高中数学第二章平面向量教案(打包11套)新人教A版必修4

文档属性

名称 高中数学第二章平面向量教案(打包11套)新人教A版必修4
格式 zip
文件大小 11.5MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2017-11-14 16:33:55

文档简介

第二章第二节
平面向量的线性运算第二课时
教学分析
向量减法运算是加法的逆运算.学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算.因此,类比数的减法(减去一个数等于加上这个数的相反数),首先引进相反向量的概念,然后引入向量的减法(减去一个向量,等于加上这个向量的相反向量),通过向量减法的三角形法则和平行四边形法则,结合一定数量的例题,深刻理解向量的减法运算.通过阐述向量的减法运算,可以转化为向量加法运算,渗透化归的数学思想,使学生理解事物之间的相互转化、相互联系的辨证思想,同时由于向量的运算能反映出一些物理规律,从而加强了数学学科与物理学科之间的联系,提高学生的应用意识.
三维目标
1.通过探究活动,使学生掌握向量减法概念,理解两个向量的减法就是转化为加法来进行,掌握相反向量.
2.启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题.能熟练地掌握用三角形法则和平行四边形法则作出两向量的差向量.
重点难点
教学重点:向量的减法运算及其几何意义.
教学难点:对向量减法定义的理解.
课时安排
1课时
导入新课
思路1.(问题导入)上节课,我们定义了向量的加法概念,并给出了求作和向量的两种方法.由向量的加法运算自然联想到向量的减法运算:减去一个数等于加上这个数的相反数.向量的减法是否也有类似的法则呢?引导学生进一步探究,由此展开新课.
思路2.(直接导入)数的减法运算是加法运算的逆运算.本节课,我们继续学习向量加法的逆运算——减法.引导学生去探究、发现.
推进新课
①向量是否有减法?
②向量进行减法运算,必须先引进一个什么样的新概念?
③如何理解向量的减法?
④向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?
活动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此定义数的减法运算,必须先引进一个相反数的概念.类似地,向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?
引导学生思考,相反向量有哪些性质?
由于方向反转两次仍回到原来的方向,因此a和-a互为相反向量.
于是-(-a)=a.
我们规定,零向量的相反向量仍是零向量.
任一向量与其相反向量的和是零向量,即a+(-a)=(-a)+a=0.
所以,如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.
(1)平行四边形法则
如图1,设向量=b,=a,则=-b,由向量减法的定义,知=a+(-b)=a-b.
图1
又b+=a,
所以=a-b.
由此,我们得到a-b的作图方法.
(2)三角形法则
如图2,已知a、b,在平面内任取一点O,作=a,=b,则=a-b,即a-b可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义.
图2
讨论结果:①向量也有减法运算.
②定义向量减法运算之前,应先引进相反向量.
与数x的相反数是-x类似,我们规定,与a长度相等,方向相反的量,叫做a的相反向量,记作-a.
③向量减法的定义.我们定义
a-b=a+(-b),
即减去一个向量相当于加上这个向量的相反向量.
规定:零向量的相反向量是零向量.
④向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.
①上图中,如果从a的终点到b的终点作向量,那么所得向量是什么?
②改变上图中向量a、b的方向使a∥b,怎样作出a-b呢?
讨论结果:①=b-a.
②略.
例1如图3(1),已知向量a、b、c、d,求作向量a-b,c-d.
图3
活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需要选点平移作出两个同起点的向量.
作法:如图3(2),在平面内任取一点O,作=a,=b,=c,=d.
则=a-b,=c-d.
变式训练在ABCD中,下列结论错误的是(
)A.=B.+=C.-=D.-=0分析:A显然正确,由平行四边形法则可知B正确,C中,-=错误,D中,-=+=0正确.答案:C
例2如图4,在ABCD中,=a,=b,你能用a、b表示向量、吗?
图4
活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.
解:由向量加法的平行四边形法则,我们知道=a+b,
同样,由向量的减法,知=-=a-b.
变式训练1.已知一点O到ABCD的3个顶点A、B、C的向量分别是a、b、c,则向量等于(
)A.a+b+c
B.a-b+cC.a+b-c
D.a-b-c解析:如图5,点O到平行四边形的三个顶点A、B、C的向量分别是a、b、c,结合图形有=+=+=+-=a-b+c.图5答案:B2.若=a+b,=a-b.①当a、b满足什么条件时,a+b与a-b垂直?②当a、b满足什么条件时,|a+b|=|a-b| ③当a、b满足什么条件时,a+b平分a与b所夹的角?④a+b与a-b可能是相等向量吗?解:如图6,用向量构建平行四边形,其中向量、恰为平行四边形的对角线且AB=a,AD=b.图6由平行四边形法则,得=a+b,=-=a-b.由此问题就可转换为:①当边AB、AD满足什么条件时,对角线互相垂直?(|a|=|b|)②当边AB、AD满足什么条件时,对角线相等?(a、b互相垂直)③当边AB、AD满足什么条件时,对角线平分内角?(|a|、|b|相等)④a+b与a-b可能是相等向量吗?(不可能,因为对角线方向不同)点评:灵活的构想,独特巧妙,数形结合思想得到充分体现.由此我们可以想到在解决向量问题时,可以利用向量的几何意义构造几何图形,转化为平面几何问题,这就是数形结合解题的威力与魅力,教师引导学生注意领悟.
例3判断题:
(1)若非零向量a与b的方向相同或相反,则a+b的方向必与a、b之一的方向相同.
(2)△ABC中,必有++=0.
(3)若++=0,则A、B、C三点是一个三角形的三顶点.
(4)|a+b|≥|a-b|.
活动:根据向量的加、减法及其几何意义.
解:(1)a与b方向相同,则a+b的方向与a和b方向都相同;
若a与b方向相反,则有可能a与b互为相反向量,
此时a+b=0的方向不确定,说与a、b之一方向相同不妥.
(2)由向量加法法则+=,与是互为相反向量,所以有上述结论.
(3)因为当A、B、C三点共线时也有++=0,而此时构不成三角形.
(4)当a与b不共线时,|a+b|与|a-b|分别表示以a和b为邻边的平行四边形的两条对角线的长,其大小不定.
当a、b为非零向量共线时,同向则有|a+b|>|a-b|,异向则有|a+b|<|a-b|;
当a、b中有零向量时,|a+b|=|a-b|.
综上所述,只有(2)正确.
例4若||=8,||=5,则||的取值范围是(
)
A.[3,8]
B.(3,8)
C.[3,13]
D.(3,13)
解析:=-.
(1)当、同向时,||=8-5=3;
(2)当、反向时,||=8+5=13;
(3)当、不共线时,3<||<13.
综上,可知3≤||≤13.
答案:C
点评:此题可直接应用重要性质||a|-|b||≤|a+b|≤|a|+|b|求解.
变式训练已知a、b、c是三个非零向量,且两两不共线,顺次将它们的终点和始点相连接而成一三角形的充要条件为a+b+c=0.证明:已知a≠0,b≠0,c≠0,且两两不共线,(1)必要性:作=a,=b,则由假设=c,另一方面a+b=+=.由于与是一对相反向量,∴有+=0,故有a+b+c=0.(2)充分性:作=a,=b,则=a+b,又由条件a+b+c=0,∴+c=0.等式两边同加,得++c=+0.∴c=,故顺次将向量a、b、c的终点和始点相连接成一三角形.
课本本节练习
解答:
1.直接在课本上据原图作(这里从略).
2.,,,,.
点评:解题中可以将减法变成加法运算,如-=+=,这样计算比较简便.
3.图略.
1.先由学生回顾本节学习的数学知识:相反向量,向量减法的定义,向量减法的几何意义,向量差的作图.
2.教师与学生一起总结本节学习的数学方法,类比,数形结合,几何作图,分类讨论.
课本习题2.2
A组6、7、8.
1.向量減法的几何意义主要是结合平行四边形法则和三角形法则进行讲解的,两种作图方法各有千秋.第一种作法结合向量减法的定义,第二种作法结合向量的平行四边形法则,直接作出从同一点出发的两个向量a、b的差,即a-b可以表示为从向量b的终点指向向量a的终点的向量,第二种作图方法比较简捷.
2.鉴于上述情况,教学中引导学生结合向量减法的几何意义,注意差向量的方向,也就是箭头的方向不要搞错了,a-b的箭头方向要指向a,如果指向b则表示b-a,在几何证明题目中,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.
一、向量减法法则的理解
向量减法的三角形法则的式子内容是:两个向量相减,则表示两个向量起点的字母必须相同(否则无法相减),这样两个向量的差向量是以减向量的终点的字母为起点,以被减向量的终点的字母为终点的向量.
只要学生理解法则内容,那么解决起向量加减法的题来就会更加得心应手,尤其遇到向量的式子运算题时,一般不用画图就可迅速求解,如下面例题:
例1化简:-+-.
解:原式=+-=-=0.
例2化简+++.
解:原式=(+)+(+)=(-)+0=.
二、备用习题
1.下列等式中,正确的个数是(
)
①a+b=b+a
②a-b=b-a
③0-a=-a
④-(-a)=a
⑤a+(-a)=0
A.5
B.4
C.3
D.2
答案:B
2.如图7,D、E、F分别是△ABC的边AB、BC、CA的中点,则-等于(
)
图7
A.
B.
C.
D.
答案:D
3.下列式子中不能化简为的是(
)
A.(+)+
B.(+)+(+)
C.+-
D.-+
答案:C
4.已知A、B、C三点不共线,O是△ABC内一点,若++=0,则O是△ABC的(
)
A.重心
B.垂心
C.内心
D.外心
答案:A第二章第四节平面向量的数量积第一课时
教学设计(一)
教学内容分析
本课内容选自普通高中课程标准实验教科书数学必修4(人教A版)§2.4平面向量的数量积的第一课时,本课主要内容是向量的数量积的定义及运算律,本节课让学生了解从特殊到一般再由一般到特殊的这种认识规律和体会概念法则的学习过程.
学生学习情况分析
学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法.在功的计算公式和研究向量运算的一般方法的基础上,学生基本上能类比得到数量积的含义和运算律,对于运算律不一定给全或给对,对运算律的证明可能会存在一定的困难,教学中教师要注意引导学生分析判断.
设计思想
遵循新课标以人为本的理念,以启发式教学思想和建构主义理论为指导,采用探究式教学,以多媒体手段为平台,利用问题让学生自主地参与探究,在探究过程中注重学生学习过程的体验和数学能力的发展,引导学生积极将知识融入自己的知识体系.
教学目标
1.了解平面向量数量积的物理背景,理解数量积的含义及其物理意义.
2.体会平面向量的数量积与向量投影的关系,理解掌握数量积的性质和运算律,并能运用性质和运算律进行相关的判断和运算.
3.体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力.
教学重点和难点
重点是平面向量数量积的概念、用平面向量数量积表示向量的模及夹角;难点是平面向量数量积的定义及运算律的理解,平面向量数量积的应用.
活动一:创设问题情境,引出新课
1.提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?
答:向量的加法、减法及数乘运算.这些运算的结果是向量.
2.提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
答:物理模型→概念→性质→运算律→应用.
3.新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算.导入课题:平面向量数量积的物理背景及其含义.
设计意图
1.明白新旧知识的联系性.
2.明确研究向量的数量积这种运算的途径.
活动二:探究数量积的概念
1.给出有关材料并提出问题3:
(1)如图1所示,一物体在力F的作用下产生位移s,那么力F所做的功:W=|F||s|cosθ.
图1
2)这个公式有什么特点?请完成下列填空:
①W(功)是________量,②F(力)是________量,
③s(位移)是________量,④θ是________.
(3)你能用文字语言表述“功的计算公式”吗?
答:功是力与位移的大小及其夹角余弦的乘积.
(4)如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?
答:两个向量的大小及其夹角余弦的乘积.
2.明晰数量积的定义
(1)数量积的定义
已知两个非零向量a与b,它们的夹角为θ,我们把数量︱a︱︱b︱cosθ叫做a与b的数量积(或内积),记作a·b,即a·b=︱a︱︱b︱cosθ.
(2)定义说明
①记法“a·b”中间的“·”不可以省略,也不可以用“×”代替.
②“规定”:零向量与任何向量的数量积为零.
设计意图
1.认识向量的数量积的实际背景.
2.使学生在形式上认识数量积的定义.
3.从数学和物理两个角度创设问题情境,使学生明白为什么研究这种运算,从而产生强烈的求知欲望.
3.提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?
答:线性运算的结果是向量,而数量积的结果则是数量,这个数量的大小不仅和向量a与b的模有关,还和它们的夹角有关.
4.学生讨论,并完成下表:
θ的范围
0°≤θ<90°
θ=90°
90°<θ≤180°
a·b的符号
设计意图
引导学生通过自主研究,明确两个向量的夹角决定它们的数量积的符号,进一步从细节上理解向量数量积的定义.
5.研究数量积的几何意义
(1)给出向量投影的概念:
如图2,我们把|b|cosθ(|a|cosθ)叫做向量b在a方向上(a在b方向上)的投影,记作:OB1=|b|cosθ.
图2
(2)提出问题5:数量积的几何意义是什么?
答:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ
的乘积.
设计意图
这里将数量积的几何意义提前,使学生从代数和几何两个方面对数量积的特征有了更加充分的认识.
6.研究数量积的物理意义
(1)请同学们用一句话来概括功的数学本质:功是力与位移的数量积.
(2)尝试练习:一物体质量是10千克,分别做以下运动:①竖直下降10米;②竖直向上提升10米;③在水平面上的位移为10米;④沿倾角为30度的斜面向上运动10米.分别求重力做功的大小.
设计意图
通过尝试练习,一方面使学生尝试计算数量积,巩固对定义的理解;另一方面使学生理解数量积的物理意义,明白学科间的联系,同时也为数量积的性质埋下伏笔.
活动三:探究数量积的运算性质
1.提出问题6:
(1)将尝试练习中的①②③的结论推广到一般向量,你能得到哪些结论?
(2)比较︱a·b︱与︱a||b︱的大小,你有什么结论?
2.请证明上述结论.
3.明晰数量积的性质
设a和b都是非零向量,则
(1)a⊥b a·b=0;
(2)当a与b同向时,|a·b|=|a||b|;
当a与b反向时,|a·b|=-|a||b|,特别地a·a=|a|2或|a|=;
(3)|a·b|≤|a||b|.
设计意图
将尝试练习的结论推广得到数量积的运算性质,使学生感到亲切自然,同时也培养了学生由特殊到一般的思维品质和类比创新的意识.
活动四:探究数量积的运算律
1.提出问题7:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?
答:(1)交换律:ab=ba;(2)结合律:(ab)c=a(bc);
(3)分配律:(a+b)c=ac+bc.
猜想:①a·b=b·a;②(a·b)c=a(b·c);
③(a+b)·c=a·c+b·c.
2.分析猜想:
猜想①的正确性是显而易见的.
关于猜想②的正确性,请同学们先讨论:猜测②的左右两边的结果各是什么?它们一定相等吗?
答:左边是与向量c共线的向量,而右边则是与向量a共线的向量,显然在向量c与向量a不共线的情况下猜测②是不正确的.
设计意图
要求学生通过对过去所学过的运算律的回顾类比得出数量积的运算律,通过讨论纠错来理解不同运算的运算律不尽相同,看到数学的法则与法则间的相互联系与区别,体会法则,学习研究的重要性.
3.明晰:数量积的运算律:
已知向量a、b、c和实数λ,则:
(1)a·b=b·a;(2)(λa)·b=λ(a·b)=a·(λb);
(3)(a+b)·c=a·c+b·c.
4.学生活动:证明运算律(2)
在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:当λ<0时,向量a与λa,b与λb的方向的关系如何?此时,向量λa与b及a与λb的夹角与向量a与b的夹角相等吗?
5.师生活动:证明运算律(3)
设计意图
学会利用定义证明运算律(1)(2),运算律(3)的图形构造有些困难,先让学生讨论,后根据学生的情况加以指导或共同完成.
活动五:应用与提高
1.学生独立完成:已知|a|=5,|b|=4,a与b的夹角θ=120°,求a·b.
设计意图
通过计算巩固对定义的理解.
2.师生共同完成:已知|a|=6,|b|=4,a与b的夹角为60°,求(a+2b)·(a-3b),并思考此运算过程类似于哪种实数运算?
3.学生独立完成:对任意向量a,b是否有以下结论:
(1)(a+b)2=a2+2a·b+b2,
(2)(a+b)·(a-b)=a2-b2.
设计意图
让学生体会解题中运算律的作用,比较向量运算与实数运算的异同.
4.师生共同完成:已知|a|=3,|b|=4,且a与b不共线,k为何值时,向量a+kb与a-kb互相垂直?并讨论:通过本题,你有什么体会?
设计意图
学会利用数量积来解决垂直问题,体会用数量积将几何问题转化为方程来求解,体现向量的工具性.
5.反馈练习
(1)判断下列各题正确与否:
①若a≠0,则对任一非零向量b,有a·b≠0.
②若a≠0,a·b=a·c,则b=c.
(2)已知△ABC中,=a,=b,当a·b<0或a·b=0时,试判断△ABC的形状.
设计意图
1.加强学生的练习.
2.通过观察、问答等方式对学生的掌握情况有了进一步的了解和把握.
活动六:小结
1.本节课我们学习的主要内容是什么?
2.平面向量的数量积有哪些应用?
3.我们是按照怎样的思维模式进行概念的归纳和性质的探究的?在运算律的探究过程中,渗透了哪些数学思想?
4.类比向量的线性运算,我们还应该怎样研究数量积?
设计意图
通过学生讨论总结,加强了学生对概念、法则的理解和掌握,体会整个内容的研究过程,明白了为什么要学这些内容,学了这些内容可以做什么,这对以后的学习有什么指导意义.
活动七:布置作业
1.课本习题2.4A组1、2、3.
2.拓展与提高:
已知a与b都是非零向量,且a+3b与7a-5b垂直,a-4b与7a-2b垂直,求a与b的夹角.(本题供学有余力的同学选做)
设计意图
通过设计不同层次的作业既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到激发兴趣和“减负”的目的.
教学反思
本节课从总体上说是一节概念教学,从数学和物理两个角度创设问题情境来引入数量积概念,能激发学生的学习兴趣.通过安排学生讨论影响数量积结果的因素并完成表格和将数量积的几何意义提前,有助于学生更好地理解数量积的结果是数量而不是向量.数量积的性质和运算律是数量积概念的延伸,这两方面的内容按照创设一定的情境,让学生自己去探究、去发现结论,教师明晰后,再由学生或师生共同完成证明.这样能更清楚地看到数学法则与法则间的联系与区别,体会法则学习研究的重要性,例题和练习的选择都是围绕数量积的概念和运算律展开的,这能使学生更好地掌握概念法则.第二章第五节平面向量应用举例第二课时
教学分析
向量与物理学天然相联.向量概念的原型就是物理中的力、速度、位移以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题的认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究.
用向量研究物理问题的相关知识.(1)力、速度、加速度、位移等既然都是向量,那么它们的合成与分解就是向量的加、减法,运动的叠加亦用到向量的合成;(2)动量是数乘向量;(3)功即是力与所产生位移的数量积.
用向量知识研究物理问题的基本思路和方法.(1)通过抽象、概括,把物理现象转化为与之相关的向量问题;(2)认真分析物理现象,深刻把握物理量之间的相互关系;(3)利用向量知识解决这个向量问题,并获得这个向量的解;(4)利用这个结果,对原物理现象作出合理解释,即用向量知识圆满解决物理问题.教学中要善于引导学生通过对现实原型的观察、分析和比较,得出抽象的数学模型.例如,物理中力的合成与分解是向量的加法运算与向量分解的原型.同时,注重向量模型的运用,引导解决现实中的一些物理和几何问题.这样可以充分发挥现实原型对抽象的数学概念的支撑作用.
三维目标
1.通过力的合成与分解的物理模型,速度的合成与分解的物理模型,掌握利用向量方法研究物理中相关问题的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识.
2.通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力.体会数学在现实生活中的重要作用.养成善于发现生活中的数学,善于发现物理及其他科目中的数学及思考领悟各学科之间的内在联系的良好习惯.
重点难点
教学重点:1.运用向量的有关知识对物理中力的作用、速度的分解进行相关分析和计算.2.归纳利用向量方法解决物理问题的基本方法.
教学难点:将物理中有关矢量的问题转化为数学中向量的问题.
课时安排
1课时
导入新课
思路1.(章头图引入)章头图中,道路、路标体现了向量与位移、速度、力等物理量之间的密切联系.章引言说明了向量的研究对象及研究方法.那么向量究竟是怎样应用于物理的呢?它就像章头图中的高速公路一样,是一条解决物理问题的高速公路.在学生渴望了解的企盼中,教师展示物理模型,由此展开新课.
思路2.(问题引入)你能举出物理中的哪些向量?比如力、位移、速度、加速度等,既有大小又有方向,都是向量,学生很容易就举出来.进一步,你能举出应用向量来分析和解决物理问题的例子吗?你是怎样解决的?教师由此引导:向量是有广泛应用的数学工具,对向量在物理中的研究,有助于进一步加深对这方面问题的认识.我们可以通过对下面若干问题的研究,体会向量在物理中的重要作用.由此自然地引入新课.
例1在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?
活动:这个日常生活问题可以抽象为如图1所示的数学模型,引导学生由向量的平行四边形法则,力的平衡及解直角三角形等知识来思考探究这个数学问题.这样物理中力的现象就转化为数学中的向量问题.只要分析清楚F、G、θ三者之间的关系(其中F为F1、F2的合力),就得到了问题的数学解释.
图1
在教学中要尽可能地采用多媒体,在信息技术的帮助下让学生来动态地观察|F|、|G|、θ之间在变化过程中所产生的相互影响.由学生独立完成本例后,与学生共同探究归纳出向量在物理中的应用的解题步骤,也可以由学生自己完成,还可以用信息技术来验证.
用向量解决物理问题的一般步骤是:①问题的转化,即把物理问题转化为数学问题;②模型的建立,即建立以向量为主体的数学模型;③参数的获得,即求出数学模型的有关解——理论参数值;④问题的答案,即回到问题的初始状态,解释相关的物理现象.
解:不妨设|F1|=|F2|,由向量的平行四边形法则、力的平衡以及直角三角形的知识,可以知道
cos= |F1|=.
通过上面的式子,我们发现:当θ由0°到180°逐渐变大时,由0°到90°逐渐变大,cos的值由大逐渐变小,因此|F1|由小逐渐变大,即F1,F2之间的夹角越大越费力,夹角越小越省力.
点评:本例是日常生活中经常遇到的问题,学生也会有两人共提一个旅行包以及在单杠上做引体向上运动的经验.本例的关键是作出简单的受力分析图,启发学生将物理现象转化成模型,从数学角度进行解释,这就是本例活动中所完成的事情.教学中要充分利用好这个模型,为解决其他物理问题打下基础.得到模型后就可以发现,这是一个很简单的向量问题,这也是向量工具优越性的具体体现.
变式训练某人骑摩托车以20
km/h的速度向西行驶,感到风从正南方向吹来,而当其速度变为40
km/h时,他又感到风从西南方向吹来,求实际的风向和风速.解:如图2所示.设v1表示20
km/h的速度,在无风时,此人感到的风速为-v1,实际的风速为v,那么此人所感到的风速为v+(-v1)=v-v1.图2令=-v1,=-2v1,实际风速为v.∵+=,∴=v-v1,这就是骑车人感受到的从正南方向吹来的风的速度.∵+=,∴=v-2v1.这就是当车的速度为40
km/h时,骑车人感受到的风速.由题意得∠DCA=45°,DB⊥AB,AB=BC,∴△DCA为等腰三角形,DA=DC,∠DAC=∠DCA=45°.∴DA=DC=BC=20.∴|v|=20
km/h.答:实际的风速v的大小是20
km/h,方向是东南方向.
例2如图3所示,利用这个装置(冲击摆)可测定子弹的速度,设有一砂箱悬挂在两线下端,子弹击中砂箱后,陷入箱内,使砂箱摆至某一高度h.设子弹和砂箱的质量分别为m和M,求子弹的速度v的大小.
图3
解:设v0为子弹和砂箱相对静止后开始一起运动的速度,由于水平方向上动量守恒,所以m|v|=(M+m)|v0|.

由于机械能守恒,所以(M+m)v=(M+m)gh.

联立①②解得|v|=.
又因为m相对于M很小,所以|v|≈,
即子弹的速度大小约为.
1.一艘船以4
km/h的速度沿着与水流方向成120°的方向航行,已知河水流速为2
km/h,则经过小时,该船实际航程为(
)
A.2
km
B.6
km
C.
km
D.8
km
答案:B
点评:由于学生还没有学习正弦定理和余弦定理,所以要通过作高来求.
2.如图4,已知两个力的大小和方向,则合力的大小为________
N;若在图示坐标系中,用坐标表示合力F,则F=________.
图4
答案:
(5,4)
3.一艘船以5
km/h的速度向垂直于对岸的方向行驶,而该船实际航行的方向与水流方向成30°角,求水流速度与船的实际速度.
答案:如图5所示,设表示水流速度,表示船垂直于对岸的速度,表示船的实际速度,∠AOC=30°,||=5
km/h.
图5
因为OACB为矩形,所以||=||·cot30°=||·cot30°=5≈8.66
km/h,
||===10
km/h.
答:水流速度为8.66
km/h,船的实际速度为10
km/h.
点评:转化为数学模型,画出向量图,在直角三角形中解出.
1.与学生共同归纳总结利用向量解决物理问题的步骤.
①问题的转化,即把物理问题转化为数学问题;
②模型的建立,即建立以向量为主体的数学模型;
③参数的获得,即求出数学模型的有关解——理论参数值;
④问题的答案,即回到问题的初始状态,解释相关的物理现象.
2.与学生共同归纳总结向量在物理中应用的基本题型.
①力、速度、加速度、位移都是向量;
②力、速度、加速度、位移的合成与分解对应相应向量的加减;
③)动量mv是数乘向量,冲量ΔtF也是数乘向量;
④功是力F与位移s的数量积,即W=F·s.
1.课本习题2.5
A组3、4,B组1、2.
2.归纳总结物理学中哪些地方可用向量.
1.本教案设计的指导思想是:由于本节重在解决两个问题,一是如何把物理问题转化成数学问题,也就是将物理量之间的关系抽象成数学模型;二是如何用建立起来的数学模型解释和回答相关的物理现象.因此本教案设计的重点也就放在怎样让学生探究解决这两个问题上.而把这个探究的重点又放在这两个中的第一个上,也就是引导学生认真分析物理现象、准确把握物理量之间的相互关系.通过抽象、概括,把物理现象转化为与之相关的向量问题,然后利用向量知识解决这个向量问题.
2.经历是最好的老师.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决实际问题的方法就越恰当而简捷.教科书中对本节的两个例题的处理方法,都不是先给出解法,而是先进行分析,探索出解题思路,再给出解法,就足以说明这一点.
3.突出数形结合的思想.教科书例题都是先画图进行分析的,本教案的设计中也突出了这一点.让学生在活动的时候就先想到画图,并在这个活动中,体会数形结合的应用,体会数学具有广泛的应用,体会向量这个工具的优越性.
一、向量与重心问题
假如有两个质点M1,M2,它们的质量分别是m1,m2,由物理学知识,这两个质点的重心M在线段M1M2上,并且分此线段为与质量成反比例的两部分,即
=,或m1=m2.
现设点M1、M2、M,对应的向量分别是r1、r2、r,则上式可以写成
m1(r-r1)=m2(r2-r).所以r=,点M处的质量为m1+m2.
现求三个质点的重心问题.
三个质点M1、M2、M3的质量分别是m1、m2、m3,所对应的向量分别是r1、r2、r3,
我们可设M1,M2的重心在点D处,该处对应的向量为rD=,该点的质量为m1+m2,然后求点D与点M3的重心M所对应的向量r,易得
r=.
二、备用习题
1.作用于同一点的两个力F1和F2,|F1|=5,|F2|=3,夹角为60°,则F1+F2的大小为________.
答案:7
2.一条渔船距对岸为4
km,现正以2
km/h的速度向垂直于对岸的方向划去,到达对岸时,船的实际航程为8
km,求河水的流速.
答案:解:如图7所示,设表示船垂直于对岸的速度,则+=,
图7
知就是渔船实际航行的速度.因为航行的时间为4÷2=2(h),
所以在Rt△ABC中,|A|=2
km/h,||=8÷2=4
km/h,则|B|=2
km/h.
答:河水的流速为2
km/h.
3.在半径为15
cm的均匀铁板上,挖出一个圆洞,已知圆洞的圆心和铁板中心相距8
cm,圆洞的半径是5
cm,求挖去圆洞后所剩下铁板的重心.
答案:解:如图8所示,建立平面直角坐标系,两圆的圆心分别为O1(0,0),O2(8,0),圆O2是挖去的圆,不妨设铁板的密度为ρ=1,则小圆的质量m1=25π,挖去圆洞后,铁板的质量为m2=(225-25)π=200π,设所求的重心为O3.
图8
根据物理学知识,知O3在直线O1O2上,即可设O3(x3,0),且满足=λ,
其中λ===.由定比分点坐标公式知0=,解得x3=-1,
即O3(-1,0)为挖去圆洞后所剩下铁板的重心.
4.如图6所示,重力为G的均匀小球放在倾角为α的斜面上,球被与斜面夹角为θ的木板挡住,球面、木板均光滑,若使球对木板的压力最小,求木板与斜面间夹角θ的大小.
图6
答案:解:对小球的受力分析如图6所示,重力为G,斜面弹力为N2(垂直于斜面向上),木板弹力N1(垂直于木板),其中N1与N2的合力的大小恒为|G′|,方向向上,N2的方向始终不变,随着木板的转动,N1的方向始终垂直于木板,N1的大小在变化,且满足=,又|G′|=|G|,∴|N1|=.∴当sinθ取最大值1时,|N1|min=|G|sinα,此时θ=.第二章第四节平面向量的数量积第二课时
教学内容分析
以物体受力做功为背景引入数量积的概念,使向量数量积运算与物理知识联系起来;向量数量积与向量的长度及夹角的关系;进一步探究两个向量的夹角对数量积符号的影响及有关的性质、几何意义和运算律.
本节内容安排在《普通高中课程标准实验教科书·数学必修4》(A版)第二章、第4节第1课时.它是平面向量的核心内容,向量的平行、垂直关系是向量间最基本、最重要的位置关系,而向量的夹角、距离又是向量的重要数量特征,向量的数量积恰好是解决问题的一个重要工具.
本节的知识结构:
学生学习情况分析
本节以力对物体做功作为背景,研究平面向量的数量积,以及对运算律的理解和平面向量的数量积的灵活应用.但是,学生作为初学者不清楚向量数量积是数量还是向量,寻找两向量的夹角又容易想当然.通过情境创设、探究和思考引导学生认知、理解并掌握相关的内容.利用向量数量积运算讨论一些几何元素的位置关系、距离和角,这些刻画几何元素(点、线、面)之间度量关系的基本量学生容易混淆.利用数量积运算来反映向量的长度和两个向量间夹角的关系解决问题,是学生学习本节内容的重点又是难点.由向量的线性运算迁移,引申到向量的乘法运算这是个很自然的过渡,深入浅出、符合学生的认知规律,也有利于明确本节课的教学任务,激发学生的学习兴趣和求知欲望.
设计思想
《高中数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式”,转变学生的学习方式,激发学生的学习积极性,让学生乐于参与到探索性和创造性的学习活动中来,这是新课程数学教学的基本要求.《高中数学课程标准》还明确提出了提高学生的知识与技能、重视学生的学习过程与方法,培养学生的情感态度、价值观的三维目标.为此,结合本节课的教学内容,教学中注重过程、方法,注重引导学生自觉去看书,不断提出问题、研究问题,并解决问题.重视在师生,生生互动、交流的过程中渗透情感态度与价值观.
教学目标
通过师生互动、学生的自主探究:(1)理解平面向量数量积的含义及其物理意义;(2)掌握向量数量积的性质和运算律,会进行平面向量数量积的运算;(3)能运用数量积表示两个向量的夹角,会用数量积判断两个向量的垂直关系;(4)通过向量的线性运算及多项式乘法运算的对照,强化学生的类比思想;通过数量积的性质、运算律的灵活应用,发展学生从特殊到一般的能力,培养学生学习的主动性和合作交流的学习习惯.
教材重点和难点
重点是平面向量的数量积的概念和性质;用平面向量数量积表示向量的模及向量的夹角;平面向量数量积的运算律的探究及应用.
难点是平面向量的数量积的定义及对运算律的探究、理解;平面向量数量积的灵活应用.
情境1
问题
回忆物理中“功”的计算,它的大小与哪些量有关?结合向量的学习你有什么想法?若一个物体在力F的作用下产生的位移为s,那么力F所做的功W等于多少?
图3
设计意图
以物理问题为背景,初步认识向量的数量积,为引入向量的数量积的概念作铺垫.
师生互动
生:W=|F||s|cosθ(其中θ是F和s的夹角).
师:功是一个矢量还是标量?它的大小由哪些量来确定?
显然功是一个标量,它由力和位移两个向量来确定.从中我们得到一个启发:能否将功看成是两个“向量相乘”的一种运算的结果呢?从而得出平面向量的“数量积”的概念.
情境2
1.定义向量数量积.弄清定义中涉及哪些量?它们有怎样的关系?运算结果是向量还是数量?
2.如何确定两个非零向量的数量积的符号,什么情况下值为零?
设计意图
使学生从感性到理性去认知数量积的定义.通过对概念的认识、分析和探究,使学生加深理解,并掌握相关的性质及几何意义.同时加深对投影的认识.
师生互动
1.仿照物理问题建构“数学模型”,引入“向量数量积”的概念:已知两个非零向量a与b,把数量|a||b|cosθ叫做a与b的数量积(或内积),记作:a·b,即a·b=|a||b|cosθ(其中θ是a与b的夹角).|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影.
图4
2.规定:零向量与任何向量的数量积为0.
3.(1)数量积运算结果的符号取决于a与b的夹角θ(θ∈[0,π])的大小;(2)两个向量的数量积是一个数量,它与两个向量的长度及其夹角有关;(3)符号a·b不能写成ab或a×b的形式;(4)找向量的夹角时,应将两向量的起点平移到同一个点上.
4.探究其性质:
(1)a⊥b a·b=0(a与b都是非零向量);
设置情境:若a·b=0,则向量a与b至少有一个是零向量.类比a,b∈R时,若ab=0 a=0或b=0.而且此性质在解决有关线段垂直问题时具有很好的作用.
(2)当向量a与b共线同向时,a·b=|a||b|;当向量a与b共线反向时,a·b=-|a||b|.特别地a·a=a2=|a|2或|a|==(与二次根式性质:=|a|进行类比).这是求向量长度的又一重要方法.
情境3
由学生自主学习来完成书本例题1.
设计意图
通过计算巩固对数量积定义的理解,进一步引导学生对|a·b|和|a||b|的大小关系进行一般的研究比较.
师生互动
从例1容易得出性质|a·b|≤|a||b|和数量积的几何意义.
情境4
给学生2~3分钟时间,阅读教材,并对前面所学的内容及研究方法作一个归纳小结.
设计意图
培养学生的阅读能力和及时进行归纳小结的学习习惯.把课堂还给学生,体现师生间的合作探究,不管是老师还是课件,都是为学生服务的,都在同步配合学生的学习和探索.
师生互动
学生通过自主阅读、总结并发表自己的看法,老师可以有针对性的进行学习方法点拨,并指出对学习过程进行及时反思的重要性.
情境5
运算律和运算是紧密相联的,类比实数运算中的运算律,探究平面向量数量积的运算律.
设计意图
通过类比、探究使学生得出数量积的运算律,进一步培养学生的逻辑思维和研究问题的能力.
师生互动
1.回顾实数运算中有关乘法的运算律.类比数量积的运算律,体会不同运算的运算律不尽相同,需要研究.
已知向量a、b、c和实数λ,则
(1)a·b=b·a;
(2)(λa)·b=λ(a·b)=a·(λb);
(3)(a+b)·c=a·c+b·c.
2.对向量数量积的运算律进一步研究.
(1)a(b·c)=(a·b)c成立吗?显然,等式左边与向量a共线,右边与向量c共线,而向量a与c不一定共线,因此结论不一定成立;
(2)由a·b=b·c能否推出a=c?(反例:当a=0,b⊥c时,有a·b=b·c=0.但不能得到c=0).结合实数a,b,c(b≠0),有ab=bc a=c进行类比,辨析.
3.老师可以通过学生的讨论进行纠错,理解不同的运算具有不同的运算律,体会到数学的法则与法则之间的区别与联系.同时注意利用学生的错误这一重要资源,让学生更容易找到易错点和易混点,从而更清晰、准确地掌握知识.
情境6
例2、例3、例4的教学.
设计意图
1.要求学生体会实际解题中运算律的作用,比较向量运算与多项式乘法运算的异曲同工.
2.学会利用数量积来解决有关垂直问题,体会运算律带来的优越性.
3.上面几个例题,层层递进,都是把较难的问题转化为已经解决的较易的标准问题,体现了知识和方法上的转化.
师生互动
1.老师可以将例题内容与多项式乘法运算进行类比.
2.让学生自己体会用数量积将“几何问题”化归为方程问题来求解的简练,进一步体现向量的工具作用.
情境7
课后反思:让学生回顾总结本节课的学习内容及探究、解决问题的方法.
设计意图
让学生整理相关的学习内容,使得“知识系统性、技能熟练性”得到更加充分的体现,体会所学知识的引入基础及探究、解决问题时用到的数学思想和数学方法,培养学生思考问题、分析问题、解决问题的能力.
教学反思
本节课教学效果不错,主要是把学习的主动权交还给学生,注意学生的主动探索、思考及师生互动,还以物理知识为背景,建立了数学的平面向量数量积的概念和运算.使得学习内容直观、生动,抓住重点.使学生懂得对已有的知识进行迁移、采用类比的方法让学生主动学习合作交流,体验数学的发现和创造过程,培养学生数学表达和交流的能力.在课堂中会体现自我,学会自己寻找解题的突破口,在探究中学会思考,在合作中学会推进,在观察中学会比较,进而推进整个教学程序的展开.但自我感觉“讲”的还是偏多了一点,对于学生解题中出现的错误这一资源展开、分析得不够,以后应该更加注意引导.第二章第二节
平面向量的线性运算第一课时
教学分析
《向量》这一章是前一轮教材中新增的内容.高考考纲有明确说明,同时新课标也提出向量是数学的重要概念之一,在高考中的考查主要集中在两个方面:①向量的基本概念和基本运算;②向量作为工具的应用.另外,在今后学习复数的三角形式与向量形式时,还要用到向量的有关知识及思想方法,向量也是将来学习高等数学以及力学、电学等学科的重要工具.教材的第2.1节通过物理实例引入了向量的概念,介绍了向量的模、相等的向量、单位向量、零向量以及平行向量等基本概念.而本节课是继向量基本概念的第一节课.向量的加法是向量的第一运算,是最基本、最重要的运算,是学习向量其他运算的基础.它在本单元的教学中起着承前启后的作用,同时它在实际生活、生产中有广泛的应用.正如第二章的引言中所说:如果没有运算,向量只是一个“路标”,因为有了运算,向量的力量无限.
学生学习情况分析
学生在高一学习物理中的位移和力等知识时,已初步了解了矢量的合成,而物理学中的矢量相当于数学中的向量,这为学生学习向量知识提供了实际背景.
设计理念
教学矛盾的主要方面是学生的学.学是中心,会学是目的.因此,在教学中要不断指导学生学会学习.在教学过程中,从教材和学生的实际出发,按照学生认知活动的规律,精练、系统、生动地讲授知识,发展学生的智能,陶冶学生的道德情操;要充分发挥学生在学习中的主体作用,运用各种教学手段,调动学生学习的主动性和积极性,启发学生开展积极的思维活动,通过比较、分析、抽象、概括,得出结论;进一步理解、掌握和运用知识,从而使学生的智力、能力和其他心理品质得到发展.
教学目标
根据新课标的要求:培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识.集本节教材的特点和高一学生对矢量的认知特点,我把本节课的教学目标确定为:
1.理解向量加法的意义,掌握向量加法的几何表示法,理解向量加法的运算律.
2.理解和体验实际问题抽象为数学概念的过程和思想,增强数学的应用意识.
3.培养类比、迁移、分类、归纳等能力.
4.进行辩证唯物主义思想教育、数学审美教育,提高学生学习数学的积极性.
教学重点与难点
1.教学重点:两个向量的和的概念及其几何意义.(两个向量的和的概念是向量加法的基础,而向量加法是向量运算的基础.向量的线性运算的另一个特点是它有深刻的物理背景和几何意义,因此在引入一种向量运算后,总是要考查一下它的几何意义,正因为向量的几何意义,使得向量在解决几何问题时可以发挥很好的作用.)
2.教学难点:向量加法的运算律.(设计让学生先猜想后验证来学习运算律,需要利用类比的思想进行猜测,还要在猜测的基础上加以验证,有一定难度.)
导入新课
(约5分钟)
引例:有两条拖轮牵引一艘轮船,它们的牵引力分别是F1=3
000牛,F2=2
000牛,牵绳之间的夹角θ=60°.如果只用一条拖轮来牵引,而产生的效果跟原来的相同,试求出这条拖轮的牵引力的大小和方向.
图1
在物理中,我们已知道,两个不在一条直线的共点力与的合力是以、为邻边的平行四边形OACB的对角线所表示的力.这就是说,是与相加所得到的和.
设计说明
引导学生利用物理中合力的概念,来解决这个实际问题,以现有的知识为出发点培养学生的知识类比、迁移能力.
学情预设
把实际问题抽象为数学概念是学生的认知难点.
(约5分钟)
一般地,把以、为邻边的平行四边形OACB的对角线,叫做与两个向量的和,记作+.求两个不平行向量的和可按平行四边形法则进行.
问题1:如何求两个平行向量的和向量?
问题2:任意一个向量与一个零向量的和是什么?
求两个向量的和的运算叫做向量的加法.
设计说明
补充说明两个向量和的概念,同时让学生体验分类的思想.
(约15分钟)
练习:根据图2中所给向量a,b,c画出向量:
(1)a+b;(2)a+b+c.
图2
解法一:将两个向量起点重合,应用平行四边形法则画出两个向量的和向量.
解法二:将一个向量的起点与另一向量的终点重合,也可以画出两个向量的和向量.
设计说明
1.学生通过练习题(1)可加深对向量加法概念的理解.另外,可由此引出向量加法的三角形法则.
图3
2.通过对比的方式让学生了解向量的加法既可以按照平行四边形法则进行,也可以按照三角形法则进行.在向量加法运算中,通过向量的平移使两个向量首尾相接,可使用三角形法则.
引申:求n(n>3)个向量的和向量.
设计说明
求n(n>3)个向量的和向量时,让学生进一步体会应用首尾相接的三角形法则的优越性.
学情预设
学生对从特殊到一般的理解较抽象.
结论:求n个向量的和向量可应用多边形法则.
运算律的归纳
问题:向量的加法既然是一种运算,它应该具有哪些运算律?如何进行验证呢?
设计说明
引导学生类比实数加法的运算律,得出向量加法的运算律,培养学生的类比、迁移归纳能力.
(约10分钟)
(1)已知平面内有三个非零向量、、,它们的模都相等,并且两两的夹角都是120°,求证:++=0;(2)在平面内能否构造三个非零向量a、b、c,使a+b+c=0;(3)能否说出(2)的实际模型?
设计说明
题(1)是基本的例题;题(2)是题(1)的拓展;题(3)能体现数学来源于实际又应用于实际的思想.
(约5分钟)
已知a、b是非零向量,则|a+b|与|a|+|b|有什么关系?
设计说明
设置这一研讨题可以将本节课与上节课的知识联系起来,并进一步渗透分类的思想.
(约4分钟)
让学生自主回顾和归纳本节的内容.
设计说明
1.向量加法的意义;2.理解实际问题数学化的思想,增强数学的应用意识;3.理解分类讨论等数学思想,培养类比、迁移等能力.
学情预设
要求学生不仅对知识体系进行归纳,还要对本节课中所体现的数学思想方法及数学能力进行总结,有一定的难度.
(约1分钟)
课本本节练习1,2,3,4.
设计说明
1.巩固所学的内容.2.对所学内容的检测、反馈与及时补充不足.
本节课采用“探究——讨论”教学法.“探究——研讨”教学法是美国哈佛大学教育专家兰本达所倡导的.“探究——研讨”教学法把教学过程分为两个步骤:第一步骤是“探究”.我所设计的问题引入、概念形成及概念深化都是采用探究的方法,将有关材料有层次地提供给学生,让学生独立地支配它,进而探索、研究它.学生通过对这些“有结构”的材料进行探究,获得对向量加法的感性认识和形成各自对向量加法概念的了解.第二步骤是“研讨”,即在探究的基础上,组织学生研讨自己在探究中的发现,通过互相交流、启发、补充、争论,使学生对向量加法的认识从感性的认识上升到理性认识,获得一定水平层次的科学概念.这节课主要是教给学生“动手做,动脑想;多训练,勤钻研.”的研讨式学习方法.这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径和思考问题的方法.使学生真正成为教学的主体.也只有这样做,才能使学生“学”有新“思”,“思”有所“得”,“练”有所“获”.学生才会逐步感到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,才能适应素质教育下培养“创新型”人才的需要.第二章第三节平面向量的基本定理及坐标表示第一课时
教学分析
平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.
在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果选取互相垂直的向量作为基底时,会给问题的研究带来方便.联系平面向量基本定理和向量的正交分解,由点在直角坐标系中的表示得到启发,要在平面直角坐标系中表示一个向量,最方便的是分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,这时,对于平面直角坐标系内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=xi+yj.
于是,平面内的任一向量a都可由x、y唯一确定,而有序数对(x,y)正好是向量a的终点的坐标,这样的“巧合”使平面直角坐标系内的向量与坐标建立起一一映射,从而实现向量的“量化”表示,使我们在使用向量工具时得以实现“有效能算”的思想.
三维目标
1.通过探究活动,能推导并理解平面向量基本定理.
2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
3.了解向量的夹角与垂直的概念,并能应用于平面向量的正交分解中,会把向量正交分解,会用坐标表示向量.
重点难点
教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.
教学难点:平面向量基本定理的运用.
课时安排
1课时
导入新课
思路1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?又如一个放在斜面上的物体所受的竖直向下的重力G,可分解为使物体沿斜面下滑的力F1和使物体垂直于斜面且压紧斜面的力F2.我们知道飞机在起飞时若沿仰角α的方向起飞的速度为v,可分解为沿水平方向的速度vcosα和沿竖直方向的速度vsinα.从这两个实例可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.如果e1、e2是同一平面内的两个不共线的向量,a是这一平面内的任一向量,那么a与e1、e2之间有什么关系呢?在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.在平面上,如果选取互相垂直的向量作为基底,是否会给我们带来更方便的研究呢?
思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过对多个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?
推进新课
①给定平面内任意两个不共线的非零向量e1、e2,请你作出向量3e1+2e2、e1-2e2.平面内的任一向量是否都可以用形如λ1e1+λ2e2的向量表示呢?
②如图1,设e1、e2是同一平面内两个不共线的向量,a是这一平面内的任一向量,我们通过作图研究a与e1、e2之间的关系.
图1
活动:如图1,在平面内任取一点O,作=e1,=e2,=a.过点C作平行于直线OB的直线,与直线OA交于点M;过点C作平行于直线OA的直线,与直线OB交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得=λ1e1,=λ2e2.由于=+,所以a=λ1e1+λ2e2.也就是说,任一向量a都可以表示成λ1e1+λ2e2的形式.
由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e1、e2表示出来.当e1、e2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.
由此可得:平面向量基本定理:
如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.
定理说明:(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不唯一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式唯一.
讨论结果:①可以.
②a=λ1e1+λ2e2.
①平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?
②对平面中的任意一个向量能否用两个互相垂直的向量来表示?
活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:
已知两个非零向量a和b(如图2),作=a,=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.
图2
显然,当θ=0°时,a与b同向;当θ=180°时,a与b反向.因此,两非零向量的夹角在区间[0°,180°]内.
如果a与b的夹角是90°,我们说a与b垂直,记作a⊥b.
由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量λ1a1和λ2a2,使a=λ1a1+λ2a2.
在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.例如,重力G沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.
在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.
讨论结果:①存在夹角且两个非零向量的夹角在区间[0°,180°]内;向量与直线的夹角不一样.
②可以.
①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数 即它的坐标 表示.对直角坐标平面内的每一个向量,如何表示呢?
②在平面直角坐标系中,一个向量和坐标是否是一一对应的?
活动:如图3,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得
图3
a=xi+yj.

这样,平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作
a=(x,y).

其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,②式叫做向量的坐标表示.显然,i=(1,0),j=(0,1),0=(0,0).教师应引导学生特别注意以下几点:
(1)向量a与有序实数对(x,y)一一对应.
(2)向量a的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,是表示a的有向线段,A1、B1的坐标分别为(x1,y1)、(x2,y2),则向量a的坐标为x=x2-x1,y=y2-y1,即a的坐标为(x2-x1,y2-y1).
(3)为简化处理问题的过程,把坐标原点作为表示向量a的有向线段的起点,这时向量a的坐标就由表示向量a的有向线段的终点唯一确定了,即点A的坐标就是向量a的坐标,流程表示如下:

讨论结果:①平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y).
②是一一对应的.
思路1
例1如图4,在ABCD中,=a,=b,H、M是AD、DC的中点,F使BF=BC,以a,b为基底分解向量与.
图4
活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励.
解:由H、M、F所在位置,有
=+=+=+=b+a.
=-=+-=+-
=+-=a-b.
点评:以a、b为基底分解向量与,实为用a与b表示向量与.
变式训练已知向量e1、e2(如图5(1)),求作向量-2.5e1+3e2.图5作法:(1)如图5(2),任取一点O,作=-2.5e1,=3e2.(2)作OACB.故就是求作的向量.
例2如图6,分别用基底i、j表示向量a、b、c、d,并求出它们的坐标.
图6
活动:本例要求用基底i、j表示a、b、c、d,其关键是把a、b、c、d表示为基底i、j的线性组合.一种方法是把a正交分解,看a在x轴、y轴上的分向量的大小.把向量a用i、j表示出来,进而得到向量a的坐标.另一种方法是把向量a移到坐标原点,则向量a终点的坐标就是向量a的坐标.同样的方法,可以得到向量b、c、d的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a与b关于y轴对称,a与c关于坐标原点中心对称,a与d关于x轴对称等.由一个向量的坐标推导出其他三个向量的坐标.
解:由图可知,a=+=xi+yj,
∴a=(2,3).
同理,b=-2i+3j=(-2,3);
c=-2i-3j=(-2,-3);
d=2i-3j=(2,-3).
点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标.
变式训练i,j是两个不共线的向量,已知=3i+2j,=i+λj,=-2i+j,若A、B、D三点共线,试求实数λ的值.解:∵=-=(-2i+j)-(i+λj)=-3i+(1-λ)j,又∵A、B、D三点共线,∴向量与共线.因此存在实数υ,使得=υ,即3i+2j=υ[-3i+(1-λ)j]=-3υi+υ(1-λ)j.∵i与j是两个不共线的向量,故∴∴当A、B、D三点共线时,λ=3.
例3下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是(
)
A.①②
B.②③
C.①③
D.①②③
活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.
解析:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.
答案:B
点评:本题主要考查的是学生对平面向量定理的理解.
思路2
例1如图7,M是△ABC内一点,且满足条件+2+3=0,延长CM交AB于N,令=a,试用a表示.
图7
活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:
推论1:e1与e2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e1+λ2e2=0,则λ1=λ2=0.
推论2:e1与e2是同一平面内的两个不共线向量,若存在实数a1,a2,b1,b2,使得a=a1e1+a2e2=b1e1+b2e2,则
解:∵=+,=+,
∴由+2+3=0,得(+)+2(+)+3=0.
∴+3+2+3=0.
又∵A、N、B三点共线,C、M、N三点共线,
由平行向量基本定理,设=λ,=μ,
∴λ+3+2+3μ=0.
∴(λ+2)+(3+3μ)=0.
由于和不共线,
∴∴
∴=-=.
∴=+=2=2a.
点评:这里选取,作为基底,运用化归思想,把问题归结为λ1e1+λ2e2=0的形式来解决.
变式训练设e1与e2是两个不共线向量,a=3e1+4e2,b=-2e1+5e2,若实数λ、μ满足λa+μb=5e1-e2,求λ、μ的值.解:由题设λa+μb=(3λe1+4λe2)+(-2μe1+5μe2)=(3λ-2μ)e1+(4λ+5μ)e2.又λa+μb=5e1-e2.由平面向量基本定理,知解之,得λ=1,μ=-1.
例2如图8,△ABC中,AD为△ABC边上的中线且AE=2EC,求及的值.
图8
活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值.
解:设=λ,=μ.
∵=,即-=-,
∴=(+).
又∵=λ=λ(-),
∴==+.

又∵=μ,即-=μ(-),
∴(1+μ)=+μ,=+.
又=,∴=+.

比较①②,∵、不共线,
∴解之,得∴=4,=.
点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.
变式训练过△OAB的重心G的直线与边OA、OB分别交于P、Q两点,设=h,=k,试证:+=3.证明:设=a,=b,OG交AB于D,则=(+)=(a+b)(图略).∴==(a+b),=-=(a+b)-kb=a+b,=-=ha-kb.∵P、G、Q三点共线,∴=λ.∴a+b=λha-λkb.∴两式相除,得=- k+h=3hk,∴+=3.
1.已知G为△ABC的重心,设=a,=b,试用a、b表示向量.
答案:如图9,=,
图9
而=+=+=a+(b-a)=a+b,
∴==(a+b)=a+b.
点评:利用向量加法、减法及数乘的几何意义.
2.已知向量a=(x+3,x2-3x-4)与相等,其中A(1,2),B(3,2),求x.
答案:∵A(1,2),B(3,2),∴=(2,0).
∵a=,∴(x+3,x2-3x-4)=(2,0).
∴解得
∴x=-1.
点评:先将向量用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决.
1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.
2.教师与学生一起总结本节学习的数学方法,如待定系数法、定义法、归纳与类比、数形结合、几何作图.
课本习题2.3
A组1.
1.本节课内容是为了研究向量方便而引入的一个新定理——平面向量基本定理.教科书首先通过“思考”:让学生思考对于平面内给定的任意两个向量进行加减的线性运算时所表示的新向量有什么特点,反过来,对平面内的任意向量是否都可以用形如λ1e1+λ2e2的向量表示.
2.教师应该多提出问题,多让学生自己动手作图来发现规律,通过解题来总结方法,引导学生理解“化归”思想对解题的帮助,也要让学生善于用“数形结合”的思想来解决这部分的题.
3.如果条件允许,借助多媒体进行教学会有意想不到的效果.整节课的教学主线应以学生练习为主,教师给予引导和提示.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决实际问题的方法就越恰当而简捷.
一、三角形三条中线共点的证明
如图10所示,已知在△ABC中,D、E、L分别是BC、CA、AB的中点,设中线AD、BE相交于点P.
图10
求证:AD、BE、CL三线共点.
分析:欲证三条中线共点,只需证明C、P、L三点共线.
证明:设=a,=b,则=b,=-=-a+b.
设=m,则+=m(+),
=(-1+m)+m=(-1+m)a+m[(b-a)]=(-1+m)a+mb.

又设=n,则-=n(+),
∴=(1-n)+n=-(1-n)a+n(b-a)=(--n)a+nb.

由①②得解之,得
∴=-a+b=(-a+b)=.
∴C、P、L三点共线.∴AD、BE、CL三线共点.
二、备用习题
1.如图11所示,已知=,=,用、表示,则等于(
)
图11
A.+
B.-+
C.--
D.-
答案:B
2.已知e1,e2是两非零向量,且|e1|=m,|e2|=n,若c=λ1e1+λ2e2(λ1,λ2∈R),则|c|的最大值为(
)
A.λ1m+λ2n
B.λ1n+λ2m
C.|λ1|m+|λ2|n
D.|λ1|n+|λ2|m
答案:C第二章第一节平面向量的实际背景及基本概念
1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.
2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.
3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.
4.本章教学约需12课时,具体分配如下,仅供参考.






2.1
平面向量的实际背景及基本概念
1课时
2.2
向量的线性运算
3课时
2.3
平面向量的基本定理及坐标表示
2课时
2.4
平面向量的数量积
2课时
2.5
平面向量的应用举例
2课时
本章复习
2课时
作者:赵勇,永安三中教师,本教学设计获福建省教学设计大赛三等奖
教学理念
新的课程标准要求我们创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、合作交流和创新等过程,获得知识、能力、情感的全面发展.本节课将充分体现以“学生为本”的教学观念,实现课程理念、教学方式和学生学习方式的转变.
教学目标
1.通过力的分析等实例,了解向量的实际背景;理解向量的概念.
2.理解向量的几何表示;掌握零向量、单位向量、平行向量等概念;
3.理解相等向量和共线向量等概念,并会辨认图形中的相等向量或作出与某一已知向量的相等向量.
教学重点、难点
1.通过学生自主探究,并在教师的引导下,使学生理解向量的概念、相等向量的概念、向量的几何表示等是本节课的重点.
2.难点是学生对向量的概念和共线向量的概念的理解.
学情和教材分析
《向量》是高中数学新教材必修四第二章第1节.向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.
向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.所以,向量是高考必考的重点内容,又因为其抽象性,它还是学生在学习中的一个难学内容.本节内容是向量一章的第一节课,因此,是十分关键、重要的一节课.
教学准备
多媒体课件
导入新课
位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.
如图1,如何由点A确定点B的位置?
图1
一种常用的方法是,以A为参照点,用B点A点之间的方位和距离确定B点的位置.如,B点在A点东偏南45°,30千米处.这样,在A点与B点之间,我们可以用有向线段AB表示B点相对于A点的位置.有向线段AB就是A点与B点之间的位移.位移简明地表示了位置之间的相对关系.像位移这种既有大小又有方向的量,加以抽象,就是我们本章要研究的向量.
推进新课
本章引言中,我们知道,位移是既有大小,又有方向的量,你还能举出一些这样的量吗?
图2
请大家阅读课本2.1.1向量的物理背景与概念;2.1.2向量的几何表示.并回答下面问题:
(1)什么是向量?向量和数量有何不同?
(2)向量如何表示?
(3)什么是零向量和单位向量?
(4)什么是平行向量?
待学生阅读完后,老师总结并展示课件:
1.什么是向量?向量和数量有何不同?
(数量:只有大小,没有方向的量)
在质量、重力、速度、加速度、身高、面积、体积这些量中,哪些是数量?哪些是向量?
数量有:质量、身高、面积、体积
向量有:重力、速度、加速度
提问:角度,海拔,温度是向量吗?
2.向量如何表示?
(1)几何表示——向量常用有向线段表示:有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.
图3
注:以A为起点,B为终点的有向线段记为,线段AB的长度记作||(读为模);
(2)也可以表示为a,b,c,…,大小记作:|a|、|b|、|c|、…
说明一:我们所说的向量,与起点无关,用有向线段表示向量时,起点可以取任意位置.所以数学中的向量也叫自由向量.
如图4:它们都表示同一个向量.
图4
练习:向量和是同一个向量吗?为什么?
不是,方向不同.
探究:向量就是有向线段吗?有向线段就是向量吗?
说明二:有向线段与向量的区别:
有向线段:有固定起点、大小、方向.
向量:可选任意点作为向量的起点、有大小、有方向.
图5
有向线段、是不同的.
图6
向量、是同一个向量.
3.什么是零向量和单位向量?
零向量:长度为0的向量,记为0;
单位向量:长度为1的向量.
注:零向量,单位向量都是只限制大小,不确定方向的.
向量之间的关系:
4.什么是平行向量?
方向相同或相反的非零向量叫平行向量.
注:1.若是两个平行向量,则记为a∥b.
2.我们规定,零向量与任一向量平行,即对任意向量a,都有0∥a.
练习:判断下列各组向量是否平行?
图7
向量的平行与线段的平行有什么区别?
练习:已知下列命题:
(1)向量和向量长度相等;(2)方向不同的两个向量一定不平行;(3)向量就是有向线段;(4)向量0=0;(5)向量大于向量.
其中正确命题的个数是(
)
A.0
B.1
C.2
D.3
答案:B
例1试根据图8中的比例尺以及三地的位置,在图中分别用向量表示A地至B、C两地的位移,并求出A地至B、C两地的实际距离(精确到1
km).
图8
请同学们阅读课本2.1.3相等向量与共线向量,并回答问题:什么是相等向量和共线向量?
待学生回答后,老师总结并展示课件:
5.什么是相等向量和共线向量?
长度相等且方向相同的向量叫相等向量.
a=b=c
===
图9
注:1.若向量a,b相等,则记为a=b;
2.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.
平行向量也叫共线向量.
注:任一组平行向量都可以平移到同一直线上.
练习:判断下列命题是否正确:
(1)两个向量相等,则它们的起点相同,终点相同;(2)若|a|=|b|,则a=b;(3)若=,则四边形ABCD是平行四边形;(4)平行四边形ABCD中,一定有=;(5)若m=n,n=k,则m=k;(6)若a∥b,b∥c,则a∥c.
其中不正确命题的个数是(
)
A.2
B.3
C.4
D.5
答案:C
练习:下列说法正确的是(
)
A.若|a|>|b|,则a>b
B.若|a|=0,则a=0
C.若|a|=|b|,则a=b或a=-b
D.若a∥b,则a=b
E.若a=b,则|a|=|b|
F.若a≠b,则a与b不是共线向量
G.若a=0,则-a=0
答案:EG
例2如图10,设O是正六边形ABCDEF的中心,分别写出图中与、、相等的向量.
图10
解:==,
==,
===.
练习:如图11,EF是△ABC的中位线,AD是BC边上的中线,在以A、B、C、D、E、F为端点的有向线段表示的向量中请分别写出:
图11
(1)与向量共线的向量有________个,分别是________________________________;
(2)与向量的模一定相等的向量有________个,分别是______________________;
(3)与向量相等的向量有________个,分别是__________.
答案:(1)7
、、、、、、
(2)5
、、、、
(3)2

通过本节课的学习,要求大家能够理解向量的概念;掌握向量的几何表示;理解零向量、单位向量、平行向量、相等向量等概念,并能进行简单的应用.
习题2.1A组2,5
1.首先先对本节课教材内容进行分析
2.教材内容的安排和处理
根据我所教学生的特点,我对教材进行了如下处理,先由物理中的位置关系导入新课,然后提出问题,并要求学生带着问题去阅读课本,最后由老师总结,并对概念进行概念辨析,以加大学生的思维的深度,拓宽了学生的视野,实现本节课难点的突破,整堂课充分发挥学生的主导作用.
3.教法
“问题是数学的灵魂,也是学好数学的必然手段”,本节课总体上以问题串的形式,设计为七问五练.着重抓四个知识点,突出学生的“主导地位”.并通过多媒体课件的演示,直观展示向量的有关内容,激发学生的兴趣.
4.学法指导
以问题为载体,通过提问、阅读、归纳,练习的过程,掌握思考、讨论、交流的学习方法,并体验探究和发现的乐趣.第二章第二节
平面向量的线性运算第三课时
教学分析
向量的数乘运算,其实是加法运算的推广及简化,与加法、减法统称为向量的三大线性运算.教学时从加法入手,引入数乘运算,充分展现了数学知识之间的内在联系.实数与向量的乘积,仍然是一个向量,既有大小,也有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.共线向量定理是本章节中重要的内容,应用相当广泛,且容易出错.尤其是定理的前提条件:向量a是非零向量.共线向量定理的应用主要用于证明点共线或平行等几何性质,且与后续的知识有着紧密的联系.
三维目标
1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.
2.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.
3.通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.
重点难点
教学重点:1.实数与向量积的意义.2.实数与向量积的运算律.3.两个向量共线的等价条件及其运用.
教学难点:对向量共线的等价条件的理解运用.
课时安排
1课时
导入新课
思路1.前面两节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.
思路2.一物体做匀速直线运动,一秒钟的位移对应的向量为a,那么在同一方向上3秒钟的位移对应的向量怎样表示?是3a吗?怎样用图形表示?由此展开新课.
推进新课
①已知非零向量a,试一试作出a+a+a和 -a + -a + -a .
②你能对你的探究结果作出解释,并说明它们的几何意义吗?
③引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?
活动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a=0,而不是0·a=0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a,λ-a都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a=λa+μa和λ(a+b)=λa+λb,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.
对问题①,学生通过作图1可发现,=++=a+a+a.类似数的乘法,可把a+a+a记作3a,即=3a.显然3a的方向与a的方向相同,3a的长度是a的长度的3倍,即|3a|=3|a|.同样,由图1可知,
图1
=++=(-a)+(-a)+(-a),
即(-a)+(-a)+(-a)=3(-a).显然3(-a)的方向与a的方向相反,3(-a)的长度是a的长度的3倍,这样,3(-a)=-3a.
对问题②,上述过程推广后即为实数与向量的积.
我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,它的长度与方向规定如下:
(1)|λa|=|λ||a|;
(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反.
由(1)可知,λ=0时,λa=0.
根据实数与向量的积的定义,我们可以验证下面的运算律.
实数与向量的积的运算律
设λ、μ为实数,那么
1 λ μa = λμ a; 2 λ+μ a=λa+μa; 3 λ a+b =λa+λb.
特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.
对问题③,向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由向量数乘的定义,知a与b共线.反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=μa;当a与b反方向时,有b=-μa.
关于向量共线的条件,教师要点拨学生作进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.
讨论结果:①数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ|·|a|确定.
②它的几何意义是把向量a沿a的方向或a的反方向放大或缩小.
③向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.
思路1
例1计算:
(1)(-3)×4a;
(2)3(a+b)-2(a-b)-a;
(3)(2a+3b-c)-(3a-2b+c).
活动:本例是数乘运算的简单应用,可让学生自己完成,要求学生熟练运用向量数乘运算的运算律.教学中,点拨学生不能将本题看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点.同时向学生点出,向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.
解:(1)原式=(-3×4)a=-12a;
(2)原式=3a+3b-2a+2b-a=5b;
(3)原式=2a+3b-c-3a+2b-c=-a+5b-2c.
点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.
变式训练若3m+2n=a,m-3n=b,其中a,b是已知向量,求m,n.解:∵3m+2n=a,
①m-3n=b.
②3×②得3m-9n=3b.
③①-③得11n=a-3b.∴n=a-b.
④将④代入②,有m=b+3n=a+b.点评:此题可把已知条件看作向量m、n的方程,通过方程组的求解获得m、n.在此题求解过程中,利用了实数与向量的积以及它所满足的交换律、结合律,从而解向量的二元一次方程组的方法与解实数的二元一次方程组的方法一致.
例2如图2,已知任意两个非零向量a、b,试作=a+b,=a+2b,=a+3b.你能判断A、B、C三点之间的位置关系吗?为什么?
图2
活动:本例给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A,B,C三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只要引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a、b变化过程中,A、B、C三点始终在同一条直线上的规律.
解:如图3,分别作向量、、,过点A、C作直线AC.观察发现,不论向量a、b怎样变化,点B始终在直线AC上,猜想A、B、C三点共线.
图3
事实上,因为=-=a+2b-(a+b)=b,
而=-=a+3b-(a+b)=2b,
于是=2.
所以A、B、C三点共线.
点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.
例3如图4,ABCD的两条对角线相交于点M,且=a,=b,你能用a、b表示、、和吗?
图4
活动:本例的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点.
解:在ABCD中,
∵=+=a+b,=-=a-b,
又∵平行四边形的两条对角线互相平分,
∴=-=-(a+b)=-a-b,
==(a-b)=a-b,==a+b,
=-=-=-a+b.
点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.
思路2
例1凸四边形ABCD的边AD、BC的中点分别为E、F,求证:=(+).
活动:教师引导学生探究,能否构造三角形,使EF作为三角形中位线,借助于三角形中位线定理解决,或创造相同起点,以建立向量间关系.鼓励学生多角度观察思考问题.
证法一:过点C在平面内作=,
则四边形ABGC是平行四边形,
故F为AG中点.(如图5)
图5
∴EF是△ADG的中位线.
∴EF綊DG.
∴=.
而=+=+,
∴=(+).
证法二:如图6,连接EB、EC,则有=+,=+,
图6
又∵E是AD的中点,
∴+=0,
即有+=+.
以与为邻边作 EBGC,则由F是BC的中点,可得F也是EG的中点.
∴==(+)=(+).
点评:向量的运算主要从以下几个方面加强练习:(1)加强数形结合思想的训练,画出草图帮助解决问题;(2)加强三角形法则和平行四边形法则的运用练习,做到准确熟练运用.
例2已知和是不共线向量,=t(t∈R),试用、表示.
活动:教师引导学生思考,由=t(t∈R)知A、B、P三点共线,而=+,然后以表示,进而建立,的联系.本题可让学生自己解决,教师适时点拨.
解:=+=+t·=+t·(-)=(1-t)·+t·.
点评:灵活运用向量共线的条件.若令1-t=m,t=n,则=m·+n·,m+n=1.
变式训练1.设两个不共线的向量e1、e2,若向量a=2e1-3e2,向量b=2e1+3e2,向量c=2e1-9e2,问是否存在这样的实数λ、μ,使向量d=λa+μb与向量c共线?解:d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(3μ-3λ)e2,要使d与c共线,则存在实数k使d=kc,即(2λ+2μ)e1+(3μ-3λ)e2=2ke1-9ke2.由2λ+2μ=2k及3μ-3λ=-9k得λ=-2μ.故存在这样的实数λ和μ,只要λ=-2μ就能使d与c共线.2.若非零向量a、b满足|a+b|=|b|,则(
)A.|2a|>|2a+b|
B.|2a|<|2a+b|C.|2b|>|a+2b|
D.|2b|<|a+2b|答案:C3.在△ABC中,已知D是AB边上一点,若=2,=+λ,则λ等于(
)A.
B.
C.-
D.-答案:A
本节练习
解答:
1.图略.
2.=,=-.
点评:本题可先画一个示意图,根据图形容易得出正确答案.值得注意的是与反向.
3.(1)b=2a;(2)b=-a;(3)b=-a;(4)b=a.
4.(1)共线;(2)共线.
5.(1)3a-2b;(2)-a+b;(3)2ya.
6.图略.
1.让学生回顾本节学习的数学知识:向量的数乘运算法则,向量的数乘运算律,向量共线的条件,体会本节学习中用到的思想方法:特殊到一般,归纳、猜想、类比,分类讨论,等价转化.
2.向量及其运算与数及其运算可以类比,这种类比是我们提高思想性的有效手段,在今后的学习中应予以充分的重视,它是我们学习中伟大的引路人.
课本习题2.2
A组题11、12.
1.本教案的设计流程符合新课程理念,充分抓住本节教学中的学生探究、猜想、推证等活动,引导学生画出草图帮助理解题意和解决问题.先由学生探究向量数乘的结果还是向量(特别地0·a=0),它的几何意义是把向量a沿a的方向或a的反方向放大或缩小,当λ>0时,λa与a方向相同,当λ<0时,λa与a方向相反;向量共线定理用来判断两个向量是否共线.然后对所探究的结果进行运用拓展.
2.向量具有的几何形式和代数形式的双重身份在本节中得以充分体现,因而成为中学数学知识网络的一个交汇点,由此可看出在中学数学教材中的重要地位,也成为近几年各地高考命题的重点和热点,教师要引导学生对平面向量中有关知识要点进行归纳整理.
一、向量的数乘运算律的证明
设a、b为任意向量,λ、μ为任意实数,则有
(1)λ(μa)=(λμ)a;

(2)(λ+μ)a=λa+μa;

(3)λ(a+b)=λa+λb.

证明:(1)如果λ=0或μ=0或a=0,则①式显然成立.
如果λ≠0,μ≠0,且a≠0,则根据向量数乘的定义,有
|λ(μa)|=|λ||μa|=|λ||μ||a|,
|(λμ)a|=|λμ||a|=|λ||μ||a|.
所以|λ(μa)|=|(λμ)a|.
如果λ、μ同号,则①式两边向量的方向都与a同向;如果λ、μ异号,则①式两边向量的方向都与a反向.
因此,向量λ(μa)与(λμ)a有相等的模和相同的方向,所以这两个向量相等.
(2)如果λ=0或μ=0或a=0,则②显然成立.
如果λ≠0,μ≠0且a≠0,可分如下两种情况:
当λ、μ同号时,则λa和μa同向,所以
|(λ+μ)a|=|λ+μ||a|=(|λ|+|μ|)|a|,
|λa+μa|=|λa|+|μa|=|λ||a|+|μ||a|=(|λ|+|μ|)|a|,
即有|(λ+μ)a|=|λa+μa|.
由λ、μ同号,知②式两边向量的方向或都与a同向,或都与a反向,即②式两边向量的方向相同.
综上所述,②式成立.
如果λ、μ异号,当λ>μ时,②式两边向量的方向都与λa的方向相同;当λ<μ时,②式两边向量的方向都与μa的方向相同.
还可证|(λ+μ)a|=|λa+μa|.因此②式也成立.
(3)当a=0,b=0中至少有一个成立,或λ=0,λ=1时,③式显然成立.
当a≠0,b≠0且λ≠0,λ≠1时,可分如下两种情况:
当λ>0且λ≠1时如图7,在平面内任取一点O作=a,=b,=λa,=λb,则=a+b,=λa+λb.
图7
由作法知∥,有∠OAB=∠OA1B1,||=λ||.
所以==λ.
所以△AOB∽△A1OB1.
所以=λ,∠AOB=∠A1OB1.
因此O、B、B1在同一条直线上,||=|λ|,与λ的方向也相同.
所以λ(a+b)=λa+λb.
当λ<0时,由图8可类似证明λ(a+b)=λa+λb.
图8
所以③式也成立.
二、备用习题
1.[(2a+8b)-(4a-2b)]等于(
)
A.2a-b
B.2b-a
C.b-a
D.a-b
答案:B
2.设两非零向量e1、e2不共线,且ke1+e2与e1+ke2共线,则k的值为(
)
A.1
B.-1
C.±1
D.0
答案:C
3.若向量方程2x-3(x-2a)=0,则向量x等于(
)
A.a
B.-6a
C.6a
D.-a
答案:C
4.在△ABC中,=,EF∥BC,EF交AC于F,设=a,=b,则用a、b表示的形式是=________.
答案:-a+b
5.在△ABC中,M、N、P分别是AB、BC、CA边上的靠近A、B、C的三等分点,O是△ABC平面上的任意一点,若++=e1-e2,则++=________.
答案:e1-e2.
6.已知△ABC的重心为G,O为坐标原点,=a,=b,=c,
求证:=(a+b+c).
答案:证明:连接AG并延长,设AG交BC于M.
∵=b-a,=c-a,=c-b,
∴=+=(b-a)+(c-b)=(c+b-2a).
∴==(c+b-2a).
∴=+=a+(c+b-2a)=(a+b+c).
7.对判断向量a=-2e与b=2e是否共线?有如下解法:
解:∵a=-2e,b=2e,∴b=-a.∴a与b共线.请根据本节所学的共线知识给以评析.如果解法有误,请给出正确解法.
答案:评析:乍看上述解答,真是简单明快.然而,仔细研究题目已知,却发现其解答存在问题,这是因为原题已知中对向量e并无任何限制,那么就应允许e=0,而当e=0时,显然,a=0,b=0,此时,a不符合定理中的条件,且使b=λa成立的λ值也不唯一(如λ=-1,λ=1,λ=2等均可使b=λa成立),故不能应用定理来判断它们是否共线.可见,对e=0的情况应用别的办法判断才妥.
综上分析,此题应解答如下:
解:(1)当e=0时,则a=-2e=0.
由于“零向量与任一向量平行”且“平行向量也是共线向量”,所以此时a与b共线.
(2)当e≠0时,则a=-2e≠0,b=2e≠0,
∴b=-a〔这时满足定理中的a≠0,及有且只有一个实数λ(λ=-1),使得b=λa成立〕.
∴a与b共线.
综合(1)(2),可知a与b共线.第二章第四节平面向量的数量积第三课时
教学分析
平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.
前面我们学面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.
教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.
三维目标
1.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法.
2.掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.
3.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力和创新能力,提高学生的数学素质.
重点难点
教学重点:平面向量数量积的坐标表示.
教学难点:向量数量积的坐标表示的应用.
课时安排
1课时
导入新课
思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.
思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.
推进新课
①平面向量的数量积能否用坐标表示?
②已知两个非零向量a= x1,y1 ,b= x2,y2 ,怎样用a与b的坐标表示a·b呢?
③怎样用向量的坐标表示两个平面向量垂直的条件?
④你能否根据所学知识推导出向量的长度、距离和夹角公式?
活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:
∵a=x1i+y1j,b=x2i+y2j,
∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.
又∵i·i=1,j·j=1,i·j=j·i=0,∴a·b=x1x2+y1y2.
教师给出结论性的总结,由此可归纳如下:
1°平面向量数量积的坐标表示
两个向量的数量积等于它们对应坐标的乘积的和,
即a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
2°向量模的坐标表示
若a=(x,y),则|a|2=x2+y2,或|a|=.
如果表示向量a的有向线段的起点和终点的坐标分别为(x1,y1)、(x2,y2),那么
a=(x2-x1,y2-y1),|a|=.
3°两向量垂直的坐标表示
设a=(x1,y1),b=(x2,y2),则a⊥b x1x2+y1y2=0.
4°两向量夹角的坐标表示
设a、b都是非零向量,a=(x1,y1),b=(x2,y2),θ是a与b的夹角,根据向量数量积的定义及坐标表示,可得cosθ==.
讨论结果:略.
例1已知A(1,2),B(2,3),C(-2,5),试判断△ABC的形状,并给出证明.
活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.
解:在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5)三点,我们发现△ABC是直角三角形.下面给出证明.
∵=(2-1,3-2)=(1,1),=(-2-1,5-2)=(-3,3),
∴·=1×(-3)+1×3=0.∴⊥.∴△ABC是直角三角形.
点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你的结论给出充分的证明.
变式训练在△ABC中,=(2,3),=(1,k),且△ABC的一个内角为直角,求k的值.解:由于题设中未指明哪一个角为直角,故需分别讨论.若∠A=90°,则⊥,所以·=0.于是2×1+3k=0.故k=-.同理可求,若∠B=90°时,k的值为;若∠C=90°时,k的值为.故所求k的值为-或或.
例2(1)已知三点A(2,-2),B(5,1),C(1,4),求∠BAC的余弦值;
(2)a=(3,0),b=(-5,5),求a与b的夹角.
活动:教师让学生利用向量的坐标运算求出两向量a=(x1,y1)与b=(x2,y2)的数量积a·b=x1x2+y1y2和模|a|=,|b|=的积,其比值就是这两个向量夹角的余弦值,即cosθ==.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.
解:(1)=(5,1)-(2,-2)=(3,3),=(1,4)-(2,-2)=(-1,6),
∴·=3×(-1)+3×6=15.
又∵||==3,||==,
∴cos∠BAC===.
(2)a·b=3×(-5)+0×5=-15,|a|=3,|b|=5.
设a与b的夹角为θ,则cosθ===-.
又∵0≤θ≤π,∴θ=.
点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与求解主要是对基础知识的巩固与提高.
变式训练设a=(5,-7),b=(-6,-4),求a·b及a、b间的夹角θ.(精确到1°)解:a·b=5×(-6)+(-7)×(-4)=-30+28=-2.|a|==,|b|==,由计算器得cosθ=≈-0.03.利用计算器中得θ≈92°.
例3已知|a|=3,b=(2,3),试分别解答下面两个问题:
(1)若a⊥b,求a;
(2)若a∥b,求a.
活动:对平面中的两向量a=(x1,y1)与b=(x2,y2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x1x2+y1y2=0与向量共线的坐标表示x1y2-x2y1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a·b=0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的变形训练.
解:(1)设a=(x,y),由|a|=3且a⊥b,得
解得或
∴a=(-,)或a=(,-).
(2)设a=(x,y),由|a|=3且a∥b,得
解得或
∴a=(,)或a=(-,-).
点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断垂直或者共线,也能熟练地进行公式的逆用,利用已知关系来求向量的坐标.
变式训练求证:一次函数y=2x-3的图象(直线l1)与一次函数y=-x的图象(直线l2)互相垂直.证明:在l1:y=2x-3中,令x=1得y=-1;令x=2得y=1,即在l1上取两点A(1,-1),B(2,1).同理,在直线l2上取两点C(-2,1),D(-4,2),于是:=(2,1)-(1,-1)=(2-1,1+1)=(1,2),=(-4,2)-(-2,1)=(-4+2,2-1)=(-2,1).由向量的数量积的坐标表示,可得·=1×(-2)+1×2=0,∴⊥,即l1⊥l2.
课本本节练习.
解答:
1.|a|=5,|b|=,a·b=-7.
2.a·b=8,(a+b)·(a-b)=-7,a·(a+b)=0,(a+b)2=49.
3.a·b=1,|a|=,|b|=,θ≈88°.
1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.
2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.
课本习题2.4
A组8、9、10.
由于本节课是对平面向量的进一步探究与应用,是对平面向量几何意义的综合研究提高,因此教案设计流程是探究、发现、应用、提高,这符合新课程理念,符合新课标要求.我们知道平面向量的数量积是本章最重要的内容,也是高考中的重点,既有选择题、填空题,也有解答题(大多同立体几何、解析几何综合考查),故学习时要熟练掌握基本概念和性质及其综合运用.而且数量积的坐标表示又是向量运算的一个重要内容,用坐标表示直角坐标平面内点的位置,是解析几何的一个基本特征,从而以坐标为桥梁可以建立向量与解析几何的内在联系.以三角函数表示点的坐标,又可以沟通向量与三角函数的相互关系,由此就产生出一类向量与解析几何及三角函数交汇的综合性问题.
平面向量数量积的坐标表示使得向量数量积的应用更为方便,也拓宽了向量应用的途径.通过学习本节的内容,要更加加深对向量数量积概念的理解,同时善于运用坐标形式运算解决数量问题,尤其是有关向量的夹角、长度、垂直等,往往可以使问题简单化.灵活使用坐标形式,综合处理向量的线性运算、数量积、平行等,综合地解决向量综合题,体现数形结合的思想.在本节的学习中可以通过对实际问题的抽象来培养学生分析问题、解决问题和应用知识解决问题的意识与能力.
一、|a·b|≤|a||b|的应用
若a=(x1,y1),b=(x2,y2),则平面向量的数量积的性质|a·b|≤|a||b|的坐标表示为x1x2+y1y2≤ (x1x2+y1y2)2≤(x+y)(x+y).
不等式(x1x2+y1y2)2≤(x+y)(x+y)有着非常广泛的应用,由此还可以推广到一般(柯西不等式):
(a1b1+a2b2+…+anbn)2≤(a+a+…+a)(b+b+…+b).
例1(1)已知实数x,y满足x+y-4=0,则x2+y2的最小值是________;
(2)已知实数x,y满足(x+2)2+y2=1,则2x-y的最大值是________.
解析:(1)令m=(x,y),n=(1,1).
∵|m·n|≤|m||n|,∴|x+y|≤·,
即2(x2+y2)≥(x+y)2=16.
∴x2+y2≥8,故x2+y2的最小值是8.
(2)令m=(x+2,y),n=(2,-1),2x-y=t.
由|m·n|≤|m||n|,得|2(x+2)-y|≤·=,即|t+4|≤.
解得-4-≤t≤-4.
故所求的最大值是-4.
答案:(1)8
(2)-4
例2已知a,b∈R,θ∈(0,),试比较+与(a+b)2的大小.
解:构造向量m=(,),n=(cosθ,sinθ),由|m·n|≤|m||n|得
(cosθ+sinθ)2≤(+)(cos2θ+sin2θ),
∴(a+b)2≤+.
同类变式:已知a,b∈R,m,n∈R,且mn≠0,m2n2>a2m2+b2n2,令M=,N=a+b,比较M、N的大小.
解:构造向量p=(,),q=(n,m),由|p·q|≤|p||q|得
(×n+×m)2≤(+)(m2+n2)=(m2+n2)∴M>N.
例3设a,b∈R,A={(x,y)|x=n,y=na+b,n∈Z},B={(x,y)|x=m,y=3m2+15,m∈Z},C={(x,y)|x2+y2≤144}是直角坐标平面xOy内的点集,讨论是否存在a和b,使得A∩B≠ 与(a,b)∈C能同时成立.
解:此问题等价于探求a、b是否存在的问题,它满足
设存在a和b满足①②两式,构造向量m=(a,b),n=(n,1).
由|m·n|2≤|m|2|n|2得(na+b)2≤(n2+1)(a2+b2),
∴(3n2+15)2≤144(n2+1) n4-6n2+9≤0.
解得n=±,这与n∈Z矛盾,故不存在a和b满足条件.
二、备用习题
1.若a=(2,-3),b=(x,2x),且a·b=,则x等于(
)
A.3
B.
C.-
D.-3
答案:C
2.设a=(1,2),b=(1,m),若a与b的夹角为钝角,则m的取值范围是(
)
A.m>
B.m<
C.m>-
D.m<-
答案:D
3.若a=(cosα,sinα),b=(cosβ,sinβ),则(
)
A.a⊥b
B.a∥b
C.(a+b)⊥(a-b)
D.(a+b)∥(a-b)
答案:C
4.与a=(u,v)垂直的单位向量是(
)
A.(-,)
B.(,-)
C.(,)
D.(-,)或(,-)
答案:D
5.已知向量a=(cos23°,cos67°),b=(cos68°,cos22°),u=a+tb(t∈R),求u的模的最小值.
答案:解:|a|===1,同理有|b|=1.
又a·b=cos23°cos68°+cos67°cos22°=cos23°cos68°+sin23°sin68°=cos45°=,
∴|u|2=(a+tb)2=a2+2ta·b+t2b2=t2+t+1=(t+)2+≥.
当t=-时,|u|min=.
6.已知△ABC的三个顶点为A(1,1),B(3,1),C(4,5),求△ABC的面积.
答案:分析:S△ABC=||||sin∠BAC,而||,||易求,要求sin∠BAC可先求出cos∠BAC.
解:∵=(2,0),=(3,4),||=2,||=5,
∴cos∠BAC===.
∴sin∠BAC=.
∴S△ABC=||||sin∠BAC=×2×5×=4.
三、新教材新教法的二十四个“化”字诀
新课导入新颖化,揭示概念美丽化;纵横相联过程化,探索讨论热烈化;
探究例题多变化,引导思路发散化;学生活动主体化,一石激浪点拨化;
大胆猜想多样化,论证应用规律化;变式训练探究化,课堂教学艺术化;
学法指导个性化,对待学生情感化;作业抛砖引玉化,选题质量层次化;
学生学习研究化,知识方法思想化;抓住闪光激励化,教学相长平等化;
教学意识超前化,与时俱进媒体化;灵活创新智慧化,学生素质国际化.第二章第五节平面向量应用举例第一课时
教学分析
1.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为:
则向量方法的流程图可以简单地表述为:
这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点.
2.研究几何可以采取不同的方法,这些方法包括:
综合方法——不使用其他工具,对几何元素及其关系直接进行讨论;
解析方法——以数(代数式)和数(代数式)的运算为工具,对几何元素及其关系进行讨论;
向量方法——以向量和向量的运算为工具,对几何元素及其关系进行讨论;
分析方法——以微积分为工具,对几何元素及其关系进行讨论,等等.
前三种方法都是中学数学中出现的内容.
有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化.
三维目标
1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”.
2.明了平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.
3.通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段.
重点难点
教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”.
教学难点:如何将几何等实际问题化归为向量问题.
课时安排
1课时
导入新课
思路1.(直接导入)向量的概念和运算都有着明确的物理背景和几何背景,当向量和平面坐标系结合后,向量的运算就完全可以转化为代数运算.这就为我们解决物理问题和几何研究带来了极大的方便.本节专门研究平面几何中的向量方法.
思路2.(情境导入)由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题.下面通过几个具体实例,说明向量方法在平面几何中的运用.
推进新课
①平行四边形是表示向量加法和减法的几何模型,如图1,你能观察、发现并猜想出平行四边形对角线的长度与两邻边长度之间有什么关系吗?
图1
②你能利用所学知识证明你的猜想吗?能利用所学的向量方法证明吗?试一试可用哪些方法?
③你能总结一下利用平面向量解决平面几何问题的基本思路吗?
活动:
①教师引导学生猜想平行四边形对角线的长度与两邻边长度之间有什么关系.利用类比的思想方法,猜想平行四边形有没有相似关系.指导学生猜想出结论:平行四边形两条对角线的平方和等于四条边的平方和.
②教师引导学生探究证明方法,并点拨学生对各种方法分析比较,平行四边形是学生熟悉的重要的几何图形,在平面几何的学习中,学生得到了它的许多性质,有些性质的得出比较麻烦,有些性质的得出比较简单.让学生体会研究几何可以采取不同的方法,这些方法包括综合方法、解析方法、向量方法.
证明:方法一:如图2.
图2
作CE⊥AB于E,DF⊥AB于F,则Rt△ADF≌Rt△BCE.
∴AD=BC,AF=BE.由于AC2=AE2+CE2=(AB+BE)2+CE2=AB2+2AB·BE+BE2+CE2=AB2+2AB·BE+BC2.
BD2=BF2+DF2=(AB-AF)2+DF2=AB2-2AB·AF+AF2+DF2=AB2-2AB·AF+AD2=AB2-2AB·BE+BC2.
∴AC2+BD2=2(AB2+BC2).
方法二:如图3.
图3
以AB所在直线为x轴,A为坐标原点建立直角坐标系.
设B(a,0),D(b,c),则C(a+b,c).
∴|AC|2=(a+b)2+c2=a2+2ab+b2+c2,
|BD|2=(a-b)2+(-c)2=a2-2ab+b2+c2.
∴|AC|2+|BD|2=2a2+2(b2+c2)=2(|AB|2+|AD|2).
用向量方法推导了平行四边形的两条对角线与两条邻边之间的关系.在用向量方法解决涉及长度、夹角的问题时,常常考虑用向量的数量积.通过以下推导学生可以发现,由于向量能够运算,因此它在解决某些几何问题时具有优越性,它把一个思辨过程变成了一个算法过程,学生可按一定的程序进行运算操作,从而降低了思考问题的难度,同时也为计算机技术的运用提供了方便.教学时应引导学生体会向量带来的优越性.因为平行四边形对角线平行且相等,考虑到向量关系=-,=+,教师可点拨学生设=a,=b,其他线段对应向量用它们表示,涉及长度问题常常考虑向量的数量积,为此,我们计算||2与||2.因此有了方法三.
方法三:设=a,=b,则=a+b,=a-b,||2=|a|2,||2=|b|2.
∴||2=·=(a+b)·(a+b)=a·a+a·b+b·a+b·b=|a|2+2a·b+|b|2.

同理||2=|a|2-2a·b+|b|2.

观察①②两式的特点,我们发现,①+②得
||2+||2=2(|a|2+|b|2)=2(||2+||2),
即平行四边形两条对角线的平方和等于两条邻边平方和的两倍.
至此,为解决重点问题所作的铺垫已经完成,向前发展可以说水到渠成.教师充分让学生对以上各种方法进行分析比较,讨论认清向量方法的优越性,适时引导学生归纳用向量方法处理平面几何问题的一般步骤.由于平面几何经常涉及距离(线段长度)、夹角问题,而平面向量的运算,特别是数量积主要涉及向量的模以及向量之间的夹角,因此我们可以用向量方法解决部分几何问题.解决几何问题时,先用向量表示相应的点、线段、夹角等几何元素.然后通过向量的运算,特别是数量积来研究点、线段等元素之间的关系.最后再把运算结果“翻译”成几何关系,得到几何问题的结论.这就是用向量方法解决平面几何问题的“三步曲”,即
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
讨论结果:①能.
②能想出至少三种证明方法.
③略.
例1如图4,ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
图4
活动:为了培养学生的观察、发现、猜想能力,让学生能动态地发现图形中AR、RT、TC之间的相等关系,教学中可以充分利用多媒体,作出上述图形,测量AR、RT、TC的长度,让学生发现AR=RT=TC,拖动平行四边形的顶点,动态观察发现,AR=RT=TC这个规律不变,因此猜想AR=RT=TC.事实上,由于R、T是对角线AC上的两点,要判断AR、RT、TC之间的关系,只需分别判断AR、RT、TC与AC的关系即可.又因为AR、RT、TC、AC共线,所以只需判断,,与之间的关系即可.探究过程对照用向量方法解决平面几何问题的“三步曲”很容易地可得到结论.第一步,建立平面几何与向量的联系,用向量表示问题中的几何元素,将平面几何问题转化为向量问题;第二步,通过向量运算,研究几何元素之间的关系;第三步,把运算结果“翻译”成几何关系:AR=RT=TC.
解:如图4,
设=a,=b,=r,=t,则=a+b.
由于与共线,所以我们设r=n(a+b),n∈R.
又因为=-=a-b,与共线,
所以我们设=m=m(a-b).
因为=+,所以r=b+m(a-b).
因此n(a+b)=b+m(a-b),
即(n-m)a+(n+)b=0.
由于向量a、b不共线,要使上式为0,必须
解得n=m=.所以=.
同理=.于是=.
所以AR=RT=TC.
点评:教材中本例重在说明是如何利用向量的办法找出这个相等关系的,因此在书写时可简化一些程序.指导学生在今后的训练中,不必列出三个步骤.
变式训练如图5,AD、BE、CF是△ABC的三条高.求证:AD、BE、CF相交于一点.图5证明:设BE、CF相交于H,并设=b,=c,=h,则=h-b,=h-c,=c-b.因为⊥,⊥,所以(h-b)·c=0,(h-c)·b=0,即(h-b)·c=(h-c)·b.化简得h·(c-b)=0.所以⊥.所以AH与AD共线,即AD、BE、CF相交于一点H.
例2如图6,已知在等腰△ABC中,BB′、CC′是两腰上的中线,且BB′⊥CC′,求顶角A的余弦值.
图6
活动:教师可引导学生思考探究,上例利用向量的几何法简捷地解决了平面几何问题.可否利用向量的坐标运算呢?这需要建立平面直角坐标系,找出所需点的坐标.如果能比较方便地建立起平面直角坐标系,如本例中图形,很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,是否利用向量的坐标运算能更快捷地解决问题呢?教师引导学生建系、找点的坐标,然后让学生独立完成.
解:建立如图6所示的平面直角坐标系,取A(0,a),C(c,0),则B(-c,0),
=(0,a),=(c,a),=(c,0),=(2c,0).
因为BB′、CC′都是中线,
所以=(+)=[(2c,0)+(c,a)]=(,),
同理=(-,).
因为BB′⊥CC′,所以-c2+=0,a2=9c2.
所以cosA====.
点评:比较是最好的学习方法.本例利用的方法与例题1有所不同,但其本质是一致的,教学中引导学生仔细体会这一点,比较两例的异同,找出其内在的联系,以达到融会贯通,灵活运用之功效.
变式训练如图7,在Rt△ABC中,已知BC=a.若长为2a的线段PQ以点A为中点,问:与的夹角θ取何值时,·的值最大?并求出这个最大值.图7解:方法一:如图7.∵⊥,∴·=0.∵=-,=-,=-,∴·=(-)·(-)=·-·-·+·=-a2-·+·=-a2+·(-)=-a2+·=-a2+a2cosθ.故当cosθ=1,即θ=0,与的方向相同时,·最大,其最大值为0.
方法二:如图8.图8以直角顶点A为坐标原点,两直角边所在的直线为坐标轴,建立如图所示的平面直角坐标系.设|AB|=c,|AC|=b,则A(0,0),B(c,0),C(0,b),且|PQ|=2a,|BC|=a.设点P的坐标为(x,y),则Q(-x,-y).∴=(x-c,y),=(-x,-y-b),=(-c,b),=(-2x,-2y).∴·=(x-c)(-x)+y(-y-b)=-(x2+y2)+cx-by.∵cosθ==,∴cx-by=a2cosθ.∴·=-a2+a2cosθ.故当cosθ=1,即θ=0,与的方向相同时,·最大,其最大值为0.
1.如图9,已知AC为⊙O的一条直径,∠ABC是圆周角.
图9
求证:∠ABC=90°.
证明:如图9.
设=a,=b,
则=a+b,=a,=a-b,|a|=|b|.
因为·=(a+b)·(a-b)=|a|2-|b|2=0,
所以⊥.
由此,得∠ABC=90°.
点评:充分利用圆的特性,设出向量.
2.D、E、F分别是△ABC的三条边AB、BC、CA上的动点,且它们在初始时刻分别从A、B、C出发,各以一定速度沿各边向B、C、A移动.当t=1时,分别到达B、C、A.求证:在0≤t≤1的任一时刻t1,△DEF的重心不变.
证明:如图10.
图10
建立如图所示的平面直角坐标系,设A、B、C坐标分别为(0,0),(a,0),(m,n).
在任一时刻t1∈(0,1),因速度一定,其距离之比等于时间之比,有====λ,由定比分点的坐标公式可得D、E、F的坐标分别为(at1,0)、(a+(m-a)t1,nt1)、(m-mt1,n-nt1).由重心坐标公式可得△DEF的重心坐标为(,).当t=0或t=1时,△ABC的重心也为(,),故对任一t1∈[0,1],△DEF的重心不变.
点评:主要考查定比分点公式及建立平面直角坐标系,只要证△ABC的重心和时刻t1的△DEF的重心相同即可.
1.由学生归纳总结本节学习的数学知识有哪些:平行四边形向量加、减法的几何模型,用向量方法解决平面几何问题的步骤,即“三步曲”.特别是这“三步曲”,要提醒学生理解领悟它的实质,达到熟练掌握的程度.
2.本节都学习了哪些数学方法:向量法,向量法与几何法、解析法的比较,将平面几何问题转化为向量问题的化归的思想方法,深切体会向量的工具性这一特点.
课本习题2.5
A组2,B组3.
1.本节是对研究平面几何方法的探究与归纳,设计的指导思想是:充分使用多媒体这个现代化手段,引导学生展开观察、归纳、猜想、论证等一系列思维活动.本节知识方法容量较大,思维含量较高,教师要把握好火候,恰时恰点地激发学生的智慧火花.
2.由于本节知识方法在高考大题中得以直接的体现,特别是与其他知识的综合更是高考的热点问题.因此在实际授课时注意引导学生关注向量知识、向量方法与本书的三角、后续内容的解析几何等知识的交汇,提高学生综合解决问题的能力.
3.平面向量的运算包括向量的代数运算与几何运算.相比较而言,学生对向量的代数运算要容易接受一些,但对向量的几何运算往往感到比较困难,无从下手.向量的几何运算主要包括向量加减法的几何运算,向量平行与垂直的充要条件及定比分点的向量式等,它们在处理平面几何的有关问题时,往往有其独到之处,教师可让学有余力的学生课下继续探讨,以提高学生的思维发散能力.
一、利用向量解决几何问题的进一步探讨
用平面向量的几何运算处理平面几何问题有其独到之处,特别是处理线段相等,线线平行,垂直,点共线,线共点等问题,往往简单明了,少走弯路,同时避免了复杂,烦琐的运算和推理,可以收到事半功倍的效果.现举几例以供教师、学生进一步探究使用.
1.简化向量运算
例1如图11所示,O为△ABC的外心,H为垂心,求证:=++.
图11
证明:如图11,作直径BD,交⊙O于点D.连接DA,DC,有=-,
且DA⊥AB,DC⊥BC,AH⊥BC,CH⊥AB,
故CH∥DA,AH∥DC,得四边形AHCD是平行四边形.
从而=.
又=-=+,
得=+=+,
即=++.
2.证明线线平行
例2如图12,在梯形ABCD中,E,F分别为腰AB,CD的中点.
求证:EF∥BC,且||=(||+||).
图12
证明:连接ED,EC,∵AD∥BC,可设=λ(λ>0),
又E,F是中点,∴+=0,
且=(+).
而+=+++
=+=(1+λ),
∴=,EF与BC无公共点.
∴EF∥BC.又λ>0,
∴||=(||+|λ|)=(||+||).
3.证明线线垂直
例3如图13,在△ABC中,由A与B分别向对边BC与CA作垂线AD与BE,且AD与BE交于H,连接CH,求证:CH⊥AB.
图13
证明:由已知AH⊥BC,BH⊥AC,
有·=0,·=0.
又=+,=+,
故有(+)·=0,
且(+)·=0,
两式相减,得·(-)=0,
即·=0,
∴⊥.
4.证明线共点或点共线
例4求证:三角形三中线共点,且该点到顶点的距离等于各该中线长的.
图14
已知:△ABC的三边中点分别为D,E,F(如图14).
求证:AE,BF,CD共点,且===.
证明:设AE,BF相交于点G,=λ1,
由定比分点的向量式有==+,
又F是AC的中点,=(+),
设=λ2,
则+=+,

∴= λ1=2,λ2=,即==.
又==(+2)
=·(+)=,
∴C,G,D共线,且===.
二、备用习题
1.有一边长为1的正方形ABCD,设=a,=b,=c,则|a-b+c|=________.
答案:2
2.已知|a|=2,|b|=,a与b的夹角为45°,则使λb-a与a垂直的λ=________.
答案:2
3.在等边△ABC中,=a,=b,=c,且|a|=1,则a·b+b·c+c·a=________.
答案:-
4.已知三个向量=(k,12),=(4,5),=(10,k),且A,B,C三点共线,则k=________.
答案:-2或11
5.如图15所示,已知矩形ABCD,AC是对角线,E是AC的中点,过点E作MN交AD于点M,交BC于点N,试运用向量知识证明AM=CN.
图15
答案:解:建立如图16所示的直角坐标系,设BC=a,BA=b,则C(a,0),A(0,b),E(,).
图16
又设M(x2,b),N(x1,0),则
=(x2,0),=(x1-a,0).
∵∥,=(-x2,-),=(x1-,-),
∴(-x2)×(-)-(x1-)×(-)=0.
∴x2=a-x1.
∴||==|x2|=|a-x1|=|x1-a|.
而||==|x1-a|,
∴||=||,即AM=CN.第二章第三节平面向量的基本定理及坐标表示第二课时
教学分析
1.前面学面向量的坐标表示,实际是平面向量的代数表示.在引入了平面向量的坐标表示后可使向量完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.
2.本小节主要是运用向量线性运算的交换律、结合律、分配律,推导两个向量的和的坐标、差的坐标以及数乘的坐标运算.推导的关键是灵活运用向量线性运算的交换律、结合律和分配律.
3.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,一个自然的想法是向量的某些关系,特别是向量的平行、垂直,是否也能通过坐标来研究呢?前面已经找出两个向量共线的条件(如果存在实数λ,使得a=λb,那么a与b共线),本节则进一步地把向量共线的条件转化为坐标表示.这种转化是比较容易的,只要将向量用坐标表示出来,再运用向量相等的条件就可以得出平面向量共线的坐标表示.要注意的是,向量的共线与向量的平行是一致的.
三维目标
1.通过经历探究活动,使学生掌握平面向量的和、差、实数与向量的积的坐标表示方法.理解并掌握平面向量的坐标运算以及向量共线的坐标表示.
2.引入平面向量的坐标可使向量运算完全代数化,平面向量的坐标成了数与形结合的载体.
3.在解决问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识.
重点难点
教学重点:平面向量的坐标运算.
教学难点:对平面向量共线的坐标表示的理解.
课时安排
1课时
导入新课
思路1.向量具有代数特征,与平面直角坐标系紧密相联.那么我们在学习直线和圆的方程以及点、直线、平面之间的位置关系时,直线与直线的平行是一种重要的关系.关于x、y的二元一次方程Ax+By+C=0(A、B不同时为零)何时所体现的两条直线平行?向量的共线用代数运算如何体现?
思路2.对于平面内的任意向量a,过定点O作向量=a,则点A的位置被向量a的大小和方向所唯一确定.如果以定点O为原点建立平面直角坐标系,那么点A的位置可通过其坐标来反映,从而向量a也可以用坐标来表示,这样我们就可以通过坐标来研究向量问题了.事实上,向量的坐标表示,实际是向量的代数表示.引入向量的坐标表示可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢?
推进新课
①我们研究了平面向量的坐标表示,现在已知a= x1,y1 ,b= x2,y2 ,你能得出a+b,a-b,λa的坐标表示吗?
②如图1,已知A x1,y1 ,B x2,y2 ,怎样表示的坐标?你能在图中标出坐标为 x2-x1,y2-y1 的P点吗?标出点P后,你能总结出什么结论?
活动:教师让学生通过向量的坐标表示来进行两个向量的加、减运算,教师可以让学生到黑板去板书步骤.可得:
图1
a+b=(x1i+y1j)+(x2i+y2j)=(x1+x2)i+(y1+y2)j,
即a+b=(x1+x2,y1+y2).
同理a-b=(x1-x2,y1-y2).
又λa=λ(x1i+y1j)=λx1i+λy1j.∴λa=(λx1,λy1).
教师和学生一起总结,把上述结论用文字叙述分别为:
两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.教师再引导学生找出点与向量的关系:将向量平移,使得点A与坐标原点O重合,则平移后的B点位置就是P点.向量的坐标与以原点为始点,点P为终点的向量坐标是相同的,这样就建立了向量的坐标与点的坐标之间的联系.
学生通过平移也可以发现:向量的模与向量的模是相等的.
由此,我们可以得出平面内两点间的距离公式:
||=||=.
教师对总结完全的同学进行表扬,并鼓励学生,只要善于开动脑筋,勇于创新,展开思维的翅膀,就一定能获得意想不到的收获.
讨论结果:①能.
②=-=(x2,y2)-(x1,y1)=(x2-x1,y2-y1).
结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.
①如何用坐标表示两个共线向量?
②若a= x1,y1 ,b= x2,y2 ,那么=是向量a、b共线的什么条件?
活动:教师引导学生类比直线平行的特点来推导向量共线时的关系.此处教师要对探究困难的学生给以必要的点拨:设a=(x1,y1),b=(x2,y2),其中b≠0.我们知道,a、b共线,当且仅当存在实数λ,使a=λb.如果用坐标表示,可写为(x1,y1)=λ(x2,y2),
即消去λ后得x1y2-x2y1=0.
这就是说,当且仅当x1y2-x2y1=0时向量a、b(b≠0)共线.
又我们知道x1y2-x2y1=0与x1y2=x2y1是等价的,但这与=是不等价的.因为当x1=x2=0时,x1y2-x2y1=0成立,但与均无意义.因此=是向量a、b共线的充分不必要条件.由此也看出向量的应用更具一般性,更简捷、实用,让学生仔细体会这点.
讨论结果:①x1y2-x2y1=0时,向量a、b(b≠0)共线.
②充分不必要条件.
a与非零向量b为共线向量的充要条件是有且只有一个实数λ使得a=λb,那么这个充要条件如何用坐标来表示呢?
活动:教师引导推证:设a=(x1,y1),b=(x2,y2),其中b≠a,
由a=λb,(x1,y1)=λ(x2,y2) 消去λ,得x1y2-x2y1=0.
讨论结果:a∥b(b≠0)的充要条件是x1y2-x2y1=0.
教师应向学生特别提醒感悟:
(1)消去λ时不能两式相除,∵y1、y2有可能为0,而b≠0,
∴x2、y2中至少有一个不为0.
(2)充要条件不能写成=(∵x1、x2有可能为0).
(3)从而向量共线的充要条件有两种形式:a∥b(b≠0)
思路1
例1已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.
活动:本例是向量代数运算的简单应用,让学生根据向量的线性运算进行向量的和、差及数乘的坐标运算,再根据向量的线性运算律和向量的坐标概念得出结论.若已知表示向量的有向线段的始点和终点坐标,那么终点的坐标减去始点的坐标就是此向量的坐标,从而使得向量的坐标与点的坐标可以相互转化.可由学生自己完成.
解:a+b=(2,1)+(-3,4)=(-1,5);
a-b=(2,1)-(-3,4)=(5,-3);
3a+4b=3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).
点评:本例是平面向量坐标运算的常规题,目的是熟悉平面向量的坐标运算公式.
变式训练已知平面向量a=(1,1),b=(1,-1),则向量a-b等于(
)A.(-2,-1)
B.(-2,1)C.(-1,0)
D.(-1,2)答案:D
例2如图2,已知ABCD的三个顶点A、B、C的坐标分别是(-2,1)、(-1,3)、(3,4),试求顶点D的坐标.
图2
活动:本例的目的仍然是让学生熟悉平面向量的坐标运算.这里给出了两种方法:方法一利用“两个向量相等,则它们的坐标相等”,解题过程中应用了方程思想;方法二利用向量加法的平行四边形法则求得向量的坐标,进而得到点D的坐标.解题过程中,关键是充分利用图形中各线段的位置关系(主要是平行关系),数形结合地思考,将顶点D的坐标表示为已知点的坐标.
解:方法一:如图2,设顶点D的坐标为(x,y).
∵=(-1-(-2),3-1)=(1,2),=(3-x,4-y).
由=,得(1,2)=(3-x,4-y).


∴顶点D的坐标为(2,2).
方法二:如图2,由向量加法的平行四边形法则,可知
=+=+=(-2-(-1),1-3)+(3-(-1),4-3)=(3,-1),
而=+=(-1,3)+(3,-1)=(2,2),
∴顶点D的坐标为(2,2).
点评:本例的目的仍然是让学生熟悉平面向量的坐标运算.
变式训练如图3,已知平面上三点的坐标分别为A(-2,1),B(-1,3),C(3,4),求点D的坐标,使这四点构成平行四边形四个顶点.图3解:当平行四边形为ABCD1时,仿例2得:D1=(2,2);当平行四边形为ACD2B时,仿例2得:D2=(4,6);当平行四边形为D3ACB时,仿例2得:D3=(-6,0).
例3已知A(-1,-1),B(1,3),C(2,5),试判断A、B、C三点之间的位置关系.
活动:教师引导学生利用向量的共线来判断.首先要探究三个点组合成两个向量,然后根据两个向量共线的充要条件来判断这两个向量是否共线从而来判断这三点是否共线.教师引导学生进一步理解并熟练地运用向量共线的坐标形式来判断向量之间的关系.让学生通过观察图象领悟先猜后证的思维方式.
解:在平面直角坐标系中作出A、B、C三点,观察图形,我们猜想A、B、C三点共线.下面给出证明.
∵=(1-(-1),3-(-1))=(2,4),=(2-(-1),5-(-1))=(3,6),
又2×6-3×4=0,
∴∥,且直线AB、直线AC有公共点A,
∴A、B、C三点共线.
点评:本例的解答给出了判断三点共线的一种常用方法,其实质是从同一点出发的两个向量共线,则这两个向量的三个顶点共线.这是从平面几何中判断三点共线的方法移植过来的.
变式训练已知a=(4,2),b=(6,y),且a∥b,求y.解:∵a∥b,∴4y-2×6=0.∴y=3.
思路2
例1设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1)、(x2,y2).
(1)当点P是线段P1P2的中点时,求点P的坐标;
(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.
活动:教师充分让学生思考,并提出这一结论可以推广吗?即当=λ时,点P的坐标是什么?师生共同讨论,一起探究,可按照求中点坐标的解题思路类比推广,有的学生可能提出如下推理方法:
设P(x,y),由=λ,
知(x-x1,y-y1)=λ(x2-x,y2-y),

这就是线段的定比分点公式,教师要给予充分肯定,鼓励学生的这种积极探索,这是学习数学的重要品质.时间允许的话,可以探索λ的取值符号对P点位置的影响,也可鼓励学生课后探索.
解:(1)如图4,由向量的线性运算可知
图4
=(+)=(,),
所以点P的坐标是(,).
(2)如图5,当点P是线段P1P2的一个三等分点时,有两种情况,即=或=2.
如果=(图5(1)),那么
图5
=+=+
=+(-)
=+
=(,),
即点P的坐标是(,).
同理,如果=2(图5(2)),那么点P的坐标是(,).
点评:本例实际上给出了线段的中点坐标公式和线段的三等分点坐标公式.
变式训练在△ABC中,已知点A(3,7)、B(-2,5).若线段AC、BC的中点都在坐标轴上,求点C的坐标.解:(1)若AC的中点在y轴上,则BC的中点在x轴上,设点C的坐标为(x,y),由中点坐标公式,得=0,=0,∴x=-3,y=-5,即C点坐标为(-3,-5).(2)若AC的中点在x轴上,则BC的中点在y轴上,则同理可得C点坐标为(2,-7).综合(1)(2),知C点坐标为(-3,-5)或(2,-7).
例2已知点A(1,2),B(4,5),O为坐标原点,=+t.若点P在第二象限,求实数t的取值范围.
活动:教师引导学生利用向量的坐标运算以及向量的相等,把已知条件转化为含参数的方程(组)或不等式(组)再进行求解.教师以提问的方式来了解学生组织步骤的能力,或者让学生到黑板上去板书解题过程,并对思路清晰过程正确的同学进行表扬,同时也要对组织步骤不完全的同学给予提示和鼓励.教师要让学生明白“化归”思想的利用.不等式求变量取值范围的基本观点是:将已知条件转化为关于变量的不等式(组),那么变量的取值范围就是这个不等式(组)的解集.
解:由已知=(4,5)-(1,2)=(3,3).
∴=(1,2)+t(3,3)=(3t+1,3t+2).
若点P在第二象限,则 -故t的取值范围是(-,-).
点评:此题通过向量的坐标运算,将点P的坐标用t表示,由点P在第二象限可得到一个关于t的不等式组,这个不等式组的解集就是t的取值范围.
课本本节练习.
解答:
1.(1)a+b=(3,6),a-b=(-7,2);(2)a+b=(1,11),a-b=(7,-5);
(3)a+b=(0,0),a-b=(4,6);(4)a+b=(3,4),a-b=(3,-4).
2.-2a+4b=(-6,-8),4a+3b=(12,5).
3.(1)=(3,4),=(-3,-4);(2)=(9,-1),=(-9,1);
(3)=(0,2),=(0,-2);(4)=(5,0),=(-5,0).
4.AB∥CD.
证明:=(1,-1),=(1,-1),所以=.所以AB∥CD.
点评:本题有两个要求:一是判断,二是证明.通过作图发现规律,提出猜想,然后再证明结论是一个让学生经历数学化的过程.
5.(1)(3,2);(2)(1,4);(3)(4,-5).
6.(,1)或(,-1).
7.解:设P(x,y),由点P在线段AB的延长线上,且||=||,得
(x-2,y-3)=(x-4,y+3),即解之,得
所以点P的坐标为(8,-15).
点评:本题希望通过向量方法求解,培养学生应用向量的意识.
1.先由学生回顾本节都学习了哪些数学知识:平面向量的和、差、数乘的坐标运算,两个向量共线的坐标表示.
2.教师与学生一起总结本节学习的数学方法,定义法、归纳、整理、概括的思想,强调在今后的学习中,要善于培养自己不断探索、善于发现、勇于创新的科学态度和求实开拓的精神,为将来的发展打下良好基础.
课本习题2.3
A组5、6.
1.本节课中向量的坐标表示及运算实际上是向量的代数运算.这对学生来说学习并不困难,可大胆让学生自己探究.本教案设计流程符合新课改精神.教师在引导学生探究时,始终抓住向量具有几何与代数的双重属性这一特征和向量具有数与形紧密结合的特点.让学生在了解向量知识网络结构基础上,进一步熟悉向量的坐标表示以及运算法则、运算律,能熟练向量代数化的重要作用和实际生活中的应用,并加强数学应用意识,提高分析问题、解决问题的能力.
2.平面向量的坐标运算包括向量的代数运算与几何运算.相比较而言,学生对向量的代数运算要容易接受一些,但对向量的几何运算往往感到比较困难,无从下手.向量的几何运算主要包括向量加减法的几何运算,向量平行与垂直的充要条件及定比分点的向量式等.
3.通过平面向量坐标的加、减代数运算,结合图形,不但可以建立向量的坐标与点的坐标之间的联系,而且教师可在这两题的基础上稍作推广,就可通过求向量的模而得到直角坐标系内的两点间的距离公式甚至可以推出中点坐标公式.它们在处理平面几何的有关问题时,往往有其独到之处,教师可让学有余力的学生课下继续探讨,以提高学生的思维发散能力.
一、求点P分有向线段所成的比的几种求法
(1)定义法:根据已知条件直接找到使=λ的实数λ的值.
例1已知点A(-2,-3),点B(4,1),延长AB到P,使||=3||,求点P的坐标.
解:因为点在AB的延长线上,P为的外分点,所以=λ,λ<0,又根据||=3||,可知λ=-3,由分点坐标公式易得P点的坐标为(7,3).
(2)公式法:依据定比分点坐标公式.
x=,y=,结合已知条件求解λ.
例2已知两点P1(3,2),P2(-8,3),求点P(,y)分所成的比λ及y的值.
解:由线段的定比分点坐标公式,得
解得
二、备用习题
1.已知a=(3,-1),b=(-1,2),则-3a-2b等于(
)
A.(7,1)
B.(-7,-1)
C.(-7,1)
D.(7,-1)
答案:B
2.已知A(1,1),B(-1,0),C(0,1),D(x,y),若和是相反向量,则D点的坐标是(
)
A.(-2,0)
B.(2,2)
C.(2,0)
D.(-2,-2)
答案:B
3.若点A(-1,-1),B(1,3),C(x,5)共线,则使=λ的实数λ的值为(
)
A.1
B.-2
C.0
D.2
答案:D
4.若A(2,3),B(x,4),C(3,y),且=2,则x=________,y=________.
答案:4
5.已知ABCD中,=(3,7),=(-2,1),则的坐标(O为对角线的交点)为________.
答案:(-,-4)
6.向量=(k,12),=(4,5),=(10,k),当k为何值时,A、B、C三点共线?
答案:解:∵=(k,12),=(4,5),=(10,k),
∴=-=(4-k,-7),=-=(6,k-5).
∵∥,
∴(4-k)(k-5)+7×6=0.
∴k2-9k-22=0.
解得k=11或k=-2.
7.已知点A(2,3),B(5,4),C(7,10),若=+λ(λ∈R),试问:当λ为何值时,点P在第一与第三象限的角平分线上?当λ在什么范围内取值时,点P在第三象限内?
答案:解:∵=(3,1),=(5,7),
∴+λ=(3+5λ,1+7λ),而=+λ(已知),
∴=+=(2,3)+(3+5λ,1+7λ)=(5+5λ,4+7λ).
(1)若点P在第一与第三象限的角平分线上,则5+5λ=4+7λ λ=;
(2)若点P在第三象限内,则 λ∈(-∞,-1).