2=r2,因为圆经过点P(5,1),所以(5-8)2+(1+3)2=r2,r2=25,因此所求圆的标准方程为(x-8)2+(y+3)2=25.
这里方法一是直接法,方法二是间接法,它需要确定有关参数来确定圆的标准方程,两种方法都可,要视问题的方便而定.(4)设圆的标准方程为(x-1)2+(y-3)2=r2,由圆心到直线的距离等于圆的半径,所以r=.因此所求圆的标准方程为(x-1)2+(y-3)2=.点评:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.例2
写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M1(5,-7),M2(-,-1)是否在这个圆上.解:圆心为A(2,-3),半径长等于5的圆的标准方程是(x-2)2+(y+3)2=25,把点M1(5,-7),M2(-,,-1)分别代入方程(x-2)2+(y+3)2=25,则M1的坐标满足方程,M1在圆上.M2的坐标不满足方程,M2不在圆上.点评:本题要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何.例3
△ABC的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.活动:教师引导学生从圆的标准方程(x-a)2+(y-b)2=r2入手,要确定圆的标准方程,可用待定系数法确定a、b、r三个参数.另外可利用直线AB与AC的交点确定圆心,从而得半径,圆的方程可求,师生总结、归纳、提炼方法.解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r2,因为A(5,1),B(7,-3),C(2,-8)都在圆上,它们的坐标都满足方程
(x-a)2+(y-b)2=r2,于是解此方程组得所以△ABC的外接圆的方程为(x-2)2+(y+3)2=25.解法二:线段AB的中点坐标为(6,-1),斜率为-2,所以线段AB的垂直平分线的方程为y+1=(x-6).
①同理线段AC的中点坐标为(3.5,-3.5),斜率为3,所以线段AC的垂直平分线的方程为y+3.5=3(x-3.5).
②解由①②组成的方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r==5,所以△ABC的外接圆的方程为(x-2)2+(y+3)2=25.点评:△ABC外接圆的圆心是△ABC的外心,它是△ABC三边的垂直平分线的交点,它到三顶点的距离相等,就是圆的半径,利用这些几何知识,可丰富解题思路..变式训练
一圆过原点O和点P(1,3),圆心在直线y=x+2上,求此圆的方程.解法一:因为圆心在直线y=x+2上,所以设圆心坐标为(a,a+2).则圆的方程为(x-a)2+(y-a-2)2=r2.因为点O(0,0)和P(1,3)在圆上,所以解得所以所求的圆的方程为(x+)2+(y-)2=.解法二:由题意:圆的弦OP的斜率为3,中点坐标为(,),所以弦OP的垂直平分线方程为y-=-(x-),即x+3y-5=0.因为圆心在直线y=x+2上,且圆心在弦OP的垂直平分线上,所以由解得,即圆心坐标为C(-,).又因为圆的半径r=|OC|=,所以所求的圆的方程为(x+)2+(y-)2=.点评:(1)圆的标准方程中有a、b、r三个量,要求圆的标准方程即要求a、b、r三个量,有时可用待定系数法.(2)要重视平面几何中的有关知识在解题中的运用.例3
求下列圆的方程:(1)圆心在直线y=-2x上且与直线y=1-x相切于点(2,-1).(2)圆心在点(2,-1),且截直线y=x-1所得弦长为22.解:(1)设圆心坐标为(a,-2a),由题意知圆与直线y=1-x相切于点(2,-1),所以,解得a=1.所以所求圆心坐标为(1,-2),半径r==.所以所求圆的标准方程为(x-1)2+(y+2)2=2.(2)设圆的方程为(x-2)2+(y+1)2=r2(r>0),由题意知圆心到直线y=x-1的距离为d==.又直线y=x-1被圆截得弦长为2,所以由弦长公式得r2-d2=2,即r=2.所以所求圆的标准方程为(x-2)2+(y+1)2=4.点评:本题的两个题目所给条件均与圆心和半径有关,故都利用了圆的标准方程求解,此外平面几何的性质的应用,使得解法简便了许多,所以类似问题一定要注意圆的相关几何性质的应用,从确定圆的圆心和半径入手来解决.知能训练课本本节练习1、2.拓展提升1.求圆心在直线y=2x上且与两直线3x+4y-7=0和3x+4y+3=0都相切的圆的方程.活动:学生思考交流,教师提示引导,求圆的方程,无非就是确定圆的圆心和半径,师生共同探讨解题方法.解:首先两平行线的距离d==2,所以半径为r==1.方法一:设与两直线3x+4y-7=0和3x+4y+3=0的距离相等的直线方程为3x+4y+k=0,由平行线间的距离公式d=,得,即k=-2,所以直线方程为3x+4y-2=0.解3x+4y-2=0与y=2x组成的方程组得,因此圆心坐标为(,).又半径为r=1,所以所求圆的方程为(x-)2+(y-)2=1.方法二:解方程组因此圆心坐标为(,).又半径r=1,所以所求圆的方程为(x-)2+(y-)2=1.点评:要充分考虑各几何元素间的位置关系,把它转化为代数问题来处理.课堂小结①圆的标准方程.②点与圆的位置关系的判断方法.③根据已知条件求圆的标准方程的方法.④利用圆的平面几何的知识构建方程.⑤直径端点是A(x1,y1)、B(x2,y2)的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.作业1.复习初中有关点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系有关内容.2.预习有关圆的切线方程的求法.3.课本习题4.1
A组第2、3题.
板书设计
4.1.1
圆的标准方程圆的标准方程的推导
例1圆的标准方程
例2点与圆的位置关系
变式
教学反思
圆是学生比较熟悉的曲线,求圆的标准方程既是本节课的教学重点也是难点,为此先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生应用数学的意识.另外,为了培养学生的理性思维,在例题中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,不但突出了重点,更使难点的突破水到渠成.
PAGE
12.3.2
平面与平面垂直的判定
教学目标
1.探究平面与平面垂直的判定定理,二面角的定义及应用,培养学生的归纳能力.2.掌握平面与平面垂直的判定定理的应用,培养学生的空间想象能力.3.引导学生总结求二面角的方法,培养学生归纳问题的能力.
教学重、难点
教学重点:平面与平面垂直判定.教学难点:平面与平面垂直判定和求二面角.
教学准备
多媒体课件
教学过程
复面的位置关系:(1)如果两个平面没有公共点,则两平面平行若α∩β=,则α∥β.(2)如果两个平面有一条公共直线,则两平面相交若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图1.图1导入新课
前边举过门和墙所在平面的关系,随着门的开启,其所在平面与墙所在平面的相交程度在变,怎样描述这种变化呢?今天我们一起来探究两个平面所成角问题.提出问题①二面角的有关概念、画法及表示方法.②二面角的平面角的概念.③两个平面垂直的定义.④用三种语言描述平面与平面垂直的判定定理,并给出证明.⑤应用面面垂直的判定定理难点在哪里?讨论结果:①二面角的有关概念.二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫二面角的面.二面角常用直立式和平卧式两种画法:如图2(教师和学生共同动手).直立式:
平卧式:
(1)
(2)图2
二面角的表示方法:如图3中,棱为AB,面为α、β的二面角,记作二面角α-AB-β.有时为了方便也可在α、β内(棱以外的半平面部分)分别取点P、Q,将这个二面角记作二面角P-AB-Q.图3如果棱为l,则这个二面角记作αlβ或PlQ.②二面角的平面角的概念.
如图4,在二面角αlβ的棱上任取点O,以O为垂足,在半平面α和β内分别作垂直于棱的射线OA和OB,则射线OA和OB组成∠AOB.图4
再取棱上另一点O′,在α和β内分别作l的垂线O′A′和O′B′,则它们组成角∠A′O′B′.
因为OA∥O′A′,OB∥O′B′,所以∠AOB及∠A′O′B′的两边分别平行且方向相同,
即∠AOB=∠A′O′B′.
从上述结论说明了:按照上述方法作出的角的大小,与角的顶点在棱上的位置无关.
由此结果引出二面角的平面角概念:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.
图中的∠AOB,∠A′O′B′都是二面角αlβ的平面角.③直二面角的定义.
二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说二面角是多少度.平面角是直角的二面角叫做直二面角.
教室的墙面与地面,一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的.
两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念相类似,也是用它们所成的角为直角来定义,二面角既可以为锐角,也可以为钝角,特殊情形又可以为直角.
两个平面互相垂直的定义可表述为:
如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.
直二面角的画法:如图5.图5④两个平面垂直的判定定理.
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
两个平面垂直的判定定理符号表述为:α⊥β.
两个平面垂直的判定定理图形表述为:如图6.图6证明如下:已知AB⊥β,AB∩β=B,ABα.求证:α⊥β.分析:要证α⊥β,需证α和β构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其中一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由ABα,知AB、CD共面.∵AB⊥β,CDβ,∴AB⊥CD,垂足为点B.在平面β内过点B作直线BE⊥CD,则∠ABE是二面角αCDβ的平面角.又AB⊥BE,即二面角αCDβ是直二面角,∴α⊥β.⑤应用面面垂直的判定定理难点在于:在一个平面内找到另一个平面的垂线,即要证面面垂直转化为证线线垂直.应用示例例1
如图7,⊙O在平面α内,AB是⊙O的直径,PA⊥α,C为圆周上不同于A、B的任意一点.图7求证:平面PAC⊥平面PBC.证明:设⊙O所在平面为α,由已知条件,PA⊥α,BCα,∴PA⊥BC.∵C为圆周上不同于A、B的任意一点,AB是⊙O的直径,∴BC⊥AC.又∵PA与AC是△PAC所在平面内的两条相交直线,∴BC⊥平面PAC.∵BC平面PBC,∴平面PAC⊥平面PBC.变式训练
如图8,把等腰Rt△ABC沿斜边AB旋转至△ABD的位置,使CD=AC,图8(1)求证:平面ABD⊥平面ABC;(2)求二面角CBDA的余弦值.(1)证明:由题设,知AD=CD=BD,作DO⊥平面ABC,O为垂足,则OA=OB=OC.∴O是△ABC的外心,即AB的中点.∴O∈AB,即O∈平面ABD.∴OD平面ABD.∴平面ABD⊥平面ABC.(2)解:取BD的中点E,连接CE、OE、OC,∵△BCD为正三角形,∴CE⊥BD.又△BOD为等腰直角三角形,∴OE⊥BD.∴∠OEC为二面角CBDA的平面角.同(1)可证OC⊥平面ABD.∴OC⊥OE.∴△COE为直角三角形.设BC=a,则CE=,OE=,∴cos∠OEC=.点评:欲证面面垂直关键在于在一个平面内找到另一个平面的垂线.例2
如图9所示,河堤斜面与水平面所成二面角为60°,堤面上有一条直道CD,它与堤角的水平线AB的夹角为30°,沿这条直道从堤脚向上行走到10
m时人升高了多少?(精确到0.1
m)图9解:取CD上一点E,设CE=10
m,过点E作直线AB所在的水平面的垂线EG,垂足为G,则线段EG的长就是所求的高度.
在河堤斜面内,作EF⊥AB,垂足为F,并连接FG,
则FG⊥AB,即∠EFG就是河堤斜面与水平面ABG所成二面角的平面角,
∠EFG=60°,由此,得EG=EFsin60°=CEsin30°sin60°=10×≈4.3(m).答:沿直道行走到10
m时人升高约4.3
m.变式训练
已知二面角αABβ等于45°,CDα,D∈AB,∠CDB=45°.求CD与平面β所成的角.解:如图10,作CO⊥β交β于点O,连接DO,则∠CDO为DC与β所成的角.图10过点O作OE⊥AB于E,连接CE,则CE⊥AB.∴∠CEO为二面角αABβ的平面角,即∠CEO=45°.设CD=a,则CE=,∵CO⊥OE,OC=OE,∴CO=.∵CO⊥DO,∴sin∠CDO=.∴∠CDO=30°,即DC与β成30°角.点评:二面角是本节的另一个重点,作二面角的平面角最常用的方法是:在一个半平面α内找一点C,作另一个半平面β的垂线,垂足为O,然后通过垂足O作棱AB的垂线,垂足为E,连接AE,则∠CEO为二面角α-AB-β的平面角.这一过程要求学生熟记.课堂小结知识总结:利用面面垂直的判定定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.作业
课本习题2.3
A组1、2、3.
板书设计
教学反思
PAGE
1第二章
点、直线、平面之间的位置关系
教学目标
1.理解掌握空间点、直线、平面之间的位置关系.2.熟练应用直线、平面平行和垂直的判定及其性质解决立体几何问题.3.通过本章学习逐步提高学生的空间想象能力,学会用数学方法认识世界改造世界.
教学重、难点
教学重点:总结证明平行问题和证明垂直问题的方法.教学难点:总结求二面角的方法.
教学准备
多媒体课件
教学过程
导入新课
今天,我们在学习了空间点、直线、平面之间的位置关系,直线、平面平行的判定及其性质,直线、平面垂直的判定及其性质等内容的基础上,对本章知识、方法、数学思想进行全面系统的总结.提出问题①请同学们自己梳理本章知识结构.②回顾本章的主要内容.③找出本章有关平行的最重要的定理.④找出本章有关垂直的最重要的定理.⑤高考中经常考查的立体几何问题有那些?讨论结果:①本章知识结构:②本章的主要内容:1.刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形、进行逻辑推理的基础.公理4是判断空间直线之间平行关系的一个依据.2.空间图形问题经常转化为平面问题.“确定平面”是将空间问题转化为平面问题的重要条件,而这种转化又是空间图形中解决部分问题的重要思想方法.这种转化最基本的依据就是四个公理.3.本章的核心是空间中点、直线、平面之间的位置关系.从知识结构上看,在平面基本性质的基础上,由易到难的顺序研究直线与直线、直线与平面、平面与平面的位置关系.我们利用直线与直线的位置关系研究直线与平面的位置关系,利用直线与平面的位置关系研究平面与平面的位置关系.反过来,由平面与平面的位置关系可进一步掌握直线与平面的位置关系,由直线与平面、平面与平面的位置关系又可进一步确定直线与直线的位置关系.这种方法,是我们研究与解决空间直线、平面位置关系的重要方法.4.“平行”和“垂直”是直线与直线、直线与平面、平面与平面位置关系中两种最重要的位置关系.应用示例例1
如图1,在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,图1(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.(1)证明:直三棱柱ABC—A1B1C1,底面三边长AC=3,BC=4,AB=5,∴AC⊥BC.∵C1C⊥AC,∴AC⊥平面CDB.∴AC⊥BC1.(2)证明:如图1,设CB1与C1B的交点为E,连接DE,∵D是AB的中点,E是BC1的中点,∴DE∥AC1.∵DE平面CDB1,AC1平面CDB1,∴AC1∥平面CDB1.(3)解:∵DE∥AC1,∴∠CED为AC1与B1C所成的角.在△CED中,ED=AC1=,CD=AB=,CE=CB1=2,∵△CED为等腰三角形,∴cos∠CED=.∴异面直线AC1与B1C所成角的余弦值为.例2
如图2,在三棱锥P—ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.图2(1)求证:OD∥平面PAB;(2)当k=时,求直线PA与平面PBC所成角的正弦值;(3)当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?(1)证明:∵O、D分别为AC、PC的中点,∴OD∥PA.又PA平面PAB,∴OD∥平面PAB.(2)解:∵AB⊥BC,OA=OC,∴OA=OB=OC.又∵OP⊥平面ABC,∴PA=PB=PC.取BC中点E,连接PE,则BC⊥平面POE.作OF⊥PE于F,连接DF,则OF⊥平面PBC.∴∠ODF是OD与平面PBC所成的角.又OD∥PA,∴PA与平面PBC所成的角的大小等于∠ODF.在Rt△ODF中,sin∠ODF=,∴PA与平面PBC所成角的正弦值为.(3)解:由(2)知,OF⊥平面PBC,∴F是O在平面PBC内的射影.∵D是PC的中点,若点F是△PBC的重心,则B、F、D三点共线.∴直线OB在平面PBC内的射影为直线BD.∵OB⊥PC,∴PC⊥BD.∴PB=PC,即k=1.反之,当k=1时,三棱锥O—PBC为正三棱锥,∴O在平面PBC内的射影为△PBC的重心.知能训练如图3,直二面角DABE中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.求证:AE⊥平面BCE.图3证明:∵BF⊥平面ACE,∴BF⊥AE.∵二面角DABE为直二面角,且CB⊥AB,∴CB⊥平面ABE.∴CB⊥AE.∴AE⊥平面BCE.拓展提升如图4,在Rt△AOB中,∠OAB=,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角BAOC是直二面角.动点D在斜边AB上.图4(1)求证:平面COD⊥平面AOB;(2)当D为AB的中点时,求异面直线AO与CD所成角的大小;(3)求CD与平面AOB所成角的最大值.(1)证明:由题意,CO⊥AO,BO⊥AO,∴∠BOC是二面角BAOC的平面角.又∵二面角BAOC是直二面角,∴CO⊥BO.又∵AO∩BO=O,∴CO⊥平面AOB.又CO平面COD,∴平面COD⊥平面AOB.(2)解:作DE⊥OB,垂足为E,连接CE(如图),则DE∥AO,∴∠CDE是异面直线AO与CD所成的角.在Rt△COE中,CO=BO=2,OE=BO=1,∴CE==.又DE=AO=,∴在Rt△CDE中,tan∠CDE=.∴异面直线AO与CD所成角的大小为arctan.(3)解:由(1),知CO⊥平面AOB,∴∠CDO是CD与平面AOB所成的角,且tan∠CDO=.当OD最小时,∠CDO最大,这时,OD⊥AB,垂足为D,OD=,tan∠CDO=,∴CD与平面AOB所成角的最大值为arctan.课堂小结1.复习巩固.2.规律总结.3.思想升华.作业复习参考题A组2、3.
板书设计
教学反思
PAGE
14.3.1
空间直角坐标系
教学目标
1.掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力.2.解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一思想的教育;培养学生积极参与,大胆探索的精神.
教学重、难点
教学重点:在空间直角坐标系中确定点的坐标.教学难点:通过建立适当的直角坐标系确定空间点的坐标,以及相关应用.
教学准备
多媒体课件
教学过程
导入新课我们知道数轴上的任意一点M都可用对应一个实数x表示,建立了平面直角坐标系后,平面上任意一点M都可用对应一对有序实数(x,y)表示.那么假设我们建立一个空间直角坐标系时,空间中的任意一点是否可用对应的有序实数组(x,y,z)表示出来呢?为此我们学习空间直角坐标系,教师板书课题:空间直角坐标系.推进新课新知探究提出问题①在初中,我们学过数轴,那么什么是数轴 决定数轴的因素有哪些 数轴上的点怎样表示 ②在初中,我们学过平面直角坐标系,那么如何建立平面直角坐标系 决定平面直角坐标系的因素有哪些 平面直角坐标系上的点怎样表示 ③在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?④观察图1,体会空间直角坐标系该如何建立.⑤观察图2,建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?讨论结果:①在初中,我们学过数轴是规定了原点、正方向和单位长度的直线.决定数轴的因素有原点、正方向和单位长度.这是数轴的三要素.数轴上的点可用与这个点对应的实数x来表示.
②在初中,我们学过平面直角坐标系,平面直角坐标系是以一点为原点O,过原点O分别作两条互相垂直的数轴Ox和Oy,xOy称平面直角坐标系,平面直角坐标系具有以下特征:两条数轴:①互相垂直;②原点重合;③通常取向右、向上为正方向;④单位长度一般取相同的.平面直角坐标系上的点用它对应的横、纵坐标表示,括号里横坐标写在纵坐标的前面,它们是一对有序实数(x,y).
③在空间,我们也可以类比平面直角坐标系建立一个坐标系,即空间直角坐标系,空间中的任意一点也可用对应的有序实数组表示出来.
④观察图2,OABC—D′A′B′C′是单位正方体,我们类比平面直角坐标系的建立来建立一个坐标系即空间直角坐标系,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长度,建立三条数轴Ox,Oy,Oz称为x轴、y轴和z轴,这时我们说建立了一个空间直角坐标系O—xyz,其中O叫坐标原点,x轴、y轴和z轴叫坐标轴.如果我们把通过每两个坐标轴的平面叫做坐标平面,我们又得到三个坐标平面xOy平面,yOz平面,zOx平面.
由此我们知道,确定空间直角坐标系必须有三个要素,即原点、坐标轴方向、单位长.图1
图1表示的空间直角坐标系也可以用右手来确定.用右手握住z轴,当右手的四个手指从x轴正向以90°的角度转向y轴的正向时,大拇指的指向就是z轴的正向.我们称这种坐标系为右手直角坐标系.如无特别说明,我们课本上建立的坐标系都是右手直角坐标系.
注意:在平面上画空间直角坐标系O—xyz时,一般使∠xOy=135°,∠xOy=90°.即用斜二测画法画立体图,这里显然要注意在y轴和z轴上的都取原来的长度,而在x轴上的长度取原来长度的一半.同学们往往把在x轴上的长度取原来的长度,这就不符和斜二测画法的约定,直观性差.
⑤观察图2,建立了空间直角坐标系以后,空间中任意一点M就可以用坐标来表示了.
已知M为空间一点.过点M作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴和z轴的交点分别为P、Q、R,这三点在x轴、y轴和z轴上的坐标分别为x,y,z.于是空间的一点M就唯一确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y,z为点M的横坐标.纵坐标和竖坐标.坐标为x,y,z的点M通常记为M(x,y,z).图2
反过来,一个有序数组x,y,z,我们在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴、y轴和z轴的垂直平面.这三个垂直平面的交点M即为以有序数组x,y,z为坐标的点.数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标、纵坐标和竖坐标.(如图2所示)
坐标为x,y,z的点M通常记为M(x,y,z).我们通过这样的方法在空间直角坐标系内建立了空间的点M和有序数组x,y,z之间的一一对应关系.注意:坐标面上和坐标轴上的点,其坐标各有一定的特征.
如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;xOy面上的点,z=0;如果点M在x轴上,则y=z=0;如果点M在y轴上,则x=z=0;如果点M在z轴上,则x=y=0;如果M是原点,则x=y=z=0.
空间点的位置可以由空间直角坐标系中的三个坐标唯一确定,因此,常称我们生活的空间为“三度空间或三维空间”.事实上,我们的生活空间应该是四度空间,应加上时间变量t.即(x,y,z,t),它表示在时刻t所处的空间位置是(x,y,z).应用示例例1
如图3,长方体OABC—D′A′B′C′中,|OA|=3,|OC|=4,|OD′|=2,写出D′,C,A′,B′四点的坐标.图3活动:学生阅读题目,对照刚学的知识,先思考,再讨论交流,教师适时指导,要写出点的坐标,首先要确定点的位置,再根据各自坐标的含义和特点写出.D′在z轴上,因此它的横纵坐标都为0,C在y轴上,因此它的横竖坐标都为0,A′为在zOx面上的点,y=0;B′不在坐标面上,三个坐标都要求.解:D′在z轴上,而|OD′|=2,因此它的竖坐标为2,横纵坐标都为0,因此D′的坐标是(0,0,2).同理C的坐标为(0,4,0).A′在xOz平面上,纵坐标为0,A′的横坐标就是|OA|=3,A′的竖坐标就是|OD′|=2,所以A′的坐标就是(3,0,2).点B′在xOy平面上的射影是点B,因此它的横坐标x与纵坐标y同点B的横坐标x与纵坐标y相同,在xOy平面上,点B的横坐标x=3,纵坐标y=4;点B′在z轴上的射影是点D′,它的竖坐标与D′的竖坐标相同,点D′的竖坐标z=2,所以点B′的坐标是(3,4,2).点评:能准确地确定空间任意一点的直角坐标是利用空间直角坐标系的基础,一定掌握如下方法,过点M作三个平面分别垂直于x轴、y轴和z轴,确定x,y和z,同时掌握一些特殊点的坐标的表示特征.例2
讲解课本例2.活动:学生阅读,思考与例1的不同,教师引导学生考虑解题的方法,图中没有坐标系,这就给我们解题带来了难度,同时也给我们的思维提供了空间,如何建立空间直角坐标系才能使问题变得更简单 一般来说,以特殊点为原点,我们所求的点在坐标轴上或在坐标平面上的多为基本原则建立空间直角坐标系,这里我们以上底面为xOy平面,其他不变,来看这15个点的坐标.解:把图中的钠原子分成上、中、下三层,下层的钠原子全部在xOy平面上,因此其竖坐标全部是0,所以这五个钠原子所在位置的坐标分别为(0,0,0)、(1,0,0)、(1,1,0)、(0,1,0)、(,,0);中层的钠原子全部在与xOy平行的平面上,与z轴交点的竖坐标是,所以这四个钠原子所在位置的坐标分别为(,0,)、(1,,)、(,1,)、(0,,);上层的钠原子全部在与xOy平行的平面上,与z轴交点的竖坐标是1,所以这五个钠原子所在位置的坐标分别为(0,0,1)、(1,0,1)、(1,1,1)、(0,1,1)、(,,1).思考:如果把原点取在中间的点(上述两点的中点氯原子)上,以中层面作为xOy平面,结果会怎样呢?解:把图中的钠原子分成上、中、下三层,中层的钠原子全部在xOy平面上,因此其竖坐标全部是0,所以这四个钠原子所在位置的坐标分别为(,0,0)、(1,,0)、(,1,0)、(0,,0);上层的钠原子全部在与xOy平行的平面上,与轴交点的竖坐标是,所以这五个钠原子所在位置的坐标分别为(0,0,
)、(0,1,
)、(1,0,
)、(1,1,
)、(,,);下层的钠原子全部在与xOy平行的平面上,与轴交点的竖坐标是-,所以这五个钠原子所在位置的坐标分别为(0,0,-)、(1,
0,-)、(1,1,-)、(0,1,-)、(,,-).点评:建立坐标系是解题的关键,坐标系建立的不同,点的坐标也不同,但点的相对位置是不变的,坐标系的不同也会引起解题过程的难易程度不同.因此解题时要慎重建立空间直角坐标系.知能训练课本本节练习1、2、3.拓展提升1.在空间直角坐标系中的点P(x,y,z)关于①坐标原点;②横轴(x轴);③纵轴(y轴);④竖轴(z轴);⑤xOy坐标平面;⑥yOz坐标平面;⑦zOx坐标平面的对称点的坐标是什么 解:根据平面直角坐标系的点的对称方法结合中点坐标公式可知:点P(x,y,z)关于坐标原点的对称点为P1(-x,-y,-z);点P(x,y,z)关于横轴(x轴)的对称点为P2(x,-y,-z);点P(x,y,z)关于纵轴(y轴)的对称点为P3(-x,y,-z);点P(x,y,z)关于竖轴(z轴)的对称点为P4(-x,-y,z);点P(x,y,z)关于xOy坐标平面的对称点为P5(x,y,-z);点P(x,y,z)关于yOz坐标平面的对称点为P6(-x,y,z);点P(x,y,z)关于zOx坐标平面的对称点为P7(x,-y,z).点评:其中记忆的方法为:关于谁谁不变,其余的相反.如关于横轴(x轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy坐标平面的对称点,横坐标、纵坐标不变,竖坐标相反.变式训练
在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,-b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,-b,-c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,-b,c);④点P(a,b,c)关于坐标原点的对称点为P4(-a,-b,-c).其中正确叙述的个数为(
)A.3
B.2
C.1
D.0分析:①②③错,④对.答案:C课堂小结1.空间直角坐标系的建立.2.空间直角坐标系中点的坐标的确定.3.空间直角坐标系中点的位置的确定.4.中点公式:P1(x1,y1,z1),P2(x2,y2,z2),则P1P2中点M的坐标为(,,).5.空间直角坐标系中点的对称点的坐标.作业习题4.3
A组1、2
板书设计
4.3.1
空间直角坐标系空间直角坐标系的概念
例1空间中点的坐标
例2
教学反思
通过复习相关内容,为新课的引入和讲解做好铺垫.设置问题,创设情境,引导学生用类比的方法探索新知.由于学生的空间观念还比较薄弱,教学中宜多采用教具演示,尽量使学生能够形象直观地掌握知识内容.本课时可自制空间直角坐标系模型演示,帮助学生理解空间直角坐标系的概念.
PAGE
12.3.1
直线与平面垂直的判定
教学目标
1.探究直线与平面垂直的判定定理,培养学生的空间想象能力.2.掌握直线与平面垂直的判定定理的应用,培养学生分析问题、解决问题的能力.3.让学生明确直线与平面垂直在立体几何中的地位.
教学重、难点
教学重点:直线与平面垂直的判定.教学难点:灵活应用直线与平面垂直判定定理解决问题.
教学准备
多媒体课件
教学过程
导入新课
如果一条直线垂直于一个平面的无数条直线,那么这条直线是否与这个平面垂直?举例说明.
如图1,直线AC1与直线BD、EF、GH等无数条直线垂直,但直线AC1与平面ABCD不垂直.图1提出问题①探究直线与平面垂直的定义和画法.②探究直线与平面垂直的判定定理.③用三种语言描述直线与平面垂直的判定定理.④探究斜线在平面内的射影,讨论直线与平面所成的角.⑤探究点到平面的距离.活动:问题①引导学生结合事例观察探究.问题②引导学生结合事例实验探究.问题③引导学生进行语言转换.问题④引导学生思考其合理性.问题⑤引导学生回忆点到直线的距离得出点到平面的距离.讨论结果:①直线与平面垂直的定义和画法:教师演示实例并指出书脊(想象成一条直线)、各书页与桌面的交线,由于书脊和书页底边(即与桌面接触的一边)垂直,得出书脊和桌面上所有直线都垂直,书脊和桌面的位置关系给了我们直线和平面垂直的形象.从而引入概念:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.过一点有且只有一条直线和一个平面垂直;过一点有且只有一个平面和一条直线垂直.平面的垂线和平面一定相交,交点叫做垂足.直线和平面垂直的画法及表示如下:如图2,表示方法为:a⊥α.
图2
图3②如图3,请同学们准备一块三角形的纸片,我们一起做一个实验:过△ABC的顶点A翻折纸片,得折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在的平面α垂直?容易发现,当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在的平面α垂直.如图4.(1)
(2)图4
所以,当折痕AD垂直平面内的一条直线时,折痕AD与平面α不垂直,当折痕AD垂直平面内的两条直线时,折痕AD与平面α垂直.③直线和平面垂直的判定定理用文字语言表示为:
如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.
直线和平面垂直的判定定理用符号语言表示为:l⊥α.直线和平面垂直的判定定理用图形语言表示为:如图5,
图5
图6④斜线在平面内的射影.斜线:一条直线和一个平面相交,但不和这个平面垂直时,这条直线就叫做这个平面的斜线.斜足:斜线和平面的交点.斜线在平面内的射影:从斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影.
直线与平面相交,直线与平面的相互位置类同于两条相交直线,也需要用角来表示,但过交点在平面内可以作很多条直线.与平面相交的直线l与平面内的线a、b…所成的角是不相等的.为了定义的确定性,我们必须找到一些角中有确定值的,又能准确描述其位置的一个角,这就是由斜线与其在平面内的射影所成的锐角作为直线和平面所成的角.
平面的一条斜线和它在这个平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.
特别地:如果一条直线垂直于平面,我们说它们所成的角为直角.
一条直线和平面平行或在平面内,我们说它们所成的角为0°.如图6,l是平面α的一条斜线,点O是斜足,A是l上任意一点,AB是α的垂线,点B是垂足,所以直线OB(记作l′)是l在α内的射影,∠AOB(记作θ)是l与α所成的角.
直线和平面所成的角是一个非常重要的概念,在实际中有着广泛的应用,如发射炮弹时,当炮筒和地面所成的角为多少度时,才能准确地命中目标,也即射程为多远?又如铅球运动员在投掷时,以多大的角度投掷,投出的距离最远?⑤点到平面的距离:经过一点向平面引垂线,垂足叫做这点在这个平面内的射影,点在平面内的射影还是一个点.垂线段:上述的点与垂足间的线段叫做这点到这个平面的垂线段.点到平面的距离:垂线段的长叫做点到平面的距离.应用示例例1
如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.图7证明:如图7,在平面α内作两条相交直线m、n,设m∩n=A.
变式训练
如图8,已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.图8证明:过P作PO⊥平面ABC于O,连接OA、OB、OC.∵PO⊥平面ABC,BC平面ABC,∴PO⊥BC.又∵PA⊥BC,∴BC⊥平面PAO.又∵OA平面PAO,∴BC⊥OA.同理,可证AB⊥OC.∴O是△ABC的垂心.∴OB⊥AC.可证PO⊥AC.∴AC⊥平面PBO.又PB平面PBO,∴PB⊥AC.点评:欲证线面垂直需要转化为证明线线垂直,欲证线线垂直往往转化为线面垂直.用符号语言证明问题显得清晰、简洁.例2
如图9,在正方体ABCD—A1B1C1D1中,求直线A1B和平面A1B1CD所成的角.图9活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.解:连接BC1交B1C于点O,连接A1O.设正方体的棱长为a,因为A1B1⊥B1C1,A1B1⊥B1B,所以A1B1⊥平面BCC1B1.所以A1B1⊥BC1.又因为BC1⊥B1C,所以BC1⊥平面A1B1CD.所以A1O为斜线A1B在平面A1B1CD内的射影,∠BA1O为直线A1B与平面A1B1CD所成的角.在Rt△A1BO中,A1B=,BO=,所以BO=,∠BA1O=30°.因此,直线A1B和平面A1B1CD所成的角为30°.变式训练
如图10,四面体A—BCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值.图10解:过A作AO⊥面BCD,连接OD、OB、OC,则可证O是△BCD的中心,作QP⊥OD,∵QP∥AO,∴QP⊥面BCD.连接CP,则∠QCP即为所求的角.设四面体的棱长为a,∵在正△ACD中,Q是AD的中点,∴CQ=.∵QP∥AO,Q是AD的中点,∴QP=,得sin∠QCP=.点评:求直线与平面所成的角,是本节的又一重点,作线面角的关键是找出平面的垂线.课堂小结知识总结:利用面面垂直的性质定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.作业
课本习题2.2
B组3、4.
板书设计
教学反思
PAGE
14.2.2
圆与圆的位置关系
教学目标
使学生理解并掌握圆和圆的位置关系及其判定方法.培养学生自主探究的能力.通过用代数的方法分析圆与圆的位置关系,使学生体验几何问题代数化的思想,深入了解解析几何的本质,同时培养学生分析问题、解决问题的能力,并进一步体会数形结合的思想.
教学重、难点
教学重点:求弦长问题,判断圆和圆的位置关系.教学难点:判断圆和圆的位置关系.
教学准备
多媒体课件
教学过程
导入新课平面几何中,圆与圆的位置关系有哪几种呢?如何判断圆与圆之间的位置关系呢?判断两圆的位置关系的步骤及其判断方法如下:第一步:计算两圆的半径R,r;第二步:计算两圆的圆心距O1O2,即d;第三步:根据d与R,r之间的关系,判断两圆的位置关系.两圆的位置关系:外离外切相交内切内含d>R+rd=R+r|R-r|<d<R+rd=|R-r|d<|R-r|
在解析几何中,我们用代数的方法如何判断圆与圆之间的位置关系呢?这就是我们本堂课研究的课题,教师板书课题圆与圆的位置关系.推进新课新知探究提出问题①初中学过的平面几何中,圆与圆的位置关系有几种?②判断两圆的位置关系,你有什么好的方法吗?③你能在同一个直角坐标系中画出两个方程所表示的圆吗?④根据你所画出的图形,可以直观判断两个圆的位置关系.如何把这些直观的事实转化为数学语言呢?⑤如何判断两个圆的位置关系呢?⑥若将两个圆的方程相减,你发现了什么?⑦两个圆的位置关系是否可以转化为一条直线与两个圆中的一个圆的关系的判定呢?活动:
教师引导学生回顾学过的知识、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流.教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法.学生观察图形并思考,发表自己的解题方法.教师应该关注并发现有多少学生利用“图形”求解,对这些学生应该给予表扬.同时强调,解析几何是一门数与形结合的学科.启发学生利用图形的特征,用代数的方法来解决几何问题.教师指导学生利用两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置.学生互相探讨、交流,寻找解决问题的方法,并能通过图形的直观性,利用平面直角坐标系的两点间距离公式寻求解题的途径.讨论结果:①初中学过的平面几何中,圆与圆的位置关系有五类,分别是外离、外切、相交、内切、内含.②判断两圆的位置关系,我们可以类比直线与圆的位置关系的判定,目前我们只有初中学过的几何法,利用圆心距与两圆半径的和与差之间的关系判断.③略.④根据所画出的图形,可以直观判断两个圆的位置关系.用几何的方法说就是圆心距(d)与两圆半径(r,R)的和与差之间的关系.⑤判断两个圆的位置关系.一是可以利用几何法,即两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置关系.设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点:1°当d>R+r时,圆C1与圆C2外离;2°当d=R+r时,圆C1与圆C2外切;3°当|R-r|<d<R+r时,圆C1与圆C2相交;4°当d=|R-r|时,圆C1与圆C2内切;5°当d<|R-r|时,圆C1与圆C2内含;
二是看两圆的方程组成的方程组的实数解的情况,解两个圆的方程所组成的二元二次方程组.若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离.总结比较两种方法的优缺点.几何方法:直观,容易理解,但不能求出交点坐标.代数方法:1°只能判断交点,并不能准确的判断位置关系(有一个交点时不能判断内切还是外切,无交点时不能判断内含还是外离).2°优点是可以求出公共点.⑥若将两个圆的方程相减,得到一个一元一次方程,既直线方程,由于它过两圆的交点,所以它是相交两圆的公共弦的方程.⑦两个圆的公共点的问题可以化归为这条公共直线与两个圆中的一个圆的公共点的判定问题.由点到直线的距离公式来判断.应用示例例1
已知圆C1:x2+y2+2x+8y-8=0,圆C2:x2+y2-4x-4y-2=0,判断两圆的位置关系.活动:学生思考交流,教师引导提示,判断两圆的位置关系有两种基本的方法,要合理使用.方法一看两圆的方程组成的方程组的实数解的情况,方法二利用圆心距与两圆半径的和与差之间的关系判断.解:方法一:圆C1与圆C2的方程联立得到方程组①-②得x+2y-1=0,
③由③得y=,把上式代入①并整理得x2-2x-3=0.
④方程④的判别式Δ=(-2)2-4×1×(-3)=16>0,所以方程④有两个不等的实数根,即圆C1与圆C2相交.方法二:把圆C1:x2+y2+2x+8y-8=0,圆C2:x2+y2-4x-4y-2=0,化为标准方程,得(x+1)2+(y+4)2=25与(x-2)2+(y-2)2=10.圆C1的圆心是点(-1,-4),半径长r1=5;圆C2的圆心是点(2,
2),半径长r2=.圆C1与圆C2的连心线的长为=3,圆C1与圆C2的半径长之和为r1+r2=5+,半径长之差为r1-r2=5-.而5-<3<5+,即r1-r2<3<r1+r2,所以圆C1与圆C2相交,它们有两个公共点A、B.点评:判断两圆的位置关系,一般情况下,先化为标准方程,利用几何法判断较为准确直观.变式训练
判断下列两圆的位置关系,如果两圆相交,请求出公共弦的方程.(1)(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16,(2)x2+y2+6x-7=0与x2+y2+6y-27=0.解:(1)根据题意,得两圆的半径分别为r1=1和r2=4,两圆的圆心距d==5.因为d=r1+r2,所以两圆外切.(2)将两圆的方程化为标准方程,得(x+3)2+y2=16,x2+(y+3)2=36.故两圆的半径分别为r1=4和r2=6,两圆的圆心距d=.因为|r1-r2|<d<r1+r2,所以两圆相交.例2
已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.活动:学生审题,思考并交流,探讨解题的思路,教师及时提示引导,因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x2项、y2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.解:设两圆交点为A(x1,y1)、B(x2,y2),则A、B两点坐标满足方程组①-②,得3x-4y+6=0.因为A、B两点坐标都满足此方程,所以3x-4y+6=0即为两圆公共弦所在的直线方程.易知圆C1的圆心(-1,3),半径r=3.又点C1到直线的距离为d==.所以AB=2,即两圆的公共弦长为.点评:处理圆有关的问题,利用圆的几何性质往往比较简单,要注意体会和应用.知能训练课堂练习P141练习题课堂小结本节课主要学习了圆与圆的位置关系,判断方法:几何方法和代数方法.作业习题4.2
A组8、9、10、11.
板书设计
4.2.2
圆与圆的位置关系圆与圆的位置关系:
例1相离、外切、相交、内切、内含
变式
例2
教学反思
本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题.教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上得到圆与圆的位置关系的几何方法,但用代数的方法来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的基本方法..前一堂课学习过直线与圆的位置关系,圆与圆的位置关系的研究和直线与圆的位置关系的研究方法是类似的,所以可以用类比的思想来引导学生自主地探究圆与圆的位置关系.作为解析几何的一堂课,判断圆与圆的位置关系,体现的正是解析几何的思想:用代数方法处理几何问题,用几何方法处理代数问题.所以在教材处理上,对判断两圆位置关系用了代数和几何两种方法,两种方法贯穿始终,使学生对解析几何的本质有所了解
PAGE
11.2.1
中心投影与平行投影
1.2.2
空间几何体的三视图
教学目标
1.掌握平行投影和中心投影,了解空间图形的不同表示形式和相互转化,发展学生的空间想象能力,培养学生转化与化归的数学思想方法.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,并能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,提高学生识图和画图的能力,培养其探究精神和意识.
教学重、难点
教学重点:画出简单组合体的三视图,给出三视图和直观图,还原或想象出原实际图的结构特征.教学难点:识别三视图所表示的几何体.
教学准备
多媒体课件
教学过程
一、导入新课:“横看成岭侧成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实地反映出物体的结构特征,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图.在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?教师点出课题:投影和三视图.二、讲授新课:提出问题
①如图1所示的五个图片是我国民间艺术皮影戏中的部分片断,请同学们考虑它们是怎样得到的 图1②通过观察和自己的认识,你是怎样来理解投影的含义的 ③请同学们观察图2的投影过程,它们的投影过程有什么不同?图2④图2(2)(3)都是平行投影,它们有什么区别?⑤观察图3,与投影面平行的平面图形,分别在平行投影和中心投影下的影子和原图形的形状、大小有什么区别?图3活动:①教师介绍中国的民间艺术皮影戏,学生观察图片.②从投影的形成过程来定义.③从投影方向上来区别这三种投影.④根据投影线与投影面是否垂直来区别.⑤观察图3并归纳总结它们各自的特点.讨论结果:①这种现象我们把它称为是投影.②由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,我们把光线叫做投影线,把留下物体影子的屏幕叫做投影幕.③图2(1)的投影线交于一点,我们把光由一点向外散射形成的投影称为中心投影;图2(2)和(3)的投影线平行,我们把在一束平行光线照射下形成投影称为平行投影.④图2(2)中,投影线正对着投影面,这种平行投影称为正投影;图2(3)中,投影线不是正对着投影面,这种平行投影称为斜投影.⑤在平行投影下,与投影面平行的平面图形留下的影子和原平面图形是全等的平面图形;在中心投影下,与投影面平行的平面图形留下的影子和原平面图形是相似的平面图形.以后我们用正投影的方法来画出空间几何体的三视图和直观图.知识归纳:投影的分类如图4所示.图4提出问题
①在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图,请你回忆三视图包含哪些部分?
②正视图、侧视图和俯视图各是如何得到的?
③一般地,怎样排列三视图?
④正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到的几何体的正投影图,它们都是平面图形.观察长方体的三视图,你能得出同一个几何体的正视图、侧视图和俯视图在形状、大小方面的关系吗?讨论结果:①三视图包含正视图、侧视图和俯视图.②光线从几何体的前面向后面正投影,得到的投影图叫该几何体的正视图(又称主视图);光线从几何体的左面向右面正投影,得到的投影图叫该几何体的侧视图(又称左视图);光线从几何体的上面向下面正投影,得到的投影图叫该几何体的俯视图.③三视图的位置关系:一般地,侧视图在正视图的右边;俯视图在正视图的下边.如图5所示.图5④投影规律:(1)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.(2)一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图和俯视图宽度一样,即正、俯视图——长对正;主、侧视图——高平齐;俯、侧视图——宽相等.
画组合体的三视图时要注意的问题:(1)要确定好主视、侧视、俯视的方向,同一物体三视的方向不同,所画的三视图可能不同.(2)判断简单组合体的三视图是由哪几个基本几何体生成的,注意它们的生成方式,特别是它们的交线位置.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线,用虚线画出.(4)要检验画出的三视图是否符合“长对正、高平齐、宽相等”的基本特征,即正、俯视图长对正;正、侧视图高平齐;俯、侧视图宽相等,前后对应.
由三视图还原为实物图时要注意的问题:
我们由实物图可以画出它的三视图,实际生产中,工人要根据三视图加工零件,需要由三视图还原成实物图,这要求我们能由三视图想象它的空间实物形状,主要通过主、俯、左视图的轮廓线(或补充后的轮廓线)还原成常见的几何体,还原实物图时,要先从三视图中初步判断简单组合体的组成,然后利用轮廓线(特别要注意虚线)逐步作出实物图.应用示例例1
画出圆柱和圆锥的三视图.活动:学生回顾正投影和三视图的画法,教师引导学生自己完成.解:图6(1)是圆柱的三视图,图6(2)是圆锥的三视图.
(1)
(2)图6点评:本题主要考查简单几何体的三视图和空间想象能力.有关三视图的题目往往依赖于丰富的空间想象能力.要做到边想着几何体的实物图边画着三视图,做到想图(几何体的实物图)和画图(三视图)相结合.变式训练
说出下列图7中两个三视图分别表示的几何体.
(1)
(2)图7答案:图7(1)是正六棱锥;图7(2)是两个相同的圆台组成的组合体.例2
试画出图8所示的矿泉水瓶的三视图.活动:引导学生认识这种容器的结构特征.矿泉水瓶是我们熟悉的一种容器,这种容器是简单的组合体,其主要结构特征是从上往下分别是圆柱、圆台和圆柱.
图8
图9解:三视图如图9所示.点评:本题主要考查简单组合体的三视图.对于简单空间几何体的组合体,一定要认真观察,先认识它的基本结构,然后再画它的三视图.变式训练
画出图10所示的几何体的三视图.
图10
图11答案:三视图如图11所示.课堂小结:本节课学习了:1.中心投影和平行投影.2.简单几何体和组合体的三视图的画法及其投影规律.3.由三视图判断原几何体的结构特征.布置作业:习题1.2
A组
第1、2题.
板书设计
教学反思
PAGE
11.3.1
柱体、锥体、台体的表面积与体积
教学目标
1.了解柱体、锥体、台体的表面积和体积计算公式(不要求记忆),提高学生的空间想象能力和几何直观能力,培养学生的应用意识,增加学生学习数学的兴趣.2.掌握简单几何体的体积与表面积的求法,提高学生的运算能力,培养学生转化、化归以及类比的能力.
教学重、难点
教学重点:了解柱体、锥体、台体的表面积和体积计算公式及其应用.教学难点:表面积和体积计算公式的应用.
教学准备
多媒体课件
教学过程
一、导入新课:被誉为世界七大奇迹之首的胡夫大金字塔,在1889年巴黎埃菲尔铁塔落成前的四千多年的漫长岁月中,胡夫大金字塔一直是世界上最高的建筑物.在四千多年前生产工具很落后的中古时代,埃及人是怎样采集、搬运数量如此之多,每块又如此之重的巨石垒成如此宏伟的大金字塔,真是一个十分难解的谜.胡夫大金字塔是一个正四棱锥外形的建筑,塔底边长230米,塔高146.5米,你能计算建此金字塔用了多少石块吗?二、讲授新课:提出问题
①在初中,我们已经学习了正方体和长方体的表面积,以及它们的展开图(图1),你知道上述几何体的展开图与其表面积的关系吗?
正方体及其展开图(1)
长方体及其展开图(2)图1②棱柱、棱锥、棱台也是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?③如何根据圆柱、圆锥的几何结构特征,求它们的表面积?④联系圆柱、圆锥的侧面展开图,你能想象圆台侧面展开图的形状,并且画出它吗?如果圆台的上、下底面半径分别是r′,r,母线长为l,你能计算出它的表面积吗?⑤圆柱、圆锥和圆台的表面积之间有什么关系?活动:①学生讨论和回顾长方体和正方体的表面积公式.②学生思考几何体的表面积的含义,教师提示就是求各个面的面积的和.③让学生思考圆柱和圆锥的侧面展开图的形状.④学生思考圆台的侧面展开图的形状.⑤提示学生用动态的观点看待这个问题.讨论结果:①正方体、长方体是由多个平面图形围成的几何体,它们的表面积就是各个面的面积的和.因此,我们可以把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积.②棱柱的侧面展开图是平行四边形,其表面积等于围成棱柱的各个面的面积的和;棱锥的侧面展开图是由多个三角形拼接成的,其表面积等于围成棱锥的各个面的面积的和;棱台的侧面展开图是由多个梯形拼接成的,其表面积等于围成棱台的各个面的面积的和.③它们的表面积等于侧面积与底面积的和,利用它们的侧面展开图来求得它们的侧面积,由于底面是圆面,其底面积直接应用圆的面积公式即得.其中,圆柱的侧面展开图是矩形,圆锥的侧面展开图是扇形.
我们知道,圆柱的侧面展开图是一个矩形(图2).如果圆柱的底面半径为r,母线长为l,那么圆柱的底面面积为πr2,侧面面积为2πrl.因此,圆柱的表面积S=2πr2+2πrl=2πr(r+l).
图2
图3
圆锥的侧面展开图是一个扇形(图3).如果圆锥的底面半径为r,母线长为l,那么它的表面积S=πr2+πrl=πr(r+l).点评:将空间图形问题转化为平面图形问题,是解决立体几何问题基本的、常用的方法.④圆台的侧面展开图是一个扇环(图4),它的表面积等于上、下两个底面的面积和加上侧面的面积,即S=π(r2+r′2+rl+r′l).图4⑤圆柱、圆锥、圆台侧面积的关系:
圆柱和圆锥都可以看作是圆台退化而成的几何体.圆柱可以看作是上下底面全等的圆台,圆锥可看作是上底面退化成一点的圆台,观察它们的侧面积,不难发现:S圆柱表=2πr(r+l)S圆台表=π(r1l+r2l+r12+r22)S圆锥表=πr(r+l).从上面可以很清楚地看出圆柱和圆锥的侧面积公式都可以看作由圆台侧面积公式演变而来.提出问题
①回顾长方体、正方体和圆柱的体积公式,你能将它们统一成一种形式吗?并依次类比出柱体的体积公式?
②比较柱体、锥体、台体的体积公式:V柱体=Sh(S为底面积,h为柱体的高);V锥体=(S为底面积,h为锥体的高);V台体=h(S′,S分别为上、下底面积,h为台体的高).你能发现三者之间的关系吗?柱体、锥体是否可以看作“特殊”的台体?其体积公式是否可以看作台体体积公式的“特殊”形式?活动:①让学生思考和讨论交流长方体、正方体和圆柱的体积公式.②让学生类比圆柱、圆锥和圆台的表面积的关系?讨论结果:①棱长为a的正方体的体积V=a3=a2a=Sh;长方体的长、宽和高分别为a,b,c,其体积为V=abc=(ab)c=Sh;底面半径为r高为h的圆柱的体积是V=πr2h=Sh,可以类比,一般的柱体的体积也是V=Sh,其中S是底面面积,h为柱体的高.圆锥的体积公式是V=(S为底面面积,h为高),它是同底等高的圆柱的体积的.棱锥的体积也是同底等高的棱柱体积的,即棱锥的体积V=
(S为底面面积,h为高).由此可见,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是底面面积乘高的.
由于圆台(棱台)是由圆锥(棱锥)截成的,因此可以利用两个锥体的体积差,得到圆台(棱台)的体积公式V=(S′++S)h,其中S′,S分别为上、下底面面积,h为圆台(棱台)高.注意:不要求推导公式,也不要求记忆.②柱体可以看作是上、下底面相同的台体,锥体可以看作是有一个底面是一个点的台体.因此柱体、锥体可以看作“特殊”的台体.当S′=0时,台体的体积公式变为锥体的体积公式;当S′=S时,台体的体积公式变为柱体的体积公式,因此,柱体、锥体的体积公式可以看作台体体积公式的“特殊”形式.
柱体和锥体可以看作由台体变化得到,柱体可以看作是上、下底面相同的台体,锥体可以看作是有一个底面是一个点的台体,因此很容易得出它们之间的体积关系,如图5:图5应用示例例1
已知棱长为a,各面均为等边三角形的四面体S—ABC(图6),求它的表面积.图6活动:回顾几何体的表面积含义和求法.分析:由于四面体S—ABC的四个面是全等的等边三角形,所以四面体的表面积等于其中任何一个面面积的4倍.解:先求△SBC的面积,过点S作SD⊥BC,交BC于点D.因为BC=a,SD=,所以S△SBC=BC·SD=.因此,四面体S—ABC的表面积S=4×.点评:本题主要考查多面体的表面积的求法.变式训练1.已知圆柱和圆锥的高、底面半径均分别相等.若圆柱的底面半径为r,圆柱侧面积为S,求圆锥的侧面积.解:设圆锥的母线长为l,因为圆柱的侧面积为S,圆柱的底面半径为r,即S圆柱侧=S,根据圆柱的侧面积公式可得:圆柱的母线(高)长为,由题意得圆锥的高为,又圆锥的底面半径为r,根据勾股定理,圆锥的母线长l=,根据圆锥的侧面积公式得S圆锥侧=πrl=π·r·.2.两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被分成的三部分的体积的比是(
)A.1∶2∶3
B.1∶7∶19
C.3∶4∶5
D.1∶9∶27分析:因为圆锥的高被分成的三部分相等,所以两个截面的半径与原圆锥底面半径之比为1∶2∶3,于是自上而下三个圆锥的体积之比为()∶[·2h]∶[·3h]=1∶8∶27,所以圆锥被分成的三部分的体积之比为1∶(8-1)∶(27-8)=1∶7∶19.答案:B3.三棱锥V—ABC的中截面是△A1B1C1,则三棱锥V—A1B1C1与三棱锥A—A1BC的体积之比是(
)A.1∶2
B.1∶4
C.1∶6
D.1∶8分析:中截面将三棱锥的高分成相等的两部分,所以截面与原底面的面积之比为1∶4,将三棱锥A—A1BC转化为三棱锥A1—ABC,这样三棱锥V—A1B1C1与三棱锥A1—ABC的高相等,底面积之比为1∶4,于是其体积之比为1∶4.答案:B例2
如图7,一个圆台形花盆盆口直径为20
cm,盆底直径为?15
cm,?底部渗水圆孔直径为1.5
cm,盆壁长为15
cm.为了美化花盆的外观,需要涂油漆.已知每平方米用100毫升油漆,涂100个这样的花盆需要多少毫升油漆?(π取3.14,结果精确到1毫升,可用计算器)图7活动:学生思考和讨论如何转化为数学问题.只要求出每个花盆外壁的表面积,就可以求出油漆的用量.而花盆外壁的表面积等于花盆的侧面积加上底面积,再减去底面圆孔的面积.解:如图7,由圆台的表面积公式得一个花盆外壁的表面积S=π[]-π()2≈1
000(cm2)=0.1(m2).涂100个这样的花盆需油漆:0.1×100×100=1
000(毫升).答:涂100个这样的花盆需要1
000毫升油漆.点评:本题主要考查几何体的表面积公式及其应用.变式训练1.有位油漆工用一把长度为50
cm,横截面半径为10
cm的圆柱形刷子给一块面积为10
m2的木板涂油漆,且圆柱形刷子以每秒5周的速度在木板上匀速滚动前进,则油漆工完成任务所需的时间是多少 (精确到0.01秒)解:圆柱形刷子滚动一周涂过的面积就等于圆柱的侧面积,∵圆柱的侧面积为S侧=2πrl=2π·0.1·0.5=0.1π
m2,又∵圆柱形刷子以每秒5周匀速滚动,∴圆柱形刷子每秒滚过的面积为0.5π
m2,因此油漆工完成任务所需的时间t=≈6.37秒.点评:本题虽然是实际问题,但是通过仔细分析后,还是归为圆柱的侧面积问题.解决此题的关键是注意到圆柱形刷子滚动一周所经过的面积就相当于把圆柱的侧面展开的面积,即滚动一周所经过的面积等于圆柱的侧面积.从而使问题迎刃而解.2.(2007山东滨州一模,文14)已知三棱锥O—ABC中,OA、OB、OC两两垂直,OC=1,OA=x,OB=y,且x+y=4,则三棱锥体积的最大值是___________.分析:由题意得三棱锥的体积是(x-2)2+,由于x>0,则当x=2时,三棱锥的体积取最大值.答案:例3
有一堆规格相同的铁制(铁的密度是7.8
g/cm3)六角螺帽(图8)共重5.8
kg,已知底面是正六边形,边长为12
mm,内孔直径为10
mm,高为10
mm,问这堆螺帽大约有多少个 (π取3.14)图8活动:让学生讨论和交流如何转化为数学问题.六角帽表示的几何体是一个组合体,在一个六棱柱中间挖去一个圆柱,因此它的体积等于六棱柱的体积减去圆柱的体积.解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即V=×122×6×10-3.14×()2×10≈2
956(mm3)=2.956(cm3).所以螺帽的个数为5.8×1
000÷(7.8×2.956)≈252(个).答:这堆螺帽大约有252个.点评:本题主要考查几何体的体积公式及其应用.课堂小结:本节课学习了:1.柱体、锥体、台体的表面积和体积公式.2.应用体积公式解决有关问题.布置作业:习题1.3
A组
第1、2、3题.
板书设计
教学反思
PAGE
11.2.3
空间几何体的直观图
教学目标
通过用斜二测画法画水平放置的平面图形和空间几何体的直观图,提高学生识图和画图的能力,培养探究精神和意识,以及转化与化归的数学思想方法.
教学重、难点
教学重点:用斜二测画法画空间几何体的直观图.教学难点:直观图和三视图的互化.
教学准备
多媒体课件
教学过程
一、导入新课:正投影主要用于绘制三视图,在工程制图中被广泛采用,但三视图的直观性较差,因此绘制物体的直观图一般采用斜投影或中心投影.中心投影虽然可以显示空间图形的直观形象,但作图方法比较复杂,又不易度量,因此在立体几何中通常采用斜投影的方法来画空间图形的直观图.把空间图形画在纸上,是用一个平面图形来表示空间图形,这样表达的不是空间图形的真实形状,而是它的直观图.二、讲授新课:提出问题
①如何用斜二测画法画水平放置的正六边形的直观图?
②上述画直观图的方法称为斜二测画法,请总结其步骤.
③探求空间几何体的直观图的画法.用斜二测画法画长、宽、高分别是4
cm、3
cm、2
cm的长方体ABCD—A′B′C′D′的直观图.
④用斜二测画法画水平放置的平面图形和几何体的直观图有什么不同?并总结画几何体的直观图的步骤.活动:①和③教师首先示范画法,并让学生思考斜二测画法的关键步骤,让学生发表自己的见解,教师及时给予点评.②根据上述画法来归纳.③让学生比较两种画法的步骤.讨论结果:①画法:1°如图1(1),在正六边形ABCDEF中,取AD所在直线为x轴,对称轴MN所在直线为y轴,两轴相交于点O.在图1(2)中,画相应的x′轴与y′轴,两轴相交于点O′,使∠x′O′y′=45°.
2°在图1(2)中,以O′为中点,在x′轴上取A′D′=AD,在y′轴上取M′N′=MN.以点N′为中点画B′C′平行于x′轴,并且等于BC;再以M′为中点画E′F′平行于x′轴,并且等于EF.
3°连接A′B′,C′D′,D′E′,F′A′,并擦去辅助线x′轴和y′轴,便获得正六边形ABCDEF水平放置的直观图A′B′C′D′E′F′〔图1(3)〕.图1②步骤是:1°在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.2°已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的?线段.3°已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.③画法:1°画轴.如图2,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.图22°画底面.以点O为中点,在x轴上取线段MN,使MN=4
cm;在y轴上取线段PQ,使PQ=cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A、B、C、D,四边形ABCD就是长方体的底面ABCD.3°画侧棱.过A、B、C、D各点分别作z轴的平行线,并在这些平行线上分别截取2
cm长的线段AA′、BB′、CC′、DD′.4°成图.顺次连接A′、B′、C′、D′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.点评:画几何体的直观图时,如果不作严格要求,图形尺寸可以适当选取,用斜二测画法画图的角度也可以自定,但是要求图形具有一定的立体感.
④画几何体的直观图时还要建立三条轴,实际是建立了空间直角坐标系,而画水平放置平面图形的直观图实际上建立的是平面直角坐标系.画几何体的直观图的步骤是:
1°在已知图形所在的空间中取水平平面,作互相垂直的轴Ox、Oy,再作Oz轴,使∠xOy=90°,∠yOz=90°.
2°画出与Ox、Oy、Oz对应的轴O′x′、O′y′、O′z′,使∠x′O′y′=45°,∠y′O′z′=90°,x′O′y′所?确定的平面表示水平平面.
3°已知图形中,平行于x轴、y轴和z轴的线段,在直观图中分别画成平行于x′轴、y′轴和z′轴的线段,并使它们在所画坐标轴中的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.
4°已知图形中平行于x轴和z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度为原来的一半.
5°擦除作为辅助线的坐标轴,就得到了空间图形的直观图.
斜二测画法的作图技巧:
1°在已知图中建立直角坐标系,理论上在任何位置建立坐标系都行,但实际作图时,一般建立特殊的直角坐标系,尽量运用原有直线为坐标轴或图形的对称直线为坐标轴或图形的对称点为原点或利用原有垂直正交的直线为坐标轴等.
2°在原图中与x轴或y轴平行的线段在直观图中依然与x′轴或y′轴平行,原图中不与坐标轴平行的线段可以先画出线段的端点再连线,画端点时作坐标轴的平行线为辅助线.原图中的曲线段可以通过取一些关键点,利用上述方法作出直观图中的相应点后,用平滑的曲线连接而画出.
3°在画一个水平放置的平面时,由于平面是无限延展的,通常我们只画出它的一部分表示平面,一般地,用平行四边形表示空间一个水平平面的直观图.应用示例例1
用斜二测画法画水平放置的圆的直观图.活动:学生回顾讨论斜二测画法的步骤,自己画出来后再互相交流.教师适当点评.解:(1)如图3(1),在⊙O上取互相垂直的直径AB、CD,分别以它们所在的直线为x轴与y轴,将线段AB
n等分.过各分点分别作y轴的平行线,交⊙O于E,F,G,H,…,画对应的x′轴和y′轴,使∠x′O′y′=45°.图3(2)如图3(2),以O′为中点,在x′轴上取A′B′=AB,在y′轴上取C′D′=CD,将A′B′
n等分,分别以这些分点为中点,画与y′轴平行的线段E′F′,G′H′,…,使E′F′=,G′H′=,….(3)用光滑曲线顺次连接A′,D′,F′,H′,…,B′,G′,E′,C′,A′并擦去辅助线,得到圆的水平放置的直观图〔图3(3)〕.点评:本题主要考查用斜二测画法画水平放置的平面图形的直观图.变式训练1.画水平放置的等边三角形的直观图.答案:略.2.关于“斜二测画法”,下列说法不正确的是(
)A.原图形中平行于x轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y轴的线段,其对应线段平行于y′轴,长度变为原来的C.在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同分析:在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′也可以是135°,所以C不正确.答案:C例2
如图4,已知几何体的三视图,用斜二测画法画出它的直观图.图4活动:让学生由三视图还原为实物图,并判断该几何体的结构特征.教师分析:
由几何体的三视图知道,这个几何体是一个简单组合体,它的下部是一个圆柱,上部是一个圆锥,并且圆锥的底面与圆柱的上底面重合.我们可以先画出下部的圆柱,再画出上部的圆锥.解:画法:(1)画轴.如图5(1),画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°.
(1)
(2)图5(2)画圆柱的两底面,仿照例2画法,画出底面⊙O.在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x′与O′y′画出底面⊙O′(与画⊙O一样).(3)画圆锥的顶点.在Oz上截取点P,使PO′等于三视图中相应的高度.(4)成图.连接PA′,PB′,A′A,B′B,整理得到三视图表示的几何体的直观图〔图5(2)〕.点评:
空间几何体的三视图与直观图有着密切的联系,我们能够由空间几何体的三视图得到它的直观图.同时,也能够由空间几何体的直观图得到它的三视图.变式训练
图6所示是一个奖杯的三视图,你能想象出它的几何结构,并画出它的直观图吗?图6答案:奖杯的几何结构是最上面是一个球,中间是一个四棱柱,最下面是一个棱台拼接成的简单组合体.其直观图略.课堂小结:本节课学习了:1.直观图的概念.2.直观图的画法.3.直观图和三视图的关系.布置作业:习题1.2
A组
第5、6题.
板书设计
教学反思
PAGE
13.3.2
两点间的距离
教学目标
1.使学生掌握平面内两点间的距离公式及其推导过程;通过具体的例子来体会坐标法对于证明简单的平面几何问题的重要性.2.能灵活运用此公式解决一些简单问题;使学生掌握如何建立适当的直角坐标系来解决相应问题,培养学生勇于探索,善于发现,独立思考的能力以及不断超越自我的创新品质.
教学重、难点
教学重点:①平面内两点间的距离公式.②如何建立适当的直角坐标系.教学难点:如何根据具体情况建立适当的直角坐标系来解决问题.
教学准备
多媒体课件
教学过程
导入新课(1)如果A、B是x轴上两点,C、D是y轴上两点,它们的坐标分别是xA、xB、yC、yD,那么|AB|、|CD|怎样求 (2)求B(3,4)到原点的距离.(3)设A(x1,y1),B(x2,y2),求|AB|.提出问题①如果A、B是x轴上两点,C、D是y轴上两点,它们坐标分别是xA、xB、yC、yD,那么|AB|、|CD|怎样求 ②求点B(3,4)到原点的距离.③已知平面上的两点P1(x1,y1),P2(x2,y2),如何求P1(x1,y1),P2(x2,y2)的距离|P1P2|.④同学们已知道两点的距离公式,请大家回忆一下我们怎样知道的(回忆过程).讨论结果:①|AB|=|xB-xA|,|CD|=|yC-yD|.②通过画简图,发现一个Rt△BMO,应用勾股定理得到点B到原点的距离是5.③图1
在直角坐标系中,已知两点P1(x1,y1)、P2(x2,y2),如图1,从P1、P2分别向x轴和y轴作垂线P1M1、P1N1和P2M2、P2N2,垂足分别为M1(x1,0)、N1(0,y1)、M2(x2,0)、N2(0,y2),其中直线P1N1和P2M2相交于点Q.
在Rt△P1QP2中,|P1P2|2=|P1Q|2+|QP2|2.
因为|P1Q|=|M1M2|=|x2-x1|,|QP2|=|N1N2|=|y2-y1|,
所以|P1P2|2=|x2-x1|2+|y2-y1|2.
由此得到两点P1(x1,y1)、P2(x2,y2)的距离公式:|P1P2|=.④(a)我们先计算在x轴和y轴两点间的距离.(b)又问了B(3,4)到原点的距离,发现了直角三角形.(c)猜想了任意两点间距离公式.(d)最后求平面上任意两点间的距离公式.
这种由特殊到一般,由特殊猜测任意的思维方式是数学发现公式或定理到推导公式、证明定理经常应用的方法.同学们在做数学题时可以采用!应用示例例1
如图2,有一线段的长度是13,它的一个端点是A(-4,8),另一个端点B的纵坐标是3,求这个端点的横坐标.图2解:设B(x,3),根据|AB|=13,即(x+4)2+(3-8)2=132,解得x=8或x=-16.点评:学生先找点,有可能找不全,丢掉点,而用代数解比较全面.也可以引至到A(-4,8)点距离等于13的点的轨迹(或集合)是以A点为圆心、13为半径的圆上与y=3的交点,应交出两个点.例2
已知点A(-1,2),B(2,),在x轴上求一点,使|PA|=|PB|,并求|PA|的值.解:设所求点P(x,0),于是有.由|PA|=|PB|,得x2+2x+5=x2-4x+11,解得x=1.即所求点为P(1,0),且|PA|==2.知能训练课本本节练习.拓展提升已知0<x<1,0<y<1,求使不等式≥2中的等号成立的条件.答案:x=y=.课堂小结通过本节学习,要求大家:①掌握平面内两点间的距离公式及其推导过程;②能灵活运用此公式解决一些简单问题;③掌握如何建立适当的直角坐标系来解决相应问题.作业课本习题3.3
A组6、7、8;B组6.
板书设计
教学反思
PAGE
12.3.3
直线与平面垂直的性质
教学目标
1.探究直线与平面垂直的性质定理,培养学生的空间想象能力、实事求是等严肃的科学态度和品质.2.掌握直线与平面垂直的性质定理的应用提高逻辑推理的能力.
教学重、难点
直线与平面垂直的性质定理及其应用.
教学准备
多媒体课件
教学过程
复习
直线与平面垂直的定义:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.直线和平面垂直的画法及表示如下:图1如图1,表示方法为:a⊥α.由直线与平面垂直的定义不难得出:b⊥a.导入新课如图2,长方体ABCD—A′B′C′D′中,棱AA′、BB′、CC′、DD′所在直线都垂直所在的平面ABCD,它们之间具有什么位置关系?图2提出问题①回忆空间两直线平行的定义.②判断同垂直于一条直线的两条直线的位置关系?③找出恰当空间模型探究同垂直于一个平面的两条直线的位置关系.④用三种语言描述直线与平面垂直的性质定理.⑤如何理解直线与平面垂直的性质定理的地位与作用?讨论结果:①如果两条直线没有公共点,我们说这两条直线平行.它的定义是以否定形式给出的,其证明方法多用反证法.②如图3,同垂直于一条直线的两条直线的位置关系可能是:相交、平行、异面.图3③如图4,长方体ABCD—A′B′C′D′中,棱AA′、BB′、CC′、DD′所在直线都垂直于所在的平面ABCD,它们之间具有什么位置关系?
图4
图5棱AA′、BB′、CC′、DD′所在直线都垂直所在的平面ABCD,它们之间互相平行.④直线和平面垂直的性质定理用文字语言表示为:垂直于同一个平面的两条直线平行,也可简记为线面垂直、线线平行.直线和平面垂直的性质定理用符号语言表示为:b∥a.直线和平面垂直的性质定理用图形语言表示为:如图5.⑤直线与平面垂直的性质定理不仅揭示了线面之间的关系,而且揭示了平行与垂直之间的内在联系.应用示例例1
证明垂直于同一个平面的两条直线平行.解:已知a⊥α,b⊥α.求证:a∥b.图6证明:(反证法)如图6,假定a与b不平行,且b∩α=O,作直线b′,使O∈b′,a∥b′.直线b′与直线b确定平面β,设α∩β=c,则O∈c.∵a⊥α,b⊥α,∴a⊥c,b⊥c.∵b′∥a,∴b′⊥c.又∵O∈b,O∈b′,bβ,b′β,a∥b′显然不可能,因此b∥a.例2
如图7,已知α∩β=l,EA⊥α于点A,EB⊥β于点B,aα,a⊥AB.求证:a∥l.图7证明:l⊥平面EAB.又∵aα,EA⊥α,∴a⊥EA.又∵a⊥AB,∴a⊥平面EAB.∴a∥l.例2
如图8,已知直线a⊥b,b⊥α,aα.求证:a∥α.图8证明:在直线a上取一点A,过A作b′∥b,则b′必与α相交,设交点为B,过相交直线a、b′作平面β,设α∩β=a′,∵b′∥b,a⊥b,∴a⊥b′.∵b⊥α,b′∥b,∴b′⊥α.又∵a′α,∴b′⊥a′.由a,b′,a′都在平面β内,且b′⊥a,b′⊥a′知a∥a′.∴a∥α.例3
如图9,已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN⊥CD;(2)若∠PDA=45°,求证:MN⊥面PCD.图9证明:(1)取PD中点E,又N为PC中点,连接NE,则NE∥CD,NE=CD.又∵AM∥CD,AM=CD,∴AMNE.∴四边形AMNE为平行四边形.∴MN∥AE.∵CD⊥AE.(2)当∠PDA=45°时,Rt△PAD为等腰直角三角形,则AE⊥PD.又MN∥AE,∴MN⊥PD,PD∩CD=D.∴MN⊥平面PCD.变式训练
已知a、b、c是平面α内相交于一点O的三条直线,而直线l和平面α相交,并且和a、b、c三条直线成等角.求证:l⊥α.证明:分别在a、b、c上取点A、B、C并使AO=BO=CO.设l经过O,在l上取一点P,在△POA、△POB、△POC中,∵PO=PO=PO,AO=BO=CO,∠POA=∠POB=∠POC,∴△POA≌△POB≌△POC.∴PA=PB=PC.取AB的中点D,连接OD、PD,则OD⊥AB,PD⊥AB.∵PD∩OD=D,∴AB⊥平面POD.∵PO平面POD,∴PO⊥AB.同理,可证PO⊥BC.∵ABα,BCα,AB∩BC=B,∴PO⊥α,即l⊥α.若l不经过点O时,可经过点O作l′∥l.用上述方法证明l′⊥α,∴l⊥α.课堂小结知识总结:利用线面垂直的性质定理将线面垂直问题转化为线线平行,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.作业课本习题2.3
B
组1、2.
板书设计
教学反思
PAGE
14.2.1
直线与圆的位置关系
教学目标
1.理解直线与圆的位置关系,明确直线与圆的三种位置关系的判定方法,培养学生数形结合的数学思想.2.会用点到直线的距离来判断直线与圆的位置关系及会利用直线与圆的位置关系解决相关的问题,让学生通过观察图形,明确数与形的统一性和联系性.
教学重、难点
教学重点:直线与圆的位置关系的几何图形及其判断方法.教学难点:用坐标法判断直线与圆的位置关系.
教学准备
多媒体课件
教学过程
第1课时导入新课(复习导入)(1)直线方程Ax+By+C=0(A,B不同时为零).(2)圆的标准方程(x-a)2+(y-b)2=r2,圆心为(a,b),半径为r.(3)圆的一般方程x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0),圆心为(-,-),半径为.推进新课新知探究提出问题①初中学过的平面几何中,直线与圆的位置关系有几类?②在初中,我们怎样判断直线与圆的位置关系呢?③如何用直线与圆的方程判断它们之间的位置关系呢?④判断直线与圆的位置关系有几种方法?它们的特点是什么?讨论结果:①初中学过的平面几何中,直线与圆的位置关系有直线与圆相离、直线与圆相切、直线与圆相交三种.②直线与圆的三种位置关系的含义是:直线与圆的位置关系公共点个数圆心到直线的距离d与半径r的关系图形相交两个d<r相切只有一个d=r相离没有d>r③方法一,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.④直线与圆的位置关系的判断方法:几何方法步骤:1°把直线方程化为一般式,求出圆心和半径.2°利用点到直线的距离公式求圆心到直线的距离.3°作判断:当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.代数方法步骤:1°将直线方程与圆的方程联立成方程组.2°利用消元法,得到关于另一个元的一元二次方程.3°求出其判别式Δ的值.4°比较Δ与0的大小关系,若Δ>0,则直线与圆相离;若Δ=0,则直线与圆相切;若Δ<0,则直线与圆相交.反之也成立.应用示例例1
已知直线l:3x+y-6=0和圆心为C的圆x2+y2-2y-4=0,判断直线l与圆的位置关系.如果相交,求出它们的交点坐标.活动:学生思考或交流,回顾判断的方法与步骤,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价;方法一,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.解法一:由直线l与圆的方程,得消去y,得x2-3x+2=0,因为Δ=(-3)2-4×1×2=1>0,所以直线l与圆相交,有两个公共点.解法二:圆x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心C的坐标为(0,1),半径长为,圆心C到直线l的距离d==<.所以直线l与圆相交,有两个公共点.由x2-3x+2=0,得x1=2,x2=1.把x1=2代入方程①,得y1=0;把x2=1代入方程①,得y2=3.所以直线l与圆相交有两个公共点,它们的坐标分别是(2,0)和(1,3).点评:比较两种解法,我们可以看出,几何法判断要比代数法判断快得多,但是若要求交点,仍需联立方程组求解.例2
已知圆的方程是x2+y2=2,直线y=x+b,当b为何值时,圆与直线有两个公共点,只有一个公共点没有公共点.活动:学生思考或交流,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价.我们知道,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解,或依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.反过来,当已知圆与直线的位置关系时,也可求字母的取值范围,所求曲线公共点问题可转化为b为何值时,方程组有两组不同实数根、有两组相同实根、无实根的问题.圆与直线有两个公共点、只有一个公共点、没有公共点的问题,可转化为b为何值时圆心到直线的距离小于半径、等于半径、大于半径的问题.解法一:若直线l:y=x+b和圆x2+y2=2有两个公共点、只有一个公共点、没有公共点,则方程组有两个不同解、有两个相同解、没有实数解,消去y,得2x2+2bx+b2-2=0,所以Δ=(2b)2-4×2(b2-2)=16-4b2.所以,当Δ=16-4b2>0,即-2<b<2时,圆与直线有两个公共点;当Δ=16-4b2=0,即b=±2时,圆与直线只有一个公共点;当Δ=16-4b2<0,即b>2或b<-2时,圆与直线没有公共点.解法二:圆x2+y2=2的圆心C的坐标为(0,0),半径长为2,圆心C到直线l:y=x+b的距离d=.当d>r时,即>,即|b|>2,即b>2或b<-2时,圆与直线没有公共点;当d=r时,即=,即|b|=2,即b=±2时,圆与直线只有一个公共点;当d<r时,即<,即|b|<2,即-2<b<2时,圆与直线有两个公共点.点评:由于圆的特殊性,判断圆与直线的位置关系,多采用圆心到直线的距离与半径的大小进行比较的方法,而以后我们将要学习的圆锥曲线与直线位置关系的判断,则需要利用方程组解的个数来判断.变式训练
已知直线l过点P(4,0),且与圆O:x2+y2=8相交,求直线l的倾斜角α的取值范围.解法一:设直线l的方程为y=k(x-4),即kx-y-4k=0,因为直线l与圆O相交,所以圆心O到直线l的距离小于半径,即<2,化简得k2<1,所以-1<k<1,即-1<tanα<1.当0≤tanα<1时,0≤α<;当-1<tanα<0时,<α<π.所以α的取值范围是[0,)∪(,π).解法二:设直线l的方程为y=k(x-4),由,消去y得(k2+1)x2-8k2x+16k2-8=0.因为直线l与圆O相交,所以Δ=(-8k2)2-4(k2+1)(16k2-8)>0,化简得k2<1.(以下同解法一)点评:涉及直线与圆的位置关系的问题,常可运用以上两种方法.本题若改为选择题或填空题,也可利用图形直接得到答案.知能训练本节练习2、3、4.拓展提升圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦.(1)当α=时,求AB的长;(2)当AB的长最短时,求直线AB的方程.解:(1)当α=时,直线AB的斜率为k=tan=-1,所以直线AB的方程为y-2=-(x+1),即y=-x+1.解法一:(用弦长公式)由消去y,得2x2-2x-7=0,设A(x1,y1),B(x2,y2),则x1+x2=1,x1x2=-,所以|AB|=|x1-x2|=·=·=.解法二:(几何法)弦心距d=,半径r=2,弦长|AB|=2.(2)当AB的长最短时,OP0⊥AB,因为kOP0=-2,kAB=,直线AB的方程为y-2=(x+1),即x-2y+5=0.课堂小结(1)判断直线与圆的位置关系的方法:几何法和代数法.(2)求切线方程.作业习题4.2
A组1、2、3.第2课时导入新课一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70
km处,受影响的范围是半径长为30
km的圆形区域.已知港口位于台风中心正北40
km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?图2分析:如图2,以台风中心为原点O,以东西方向为x轴,建立直角坐标系,其中,取10
km为单位长度.则台风影响的圆形区域所对应的圆心为O的圆的方程为x2+y2=9;轮船航线所在的直线l的方程为4x+7y-28=0.问题归结为圆心为O的圆与直线l有无公共点.因此我们继续研究直线与圆的位置关系.推进新课新知探究提出问题①过圆上一点可作几条切线?如何求出切线方程?②过圆外一点可作几条切线?如何求出切线方程?③过圆内一点可作几条切线?④你能概括出求圆切线方程的步骤是什么吗?⑤如何求直线与圆的交点?⑥如何求直线与圆的相交弦的长 讨论结果:①过圆上一点可作一条切线,过圆x2+y2=r2上一点(x0,y0)的切线方程是x0x+y0y=r2;过圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2.②过圆外一点可作两条切线,求出切线方程有代数法和几何法.代数法的关键是把直线与圆相切这个几何问题转化为联立它们的方程组只有一个解的代数问题.可通过一元二次方程有一个实根的充要条件——Δ=0去求出k的值,从而求出切线的方程.用几何方法去求解,要充分利用直线与圆相切的几何性质,圆心到切线的距离等于圆的半径(d=r),求出k的值.③过圆内一点不能作圆的切线.④求圆切线方程,一般有三种方法,一是设切点,利用①②中的切线公式法;二是设切线的斜率,用判别式法;三是设切线的斜率,用图形的几何性质来解,即圆心到切线的距离等于圆的半径(d=r),求出k的值.⑤把直线与圆的方程联立得方程组,方程组的解即是交点的坐标.⑥把直线与圆的方程联立得交点的坐标,结合两点的距离公式来求;再就是利用弦心距、弦长、半径之间的关系来求.应用示例例1
过点P(-2,0)向圆x2+y2=1引切线,求切线的方程.图3解:如图3,方法一:设所求切线的斜率为k,则切线方程为y=k(x+2),因此由方程组得x2+k2(x+2)2=1.上述一元二次方程有一个实根,Δ=16k4-4(k2+1)(4k2-1)=12k2-4=0,k=±,所以所求切线的方程为y=±(x+2).方法二:设所求切线的斜率为k,则切线方程为y=k(x+2),由于圆心到切线的距离等于圆的半径(d=r),所以d==1,解得k=±.所以所求切线的方程为y=±(x+2).方法三:利用过圆上一点的切线的结论.可假设切点为(x0,y0),此时可求得切线方程为x0x+y0y=1.然后利用点(-2,0)在切线上得到-2x0=1,从中解得x0=-.再由点(x0,y0)在圆上,所以满足x02+y02=1,既+y02=1,解出y0=±.这样就可求得切线的方程为,整理得y=±(x+2).点评:过圆外一点向圆可作两条切线;可用三种方法求出切线方程,其中以几何法“d=r”比较好(简便).变式训练
已知直线l的斜率为k,且与圆x2+y2=r2只有一个公共点,求直线l的方程.活动:学生思考,观察题目的特点,见题想法,教师引导学生考虑问题的思路,必要时给予提示,直线与圆只有一个公共点,说明直线与圆相切.可利用圆的几何性质求解.图4解:如图4,方法一:设所求的直线方程为y=kx+b,由圆心到直线的距离等于圆的半径,得d==r,∴b=±r,求得切线方程是y=kx±r.方法二:设所求的直线方程为y=kx+b,直线l与圆x2+y2=r2只有一个公共点,所以它们组成的方程组只有一组实数解,由,得x2+k2(x+b)2=1,即x2(k2+1)+2k2bx+b2=1,Δ=0得b=±r,求得切线方程是y=kx±r.例2
已知圆的方程为x2+y2+ax+2y+a2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a的取值范围.活动:学生讨论,教师指导,教师提问,学生回答,教师对学生解题中出现的问题及时处理,利用几何方法,点A(1,2)在圆外,即到圆心的距离大于圆的半径.解:将圆的方程配方得(x+)2+(y+1)2=,圆心C的坐标为(-,-1),半径r=,条件是4-3a2>0,过点A(1,2)所作圆的切线有两条,则点A必在圆外,即>.化简,得a2+a+9>0,由解得-<a<,a∈R.所以-<a<.故a的取值范围是(-,).点评:过圆外一点可作圆的两条切线,反之经过一点可作圆的两条切线,则该点在圆外.同时注意圆的一般方程的条件.知能训练1.已知直线l:y=2x-2,圆C:x2+y2+2x+4y+1=0,请判断直线l与圆C的位置关系,若相交,则求直线l被圆C所截的线段长.活动:请大家独立思考,多想些办法.然后相互讨论,比较解法的不同之处.学生进行解答,教师巡视,掌握学生的一般解题情况.解法一:由方程组解得即直线l与圆C的交点坐标为(,-)和(-1,-4),则截得线段长为.解法二:由方程组(略)消去y,得5x2+2x-3=0,设直线与圆交点为A(x1,y1),B(x2,y2),则AB中点为(-,-),所以得(x1-x2)2=,则所截线段长为|AB|=(1+k2)(x1-x2)2=.解法三:圆心C为(-1,-2),半径r=2,设交点为A、B,圆心C到直线l之距d=,所以.则所截线段长为|AB|=.点评:前者直接求交点坐标,再用两点距离公式求值;后者虽然也用两点距离公式,但借用韦达定理,避免求交点坐标.解法三利用直线与圆的位置关系,抓住圆心到直线之距d及圆半径r来求解.反映了抓住本质能很快接近答案的特点.显然,解法三比较简洁.2.已知直线x+2y-3=0交圆x2+y2+x-6y+F=0于点P、Q,O为原点,问F为何值时,OP⊥OQ 解:由消去y,得5x2+10x+4F-27=0,所以x1x2=,x1+x2=-2.所以y1y2=.因为OP⊥OQ,所以x1x2+y1y2=0,即=0.所以F=3.点评:(1)解本题之前先要求学生指出解题思路.(2)体会垂直条件是怎样转化的,以及韦达定理的作用:处理x1,x2的对称式.在解析几何中经常运用韦达定理来简化计算.拓展提升已知点P到两个定点M(-1,0)、N(1,0)距离的比为,点N到直线PM的距离为1,求直线PN的方程.解:设点P的坐标为(x,y),由题设有=,即=·,整理得x2+y2-6x+1=0.
①因为点N到PM的距离为1,|MN|=2,所以∠PMN=30°,直线PM的斜率为±.直线PM的方程为y=±(x+1).
②将②代入①整理,得x2-4x+1=0.解得x1=2+,x2=2-.代入②得点P的坐标为(2+,1+3)或(2-,-1+);(2+,-1-3)或(2-,1-).直线PN的方程为y=x-1或y=-x+1.课堂小结1.直线和圆位置关系的判定方法:代数法和几何法.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.注意弦长公式和圆的几何性质.4.求与圆有关的最值问题,往往利用数形结合,因此抽象出式子的几何意义是至关重要的.作业课本习题4.2
A组5、6、7.
板书设计
4.2.1
直线与圆的位置关系直线与圆的位置关系:
例1相交:d例2相切:d=r
变式相离:d>r
教学反思
本节课是在学习了点和圆的位置关系的基础上进行的,是为后面的圆与圆的位置关系作铺垫的一节课.在解析几何中,直线与圆的关系是一个非常重要的知识点,将几种重要的数学思想灌输给学生.首先,一开始的复习提问全面又突出重点,特别是“初中学习的如何判断直线和圆的位置关系?”这个问题,为学生思考提供了很好的引导.其次对于例题的选择有很高的要求,.在例题的设计方面,本教案共分为三个层次来一步步的推进,让学生由浅入深,从思维容量上层层递进,对学生的思考和分析都有很好的引导作用,通过例题1、2对直线与圆的几种位置关系作了巩固,是每个学生都必须也能够掌握的.但这几题虽是基础题也并不是平淡无奇的题,它印证了判定的条件和结论在一定条件下是可以转化的.,还通过各知识点之间的联系、综合应用,组织学生一起思考起来,对应用的加强更是体现了“分类活动,激发潜能”。
PAGE
13.1.2
两条直线平行与垂直的判定
教学目标
1.掌握两条直线平行的充要条件,并会判断两条直线是否平行.掌握两条直线垂直的充要条件,并会判断两条直线是否垂直.培养和提高学生联系、对应、转化等辩证思维能力.2.通过教学,提倡学生用旧知识解决新问题,注意解析几何思想方法的渗透,同时注意思考要严密,表述要规范,培养学生探索、概括能力.
教学重、难点
教学重点:掌握两条直线平行、垂直的充要条件,并会判断两条直线是否平行、垂直.教学难点:是斜率不存在时两直线垂直情况的讨论(公式适用的前提条件).
教学准备
多媒体课件
教学过程
导入新课上节课我们学习的是什么知识?想一想倾斜角具备什么条件时两条直线会平行、垂直呢 你认为能否用斜率来判断.这节课我们就来专门来研究这个问题.提出问题①平面内不重合的两条直线的位置关系有几种?②两条直线的倾斜角相等,这两条直线是否平行?反过来是否成立?③“α=β”是“tanα=tanβ”的什么条件?④两条直线的斜率相等,这两条直线是否平行?反过来是否成立?⑤l1∥l2时,k1与k2满足什么关系?⑥l1⊥l2时,k1与k2满足什么关系?活动:①教师引导得出平面内不重合的两条直线的位置关系有平行和相交,其中垂直是相交的特例.②数形结合容易得出结论.③注意到倾斜角是90°的直线没有斜率,即tan90°不存在.④注意到倾斜角是90°的直线没有斜率.⑤必要性:如果l1∥l2,如图1所示,它们的倾斜角相等,即α1=α2,tanα1=tanα2,即k1=k2.图1充分性:如果k1=k2,即tanα1=tanα2,∵0°≤α1<180°,0°≤α2<180°,∴α1=α2.于是l1∥l2.⑥学生讨论,采取类比方法得出两条直线垂直的充要条件.讨论结果:①平面内不重合的两条直线的位置关系有平行和相交,其中垂直是相交的特例.②两条直线的倾斜角相等,这两条直线平行,反过来成立.③“α=β”是“tanα=tanβ”的充要条件.④两条直线的斜率相等,这两条直线平行,反过来成立.⑤l1∥l2k1=k2.⑥l1⊥l2k1k2=-1.应用示例例1
已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),判断直线BA与PQ的位置关系,并证明你的结论.解:直线BA的斜率kBA==0.5,直线PQ的斜率kPQ==0.5,因为kBA=kPQ.所以直线BA∥PQ.变式训练
若A(-2,3),B(3,-2),C(,m)三点共线,则m的值为(
)A.
B.-
C.-2
D.2分析:kAB=kBC,,m=.答案:A例2
已知四边形ABCD的四个顶点分别为A(0,0),B(2,-1),C(4,2),D(2,3),试判断四边形ABCD的形状,并给出证明.解:AB边所在直线的斜率kAB=-,CD边所在直线的斜率kCD=-,BC边所在直线的斜率kBC=,DA边所在直线的斜率kDA=.因为kAB=kCD,kBC=kDA,所以AB∥CD,BC∥DA.因此四边形ABCD是平行四边形.变式训练
直线l1:ax+3y+1=0,l2:x+(a-2)y+a=0,它们的倾斜角及斜率依次分别为α1,α2,k1,k2.(1)a=_____________时,α1=150°;(2)a=_____________时,l2⊥x轴;(3)a=_____________时,l1∥l2;(4)a=_____________时,l1、l2重合;(5)a=_____________时,l1⊥l2.答案:(1)
(2)2
(3)3
(4)-1
(5)1.5知能训练习题3.1
A组6、7.拓展提升问题:已知P(-3,2),Q(3,4)及直线ax+y+3=0.若此直线分别与PQ的延长线、QP的延长线相交,试分别求出a的取值范围.(图2)图2解:直线l:ax+y+3=0是过定点A(0,-3)的直线系,斜率为参变数-a,易知PQ、AQ、AP、l的斜率分别为:kPQ=,kAQ=,kAP=,k1=-a.若l与PQ延长线相交,由图,可知kPQ<k1<kAQ,解得-<a<-;若l与PQ相交,则k1>kAQ或k1<kAP,解得a<-或a>;若l与QP的延长线相交,则kPQ>k1>kAP,解得-<a<.课堂小结通过本节学习,要求大家:1.掌握两条直线平行的充要条件,并会判断两条直线是否平行.2.掌握两条直线垂直的充要条件,并会判断两条直线是否垂直.3.注意解析几何思想方法的渗透,同时注意思考要严密,表述要规范,培养学生探索、概括能力.4.认识事物之间的相互联系,用联系的观点看问题.作业习题3.1
A组4、5.
板书设计
教学反思
PAGE
12.3.4
平面与平面垂直的性质
教学目标
1.探究平面与平面垂直的性质定理,进一步培养学生的空间想象能力.2.面面垂直的性质定理的应用,培养学生的推理能力.3.通过平面与平面垂直的性质定理的学习,培养学生转化的思想.
教学重、难点
教学重点:平面与平面垂直的性质定理.教学难点:平面与平面性质定理的应用.
教学准备
多媒体课件
教学过程
复习(1)面面垂直的定义.如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.(2)面面垂直的判定定理.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.两个平面垂直的判定定理符号表述为:α⊥β.两个平面垂直的判定定理图形表述为:图1如图2,长方体ABCD—A′B′C′D′中,平面A′ADD′与平面ABCD垂直,直线A′A垂直于其交线AD.平面A′ADD′内的直线A′A与平面ABCD垂直吗?图2提出问题①如图3,若α⊥β,α∩β=CD,ABα,AB⊥CD,AB∩CD=B.请同学们讨论直线AB与平面β的位置关系.图3②用三种语言描述平面与平面垂直的性质定理,并给出证明.③设平面α⊥平面β,点P∈α,P∈a,a⊥β,请同学们讨论直线a与平面α的关系.④分析平面与平面垂直的性质定理的特点,讨论应用定理的难点.⑤总结应用面面垂直的性质定理的口诀.活动:问题①引导学生作图或借助模型探究得出直线AB与平面β的关系.问题②引导学生进行语言转换.问题③引导学生作图或借助模型探究得出直线a与平面α的关系.问题④引导学生回忆立体几何的核心,以及平面与平面垂直的性质定理的特点.问题⑤引导学生找出应用平面与平面垂直的性质定理的口诀.讨论结果:①通过学生作图或借助模型探究得出直线AB与平面β垂直,如图3.②两个平面垂直的性质定理用文字语言描述为:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一平面.两个平面垂直的性质定理用图形语言描述为:如图4.图4两个平面垂直的性质定理用符号语言描述为:AB⊥β.两个平面垂直的性质定理证明过程如下:图5如图5,已知α⊥β,α∩β=a,ABα,AB⊥a于B.求证:AB⊥β.证明:在平面β内作BE⊥CD垂足为B,则∠ABE就是二面角αCDβ的平面角.由α⊥β,可知AB⊥BE.又AB⊥CD,BE与CD是β内两条相交直线,∴AB⊥β.③问题③也是阐述面面垂直的性质,变为文字叙述为:求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.下面给出证明.如图6,已知α⊥β,P∈α,P∈a,a⊥β.求证:aα.图6证明:设α∩β=c,过点P在平面α内作直线b⊥c,∵α⊥β,∴b⊥β.而a⊥β,P∈a,∵经过一点只能有一条直线与平面β垂直,∴直线a应与直线b重合.那么aα.
利用“同一法”证明问题,主要是在按一般途径不易完成问题的情形下所采用的一种数学方法,这里要求做到两点.一是作出符合题意的直线b,不易想到,二是证明直线b和直线a重合,相对容易些.点P的位置由投影所给的图及证明过程可知,可以在交线上,也可以不在交线上.
④我认为立体几何的核心是:直线与平面垂直,因为立体几何的几乎所有问题都是围绕它展开的,例如它不仅是线线垂直与面面垂直相互转化的桥梁,而且由它还可以转化为线线平行,即使作线面角和二面角的平面角也离不开它.两个平面垂直的性质定理的特点就是帮我们找平面的垂线,因此它是立体几何中最重要的定理.
⑤应用面面垂直的性质定理口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.应用示例例1
如图7,已知α⊥β,a⊥β,aα,试判断直线a与平面α的位置关系.图7解:在α内作垂直于α与β交线的垂线b,∵α⊥β,∴b⊥β.∵a⊥β,∴a∥b.∵aα,∴a∥α.变式训练
如图8,已知平面α交平面β于直线a.α、β同垂直于平面γ,又同平行于直线b.求证:(1)a⊥γ;(2)b⊥γ.
图8
图9证明:如图9,(1)设α∩γ=AB,β∩γ=AC.在γ内任取一点P并在γ内作直线PM⊥AB,PN⊥AC.∵γ⊥α,∴PM⊥α.而aα,∴PM⊥a.同理,PN⊥a.又PMγ,PNγ,∴a⊥γ.(2)在a上任取点Q,过b与Q作一平面交α于直线a1,交β于直线a2.∵b∥α,∴b∥a1.同理,b∥a2.
∵a1、a2同过Q且平行于b,∴a1、a2重合.又a1α,a2β,∴a1、a2都是α、β的交线,即都重合于a.∵b∥a1,∴b∥a.而a⊥γ,∴b⊥γ.点评:面面垂直的性质定理作用是把面面垂直转化为线面垂直,见到面面垂直首先考虑利用性质定理,其口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.例2
如图10,四棱锥P—ABCD的底面是AB=2,BC=的矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD.
图10
图11(1)证明侧面PAB⊥侧面PBC;(2)求侧棱PC与底面ABCD所成的角;(3)求直线AB与平面PCD的距离.(1)证明:在矩形ABCD中,BC⊥AB,又∵面PAB⊥底面ABCD,侧面PAB∩底面ABCD=AB,∴BC⊥侧面PAB.又∵BC侧面PBC,∴侧面PAB⊥侧面PBC.(2)解:如图11,取AB中点E,连接PE、CE,又∵△PAB是等边三角形,∴PE⊥AB.又∵侧面PAB⊥底面ABCD,∴PE⊥面ABCD.∴∠PCE为侧棱PC与底面ABCD所成角.PE=BA=,CE==,在Rt△PEC中,∠PCE=45°为所求.(3)解:在矩形ABCD中,AB∥CD,∵CD侧面PCD,AB侧面PCD,∴AB∥侧面PCD.取CD中点F,连接EF、PF,则EF⊥AB.又∵PE⊥AB,∴AB⊥平面PEF.又∵AB∥CD,∴CD⊥平面PEF.∴平面PCD⊥平面PEF.作EG⊥PF,垂足为G,则EG⊥平面PCD.在Rt△PEF中,EG=为所求.变式训练
如图12,斜三棱柱ABC—A1B1C1的棱长都是a,侧棱与底面成60°角,侧面BCC1B1⊥面ABC.求平面AB1C1与底面ABC所成二面角的大小.图12活动:请同学考虑面BB1C1C⊥面ABC及棱长相等两个条件,师生共同完成表述过程,并作出相应辅助线.解:∵面ABC∥面A1B1C1,则面BB1C1C∩面ABC=BC,面BB1C1C∩面A1B1C1=B1C1,∴BC∥B1C1,则B1C1∥面ABC.设所求两面交线为AE,即二面角的棱为AE,则B1C1∥AE,即BC∥AE.过C1作C1D⊥BC于D,∵面BB1C1C⊥面ABC,∴C1D⊥面ABC,C1D⊥BC.又∠C1CD=60°,CC1=a,故CD=,即D为BC的中点.又△ABC是等边三角形,∴BC⊥AD.那么有BC⊥面DAC1,即AE⊥面DAC1.故AE⊥AD,AE⊥AC1,∠C1AD就是所求二面角的平面角.∵C1D=a,AD=a,C1D⊥AD,故∠C1AD=45°.点评:利用平面与平面垂直的性质定理,找出平面的垂线是解决问题的关键.课堂小结知识总结:利用面面垂直的性质定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.作业课本习题2.3
B组3、4.
板书设计
教学反思
PAGE
13.2.3
直线的一般式方程
教学目标
1.掌握直线方程的一般式,了解直角坐标系中直线与关于x和y的一次方程的对应关系,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.2.会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式,培养学生归纳、概括能力,渗透分类讨论、化归、数形结合等数学思想.3.通过教学,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练.
教学重、难点
教学重点:直线方程的一般式及各种形式的互化.教学难点:在直角坐标系中直线方程与关于x和y的一次方程的对应关系,关键是直线方程各种形式的互化.
教学准备
多媒体课件
教学过程
导入新课由下列各条件,写出直线的方程,并画出图形.(1)斜率是1,经过点A(1,8);(2)在x轴和y轴上的截距分别是-7,7;(3)经过两点P1(-1,6)、P2(2,9);(4)y轴上的截距是7,倾斜角是45°.由两个独立条件请学生写出直线方程的特殊形式分别为y-8=x-1、=1、、y=x+7,教师利用计算机动态显示,发现上述4条直线在同一坐标系中重合.原来它们的方程化简后均可统一写成:x-y+7=0.这样前几种直线方程有了统一的形式,这就是我们今天要讲的新课——直线方程的一般式.提出问题①坐标平面内所有的直线方程是否均可以写成关于x,y的二元一次方程 ②关于x,y的一次方程的一般形式Ax+By+C=0(其中A、B不同时为零)是否都表示一条直线 ③我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化 ④特殊形式如何化一般式 一般式如何化特殊形式 特殊形式之间如何互化 ⑤我们学习了直线方程的一般式Ax+By+C=0,系数A、B、C有什么几何意义 什么场合下需要化成其他形式 各种形式有何局限性 讨论结果:①分析:在直角坐标系中,每一条直线都有倾斜角α.1°当α≠90°时,它们都有斜率,且均与y轴相交,方程可用斜截式表示:y=kx+b.2°当α=90°时,它的方程可以写成x=x1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x、y的二元一次方程,其中y的系数是零.结论1°:直线的方程都可以写成关于x、y的一次方程.②分析:a当B≠0时,方程可化为y=-x-,这就是直线的斜截式方程,它表示斜率为-,在y轴上的截距为-的直线.b当B=0时,由于A、B不同时为零必有A≠0,方程化为x=-,表示一条与y轴平行或重合的直线.结论2°:关于x,y的一次方程都表示一条直线.综上得:这样我们就建立了直线与关于x,y的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B不同时为0)叫做直线方程的一般式.注意:一般地,需将所求的直线方程化为一般式.在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来.③引导学生自己找到答案,最后得出能进行互化.④待学生通过练习后师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).图1⑤列表说明如下:形
式方程局限各常数的几何意义点斜式y-y1=k(x-x1)除x=x0外(x1,y1)是直线上一个定点,k是斜率斜截式y=kx+b除x=x0外k是斜率,b是y轴上的截距两点式除x=x0和y=y0外(x1,y1)、(x2,y2)是直线上两个定点截距式=1除x=x0、y=y0及y=kx外a是x轴上的非零截距,b是y轴上的非零截距一般式Ax+By+C=0无当B≠0时,-是斜率,-是y轴上的截距应用示例
例1
已知直线经过点A(6,-4),斜率为-,求直线的点斜式和一般式方程.解:经过点A(6,-4)且斜率为-的直线方程的点斜式方程为y+4=-(x-6).化成一般式,得4x+3y-12=0.变式训练1.已知直线Ax+By+C=0,(1)系数为什么值时,方程表示通过原点的直线 (2)系数满足什么关系时,与坐标轴都相交 (3)系数满足什么条件时,只与x轴相交 (4)系数满足什么条件时,是x轴 (5)设P(x0,y0)为直线Ax+By+C=0上一点,证明这条直线的方程可以写成A(x-x0)+B(y-y0)=0.答案:(1)C=0;(2)A≠0且B≠0;(3)B=0且C≠0;(4)A=C=0且B≠0;(5)证明:∵P(x0,y0)在直线Ax+By+C=0上,∴Ax0+By0+C+0,C=-Ax0-By0.∴A(x-x0)+B(y-y0)=0.2.(2007上海高考,理2)若直线l1:2x+my+1=0与l2:y=3x-1平行,则m=____________.答案:-例2
把直线l的方程x-2y+6=0化成斜截式,求出直线l的斜率和它在x轴与y轴上的截距,并画出图形.解:由方程一般式x-2y+6=0,①移项,去系数得斜截式y=+3.
②由②知l在y轴上的截距是3,又在方程①或②中,令y=0,可得x=-6.即直线在x轴上的截距是-6.因为两点确定一条直线,所以通常只要作出直线与两个坐标轴的交点(即在x轴,y轴上的截距点),过这两点作出直线l(图2).图2点评:要根据题目条件,掌握直线方程间的“互化”.变式训练
直线l过点P(-6,3),且它在x轴上的截距是它在y轴上的截距的3倍,求直线l的方程.答案:x+3y-3=0或x+2y=0.知能训练课本本节练习1、2、3.拓展提升求证:不论m取何实数,直线(2m-1)x-(m+3)y-(m-11)=0恒过一个定点,并求出此定点的坐标.解:将方程化为(x+3y-11)-m(2x-y-1)=0,它表示过两直线x+3y-11=0与2x-y-1=0的交点的直线系.解方程组,得.∴直线恒过(2,3)点.课堂小结通过本节学习,要求大家:(1)掌握直线方程的一般式,了解直角坐标系中直线与关于x和y的一次方程的对应关系;(2)会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式;(3)通过学习,培养相互合作意识,培养学生思维的严谨性,注意语言表述能力的训练.作业习题3.2
A组11.
板书设计
教学反思
PAGE
12.1.4
平面与平面之间的位置关系
教学目标
1.结合图形正确理解空间中平面与平面之间的位置关系.2.进一步熟悉文字语言、图形语言、符号语言的相互转换.3.培养学生全面思考问题的能力.
教学重、难点
平面与平面的相交和平行.
教学准备
多媒体课件
教学过程
复习1.直线与直线的位置关系:相交、平行、异面.2.直线与平面的位置关系:①直线在平面内——有无数个公共点,②直线与平面相交——有且只有一个公共点,③直线与平面平行——没有公共点.导入新课观察长方体(图1),围成长方体ABCD—A′B′C′D′的六个面,两两之间的位置关系有几种?图1提出问题①什么叫做两个平面平行?②两个平面平行的画法.③回忆两个平面相交的依据.④什么叫做两个平面相交 ⑤用三种语言描述平面与平面之间的位置关系.活动:先让学生思考,后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.问题①引导学生回忆直线与平面平行的定义.问题②怎样体现两个平面平行的特点.问题③两个平面有一个公共点,两平面是否相交.问题④回忆公理三.问题⑤鼓励学生自我训练.讨论结果:①两个平面平行——没有公共点.②画两个互相平行的平面时,要注意使表示平面的平行四边形的对应边平行,如图2.
图2
图3③如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图3,用符号语言表示为:P∈α且P∈βα∩β=l,且P∈l.④两个平面相交——有一条公共直线.⑤如果两个平面没有公共点,则两平面平行若α∩β=,则α∥β.如果两个平面有一条公共直线,则两平面相交若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图4.图4应用示例例1
已知平面α,β,直线a,b,且α∥β,aα,bβ,则直线a与直线b具有怎样的位置关系 活动:学生自己思考或讨论,再写出正确的答案.教师在学生中巡视,发现问题及时纠正,并及时评价.解:如图5,直线a与直线b的位置关系为平行或异面.图5例2
如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论.解:三个平面两两相交,它们的交线有一条或三条,如图6.图6变式训练
α、β是两个不重合的平面,在下列条件中,可判定α∥β的是(
)A.α、β都平行于直线l、mB.α内有三个不共线的点到β的距离相等C.l、m是α内的两条直线,且l∥β,m∥βD.l、m是两条异面直线,且l∥α、m∥α、l∥β,m∥β分析:如图7,分别是A、B、C的反例.
图7答案:D点评:判断正误要结合图形,并善于发现反例,即注意发散思维.课堂小结
本节主要学习平面与平面的位置关系,平面与平面的位置关系有两种:
①两个平面平行——没有公共点;
②两个平面相交——有一条公共直线.
另外,空间想象能力的培养是本节的重点和难点.作业
课本习题2.1
B组1、2、3.
板书设计
教学反思
PAGE
14.3.2
空间两点间的距离公式
教学目标
1.掌握空间两点间的距离公式,会用空间两点间的距离公式解决问题.2.通过探究空间两点间的距离公式,灵活运用公式,初步意识到将空间问题转化为平面问题是解决问题的基本思想方法,培养类比、迁移和化归的能力.3.通过棱与坐标轴平行的特殊长方体的顶点的坐标,类比平面中两点之间的距离的求法,探索并得出空间两点间的距离公式,充分体会数形结合的思想,培养积极参与、大胆探索的精神.
教学重、难点
教学重点:空间两点间的距离公式.教学难点:一般情况下,空间两点间的距离公式的推导.
教学准备
多媒体课件
教学过程
导入新课我们知道,数轴上两点间的距离是两点的坐标之差的绝对值,即d=|x1-x2|;平面直角坐标系中,两点之间的距离是d=.同学们想,在空间直角坐标系中,两点之间的距离应怎样计算呢?又有什么样的公式呢?因此我们学习空间两点间的距离公式.推进新课新知探究提出问题①平面直角坐标系中,两点之间的距离公式是什么?它是如何推导的?②设A(x,y,z)是空间任意一点,它到原点的距离是多少?应怎样计算?③给你一块砖,你如何量出它的对角线长,说明你的依据.④同学们想,在空间直角坐标系中,你猜想空间两点之间的距离应怎样计算?⑤平面直角坐标系中的方程x2+y2=r2表示什么图形?在空间中方程x2+y2+z2=r2表示什么图形?⑥试根据②③推导两点之间的距离公式.活动:学生回忆,教师引导,教师提问,学生回答,学生之间可以相互交流讨论,学生有困难教师点拨.教师引导学生考虑解决问题的思路,要全面考虑,大胆猜想,发散思维.①学生回忆学过的数学知识,回想当时的推导过程;②解决这一问题,可以采取转化的方法,转化成我们学习的立体几何知识来解;③首先考虑问题的实际意义,直接度量,显然是不可以的,我们可以转化为立体几何的方法,也就是求长方体的对角线长.④回顾平面直角坐标系中,两点之间的距离公式,可类比猜想相应的公式;⑤学生回忆刚刚学过的知识,大胆类比和猜想;⑥利用③的道理,结合空间直角坐标系和立体几何知识,进行推导.讨论结果:①平面直角坐标系中,两点之间的距离公式是d=,它是利用直角三角形和勾股定理来推导的.图1②如图1,设A(x,y,z)是空间任意一点,过A作AB⊥xOy平面,垂足为B,过B分别作BD⊥x轴,BE⊥y轴,垂足分别为D,E.根据坐标的含义知,AB=z,BD=x,BE=OD=y,由于三角形ABO、BOD是直角三角形,所以BO2=BD2+OD2,AO2=AB2+BO2=AB2+BD2+OD2=z2+x2+y2,因此A到原点的距离是d=.③利用求长方体的对角线长的方法,分别量出这块砖的三条棱长,然后根据对角线长的平方等于三条边长的平方的和来算.④由于平面直角坐标系中,两点之间的距离公式是d=,是同名坐标的差的平方的和再开方,所以我们猜想,空间两点之间的距离公式是d=,即在原来的基础上,加上纵坐标差的平方.⑤平面直角坐标系中的方程x2+y2=r2表示以原点为圆心,r为半径的圆;在空间x2+y2+z2=r2表示以原点为球心,r为半径的球面;后者正是前者的推广.图2⑥如图2,设P1(x1,y1,z1),P2(x2,y2,z2)是空间中任意两点,我们来计算这两点之间的距离.我们分别过P1P2作xOy平面的垂线,垂足是M,N,则M(x1,y1,0),N(x2,y2,0),于是可以求出|MN|=.再过点P1作P1H⊥P2N,垂足为H,则|MP1|=|z1|,|NP2|=|z2|,所以|HP2|=|z2-z1|.在Rt△P1HP2中,|P1H|=|MN|=,根据勾股定理,得|P1P2|==.因此空间中点P1(x1,y1,z1),P2(x2,y2,z2)之间的距离为|P1P2|=.于是空间两点之间的距离公式是d=.它是同名坐标的差的平方的和的算术平方根.应用示例例1
已知A(3,3,1),B(1,0,5),求:(1)线段AB的中点坐标和长度;(2)到A,B两点的距离相等的点P(x,y,z)的坐标满足的条件.活动:学生审题,教师引导学生分析解题思路,已知的两点A、B都是空间直角坐标系中的点,我们直接利用空间两点间的距离公式求解即可.知识本身不难,但是我们计算的时候必须认真,决不能因为粗心导致结果错误.解:(1)设M(x,y,z)是线段AB的中点,则根据中点坐标公式得x==2,y==,z==3.所以AB的中点坐标为(2,,3).根据两点间距离公式,得d(A,B)=,所以AB的长度为.(2)因为点P(x,y,z)到A,B的距离相等,所以有下面等式:.化简得4x+6y-8z+7=0,因此,到A,B两点的距离相等的点P(x,y,z)的坐标满足的条件是4x+6y-8z+7=0.点评:通过本题我们可以得出以下两点:①空间两点连成的线段中点坐标公式和两点间的距离公式是平面上中点坐标公式和两点间的距离公式的推广,而平面上中点坐标公式和两点间的距离公式又可看成空间中点坐标公式和两点间的距离公式的特例.②到A,B两点的距离相等的点P(x,y,z)构成的集合就是线段AB的中垂面.变式训练
在z轴上求一点M,使点M到点A(1,0,2),B(1,-3,1)的距离相等.解:设M(0,0,z),由题意得|MA|=|MB|,,整理并化简,得z=-3,所以M(0,0,-3).例2
证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的△ABC是一等腰三角形.活动:学生审题,教师引导学生分析解题思路,证明△ABC是一等腰三角形,只需求出|AB|,|BC|,|CA|的长,根据边长来确定.证明:由两点间距离公式得:|AB|=|BC|=,|CA|=.由于|BC|=|CA|=,所以△ABC是一等腰三角形.点评:判断三角形的形状一般是根据边长来实现的,因此解决问题的关键是通过两点间的距离公式求出边长.变式训练
三角形△ABC的三个顶点坐标为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),试证明△ABC是一直角三角形.活动:学生先思考或交流,然后解答,教师及时提示引导,要判定△ABC是一直角三角形,只需求出|AB|,|BC|,|CA|的长,利用勾股定理的逆定理来判定.解:因为三个顶点坐标为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),所以|AB|==3,|BC|=,|CA|==3.又因为|AB|2+|CA|2=|BC|2,所以△ABC是直角三角形.例3
已知A(x,5-x,2x-1),B(1,x+2,2-x),则|AB|的最小值为(
)A.0
B.
C.
D.活动:学生阅读题目,思考解决问题的方法,教师提示,要求|AB|的最小值,首先我们需要根据空间两点间的距离公式表示出|AB|,然后再根据一元二次方程求最值的方法得出|AB|的最小值.解析:|AB|===.当x=时,|AB|的最小值为.故正确选项为B.答案:B点评:利用空间两点间的距离公式转化为关于x的二次函数求最值是常用的方法.知能训练课本本节练习1、2、3、4.拓展提升已知三棱锥P—ABC(如图4),PA⊥平面ABC,在某个空间直角坐标系中,B(3m,m,0),C(0,2m,0),P(0,0,2n),画出这个空间直角坐标系并求出直线AB与x轴所成的较小的角.图3解:根据已知条件,画空间直角坐标系如图3:以射线AC为y轴正方向,射线AP为z轴正方向,A为坐标原点建立空间直角坐标系O—xyz,过点B作BE⊥Ox,垂足为E,∵B(m,m,0),∴E(m,0,0).在Rt△AEB中,∠AEB=90°,|AE|=m,|EB|=m,∴tan∠BAE==.∴∠BAE=30°,即直线AB与x轴所成的较小的角为30°.课堂小结1.空间两点间的距离公式的推导与理解.2.空间两点间的距离公式的应用.3.建立适当的空间直角坐标系,综合利用两点间的距离公式.作业习题4.3
A组3,B组1、2、3.
板书设计
4.3.2
空间两点间的距离公式平面两点间的距离公式
例1空间两点间的距离公式
变式
例2
变式
教学反思
本节课从平面直角坐标系中两点之间的距离公式入手,创设问题情景,不难把平面上的知识推广到空间,遵循从易到难、从特殊到一般的认识过程,利用类比的思想方法,借助勾股定理得到空间任意一点到原点的距离.为了培养学生的理性思维,在例题中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力,本节课的设计通过适当的创设情境,调动学生的学习兴趣.本节课以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想.把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,提高了能力、培养了兴趣、增强了信心.
PAGE
1