【人教A版】2017-2018学年高中数学选修4-1学业分层测评打包(Word版,含答案)

文档属性

名称 【人教A版】2017-2018学年高中数学选修4-1学业分层测评打包(Word版,含答案)
格式 zip
文件大小 4.4MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2017-11-14 16:48:06

文档简介

章末综合测评(一)
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.如图1,已知DE∥BC,EF∥AB,现得到下列式子:
图1
①=;②=;③=;④=.
其中正确式子的个数有(  )
A.4个    B.3个
C.2个 D.1个
【解析】 由平行线分线段成比例定理知,①②④正确.故选B.
【答案】 B
2.如图2,DE∥BC,S△ADE∶S四边形DBCE=1∶8,则AD∶DB的值为(  )
【导学号:07370024】
图2
A.1∶4 B.1∶3
C.1∶2 D.1∶5
【解析】 由S△ADE∶S四边形DBCE=1∶8,得S△ADE∶S△ABC=1∶9,
∵DE∥BC,
∴△ADE∽△ABC.
∵2==,
∴=,
∴AD∶DB=1∶2.
【答案】 C
3.如图3所示,将△ABC的高AD三等分,过每一分点作底面平行线,这样把三角形分成三部分,则这三部分的面积为S1,S2,S3,则S1∶S2∶S3等于(  )
图3
A.1∶2∶3 B.2∶3∶4
C.1∶3∶5 D.3∶5∶7
【解析】 如图所示,E,F分别为△ABC高AD的三等分点,过点E作BC的平行线交AB,AC于点M,N,过点F作BC的平行线交AB,AC于点G,H.△AMN∽△ABC,=,∴S1=S△ABC.
又△AGH∽△ABC,=,S△AGH=S1+S2,
∴S1+S2=S△ABC,
∴S2=S△ABC,∴S3=S△ABC,
∴S1∶S2∶S3=1∶3∶5,故选C.
【答案】 C
4.如图4,在△ABC中,AB=AC,D在AB上,E在AC的延长线上,BD=3CE,DE交BC于F,则DF∶FE等于(  )
图4
A.5∶2 B.2∶1
C.3∶1 D.4∶1
【解析】 过D作DG∥AC,交
BC于G,
则DG=DB=3CE,
即CE∶DG=1∶3.
易知△DFG∽△EFC,
∴DF∶FE=DG∶CE,
所以DF∶FE=3∶1.
【答案】 C
5.如图5所示,梯形ABCD的对角线交于点O,则下列四个结论:
图5
①△AOB∽△COD;
②△AOD∽△ACB;
③S△DOC∶S△AOD=CD∶AB;
④S△AOD=S△BOC.
其中正确的个数为(  )
A.1 B.2
C.3    D.4
【解析】 ∵DC∥AB,∴△AOB∽△COD,①正确.由①知,=.S△DOC∶S△AOD=OC∶OA=CD∶AB,③正确.
∵S△ADC=S△BCD,
∴S△ADC-S△COD=S△BCD-S△COD,
∴S△AOD=S△BOC,④正确.
故①③④正确.
【答案】 C
6.如图6所示,铁道口的栏杆短臂长1 m,长臂长16 m,当短臂端点下降0.5 m时,长臂端点升高(  )
图6
A.11.25 m B.6.6 m
C.8 m D.10.5 m
【解析】 本题是一个实际问题,可抽象为如下数学问题:如图,等腰△AOC∽等腰△BOD,OA=1 m,OB=16 m,高CE=0.5 m,求高DF.由相似三角形的性质可得OA∶OB=CE∶DF,即1∶16=0.5∶DF,解得DF= 8 m.
【答案】 C
7.如图7所示,在矩形ABCD中,AE⊥BD于E,S矩形=40 cm2,S△ABE∶S△DBA=1∶5,则AE的长为(  )
图7
A.4 cm B.5 cm
C.6 cm D.7 cm
【解析】 ∵∠BAD=90°,AE⊥BD,
∴△ABE∽△DBA.
∴S△ABE∶S△DBA=AB2∶DB2.
∵S△ABE∶S△DBA=1∶5,
∴AB2∶DB2=1∶5,
∴AB∶DB=1∶.
设AB=k,DB=k,则AD=2k.
∵S矩形=40 cm2,∴k·2k=40,
∴k=2,
∴BD=k=10,AD=4,
S△ABD=BD·AE=20,即×10·AE=20,
∴AE=4 cm.
【答案】 A
8.如图8,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是 △ABC的面积的一半,若AB=,则此三角形移动的距离AA′是(  ) 【导学号:07370025】
图8
A.-1 B.
C.1 D.
【解析】 由题意可知,阴影部分与△ABC相似,且等于△ABC面积的,∴A′B∶AB==1∶.
又∵AB=,∴A′B=1,
∴AA′=-1.
【答案】 A
9.如图9所示,在Rt△ABC中,∠A=30°,∠C=90°,CD⊥AB于D,则BD∶AD=(  )
图9
A.      B.
C. D.
【解析】 设CD=,则AD=3,BD=1,∴=.
【答案】 A
10.已知圆的直径AB=13,C为圆上一点,过C作CD⊥AB于D(AD>BD),若CD=6,则AD的长为(  )
A.8 B.9
C.10 D.11
【解析】 如图,连接AC,CB.
∵AB是⊙O的直径,
∴∠ACB=90°.
设AD=x,∵CD⊥AB于D,
由射影定理得CD2=AD·DB,
即62=x(13-x),∴x2-13x+36=0,
解得x1=4,x2=9.
∵AD>BD,∴AD=9.
【答案】 B
11.某社区计划在一块上、下底边长分别是10米,20米的梯形空地上种植花木(如图10所示),他们想在△AMD和△BMC地带种植单价为10元/米2的太阳花,当△AMD地带种满花后,已经花了500元,请你预算一下,若继续在△BMC地带种植同样的太阳花,还需资金(  )
图10
A.500元 B.1 500元
C.1 800元 D.2 000元
【解析】 在梯形ABCD中,AD∥BC,∴△AMD∽△BMC,
AD=10 m,BC=20 m,
=2=,
∵S△AMD=500÷10=50(m2),∴S△BMC=200 m2,
则还需要资金200×10=2 000(元).
【答案】 D
12.如图11所示,将一个矩形纸片BADC沿AD和BC的中点连线EF对折,要使矩形AEFB与原矩形相似,则原矩形的长与宽的比应为(  )
图11
A.1∶ B.1∶
C.∶1 D.∶1
【解析】 ∵矩形AEFB∽矩形ABCD,∴BF∶AB=AB∶AD.
∵BF=AD,∴AB2=AD2,∴AD∶AB=∶1.
【答案】 C
二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题中横线上)
13.如图12,已知DE∥BC,且BF∶EF=4∶3,则AC∶AE=________.
图12
【解析】 ∵DE∥BC,
∴=,
同理=,
∴===.
【答案】 4∶3
14.如图13,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于________米. 【导学号:07370026】
图13
【解析】 如图,GC⊥BC,AB⊥BC,∴GC∥AB.
∴△GCD∽△ABD,∴=.
设BC=x,则=,同理,得=.
∴=,∴x=3,∴=,
∴AB=6(米).
【答案】 6
15.如图14所示,在△ABC中,AD是BC边上的中线,BE是AC边上的中线,且AD,BE交于点G,那么=________.
图14
【解析】 ∵AD,BE是△ABC的中线,且AD交BE于G,
∴G是△ABC的重心,∴=,
∴=,
又∵D为BC的中点,∴=,∴=.
【答案】 
16.如图15,在矩形ABCD中,AB=,BC=3,BE⊥AC,垂足为E,则DE=________.
图15
【解析】 法一:因为AB=,BC=3,所以AC==2,tan ∠BAC==,所以∠BAC=.在Rt△BAE中,AE=ABcos =,则CE=2-=.在△ECD中,DE2=CE2+CD2-2CE·CDcos ∠ECD=2+()2-2×××=,故DE=.
法二:如图,作EM⊥AB交AB于点M,作EN⊥AD交AD于点N.因为AB=,BC=3,所以tan ∠BAC==,则∠BAC=,AE=ABcos =,NE=AM=AEcos=×=,AN=ME=AEsin =×=,ND=3-=.在Rt△DNE中,DE===.
【答案】 
三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)如图16,点E是四边形ABCD的对角线上一点,且∠BAC=∠BDC=∠DAE.
图16
(1)求证:BE·AD=CD·AE;
(2)根据图形的特点,猜想可能等于哪两条线段的比(只写出图中一组比即可)?并证明你的猜想.
【解】 (1)证明:∵∠BAC=∠DAE,
∴∠BAE=∠DAC.
∵∠DAE=∠BDC,∴∠AEB=∠ADC,
∴△ABE∽△ACD,∴=,
即BE·AD=CD·AE.
(2)猜想:=.
证明:∵由(1)△ABE∽△ACD,∴=,
又∵∠BAC=∠EAD,∴△BAC∽△EAD,
∴=.
18.(本小题满分12分)如图17,已知正方形ABCD的边长为4,P为AB上的一点,且AP∶PB=1∶3,PQ⊥PC,试求PQ的长.
图17
【解】 ∵PQ⊥PC,
∴∠APQ+∠BPC=90°,
∴∠APQ=∠BCP,
∴Rt△APQ∽Rt△BCP.
∵AB=4,AP∶PB=1∶3,
∴PB=3,AP=1,∴=,
即AQ===,
∴PQ== =.
19.(本小题满分12分)在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD·DC,求∠BCA的度数.
【解】 (1)当AD在△ABC内部时,如图(1),由AD2=BD·DC,可得△ABD∽△CAD.
∴∠BCA=∠BAD=65°;
(2)当AD在△ABC外部时,如图(2),
由AD2=BD·DC,得△ABD∽△CAD,
∴∠B=∠CAD=25°,
∴∠BCA=∠CAD+∠ADC=25°+90°=115°.
故∠BCA等于65°或115°.
20.(本小题满分12分)如图18所示,CD为Rt△ABC斜边AB边上的中线,CE⊥CD,CE=,连接DE交BC于点F,AC=4,BC=3.求证:
图18
(1)△ABC∽△EDC;
(2)DF=EF.
【证明】 (1)在Rt△ABC中,AC=4,BC=3,则AB=5.
∵D为斜边AB的中点,
∴AD=BD=CD=AB=2.5,
∴===,∴△ABC∽△EDC.
(2)由(1)知,∠B=∠CDF,
∵BD=CD,∴∠B=∠DCF,
∴∠CDF=∠DCF.
∴DF=CF.①
由(1)知,∠A=∠CEF,∠ACD+∠DCF=90°,∠ECF+∠DCF=90°,
∴∠ACD=∠ECF.由AD=CD,得∠A=∠ACD.
∴∠ECF=∠CEF,
∴CF=EF.②
由①②,知DF=EF.
21.(本小题满分12分)已知在等腰梯形ABCD中,AD∥BC,直线MN是梯形的对称轴,P是MN上的一点,直线BP交直线DC于F,交CE于E,且CE∥AB.
(1)若点P在梯形内部,如图19(1).
求证:BP2=PE·PF.
(2)若点P在梯形的外部,如图19(2),那么(1)的结论是否成立?若成立,请证明;若不成立,请说明理由.
(1)      (2)
图19
【解】 (1)证明:连接PC,因为MN是梯形ABCD的对称轴,所以PB=PC,
∠PBC=∠PCB.
因为梯形ABCD是等腰梯形,
所以∠ABC=∠DCB,
即∠ABP+∠PBC=∠PCB+∠DCP,
所以∠ABP=∠DCP.
又因为CE∥AB,所以∠E=∠ABP=∠DCP,
而∠CPE=∠FPC,所以△CPE∽△FPC.
所以=,即PC2=PE·PF,
又因为PC=BP,所以BP2=PE·PF.
(2)结论成立.证明如下:
连接PC,
由对称性知PB=PC,
所以∠PBC=∠PCB.
因为梯形ABCD是等腰梯形,
所以∠ABC=∠DCB,
所以∠ABC+∠PBC=∠DCB+∠PCB,
即∠ABP=∠DCP.
因为CE∥AB,所以∠ABP+∠PEC=180°,而∠DCP+∠PCF=180°,
所以∠PEC=∠PCF.又因为∠EPC=∠CPF,所以△EPC∽△CPF.
所以=,即PC2=PE·PF,
所以BP2=PE·PF.
22.(本小题满分12分)如图20,在△ABC中,AC=BC,F为底边AB上的一点,=(m,n>0).取CF的中点D,连接AD并延长交BC于E.
图20
(1)求的值;
(2)如果BE=2EC,那么CF所在的直线与边AB有怎样的位置关系?证明你的结论;
(3)E点能否为BC中点?如果能,求出相应的的值;如果不能,证明你的结论.
【导学号:07370027】
【解】 (1)如图所示,作CG∥AB交AE的延长线于G.
在△GCD与△AFD中,
∠G=∠FAD,∠CDG=∠FDA,DC=DF,
∴△GCD≌△AFD,∴GC=AF.
在△ABE和△GCE中,
∠BAE=∠G,∠AEB=∠GEC,
∴△ABE∽△GCE.∵=(m,n>0),
∴===+1=+1.
(2)∵BE=2EC,∴=2.
由(1)知=+1,∴=1.
∴BF=AF,F为AB的中点.
∵AC=BC,∴CF⊥AB,∴CF所在的直线垂直平分边AB.
(3)不能.∵=+1,而>0,∴>1,
∴BE>EC.
∴E不能为BC的中点.
章末综合测评(三)
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.如图1,已知AB∥A′B′,BC∥B′C′,那么下列比例式成立的是(  )
图1
A.=
B.=
C.=
D.=
【解析】 ∵AB∥A′B′∴=.同理=,
∴=,∴A不成立.
==,∴=,∴B成立.
由于=,∴AC∥A′C′,
∴=,∴C不成立.
==,∴D不成立.
【答案】 B
2.PAB为过圆心O的割线,且PA=OA=4,PCD为⊙O的另一条割线,且PC=CD,则PC长为(  ) 【导学号:07370057】
A.4     B.    
C.24     D.2
【解析】 由题意知PA·PB=PC·PD,
设PC=x,则PD=2x,
∴2x·x=4×12,∴x=2,即PC=2.
【答案】 D
3.如图2,∠ACB=90°,CD⊥AB于D,AD=3,CD=2,则的值为(  )
图2
A.       B.
C. D.
【解析】 由题意得,CD2=AD·BD,
∴BD=.又AC2=AD·AB,BC2=BD·AB,
则==,故=.
【答案】 A
4.如图3,⊙O内切于△ABC,切点分别为D,E,F.已知∠B=50°,∠C=60°,连接OE,OF,DE,DF,那么∠EDF等于(  )
图3
A.40° B.55°
C.65° D.70°
【解析】 ∵∠B=50°,∠C=60°,∴∠A=70°,∴∠EOF=110°,∴∠EDF=55°.
【答案】 B
5.如图4,四边形BDEF是平行四边形,如果CD∶DB=2∶3,那么S?BDEF是S△ABC的(  )
图4
A. B.
C. D.
【解析】 因为DE∥AB,所以△CDE∽△ABC,
所以=2.
又CD∶DB=2∶3,所以CD∶CB=2∶5,
所以=2=2=,
所以S△CDE=S△ABC.
因为DE∥AB,所以==,所以=.
同理,S△AFE=S△ABC.
所以S?BDEF=S△ABC-S△AFE-S△EDC
=S△ABC-S△ABC-S△ABC=S△ABC.
【答案】 D
6.如图5,点C在以AB为直径的半圆上,连接AC,BC,AB=10,tan∠BAC=,则阴影部分的面积为(  )
图5
A.π B.π-24
C.24 D.+24
【解析】 ∵AB为直径,∴∠ACB=90°.
∵tan∠BAC=,∴sin∠BAC=.
又∵sin∠BAC=,AB=10,
∴BC=×10=6,AC=×BC=×6=8,
∴S阴影=S半圆-S△ABC=×π×52-×8×6=π-24.
【答案】 B
7.如图6,用与底面成30°角的平面截圆柱得一椭圆截线,则该椭圆的离心率为(  )
图6
A.     B.
C. D.非上述结论
【解析】 用平面截圆柱,椭圆截线的短轴长为圆柱截面圆的直径,且椭圆所在平面与底面成30°角,则离心率e=sin 30°=.
【答案】 A
8.如图7,四边形ABCD内接于⊙O,BC是直径,AD=DC,∠ADB=20°,则∠ACB,∠DBC分别为(  )
图7
A.15°与30° B.20°与35°
C.20°与40° D.30°与35°
【解析】 ∵∠ADB=20°,
∴∠ACB=∠ADB=20°.
又∵BC为⊙O的直径,
∴的度数为180°-40°=140°.
∵D为的中点,∴的度数为70°,
∴∠DBC==35°.
【答案】 B
9.如图8,AB,CD是圆O的两条弦,且AB是线段CD的中垂线,已知AB=6,CD=2,则线段AC的长度为(  )
图8
A.5 B.
C. D.3
【解析】 连接BC,∵AB垂直平分CD,
∴CP2=AP·PB.设PB=x,则AP=6-x,
∴x(6-x)=5,∴x1=1,x2=5(由题图可知,不合题意,舍去),即AP=5.
又CP==,∴AC==.
【答案】 C
10.如图9,E,C分别是∠A两边上的点,以CE为直径的⊙O交∠A的两边于点D,点B,若∠A=45°,则△AEC与△ADB的面积比为(  )
图9
A.2∶1      B.1∶2
C.∶1 D.∶1
【解析】 连接BE,求△AEC与△ABD的面积比,即求AE2∶AB2的值.设AB=a,∵∠A=45°,
CE为⊙O的直径,∴∠CBE=∠ABE=90°,
∴BE=AB=a,∴AE=a,
∴AE2∶AB2=2a2∶a2,
即AE2∶AB2=2∶1,∴S△AEC∶S△ABD=2∶1.
【答案】 A
11.如图10所示,球O与圆柱的上、下底面以及侧面均相切,用一平面去截圆柱和球,得到的截面图有可能是(  )
图10
A.①②④ B.①②③
C.②③④ D.①②③④
【解析】 如图所示,连接AB,AB为圆柱的轴,当平面与AB垂直且过AB中点时,截得图形是图①.当平面与AB垂直不过AB中点时,截得图形是两个同心圆,是图②.当平面经过轴AB时,截得的图形是图③.当平面与轴AB不垂直且平面与圆柱的侧面有交线时,截得的图形是图④.故有可能的图形是①②③④.
【答案】 D
12.如图11,已知△ABC中,=,=,AD,BE交于F,则·的值为(  )
图11
A. B.
C. D.
【解析】 过D作DG∥BE交AC于G.
∵=,∴=,
∴==,
∴DG=BE.
又==,∴EG=EC.
又=,∴EC=AE,
∴==
==,
∴FE=DG=×BE=BE,
∴=,==,
∴·=×=.
【答案】 C
二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题中横线上)
13.如图12,点E,F分别在AD,BC上,已知CD=2,EF=3,AB=5,若EF∥CD∥AB, 则等于________.
【导学号:07370058】
图12
【解析】 如图,过C作CH∥DA交EF于G,交AB于H,则EG=AH=DC=2,GF=1,BH=3.
∵GF∥HB,∴==,∴=.
【答案】 
14.(2016·重庆七校联盟联考)如图13,半径为4的圆O中,∠AOB=90°,D为OB的中点,AD的延长线交圆O于点E,则线段DE的长为________.
图13
【解析】 延长BO交圆O于点F,则DF=6,BD=2.由勾股定理得:AD==2.
由相交弦定理得:AD·DE=FD·DB,所以2·DE=12?DE==.
【答案】 
15.一平面与半径为4的圆柱面相截,截面的Dandelin双球的球心距离为12,则截线椭圆的离心率e=________.
【解析】 依题意,Dandelin双球球心距离即为圆柱母线长,
∴2a=12,∴a=6.又b=r=4,
∴c===2,
∴椭圆的离心率e===.
【答案】 
16.如图14,已知△ABC中,边AC上一点F分AC为=,BF上一点G分BF为=,AG的延长线与BC交于点E,则BE∶EC=________.
图14
【解析】 过F作FD∥AE交BC于D,如图所示,
则==,==,故CD=DE,BE=DE,EC=CD+DE=DE+DE=DE,
从而=.
【答案】 3∶5
三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)(2016·唐山二模)如图15所示,AC为⊙O的直径,D为的中点,E为BC的中点.
图15
(1)求证:AB∥DE;
(2)求证:2AD·CD.=AC·BC.
【证明】 (1)连接BD,因为D为的中点,所以BD=DC.
因为E为BC的中点,所以DE⊥BC.
因为AC为圆的直径,所以∠ABC=90°,
所以AB∥DE.
(2)因为D为的中点,所以∠BAD=∠DAC,
又∠BAD=∠DCB,则∠DAC=∠DCB.
又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD,
所以=,AD·CD=AC·CE,2AD·CD=AC·2CE,
因此2AD·CD=AC·BC.
18.(本小题满分12分)如图16,AB为⊙O的直径,AD,BC是⊙O的切线,DC切⊙O于E,并与AD,BC分别交于D,C两点,BD与AC交于点F,求证:FE∥AD.
图16
【证明】 ∵AB为⊙O的直径,AD,BC是⊙O的切线,
∴AD⊥AB,BC⊥AB,
∴AD∥BC,∴=.
∵DC与⊙O切于E,并与AD,BC分别交于D,C两点,
∴AD=DE,BC=CE,
∴=,∴FE∥AD.
19.(本小题满分12分)如图17,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB交圆O2于点C(O1不在AB上).求证:AB∶AC为定值.
图17
【证明】 连接AO1,并延长分别交两圆于点E和点D,连接BD,CE.
因为圆O1与圆O2内切于点A,所以点O2在AD上.故AD,AE分别为圆O1,圆O2的直径.
从而∠ABD=∠ACE=,所以BD∥CE,
于是===,
所以AB∶AC为定值.
20.(本小题满分12分)如图18所示,已知⊙O1与⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1,⊙O2于点D,E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
图18
【解】 (1)证明:连接AB,
∵AC是⊙O1的切线,∴∠BAC=∠D,
又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.
(2)设BP=x,PE=y,
∵PA=6,PC=2,∴xy=12.①
∵AD∥EC,∴=?=.②
由①②得,或(舍去),
∴DE=9+x+y=16.
∵AD是⊙O2的切线,
∴AD2=DB·DE=9×16,∴AD=12.
21.(本小题满分12分)如图19,已知⊙O和⊙M相交于A,B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为中点,连接AG分别交⊙O,BD于点E,F,连接CE.
求证:(1)AG·EF=CE·GD;
(2)=.
图19
【证明】 (1)如图,连接AB,AC,
∵AD为⊙M的直径,∴∠ABD=90°,
∴∠ABC=90°,∴AC为⊙O的直径,
∴∠CEF=∠AGD.
∵∠DFG=∠CFE,∴∠ECF=∠GDF.
∵G为弧BD的中点,∴∠DAG=∠GDF,
∴∠DAG=∠ECF,∴△CEF∽△AGD,
∴=,∴AG·EF=CE·GD.
(2)由(1)知∠DAG=∠GDF,∠G=∠G,
∴△DFG∽△ADG,∴DG2=AG·GF,
由(1)知=,∴=.
22.(本小题满分12分)如图20,已知AD为圆O的直径,直线BA与圆O相切于点A,直线OB与弦AC垂直并相交于点G,与弧AC相交于M,连接DC,AB=10,AC=12.
(1)求证:BA·DC=GC·AD;
(2)求BM.
图20
【解】 (1)证明:因为AC⊥OB,所以∠AGB=90°.
又AD是圆O的直径,所以∠DCA=90°,
又因为∠BAG=∠ADC(弦切角等于同弧所对圆周角),
所以△AGB∽△DCA,所以=.
又因为OG⊥AC,所以GC=AG,
所以=,即BA·DC=GC·AD.
(2)因为AC=12,所以AG=6.
因为AB=10,所以BG==8,
由(1)知,Rt△AGB∽Rt△DCA,所以=,
所以AD=15,即圆的直径2r=15.
又因为AB2=BM·(BM+2r),即BM2+15BM-100=0,
解得BM=5.
学业分层测评(一)
(建议用时:45分钟)
[学业达标]
一、选择题
1.如图1-1-13,已知l1∥l2∥l3,AB,CD相交于l2上一点O,且AO=OB,则下列结论中错误的是(  )
图1-1-13
A.AC=BD B.AE=ED
C.OC=OD D.OD=OB
【解析】 由l1∥l2∥l3知AE=ED,OC=OD,
由△AOC≌△BOD知AC=BD,
但OD与OB不能确定其大小关系.
故选D.
【答案】 D
2.如图1-1-14,已知AE⊥EC,CE平分∠ACB ,DE∥BC,则DE等于(  )
【导学号:07370003】
图1-1-14
A.BC-AC
B.AC-BF
C.(AB-AC)
D.(BC-AC)
【解析】 由已知得CE是线段AF的垂直平分线.
∴AC=FC,AE=EF.
∵DE∥BC,
∴DE是△ABF的中位线,
∴DE=BF=(BC-AC).
【答案】 D
3.如图1-1-15所示,过梯形ABCD的腰AD的中点E的直线EF平行于底边,交BC于F,若AE的长是BF的长的,则FC是ED的(  )
图1-1-15
A.倍 B.倍
C.1倍 D.倍
【解析】 ∵AB∥EF∥DC,且AE=DE,
∴BF=FC.又∵AE=BF,
∴FC=ED.
【答案】 B
4.如图1-1-16,在梯形ABCD中,E为AD的中点,EF∥AB,EF=30 cm,AC交EF于G,若FG-EG=10 cm,则AB=(  )
图1-1-16
A.30 cm B.40 cm
C.50 cm D.60 cm
【解析】 由平行线等分线段定理及推论知,点G,F分别是线段AC,BC的中点,则
EG=DC,FG=AB,

解得
【答案】 B
5.如图1-1-17,在梯形ABCD中,AD∥BC,E为BC中点,且AE∥DC,AE交BD于点F,过点F的直线交AD的延长线于点M,交CB的延长线于点N,则FM与FN的关系为(  )
图1-1-17
A.FM>FN   B.FMC.FM=FN D.不能确定
【解析】 ∵AD∥BC,AE∥DC,
∴四边形AECD是平行四边形.
∴AD=EC=BC,
即BE=EC=AD.
∴△ADF≌△EBF,
∴AF=FE,
∴△AFM≌△EFN,
∴FM=FN.
【答案】 C
二、填空题
6.如图1-1-18所示,在梯形ABCD中,AD∥BC,AD=2,BC=6,E,F分别为对角线BD,AC的中点,则EF=____.
图1-1-18
【解析】 如图所示,过E作GE∥BC交BA于G.
∵E是DB的中点,
∴G是AB的中点,又F是AC的中点,
∴GF∥BC,∴G,E,F三点共线,
∴GE=AD=1,GF=BC=3,
∴EF=GF-GE=3-1=2.
【答案】 2
7.如图1-1-19,已知在△ABC中,AD∶DC=1∶1,E为BD的中点,AE延长线交BC于F,则BF与FC的比值为__________.
【导学号:07370004】
图1-1-19
【解析】 过D作DG平行于BC,交AF于点G,再根据平行线等分线段定理即可解决.
【答案】 
8.如图1-1-20,在△ABC中,E是AB的中点,EF∥BD,EG∥AC,CD=AD,若EG=5 cm,则AC=________;若BD=20 cm,则EF=________.
图1-1-20
【解析】 ∵E为AB的中点,EF∥BD,
∴F为AD的中点.
∵E为AB的中点,EG∥AC,∴G为BD的中点,若EG=5 cm,则AD=10 cm,又CD=AD=5 cm,∴AC=15 cm.若BD=20 cm ,则EF=BD=10 cm.
【答案】 15 cm 10 cm
三、解答题
9.(2016·南京模拟)如图1-1-21,在梯形ABCD中,CD⊥BC,AD∥BC,E为腰CD的中点,且AD=2 cm,BC=8 cm,AB=10 cm,求BE的长度.
图1-1-21
【解】 过E点作直线EF平行于BC,交AB于F,作BG⊥EF于G(如图),
因为E为腰CD的中点,所以F为AB的中点,所以BF=AB=5 cm,
又EF===5(cm),
GF=BC-FE=8 cm-5 cm=3 cm,
所以GB===4 cm,
EC=GB=4 cm,
所以BE===4(cm).
10.用一张矩形纸,你能折出一个等边三角形吗?如图1-1-22(1),先把矩形纸ABCD对折,设折痕为MN;再把B点叠在折痕线上,得到Rt△ABE,沿着EB线折叠,就能得到等边△EAF,如图(2).想一想,为什么?
图1-1-22
【解】 利用平行线等分线段定理的推论2,
∵N是梯形ADCE的腰CD的中点,NP∥AD,
∴P为EA的中点.
∵在Rt△ABE中,PA=PB(直角三角形斜边上的中线等于斜边的一半),
∴∠1=∠3.
又∵PB∥AD,
∴∠3=∠2,∴∠1=∠2.
又∵∠1与和它重合的角相等,
∴∠1=∠2=30°.
在Rt△AEB中,∠AEB=60°,∠1+∠2=60°,
∴△AEF是等边三角形.
[能力提升]
1.如图1-1-23,AD是△ABC的高,E为AB的中点,EF⊥BC于F,如果DC=BD,那么FC是BF的(  )
图1-1-23
A.倍     B.倍
C.倍 D.倍
【解析】 ∵EF⊥BC,AD⊥BC,∴EF∥AD.
又E为AB的中点,由推论1知F为BD的中点,
即BF=FD.
又∵DC=BD,∴DC=BF.
∴FC=FD+DC=BF+DC=BF.
【答案】 A
2.梯形的一腰长10 cm,该腰和底边所形成的角为30°,中位线长为12 cm,则此梯形的面积为(  )
A.30 cm2 B.40 cm2
C.50 cm2 D.60 cm2
【解析】 如图,过A作AE⊥BC,在Rt△ABE中,AE=ABsin 30°=5 cm.又已知梯形的中位线长为12 cm,
∴AD+BC=2×12=24(cm).
∴梯形的面积S=(AD+BC)·AE
=×5×24=60(cm2).
【答案】 D
3.如图1-1-24,AB=AC,AD⊥BC于D,M是AD的中点,CM交AB于P,DN∥CP,若AB=9 cm,则AP=__________;若PM=1 cm,则PC=__________.
【导学号:07370005】
图1-1-24
【解析】 由AB=AC和AD⊥BC,结合等腰三角形的性质,得D是BC的中点.再由DN∥CP,可得N是BP的中点.同理可得P是AN的中点,由此可得答案.
【答案】 3 cm 4 cm
4.如图1-1-25所示,AE∥BF∥CG∥DH,AB=BC=CD,AE=12,DH=16,AH交BF于点M,求BM与CG的长.
图1-1-25
【解】 如图,取BC的中点P,作PQ∥DH交EH于点Q,则PQ是梯形ADHE的中位线.
∵AE∥BF∥CG∥DH,
AB=BC=CD,
AE=12,DH=16,
∴=,=,
∴=,
∴BM=4.
∵PQ为梯形的中位线,
∴PQ=(AE+DH)=(12+16)=14.
同理,CG=(PQ+DH)=(14+16)=15.
学业分层测评(二)
(建议用时:45分钟)
[学业达标]
一、选择题
1.如图1-2-16,梯形ABCD中,AD∥BC,E是DC延长线上一点,AE分别交BD于G,交BC于F.下列结论:①=;②=;③=;④=.其中正确的个数是(  )
图1-2-16
A.1  B.2    
C.3     D.4
【解析】 ∵BC∥AD,
∴=,=,故①④正确.
∵BF∥AD,
∴=,故②正确.
【答案】 C
2.如图1-2-17,E是?ABCD的边AB延长线上的一点,且=,则=
(  )
图1-2-17
A.    B.   
C.    D.
【解析】 ∵CD∥AB,∴==,
又AD∥BC,∴=.
由=,得=,
即=,
∴==.故选C.
【答案】 C
3.如图1-2-18,平行四边形ABCD中,N是AB延长线上一点,则-为(  )
【导学号:07370009】
图1-2-18
A. B.1
C. D.
【解析】 ∵AD∥BM,∴=.
又∵DC∥AN,∴=,
∴=,
∴=,
∴-=-==1.
【答案】 B
4.如图1-2-19,AD是△ABC的中线,E是CA边的三等分点,BE交AD于点F,则AF∶FD为(  )
图1-2-19
A.2∶1    B.3∶1
C.4∶1 D.5∶1
【解析】 过D作DG∥AC交BE于G,
如图,因为D是BC的中点,
所以DG=EC,
又AE=2EC,
故AF∶FD=AE∶DG=2EC∶EC=4∶1.
【答案】 C
5.如图1-2-20,将一块边长为12的正方形纸ABCD的顶点A,折叠至边上的点E,使DE=5,折痕为PQ,则线段PM和MQ的比是(  )
图1-2-20
A.5∶12  B.5∶13
C.5∶19 D.5∶21
【解析】 如图,作MN∥AD交DC于点N,
∴=.
又∵AM=ME,
∴DN=NE=DE=,
∴NC=NE+EC=+7=.
∵PD∥MN∥QC,
∴===.
【答案】 C
二、填空题
6.(2016·乌鲁木齐)如图1-2-21,在△ABC中,点D,E分别在AB,AC上,DE∥BC,AD=CE,若AB∶AC=3∶2,BC=10,则DE的长为__________.
图1-2-21
【解析】 ∵DE∥BC,
∴AD∶AE=AB∶AC=3∶2.
∵AD=CE,
∴CE∶AE=3∶2.
∵AE∶AC=2∶5,
∴DE∶BC=2∶5.
∵BC=10,
∴DE∶10=2∶5,
解得DE=4.
【答案】 4
7.如图1-2-22,已知B在AC上,D在BE上,且AB∶BC=2∶1,ED∶DB=2∶1,则AD∶DF=________.
图1-2-22
【解析】 如图,过D作DG∥AC交FC于G.
则==,∴DG=BC.
又BC=AC,∴DG=AC.
∵DG∥AC,∴==,
∴DF=AF.
从而AD=AF,∴AD∶DF=7∶2.
【答案】 7∶2
8.如图1-2-23,在梯形ABCD中,AD∥BC,BD与AC相交于O,过O的直线分别交AB,CD于E,F,且EF∥BC,若AD=12,BC=20,则EF=________.
图1-2-23
【解析】 ∵AD∥EF∥BC,∴===,
∴EO=FO,而==,=,BC=20,AD=12,
∴=1-=1-,∴EO=7.5,∴EF=15.
【答案】 15
三、解答题
9.线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P.如图1-2-24,当OA=OB,且D为OA中点时,求的值.
图1-2-24
【解】 过D作DE∥CO交AC于E,
因为D为OA中点,
所以AE=CE=AC,=,
因为点C为OB中点,所以BC=CO,=,
所以==,所以PC=CE=AC,所以===2.
10.如图1-2-25,AB⊥BD于B,CD⊥BD于D,连接AD,BC交于点E,EF⊥BD于F,求证:+=. 【导学号:07370010】
图1-2-25
【证明】 ∵AB⊥BD,CD⊥BD,EF⊥BD,
∴AB∥EF∥CD,
∴=,=,
∴+=+===1,
∴+=.
[能力提升]
1.如图1-2-26,已知△ABC中,AE∶EB=1∶3,BD∶DC=2∶1,AD与CE相交于F,则+的值为(  )
图1-2-26
A. B.1
C. D.2
【解析】 过点D作DG∥AB交EC于点G,则===.而=,即=,所以AE=DG,从而有AF=FD,EF=FG=CG,故+=+=+1=.
【答案】 C
2.如图1-2-27,已知P,Q分别在BC和AC上,=,=,则=
(  )
图1-2-27
A.3∶14 B.14∶3
C.17∶3 D.17∶14
【解析】 过点P作PM∥AC,
交BQ于M,则=.
∵PM∥AC且=,
∴==.
又∵=,∴=·=×=,
即=.
【答案】 B
3.如图1-2-28所示,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为__________.
图1-2-28
【解析】 如图,延长AD,BC交于点O,作OH⊥AB于点H.
∴=,得x=2h1,=,得h1=h2.
∴S梯形ABFE=×(3+4)×h2=h1,
S梯形EFCD=×(2+3)×h1=h1,
∴S梯形ABFE∶S梯形EFCD=7∶5.
【答案】 7∶5
4.某同学的身高为1.6 m,由路灯下向前步行4 m,发现自己的影子长为2 m,求这个路灯的高.
【解】 如图所示,AB表示同学的身高,PB表示该同学的影长,CD表示路灯的高,则AB=1.6 m,PB=2 m,BD=4 m.
∵AB∥CD,
∴=,
∴CD===4.8(m),
即路灯的高为4.8 m.
学业分层测评(三)
(建议用时:45分钟)
[学业达标]
一、选择题
1.如图1-3-12,在正方形网格上有6个三角形:①△ABC,②△BCD,③△BDE,④△BFG,⑤△FGH,⑥△EFK.其中,②~⑥中与三角形①相似的是
(  )
图1-3-12
A.②③④   B.③④⑤
C.④⑤⑥ D.②③⑥
【解析】 由相似三角形判定定理知选B.
【答案】 B
2.如图1-3-13,在△ABC中,M在BC上,N在AM上,CM=CN,且=,下列结论中正确的是(  )
图1-3-13
A.△ABM∽△ACB
B.△ANC∽△AMB
C.△ANC∽△ACM
D.△CMN∽△BCA
【解析】 ∵CM=CN,∴∠CMN=∠CNM.
∵∠AMB=∠CNM+∠MCN,
∠ANC=∠CMN+∠MCN,∴∠AMB=∠ANC.
又=,
∴△ANC∽△AM B.
【答案】 B
3.如图1-3-14,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于(  )
【导学号:07370013】
图1-3-14
A. B.
C. D.
【解析】 ∵AF⊥DE,∴Rt△DAO∽Rt△DEA,
∴==.
【答案】 D
4.如图1-3-15,在等边三角形ABC中,E为AB中点,点D在AC上,使得=,则有(  )
图1-3-15
A.△AED∽△BED
B.△AED∽△CBD
C.△AED∽△ABD
D.△BAD∽△BCD
【解析】 因为∠A=∠C,==2,所以△AED∽△CBD.
【答案】 B
5.如图1-3-16所示,已知点E,F分别是△ABC中AC,AB边的中点,BE,CF相交于点G,FG=2,则CF的长为(  )
图1-3-16
A.4 B.4.5
C.5 D.6
【解析】 ∵E,F分别是△ABC中AC,AB边的中点,∴FE∥BC,由相似三角形的预备定理,得△FEG∽△CBG,∴==.
又FG=2,∴GC=4,∴CF=6.
【答案】 D
二、填空题
6.如图1-3-17,BD⊥AE,∠C=90°,AB=4,BC=2,AD=3,则DE=________,CE=________.
图1-3-17
【解析】 在Rt△ACE和Rt△ADB中,∠A为公共角,∴△ACE∽△ADB,∴=,
∴AE====8,则DE=AE-AD=5,
在Rt△ACE中,CE===2.
【答案】 5 2
7.如图1-3-18,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=________.
图1-3-18
【解析】 由∠B=∠D,AE⊥BC及∠ACD=90°可以推得:
Rt△ABE∽Rt△ADC,故=
∴AE==2.
【答案】 2
8.如图1-3-19,在平行四边形ABCD中,E在DC上,若DE∶EC=1∶2,则BF∶BE=________. 【导学号:07370014】
图1-3-19
【解析】 ∵DE∶EC=1∶2,
∴DC∶EC=3∶2,∴AB∶EC=3∶2.
∵AB∥EC,
∴△ABF∽△CEF,
∴==,∴=.
【答案】 3∶5
三、解答题
9.如图1-3-20,已知△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于点F.
求证:PB2=PE·PF.
图1-3-20
【证明】 连接PC.
∵AB=AC,
∴∠ABC=∠ACB.
∵AD是中线,∴AD垂直平分BC,
∴PB=PC,
∴∠PBD=∠PCD,
∴∠ABP=∠ACP.
又∵CF∥AB,∴∠ABP=∠F=∠ACP,
而∠CPE=∠FPC.
∴△PCE∽△PFC,
∴=,∴PC2=PE·PF,
即PB2=PE·PF.
10.如图1-3-21,某市经济开发区建有B,C,D三个食品加工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且AB=CD=900米,AD=BC=1 700米.自来水公司已经修好一条自来水主管道AN,B,C两厂之间的公路与自来水主管道交于E处,EC=500米.若自来水主管道到各工厂的自来水管道由各厂负责修建,每米造价800元.
图1-3-21
(1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计?并在图中画出该路线;
(2)求出各厂所修建的自来水管道的最低造价各是多少元?
【解】 (1)如图,过B,C,D分别作AN的垂线段BH,CF,DG交AN于H,F,G,BH,CF,DG即为所求的造价最低的管道路线.
(2)在Rt△ABE中,AB=900米,
BE=1 700-500=1 200米,
∴AE==1 500(米),
由△ABE∽△CFE,得到=,
即=,
可得CF=300(米).由△BHE∽△CFE,
得=,
即=,可得BH=720(米).
由△ABE∽△DGA,得=,
即=,
可得DG=1020(米).
所以,B,C,D三厂所建自来水管道的最低造价分别是720×800=576 000(元),300×800=240 000(元),1 020×800=816 000(元).
[能力提升]
1.如图1-3-22所示,要使△ACD∽△BCA,下列各式中必须成立的是(  )
图1-3-22
A.=    B.=
C.AC2=CD·CB D.CD2=AC·AB
【解析】 ∠C=∠C,只有=,即AC2=CD·CB时,才能使△ACD∽△BCA.
【答案】 C
2.如图1-3-23所示,∠AOD=90°,OA=OB=BC=CD,则下列结论正确的是(  )
图1-3-23
A.△DAB∽△OCA
B.△OAB∽△ODA
C.△BAC∽△BDA
D.△OAC∽△ABD
【解析】 设OA=OB=BC=CD=a,
则AB=a,BD=2a,
∴=,==,
∴=,且∠ABC=∠DBA,
∴△BAC∽△BDA.
【答案】 C
3.如图1-3-24所示,∠BAC=∠DCB,∠CDB=∠ABC=90°,AC=a,BC=B.当BD=__________时,△ABC∽△CDB.
图1-3-24
【解析】 由=即可得到.
【答案】 
4.如图1-3-25所示,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连接FC(AB>AE).
图1-3-25
(1)△AEF与△ECF是否相似?若相似证明你的结论;若不相似,请说明理由;
(2)设=k,是否存在这样的k值 ,使得△AEF与△BFC相似,若存在,证明你的结论,并求出k的值;若不存在,说明理由.
【解】 (1)相似.在矩形ABCD中,∠A=∠D=90°.
∵EF⊥EC,A,E,D共线,∴∠AEF+∠DEC=90°.
又∵∠DCE+∠DEC=90°,∴∠AEF=∠DCE,
∴△AEF∽△DCE,∴=,
∴AE=DE,∴=.
又∵∠A=∠FEC=90°,∴△AEF∽△ECF.
(2)存在.由于∠AEF=90°-∠AFE<180°-∠CFE-∠AFE=∠BFC,
∴只能是△AEF∽△BCF,∠AEF=∠BCF.
由(1)知∠AEF=∠DCE=∠ECF=∠FCB=30°.
∴===,即k=.
反过来,在k=时,=,∠DCE=30°,
∠AEF=∠DCE=30°,∠ECF=∠AEF=30°,
∠BCF=90°-30°-30°=30°=∠AEF.
∴△AEF∽△BCF.
学业分层测评(四)
(建议用时:45分钟)
[学业达标]
一、选择题
1.如图1-3-32,D,E,F是△ABC的三边中点,设△DEF的面积为,△ABC的周长为9,则△DEF的周长与△ABC的面积分别是(  )
图1-3-32
A.,1     B.9,4
C.,8 D.,16
【解析】 ∵D,E,F分别为△ABC三边的中点,
∴EF綊BC,DE綊AC,DF綊AB.
∴△DFE∽△ABC,且=,∴==.
又∵l△ABC=9,∴l△DEF=.
又∵==,S△DEF=,
∴S△ABC=1,故选A.
【答案】 A
2.如图1-3-33,在?ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是(  )
图1-3-33
A.5 B.8.2
C.6.4 D.1.8
【解析】 由△CBF∽△CDE,得=,
又点E是AD的中点,AB=CD=10,AD=BC=6,
∴DE=3,即=,∴BF=1.8.
【答案】 D
3.如图1-3-34所示,D是△ABC的AB边上一点,过D作DE∥BC交AC于E.已知AD∶DB=1∶3,则△ADE与四边形BCED的面积比为(  )
图1-3-34
A.1∶3    B.1∶9
C.1∶15 D.1∶16
【解析】 因为DE∥BC,所以△ADE∽△ABC.
又因为AD∶DB=1∶3.
所以AD∶AB=1∶4,其面积比为1∶16,
则所求两部分面积比为1∶15.
【答案】 C
4.某同学自制了一个简易的幻灯机,其工作情况如图1-3-35所示,幻灯片与屏幕平行,光源到幻灯片的距离是30 cm,幻灯片到屏幕的距离是1.5 m,幻灯片上小树的高度是10 cm,则屏幕上小树的高度是(  ) 【导学号:07370017】
图1-3-35
A.50 cm B.500 cm
C.60 cm D.600 cm
【解析】 设屏幕上小树的高度为x cm,则=,解得x=60(cm).
【答案】 C
5.如图1-3-36,△ABC中,DE∥BC,DE分别交AB,AC于D,E,S△ADE=2S△DCE,则=(  )
图1-3-36
A. B.
C. D.
【解析】 ∵DE∥BC,∴△ADE∽△ABC,
由S△ADE=2S△DCE,得=,∴=.
【答案】 D
二、填空题
6.如图1-3-37,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F,若BG∶GA=3∶1,BC=10,则AE的长为________.
图1-3-37
【解析】 ∵AE∥BC,∴△BGF∽△AGE,∴==,
∵D为AC中点,∴==1,∴AE=CF,
∴BC∶AE=2∶1,∵BC=10,∴AE=5.
【答案】 5
7.如图1-3-38,AB与CD相交于点E,过E作BC的平行线与AD的延长线交于点P,已知∠A=∠C,PD=2DA=2,则PE=________.
图1-3-38
【解析】 因为PE∥BC,所以∠C=∠PED.又因为∠C=∠A,所以∠A=∠PED.又∠P=∠P,所以△PDE∽△PEA,则=,即PE2=PD·PA=2×3=6,故PE=.
【答案】 
8.(2016·湛江高三调研)如图1-3-39,在△ABC中,已知DE∥BC,△ADE的面积是a2,梯形DBCE的面积是8a2,则=________.
图1-3-39
【解析】 ∵S△ADE=a2,SDBCE=8a2,∴S△ABC=S△ADE+SBDCE=a2+8a2=9a2,
∴2===,∴=.
【答案】 
三、解答题
9.如图1-3-40,已知在△ABC中,D是BC边的中点,且AD=AC,DE⊥BC,DE与 AB相交于点E,EC与AD相交于点F.
图1-3-40
(1)求证:△ABC∽△FCD;
(2)若S△FCD=5,BC=10,求DE的长.
【解】 (1)证明:∵DE⊥BC,D是BC的中点,
∴EB=EC,∴∠B=∠1,
又∵AD=AC,
∴∠2=∠ACB.
∴△ABC∽△FCD.
(2)过点A作AM⊥BC,垂足为点M.
∵△ABC∽△FCD,BC=2CD,
∴=2=4.
又∵S△FCD=5,∴S△ABC=20.
∵S△ABC=BC·AM,BC=10,
∴20=×10×AM,∴AM=4.
又∵DE∥AM,∴=.
∵DM=DC=BC=,
BM=BD+DM,
BD=BC=5,∴=,
∴DE=.
10.如图1-3-41,△ABC是一块锐角三角形余料,边BC=200 mm,高AD=300 mm,要把它加工成长是宽的2倍的矩形零件,使矩形较短的边在BC上,其余两个顶点分别在AB,AC上,求这个矩形零件的边长.
图1-3-41
【解】 设矩形EFGH为加工成的矩形零件,边FG在BC上,则点E,H分别在AB,AC上,△ABC的高AD与边EH相交于点P,设矩形的边EH的长为x mm.
∵EH∥BC,∴△AEH∽△ABC,
∴=,∴=,
解得x= (mm),2x=(mm).
答:加工成的矩形零件的边长分别为mm和mm.
[能力提升]
1.如图1-3-42所示,已知在△ABC中,∠C=90°,正方形DEFG内接于△ABC,DE∥AC,EF∥BC,AC=1,BC=2,则AF∶FC等于(  )
图1-3-42
A.1∶3     B.1∶4
C.1∶2 D.2∶3
【解析】 设正方形边长为x,则由△AFE∽△ACB,
可得AF∶AC=FE∶CB,即=,
所以x=,于是=.
【答案】 C
2.如图1-3-43,AB∥EF∥CD,已知AB=20,DC=80,那么EF的值是(  )
图1-3-43
A.10 B.12
C.16 D.18
【解析】 ∵AB∥EF∥CD,
∴===,
∴==,
∴EF=AB=×20=16.
【答案】 C
3.在△ABC中,如图1-3-44所示,BC=m,DE∥BC,DE分别交AB,AC于E,D两点,且S△ADE=S四边形BCDE,则DE=________. 【导学号:07370018】
图1-3-44
【解析】 ∵DE∥BC,
∴△ADE∽△ACB.
又∵S△ADE+S四边形BCDE=S△ABC;S△ADE=S四边形BCDE,
∴S△ADE=S△ABC,
∴2=,∴2=,
∴DE=m.
【答案】 m
4.某生活小区的居民筹集资金1 600元,计划在一块上、下两底分别为10 cm、20 cm的梯形空地上种植花木.
(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/m2,当△AMD地带种满花后(如图1-3-45阴影部分)共花了160元,请计算种满△BMC地带所需的费用;
图1-3-45
(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m2和10元/m2,应选择种哪种花木可以刚好用完所筹集的资金?
【解】 (1)∵四边形ABCD是梯形,∴AD∥BC,
∴△AMD∽△CMB,∴=2=.
∵种植△AMD地带花费160元,
∴S△AMD==20 (m2),∴S△CMB=80 (m2).
∴△BMC地带的花费为80×8=640(元).
(2)设△AMD,△BMC的高分别为h1,h2,梯形ABCD的高为h,
∵S△AMD=×10h1=20,∴h1=4(m).
又∵=,∴h2=8(m).
∴h=h1+h2=12(m).
∴S梯形ABCD=(AD+BC)h=×30×12
=180 (m2),
∴S△AMB+S△DMC=180-20-80=80 (m2).
∴160+640+80×12=1 760(元),
160+640+80×10=1 600(元).
∴应种植茉莉花刚好用完所筹资金.
学业分层测评(五)
(建议用时:45分钟)
[学业达标]
一、选择题
1.在△ABC中,∠ACB=90°,CD⊥AB于D,AD=3,BD=2,则AC∶BC的值是(  )
A.3∶2     B.9∶4
C.∶ D.∶
【解析】 如图,在Rt△ACB中,CD⊥AB,由射影定理知AC2=AD·AB,
BC2=BD·AB,
又∵AD=3,BD=2,
∴AB=AD+BD=5,
∴AC2=3×5=15,BC2=2×5=10.
∴==,即AC∶BC=∶,
故选C.
【答案】 C
2.如图1-4-9所示,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,若CD=6,AD∶DB=1∶2,则AD的值是(  )
图1-4-9
A.6 B.3
C.18 D.3
【解析】 由题意知
∴AD2=18,
∴AD=3.
【答案】 B
3.一个直角三角形的一条直角边为3 cm,斜边上的高为2.4 cm,则这个直角三角形的面积为(  )
【导学号:07370021】
A.7.2 cm2 B.6 cm2
C.12 cm2 D.24 cm2
【解析】 长为3 cm的直角边在斜边上的射影为=1.8(cm),由射影定理知斜边长为=5(cm),
∴三角形面积为×5×2.4=6(cm2).
【答案】 B
4.在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,若=,则等于(  )
A.   B.
C.   D.
【解析】 如图,由射影定理,得AC2=CD·BC,AB2=BD·BC,
∴==2,
即=,
∴=.
【答案】 C
5.在Rt△ACB中,∠ACB=90°,CD⊥AB于D,若BD∶AD=1∶4,则tan∠BCD的值是(  )
【导学号:07370022】
A.     B.   
C.    D.2
【解析】 如图,由射影定理得CD2=AD·BD.
又∵BD∶AD=1∶4,
令BD=x,则AD=4x(x>0),
∴CD2=AD·BD=4x2,∴CD=2x,
在Rt△CDB中,tan∠BCD===.
【答案】 C
二、填空题
6.如图1-4-10,在矩形ABCD中,AE⊥BD,OF⊥AB.DE∶EB=1∶3,OF=a,则对角线BD的长为________.
图1-4-10
【解析】 ∵OF=a,
∴AD=2a.
∵AE⊥BD,
∴AD2=DE·BD.
∵DE∶EB=1∶3,∴DE=BD,
∴AD2=BD·BD,
∴BD2=4AD2=4×4a2=16a2,∴BD=4a.
【答案】 4a
7.如图1-4-11,已知Rt△ABC的两条直角边AC,BC的长分别为3 cm,4 cm,以AC为直径的圆与AB交于点D,则BD=______cm.
图1-4-11
【解析】 连接CD,则CD⊥A B.
由AC=3 cm,BC=4 cm,得AB=5 cm.
由射影定理得BC2=BD·BA,即42=5BD.
所以BD= cm.
【答案】 
8.已知在梯形ABCD中,DC∥AB,∠D=90°,AC⊥BC,AB=10 cm,AC=6 cm,则此梯形的面积为________.
【解析】 如图,过C点作CE⊥AB于E.
在Rt△ACB中,
∵AB=10 cm,AC=6 cm,
∴BC=8 cm,
∴BE=6.4 cm,AE=3.6 cm,
∴CE==4.8(cm),
∴AD=4.8 cm.
又∵在梯形ABCD中,CE⊥AB,
∴DC=AE=3.6 cm.
∴S梯形ABCD==32.64(cm2).
【答案】 32.64 cm2
三、解答题
9.已知直角三角形周长为48 cm,一锐角平分线分对边为3∶5两部分.
(1)求直角三角形的三边长;
(2)求两直角边在斜边上的射影的长.
【解】 (1)如图,设CD=3x,BD=5x,则BC=8x,过D作DE⊥AB,
由题意可得,
DE=3x,BE=4x,
∴AE+AC+12x=48.
又AE=AC,
∴AC=24-6x,AB=24-2x,
∴(24-6x)2+(8x)2=(24-2x)2,
解得x1=0(舍去),x2=2,
∴AB=20,AC=12,BC=16,
∴三边长分别为20 cm,12 cm,16 cm.
(2)作CF⊥AB于F,
∴AC2=AF·AB,
∴AF===(cm).
同理BF===(cm).
∴两直角边在斜边上的射影长分别为 cm, cm.
10.如图1-4-12所示,CD垂直平分AB,点E在CD上,DF⊥AC,DG⊥BE,点F,G分别为垂足.求证:AF·AC=BG·BE.
图1-4-12
【证明】 ∵CD垂直平分AB,
∴△ACD和△BDE均为直角三角形,并且AD=BD.
又∵DF⊥AC,DG⊥BE,
∴AF·AC=AD2,BG·BE=DB2.
∵AD2=DB2,∴AF·AC=BG·BE.
[能力提升]
1.已知直角三角形中两直角边的比为1∶2,则它们在斜边上的射影比为
(  )
A.1∶2     B.2∶1
C.1∶4 D.4∶1
【解析】 设直角三角形两直角边长分别为1和2,则斜边长为,∴两直角边在斜边上的射影分别为和.
【答案】 C
2.已知Rt△ABC中,斜边AB=5 cm,BC=2 cm,D为AC上一点,DE⊥AB交AB于E,且AD=3.2 cm,则DE=(  )
A.1.24 cm B.1.26 cm
C.1.28 cm D.1.3 cm
【解析】 如图,∵∠A=∠A,
∴Rt△ADE∽Rt△ABC,
∴=,
DE===1.28.
【答案】 C
3.如图1-4-13所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,AC=6,AD=3.6,则BC=__________.
图1-4-13
【解析】 由射影定理得,
AC2=AD·AB,BC2=BD·AB,
∴=,即BC2=.
又∵CD2=AD·BD,∴BD=.
∴BC2===64.
∴BC=8.
【答案】 8
4.如图1-4-14,已知BD,CE是△ABC的两条高,过点D的直线交BC和BA的延长线于G,H,交CE于F,且∠H=∠BCE,求证:GD2=FG·GH.
图1-4-14
【证明】 ∵∠H=∠BCE,∠EBC=∠GBH,
∴△BCE∽△BHG,
∴∠BEC=∠BGH=90°,
∴HG⊥BC.
∵BD⊥AC,在Rt△BCD中,
由射影定理得,GD2=BG·CG. ①
∵∠FGC=∠BGH=90°,∠GCF=∠H,
∴△FCG∽△BHG,
∴=,
∴BG·CG=GH·FG. ②
由①②得,GD2=GH·FG.
学业分层测评(十)
(建议用时:45分钟)
[学业达标]
一、选择题
1.如图2-5-17,⊙O的两条弦AB与CD相交于点E,EC=1,DE=4,AE=2,则BE=(  )
图2-5-17
A.1  B.2    
C.3     D.4
【解析】 由相交弦定理得AE·EB=DE·EC,即2EB=4×1,∴BE=2.
【答案】 B
2.PT切⊙O于T,割线PAB经过点O交⊙O于A,B,若PT=4,PA=2,则cos∠BPT=(  )
A.     B.    
C.     D.
【解析】 如图所示,连接OT,根据切割线定理,可得
PT2=PA·PB,即42=2×PB,
∴PB=8,∴AB=PB-PA=6,
∴OT=r=3,PO=PA+r=5,
∴cos∠BPT==.
【答案】 A
3.如图2-5-18,⊙O的直径CD与弦AB交于P点,若AP=4,BP=6,CP=3,则⊙O的半径为(  )
图2-5-18
A.5.5 B.5
C.6 D.6.5
【解析】 由相交弦定理知AP·BP=CP·PD,
∵AP=4,BP=6,CP=3,
∴PD===8,
∴CD=3+8=11,∴⊙O的半径为5.5.
【答案】 A
4.如图2-5-19,在Rt△ABC中,∠C=90°,AC=4,BC=3.以BC上一点O为圆心作⊙O与AC,AB都相切,又⊙O与BC的另一个交点为D,则线段BD的长为(  ) 【导学号:07370047】
图2-5-19
A.1   B.  
C.   D.
【解析】 观察图形,AC与⊙O切于点C,AB与⊙O切于点E,则AB==5.
如图,连接OE,由切线长定理得AE=AC=4,
故BE=AB-AE=5-4=1.
根据切割线定理得BD·BC=BE2,
即3BD=1,故BD=.
【答案】 C
5.如图2-5-20,AD,AE,BC分别与圆O切于点D,E,F,延长AF与圆O交于另一点G.给出下列三个结论:
图2-5-20
①AD+AE=AB+BC+AC;②AF·AG=AD·AE;③△AFB∽△ADG.
其中正确结论的序号是(  )
A.①② B.②③
C.①③ D.①②③
【解析】 ①项,∵BD=BF,CE=CF,∴AD+AE=AC+CE+AB+BD=AC+AB+CF+BF=AC+AB+BC,故①正确;
②项,∵AD=AE,AD2=AF·AG,∴AF·AG=AD·AE,故②正确;
③项,延长AD于M,连接FD,∵AD与圆O切于点D,则∠GDM=∠GFD,
∴∠ADG=∠AFD≠∠AFB,则△AFB与△ADG不相似,故③错误,故选A.
【答案】 A
二、填空题
6.如图2-5-21,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线交于D,过点C作BD的平行线与圆交于点E,与AB交于点F,AF=3,FB=1,EF=,则CD=________.
图2-5-21
【解析】 因为AF·BF=EF·CF,解得CF=2,由CE∥BD,得=,所以=,即BD=.设CD=x,AD=4x,所以4x2=,所以x=.
【答案】 
7.如图2-5-22,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,若PA=3,PD∶DB=9∶16,则PD=________,AB=________.
图2-5-22
【解析】 由于PD∶DB=9∶16,设PD=9a,则DB=16a.
根据切割线定理有PA2=PD·P B.又PA=3,PB=25a,
∴9=9a·25a,∴a=,∴PD=,PB=5.
在Rt△PAB中,AB2=PB2-AP2=25-9=16,故AB=4.
【答案】  4
8.如图2-5-23所示,过点P的直线与⊙O相交于A,B两点.若PA=1,AB=2,PO=3,则⊙O的半径等于________.
图2-5-23
【解析】 设⊙O的半径为r(r>0),∵PA=1,AB=2,
∴PB=PA+AB=3.
延长PO交⊙O于点C,则PC=PO+r=3+r.
设PO交⊙O于点D,则PD=3-r.
由圆的割线定理知,PA·PB=PD·PC,
∴1×3=(3-r)(3+r),
∴9-r2=3,∴r=.
【答案】 
三、解答题
9.(2016·山西四校联考)如图2-5-24所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=10,PB=5,∠BAC的角平分线与BC和圆O分别交于点D和E.
图2-5-24
(1)求证:=;
(2)求AD·AE的值.
【解】 (1)证明:∵PA为圆O的切线,∴∠PAB=∠ACP.又∠P为公共角,
△PAB∽△PCA,∴=.
(2)∵PA为圆O的切线,PC是过点O的割线,
∴PA2=PB·PC,∴PC=20,BC=15.
又∵∠CAB=90°,∴AC2+AB2=BC2=225.
又由(1)知==,∴AC=6,AB=3,连接EC,则∠CAE=∠EAB,∠AEC=∠ABD.
∴△ACE∽△ADB,∴=.
∴AD·AE=AB·AC=3×6=90.
10.如图2-5-25,已知PA,PB切⊙O于A,B两点,PO=4cm,∠APB=60°,求阴影部分的周长.
图2-5-25
【解】 如图所示,连接OA,O B.
∵PA,PB是⊙O的切线,A,B为切点,
∴PA=PB,∠PAO=∠PBO=,
∠APO=∠APB=,
在Rt△PAO中,
AP=PO·cos=4×=2 (cm),
OA=PO=2 (cm),PB=2 (cm).
∵∠APO=,∠PAO=∠PBO=,∴∠AOB=,
∴l=∠AOB·R=×2=π(cm),
∴阴影部分的周长为
PA+PB+l=2+2+π=(cm).
[能力提升]
1.如图2-5-26,已知PT切⊙O于点T,TC是⊙O的直径,割线PBA交TC于点D,交⊙O于B,A(B在PD上),DA=3,DB=4,DC=2,则PB等于(  )
【导学号:07370048】
图2-5-26
A.20   B.10
C.5 D.8
【解析】 ∵DA=3,DB=4,DC=2,
由相交弦定理得DB·DA=DC·DT,
即DT===6.
因为TC为⊙O的直径,所以PT⊥DT.
设PB=x,
则在Rt△PDT中,
PT2=PD2-DT2=(4+x)2-36.
由切割线定理得PT2=PB·PA=x(x+7),
所以(4+x)2-36=x(x+7),
解得x=20,即PB=20.
【答案】 A
2.如图2-5-27,△ABC中,∠C=90°,⊙O的直径CE在BC上,且与AB相切于D点,若CO∶OB=1∶3,AD=2,则BE等于(  )
图2-5-27
A. B.2
C.2 D.1
【解析】 连接OD,
则OD⊥BD,
∴Rt△BOD∽Rt△BAC,
∴=.
设⊙O的半径为a,
∵OC∶OB=1∶3,OE=OC,
∴BE=EC=2a.
由题知AD,AC均为⊙O的切线,AD=2,
∴AC=2.
∴=,∴BD=2a2.
又BD2=BE·BC,
∴BD2=2a·4a=8a2,
∴4a4=8a2,∴a=,
∴BE=2a=2.
【答案】 B
3.如图2-5-28,已知P是⊙O外一点,PD为⊙O的切线,D为切点,割线PEF经过圆心O,若PF=12,PD=4,则圆O的半径长为__________,∠EFD的度数为__________.
图2-5-28
【解析】 由切割线定理得,
PD2=PE·PF,
∴PE===4,EF=8,OD=4.
∵OD⊥PD,OD=PO,
∴∠P=30°,∠POD=60°,
∴∠EFD=30°.
【答案】 4 30°
4.如图2-5-29,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.
图2-5-29
(1)若D为AC的中点,证明:DE是⊙O的切线;
(2)若OA=CE,求∠ACB的大小.
【解】 (1)证明:如图,连接AE,由已知得AE⊥BC,AC⊥AB.
在Rt△AEC中,由已知得DE=DC,故∠DEC=∠DCE.
连接OE,则∠OBE=∠OEB.
又∠ACB+∠ABC=90°,
所以∠DEC+∠OEB=90°,
故∠OED=90°,即DE是⊙O的切线.
(2)设CE=1,AE=x.
由已知得AB=2,BE=.
由射影定理可得AE2=CE·BE,
即x2=,即x4+x2-12=0,
解得x=,所以∠ACB=60°.
学业分层测评(六)
(建议用时:45分钟)
[学业达标]
一、选择题
1.如图2-1-12所示,若圆内接四边形的对角线相交于E,则图中相似三角形有(  )
图2-1-12
A.1对       B.2对
C.3对 D.4对
【解析】 由推论知:∠ADB=∠ACB,∠ABD=∠ACD,∠BAC=∠BDC,∠CAD=∠CBD,∴△AEB∽△DEC,△AED∽△BEC.
【答案】 B
2.如图2-1-13所示,圆O上一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于(  )
图2-1-13
A.6 B.8
C.4 D.5
【解析】 ∵AB为直径,∴∠ACB=90°.
又∵CD⊥AB,
由射影定理可知,CD2=AD·BD,
∴42=8AD,∴AD=2,
∴AB=BD+AD=8+2=10,
∴圆O的半径为5.
【答案】 D
3.在Rt△ABC中,∠C=90°,∠A=30°,AC=2,则此三角形外接圆半径为(  ) 【导学号:07370031】
A. B.2
C.2 D.4
【解析】 由推论2知AB为Rt△ABC的外接圆的直径,又AB==4,故外接圆半径r=AB=2.
【答案】 B
4.如图2-1-14所示,等腰△ABC内接于⊙O,AB=AC,∠A=40°,D是的中点,E是的中点,分别连接BD,DE,BE,则△BDE的三内角的度数分别是(  )
图2-1-14
A.50°,30°,100° B.55°,20°,105°
C.60°,10°,110° D.40°,20°,120°
【解析】 如图所示,连接AD.
∵AB=AC,D是的中点,
∴AD过圆心O.
∵∠A=40°,
∴∠BED=∠BAD=20°,
∠CBD=∠CAD=20°.
∵E是的中点,
∴∠CBE=∠CBA=35°,
∴∠EBD=∠CBE+∠CBD=55°,
∴∠BDE=180°-20°-55°=105°,
故选B.
【答案】 B
5.如图2-1-15,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于(  )
图2-1-15
A.4π B.8π
C.12π D.16π
【解析】 连接OA,OB.
∵∠ACB=30°,
∴∠AOB=60°.
又∵OA=OB,
∴△AOB为等边三角形.
又AB=4,∴OA=OB=4,
∴S⊙O=π·42=16π.
【答案】 D
二、填空题
6.如图2-1-16,已知Rt△ABC的两条直角边AC,BC的长分别为3 cm,4 cm,以AC为直径的圆与AB交于点D,则=________.
图2-1-16
【解析】 连接CD,∵AC是⊙O的直径,
∴∠CDA=90°.由射影定理得BC2=BD·AB,AC2=AD·AB,
∴=,即=.
【答案】 
7.(2016·天津高考)如图2-1-17,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为________.
图2-1-17
【解析】 如图,设圆心为O,连接OD,则OB=OD.
因为AB是圆的直径,BE=2AE=2,所以AE=1,OB=.
又BD=ED,∠B为△BOD与△BDE的公共底角,
所以△BOD∽△BDE,所以=,
所以BD2=BO·BE=3,所以BD=DE=.
因为AE·BE=CE·DE,所以CE==.
【答案】 
8.如图2-1-18,AB为⊙O的直径,弦AC,BD交于点P,若AB=3,CD=1,则sin∠APD=__________.
图2-1-18
【解析】 由于AB为⊙O的直径,则∠ADP=90°,
所以△APD是直角三角形,
则sin∠APD=,cos∠APD=,
由题意知,∠DCP=∠ABP,∠CDP=∠BAP,
所以△PCD∽△PBA.
所以=,又AB=3,CD=1,则=.
∴cos∠APD=.又∵sin2∠APD+cos2∠APD=1,
∴sin∠APD=.
【答案】 
三、解答题
9.如图2-1-19所示,⊙O中和的中点分别为点E和点F,直线EF交AC于点P,交AB于点Q.求证:△APQ为等腰三角形.
图2-1-19
【证明】 连接AF,AE.
∵E是的中点,即=,
∴∠AFP=∠EAQ,
同理∠FAP=∠AEQ.
又∵∠AQP=∠EAQ+∠AEQ,∠APQ=∠AFP+∠FAP,
∴∠AQP=∠APQ,即△APQ为等腰三角形.
10.如图2-1-20(1)所示,在圆内接△ABC中,AB=AC,D是BC边上的一点,E是直线AD和△ABC外接圆的交点.
图2-1-20
(1)求证:AB2=AD·AE;
(2)如图2-1-20(2)所示,当D为BC延长线上的一点时,第(1)题的结论成立吗?若成立,请证明;若不成立,请说明理由.
【解】 (1)证明:如图(3),
连接BE.
∵AB=AC,
∴∠ABC=∠ACB.
∵∠ACB=∠AEB,
∴∠ABC=∠AEB.
又∠BAD=∠EAB,
∴△ABD∽△AEB,
∴AB∶AE=AD∶AB,
即AB2=AD·AE.
(2)如图(4),连接BE,
结论仍然成立,证法同(1).
[能力提升]
1.如图2-1-21,已知AB是半圆O的直径,弦AD,BC相交于点P,那么等于(  ) 【导学号:07370032】
图2-1-21
A.sin∠BPD
B.cos∠BPD
C.tan∠BPD
D.以上答案都不对
【解析】 连接BD,由BA是直径,
知△ADB是直角三角形.
由∠DCB=∠DAB,
∠CDA=∠CBA,∠CPD=∠BPA,得△CPD∽△APB,
==cos ∠BPD.
【答案】 B
2.如图2-1-22所示,已知⊙O为△ABC的外接圆,AB=AC=6,弦AE交BC于D,若AD=4,则AE=__________.
图2-1-22
【解析】 连接CE,则∠AEC=∠ABC,
又△ABC中,AB=AC,
∴∠ABC=∠ACB,
∴∠AEC=∠ACB,
∴△ADC∽△ACE,
∴=,
∴AE==9.
【答案】 9
3.如图2-1-23,在⊙O中,已知∠ACB=∠CDB=60°,AC=3,则△ABC的周长是__________.
图2-1-23
【解析】 由圆周角定理,
得∠A=∠D=∠ACB=60°,
∴AB=BC,
∴△ABC为等边三角形.
∴周长等于9.
【答案】 9
4.如图2-1-24,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连接BE,AD交于点P.求证:
图2-1-24
(1)D是BC的中点;
(2)△BEC∽△ADC;
(3)AB·CE=2DP·AD.
【证明】 (1)因为AB是⊙O的直径,
所以∠ADB=90°,即AD⊥BC,
因为AB=AC,所以D是BC的中点.
(2)因为AB是⊙O的直径,
所以∠AEB=∠ADB=90°,
即∠CEB=∠CDA=90°,
因为∠C是公共角,
所以△BEC∽△ADC.
(3)因为△BEC∽△ADC,
所以∠CBE=∠CAD.
因为AB=AC,BD=CD,
所以∠BAD=∠CAD,
所以∠BAD=∠CBE,
因为∠ADB=∠BEC=90°,
所以△ABD∽△BCE,
所以=,所以=,
因为∠BDP=∠BEC=90°,∠PBD=∠CBE,
所以△BPD∽△BCE,
所以=.
因为BC=2BD,所以=,
所以AB·CE=2DP·AD.
学业分层测评(七)
(建议用时:45分钟)
[学业达标]
一、选择题
1.如图2-2-13,ABCD是⊙O的内接四边形,延长BC到E,已知∠BCD∶∠ECD=3∶2,那么∠BOD等于(  )
图2-2-13
A.120°   B.136°
C.144° D.150°
【解析】 设∠BCD=3x,∠ECD=2x,
∴5x=180°,∴x=36°,
即∠BCD=108°,∠ECD=72°,
∴∠BAD=72°,∴∠BOD=2∠BAD=144°.
【答案】 C
2.如图2-2-14,在⊙O中,弦AB的长等于半径,∠DAE=80°,则∠ACD的度数为(  )
图2-2-14
A.30° B.45°   
C.50°    D.60°
【解析】 连接OA,OB,
∵∠BCD=∠DAE=80°,∠AOB=60°,
∴∠BCA=∠AOB=30°,
∴∠ACD=∠BCD-∠BCA=80°-30°=50°.
【答案】 C
3.圆内接四边形ABCD中,∠A∶∠B∶∠C∶∠D可以是(  )
A.4∶2∶3∶1 B.4∶3∶1∶2
C.4∶1∶3∶2 D.以上都不对
【解析】 由四边形ABCD内接于圆,得∠A+∠C=∠B+∠D,从而只有B符合题意.
【答案】 B
4.如图2-2-15,四边形ABCD为圆内接四边形,AC为BD的垂直平分线,∠ACB=60°,AB=a,则CD等于(  )
图2-2-15
A.a B.a
C.a D.a
【解析】 ∵AC为BD的垂直平分线,
∴AB=AD=a,AC⊥BD.
∵∠ACB=60°,∴∠ADB=60°,
∴AB=AD=BD,∴∠ACD=∠ABD=60°,
∴∠CDB=30°,
∴∠ADC=90°,∴CD=tan 30°·AD=a.
【答案】 A
5.如图2-2-16所示,圆内接四边形ABCD的一组对边AD,BC的延长线相交于点P,对角线AC和BD相交于点Q,则图中共有相似三角形的对数为(  )
【导学号:07370035】
图2-2-16
A.4 B.3
C.2 D.1
【解析】 利用圆周角和圆内接四边形的性质定理,可得△PCD∽△PAB,△QCD∽△QBA,△AQD∽△BQC,△PAC∽△PBD.因此共4对.
【答案】 A
二、填空题
6.如图2-2-17,以AB=4为直径的圆与△ABC的两边分别交于E,F两点,∠ACB=60°,则EF=________.
图2-2-17
【解析】 如图,连接AE.
∵AB为圆的直径,
∴∠AEB=∠AEC=90°.
∵∠ACB=60°,
∴∠CAE=30°,
∴CE=AC.
∵∠C=∠C,∠CFE=∠B,
∴△CFE∽△CBA,
∴=,
∵AB=4,CE=AC,∴EF=2.
【答案】 2
7.四边形ABCD内接于⊙O,BC是直径,=40°,则∠D=__________.
【解析】 如图,连接AC.∵=40°.BC是⊙O的直径,
∴∠ACB=20°,∠BAC=90°,
∴∠B=180°-∠BAC-∠ACB=70°,
∴∠D=180°-∠B=110°.
【答案】 110°
8.如图2-2-18,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,若=,=,则的值为________.
图2-2-18
【解析】 由于∠PBC=∠PDA,∠P=∠P,
则△PAD∽△PCB ,∴==.
又=,=,∴×=×,
∴×=,∴×=,
∴=.
【答案】 
三、解答题
9.如图2-2-19,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
图2-2-19
(1)证明:CD∥AB;
(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
【证明】 (1)因为EC=ED,所以∠EDC=∠ECD.
因为A,B,C,D四点在同一圆上,
所以∠EDC=∠EBA,
故∠ECD=∠EBA,所以CD∥A B.
(2)由(1)知,AE=BE,∠EDF=∠ECG,因为EF=EG,故∠EFD=∠EGC,从而∠FED=∠GEC.
连接AF,BG,则△EFA≌△EGB,故∠FAE=∠GBE.
又CD∥AB,∠EDC=∠ECD,
所以∠FAB=∠GBA,所以∠AFG+∠GBA=180°.
故A,B,G,F四点共圆.
10.如图2-2-20,已知P为正方形ABCD的对角线BD上一点,通过P作正方形的边的垂线,垂足分别为E,F,G,H.你能判断出E,F,G,H是否在同一个圆上吗?试说明你的猜想.
【导学号:07370036】
图2-2-20
【解】 猜想:E,F,G,H四个点在以O为圆心的圆上.证明如下:
如图,连接OE,OF,OG,OH.
在△OBE,△OBF,△OCG,△OAH中,
OB=OC=OA.
∵PEBF为正方形,
∴BE=BF=CG=AH,
∠OBE=∠OBF=∠OCG=∠OAH=45°.
∴△OBE≌△OBF≌△OCG≌△OAH.
∴OE=OF=OG=OH.
由圆的定义可知:E,F,G,H在以O为圆心的圆上.
[能力提升]
1.已知四边形ABCD是圆内接四边形,下列结论中正确的有(  )
①如果∠A=∠C,则∠A=90°;
②如果∠A=∠B,则四边形ABCD是等腰梯形;
③∠A的外角与∠C的外角互补;
④∠A∶∠B∶∠C∶∠D可以是1∶2∶3∶4.
A.1个     B.2个
C.3个 D.4个
【解析】 由“圆内接四边形的对角互补”可知:①相等且互补的两角必为直角;②两相等邻角的对角也相等(亦可能有∠A=∠B=∠C=∠D的特例);③互补两内角的外角也互补;④两组对角之和的份额必须相等(这里1+3≠2+4).因此得出①③正确,②④错误.
【答案】 B
2.如图2-2-21,以△ABC的一边AB为直径的圆交AC边于D,交BC边于E,连接DE,BD与AE交于点F.则sin∠CAE的值为(  )
图2-2-21
A.     B.
C. D.
【解析】 根据圆周角定理,易得∠AEB=90°,进而可得∠AEC=90°.
在Rt△AEC中,由锐角三角函数的定义,可得sin∠CAE=,由圆内接四边形的性质,可得∠CED=∠CAB,∠CDE=∠CBA,可得△CDE∽△CBA,则有=,故有sin∠CAE=.
【答案】 D
3.如图2-2-22,AB=10 cm,BC=8 cm,CD平分∠ACB,则AC=__________,BD=__________.
图2-2-22
【解析】 ∠ACB=90°,∠ADB=90°.
在Rt△ABC中,AB=10,BC=8,
∴AC==6.
又∵CD平分∠ACB,
即∠ACD=∠BCD,
∴AD=BD,
∴BD==5.
【答案】 6 5
4.如图2-2-23,锐角△ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点.
图2-2-23
(1)求证:四点A,I,H,E共圆;
(2)若∠C=50°,求∠IEH的度数.
【解】 (1)证明:由圆I与边AC相切于点E,
得IE⊥AE,
结合IH⊥AH,得∠AEI=∠AHI=90°.
所以四点A,I,H,E共圆.
(2)由(1)知四点A,I,H,E共圆,得∠IEH=∠HAI.
在△HIA中,∠HIA=∠ABI+∠BAI=∠B+∠A=(∠B+∠A)
=(180°-∠C)=90°-∠C.
结合IH⊥AH,得∠HAI=90°-∠HIA=∠C,
所以∠IEH=∠C.
由∠C=50°,得∠IEH=25°.
学业分层测评(八)
(建议用时:45分钟)
[学业达标]
一、选择题
1.AB是⊙O的切线,在下列给出的条件中,能判定AB⊥CD的是(  )
A.AB与⊙O相切于直线CD上的点C
B.CD经过圆心O
C.CD是直径
D.AB与⊙O相切于C,CD过圆心O
【解析】 圆的切线垂直于过切点的半径或直径.
【答案】 D
2.已知⊙O的直径AB与弦AC的夹角为30°,过C点的切线PC与AB的延长线交于P,PC=5,则⊙O的半径是(  )
A.        B.
C.10 D.5
【解析】 如图,连接OC,
∠PAC=30°,
由圆周角定理知,
∠POC=2∠PAC=60°,
由切线性质知∠OCP=90°.
∴在Rt△OCP中,tan∠POC=.
∴OC===.
【答案】 A
3.如图2-3-13,CD切⊙O于B,CO的延长线交⊙O于A,若∠C=36°,则∠ABD的度数是(  )
图2-3-13
A.72°     B.63°
C.54° D.36°
【解析】 连接O B.
∵CD为⊙O的切线,∴∠OBC=90°.
∵∠C=36°,∴∠BOC=54°.
又∵∠BOC=2∠A,∴∠A=27°,
∴∠ABD=∠A+∠C=27°+36°=63°.
【答案】 B
4.如图2-3-14所示,⊙O是正△ABC的内切圆,切点分别为E,F,G,点P是弧EG上的任意一点,则∠EPF=(  )
图2-3-14
A.120° B.90°
C.60° D.30°
【解析】 如图所示,连接OE,OF.
∵OE⊥AB,OF⊥BC,∴∠BEO=∠BFO=90°,
∴∠EOF+∠ABC=180°,
∴∠EOF=120°,∴∠EPF=∠EOF=60°.
【答案】 C
5.如图2-3-15所示,AC切⊙O于D,AO的延长线交⊙O于B,且AB⊥BC,若AD∶AC=1∶2,则AO∶OB=(  )
图2-3-15
A.2∶1 B.1∶1
C.1∶2 D.1∶1.5
【解析】 如图所示,连接OD,OC,则OD⊥AC.
∵AB⊥BC,∴∠ODC=∠OBC=90°.
∵OB=OD,OC=OC,
∴△CDO≌△CBO,∴BC=DC.
∵=,∴AD=DC,
∴BC=AC.
又OB⊥BC,∴∠A=30°,
∴OB=OD=AO,∴=.
【答案】 A
二、填空题
6.如图2-3-16,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,⊙O分别与边AB,AC相切,切点分别为E,C.则⊙O的半径是________.
图2-3-16
【解析】 连接OE,设OE=r,
∵OC=OE=r,BC=12,
则BO=12-r,AB==13,
由△BEO∽△BCA,得=,
即=,解得r=.
【答案】 
7.如图2-3-17,在半径分别为5 cm和3 cm的两个同心圆中,大圆的弦AB与小圆相切于点C,则弦AB的长为______cm.
图2-3-17
【解析】 连接OA,OC,
∵AB是小圆的切线,
∴OC⊥AB,∴AC=A B.
∵在Rt△AOC中,
AC==4(cm),
∴AB=8 cm.
【答案】 8
8.如图2-3-18所示,圆O的半径为1,A,B,C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与OC的延长线交于点P,则PA=________.
图2-3-18
【解析】 连接OA.∵AP为⊙O的切线,
∴OA⊥AP.
又∠ABC=30°,∴∠AOC=60°.
∴在Rt△AOP中,OA=1,PA=OA·tan 60°=.
【答案】 
三、解答题
9.如图2-3-19,已知D是△ABC的边AC上的一点,AD∶DC=2∶1,∠C=45°,∠ADB=60°,求证:AB是△BCD的外接圆的切线. 【导学号:07370040】
图2-3-19
【证明】 如图,连接OB,OC,OD,设OD交BC于E.
因为∠DCB是所对的圆周角,
∠BOD是所对的圆心角,
∠BCD=45°,
所以∠BOD=90°.
因为∠ADB是△BCD的一个外角,
所以∠DBC=∠ADB-∠ACB=60°-45°=15°,
所以∠DOC=2∠DBC=30°,
从而∠BOC=120°.
因为OB=OC,所以∠OBC=∠OCB=30°.
在△OEC中,
因为∠EOC=∠ECO=30°,
所以OE=EC.
在△BOE中,因为∠BOE=90°,∠EBO=30°,所以BE=2OE=2EC,
所以==,
所以AB∥OD,所以∠ABO=90°,
故AB是△BCD的外接圆的切线.
10.如图2-3-20,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于E,∠POC=∠PCE.
图2-3-20
(1)求证:PC是⊙O的切线;
(2)若OE∶EA=1∶2,PA=6,求⊙O半径.
【解】 (1)证明:在△OCP与△CEP中,
∵∠POC=∠PCE,∠OPC=∠CPE,
∴∠OCP=∠CEP.
∵CD⊥AB,∴∠CEP=90°,
∴∠OCP=90°.
又∵C点在圆上,∴PC是⊙O的切线.
(2)法一:设OE=x,则EA=2x,OC=OA=3x.
∵∠COE=∠AOC,∠OEC=∠OCP=90°,
∴△OCE∽△OPC,
∴=,
即(3x)2=x(3x+6),∴x=1,
∴OA=3x=3,即圆的半径为3.
法二:由(1)知PC是⊙O的切线,
∴∠OCP=90°.
又∵CD⊥OP,由射影定理知OC2=OE·OP,以下同法一.
[能力提升]
1.如图2-3-21,在⊙O中,AB为直径,AD为弦,过B点的切线与AD的延长线交于C,若AD=DC,则sin∠ACO等于(  )
图2-3-21
A.     B.
C. D.
【解析】 连接BD,则BD⊥AC.
∵AD=DC,∴BA=BC,
∴∠BCA=45°.
∵BC是⊙O的切线,切点为B,
∴∠OBC=90°.
∴sin∠BCO===,
cos ∠BCO===.
∴sin∠ACO=sin(45°-∠BCO)
=sin45°cos ∠BCO-cos 45°sin ∠BCO
=×-×=.
【答案】 A
2.如图2-3-22所示,已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R=__________.
图2-3-22
【解析】 AB==.
由AB2=PB·BC,
∴BC=3,Rt△ABC中,
AC==2,
∴R=.
【答案】 
3.圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l,圆交于点D,E,则∠DAC=__________,DC=__________.
【解析】 连接OC,
∵OC=OB,∴∠OCB=∠OBC.
又∠DCA+∠ACO=90°,
∠ACO+∠OCB=90°,
∴∠DCA=∠OCB.
∵OC=3,BC=3,
∴△OCB是正三角形,
∴∠OBC=60°,即∠DCA=60°,
∴∠DAC=30°.
在Rt△ACB中,AC==3,
DC=ACsin 30°= .
【答案】 30° 
4.如图2-3-23,AD是⊙O的直径,BC切⊙O于点D,AB,AC与圆分别相交于点E,F.
【导学号:07370041】
图2-3-23
(1)AE·AB与AF·AC有何关系?请给予证明;
(2)在图中,如果把直线BC向上或向下平移,得到图2-3-24(1)或图(2),在此条件下,(1)题的结论是否仍成立?为什么?
图2-3-24
【解】 (1)AE·AB=AF·AC.
证明:连接DE.
∵AD为⊙O的直径,∴∠DEA=90°.
又∵BC与⊙O相切于点D,
∴AD⊥BC,即∠ADB=90°,∴∠ADB=∠DEA.
又∵∠BAD=∠DAE,∴△BAD∽△DAE,
∴=,即AD2=AB·AE.
同理AD2=AF·AC,∴AE·AB=AF·AC.
(2)(1)中的结论仍成立.
因为BC在平移时始终与AD垂直,设垂足为D′,
则∠AD′B=90°.
∵AD为圆的直径,
∴∠AED=∠AD′B=90°.
又∵∠DAE=∠BAD′,∴△ABD′∽△ADE,
∴=,∴AB·AE=AD·AD′.
同理AF·AC=AD·AD′,故AE·AB=AF·AC.
学业分层测评(九)
(建议用时:45分钟)
[学业达标]
一、选择题
1.如图2-4-12所示,AB是⊙O的直径,MN与⊙O切于点C,AC=BC,则sin∠MCA=(  )
图2-4-12
A.    B.   
C.    D.
【解析】 由弦切角定理,得∠MCA=∠ABC.
∵sin∠ABC====,故选D.
【答案】 D
2.如图2-4-13,在圆的内接四边形ABCD中,AC平分∠BAD,EF切⊙O于C点,那么图中与∠DCF相等的角的个数是(  )
图2-4-13
A.4   B.5
C.6 D.7
【解析】 ∠DCF=∠DAC,∠DCF=∠BAC,∠DCF=∠BCE,
∠DCF=∠BDC,∠DCF=∠DBC.
【答案】 B
3.如图2-4-14所示,AB是⊙O的直径,EF切⊙O于C,AD⊥EF于D,AD=2,AB=6,则AC的长为(  )
图2-4-14
A.2 B.3
C.2 D.4
【解析】 连接BC.∵AB是⊙O的直径,
∴AC⊥BC,由弦切角定理可知,
∠ACD=∠ABC,∴△ABC∽△ACD,
∴=,
∴AC2=AB·AD=6×2=12,
∴AC=2,故选C.
【答案】 C
4.如图2-4-15,PC与⊙O相切于C点,割线PAB过圆心O,∠P=40°,则∠ACP等于(  )
【导学号:07370043】
图2-4-15
A.20° B.25°
C.30° D.40°
【解析】 如图,连接OC,BC,
∵PC切⊙O于C点,
∴OC⊥PC,∵∠P=40°,∴∠POC=50°.
∵OC=OB,
∴∠B=∠POC=25°,
∴∠ACP=∠B=25°.
【答案】 B
5.如图2-4-16所示,已知AB,AC与⊙O相切于B,C,∠A=50°,点P是⊙O上异于B,C的一动点,则∠BPC的度数是(  )
图2-4-16
A.65°
B.115°
C.65°或115°
D.130°或50°
【解析】 当点P在优弧上时,
由∠A=50°,得∠ABC=∠ACB=65°.
∵AB是⊙O的切线,∴∠ABC=∠BPC=65°.
当P点在劣弧上时,∠BPC=115°.
故选C.
【答案】 C
二、填空题
6.如图2-4-17所示,直线PB与圆O相切于点B,D是弦AC上的点,∠PBA=∠DBA.若AD=m,AC=n,则AB=________.
 图2-4-17
【解析】 ∵PB切⊙O于点B,∴∠PBA=∠ACB.
又∠PBA=∠DBA,∴∠DBA=∠ACB,
∴△ABD∽△ACB.
∴=,∴AB2=AD·AC=mn,
∴AB=.
【答案】 
7.如图2-4-18,已知△ABC内接于圆O,点D在OC的延长线上.AD是⊙O的切线,若∠B=30°,AC=2,则OD的长为__________.
图2-4-18
【解析】 连接OA,
则∠COA=2∠CBA=60°,
且由OC=OA知△COA为正三角形,所以OA=2.
又因为AD是⊙O的切线,即OA⊥AD,
所以OD=2OA=4.
【答案】 4
8.如图2-4-19,点P在圆O直径AB的延长线上,且PB=OB=2,PC切圆O于C点,CD⊥AB于D点,则CD=________.
图2-4-19
【解析】 连接OC,∵PC切⊙O于点C,
∴OC⊥PC,
∵PB=OB=2,OC=2,
∴PC=2,∵OC·PC=OP·CD,
∴CD==.
【答案】 
三、解答题
9.如图2-4-20所示,△ABT内接于⊙O,过点T的切线交AB的延长线于点P,∠APT的平分线交BT,AT于C,D.
图2-4-20
求证:△CTD为等腰三角形.
【证明】 ∵PD是∠APT的平分线,∴∠APD=∠DPT.
又∵PT是圆的切线,∴∠BTP=∠A.
又∵∠TDC=∠A+∠APD,
∠TCD=∠BTP+∠DPT,
∴∠TDC=∠TCD,∴△CTD为等腰三角形.
10.如图2-4-21,AB是⊙O的弦,M是上任一点,过点M的切线与分别以A,B为垂足的直线AD,BC交于D,C两点,过M点作NM⊥CD交AB于点N,求证:MN2=AD·BC.
图2-4-21
【证明】 连接AM,MB,
因为DA⊥AB,MN⊥CD,
所以∠MDA+∠MNA=180°.
又因为∠MNA+∠MNB=180°,
所以∠MDA=∠MNB,
又因为CD为⊙O的切线,所以∠1=∠2,
所以△ADM∽△MNB,
所以=,同理=,
所以=,即有MN2=AD·BC.
[能力提升]
1.在圆O的直径CB的延长线上取一点A,AP与圆O切于点P,且∠APB=30°,AP=,则CP=(  ) 【导学号:07370044】
A.  B.2
C.2-1 D.2+1
【解析】 如图,连接OP,则OP⊥PA,
又∠APB=30°,
∴∠POB=60°,
在Rt△OPA中,由AP=,
易知,PB=OP=1,
在Rt△PCB中,
由PB=1,∠PBC=60°,得PC=.
【答案】 A
2.如图2-4-22,AB是⊙O直径,P在AB的延长线上,PD切⊙O于C点,连接AC,若AC=PC,PB=1,则⊙O的半径为(  )
图2-4-22
A.1 B.2
C.3 D.4
【解析】 连接BC.
∵AC=PC,∴∠A=∠P.
∵∠BCP=∠A,∴∠BCP=∠P,
∴BC=BP=1.
由△BCP∽△CAP,得
PC2=PB·PA,
即AC2=PB·PA.
而AC2=AB2-BC2,
设⊙O半径为r,
则4r2-12=1·(1+2r),解得r=1.
【答案】 A
3.如图2-4-23,过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=7,C是圆上一点使得BC=5,∠BAC=∠APB,则AB=__________.
图2-4-23
【解析】 由PA为⊙O的切线,BA为弦,
得∠PAB=∠BCA.
又∠BAC=∠APB,
于是△APB∽△CAB,
所以=.
而PB=7,BC=5,
故AB2=PB·BC=7×5=35,即AB=.
【答案】 
4.如图2-4-24,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.
图2-4-24
证明:
(1)∠FEB=∠CEB;
(2)EF2=AD·BC.
【证明】 (1)由直线CD与⊙O相切,得∠CEB=∠EAB.
由AB为⊙O的直径,得AE⊥EB,从而∠EAB+∠EBF=.
又EF⊥AB,得∠FEB+∠EBF=.
从而∠FEB=∠EAB,故∠FEB=∠CEB.
(2)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE是公共边,得Rt△BCE≌Rt△BFE,所以BC=BF.
类似可证Rt△ADE≌Rt△AFE,得AD=AF.
又在Rt△AEB中,EF⊥AB,故EF2=AF·BF,
所以EF2=AD·BC.
模块综合测评
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.极坐标方程cos θ=(ρ∈R)表示的曲线是(  )
A.两条相交直线 B.两条射线
C.一条直线 D.一条射线
【解析】 由cos θ=,解得θ=或θ=π,
又ρ∈R,故为两条过极点的直线.
【答案】 A
2.极坐标系中,过点P(1,π)且倾斜角为的直线方程为(  )
A.ρ=sin θ+cos θ B.ρ=sin θ-cos θ
C.ρ= D.ρ=
【解析】 设M(ρ,θ) 为直线上任意一点,则
在△OPM中,由正弦定理得=,
∴ρ=.
【答案】 D
3.已知参数方程(a、b、λ均不为零,0≤θ≤2π),分别取①t为参数;②λ为参数;③θ为参数,则下列结论中成立的是(  )
A.①、②、③均是直线
B.只有②是直线
C.①、②是直线,③是圆
D.②是直线,①③是圆
【解析】 ①t为参数,原方程可化为:y-λsin θ=(x-λcos θ),②λ为参数,原方程可化为:
y-bt=(x-at)·tan θ,③θ为参数,原方程可化为:
(x-at)2+(y-bt)2=λ2,即①、②是直线,③是圆.
【答案】 C
4.将曲线+=1按φ:变换后的曲线的参数方程为(  )
A. B.
C. D.
【解析】 +=1→+=1→(x′)2+(y′)2=1→→
即故选D.
【答案】 D
5.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为(  )
A.x2+y2=0或y=1 B.x=1
C.x2+y2=0或x=1 D.y=1
【解析】 由ρ2cos θ-ρ=0,得ρ(ρcos θ-1)=0,
又ρ=,x=ρcos θ,
∴x2+y2=0或x=1.
【答案】 C
6.柱坐标对应的点的直角坐标是(  )
A.(,-1,1) B.(,1,1)
C.(1,,1) D.(-1,,1)
【解析】 由直角坐标与柱坐标之间的变换公式,可得故应选C.
【答案】 C
7.直线l:3x+4y-12=0与圆C:(θ为参数)的公共点个数为(  )
A.0个 B.1个
C.2个 D.无法确定
【解析】 圆C的直角坐标方程为(x+1)2+(y-2)2=4,
∴圆心C(-1,2),半径r=2.
圆心C到直线l的距离
d==,
因此d【答案】 C
8.双曲线(θ为参数)上,当θ=时对应的点为P,O为原点,则OP的斜率为(  )
A. B.
C. D.2
【解析】 ∵x=4sec θ==-8,
y=2tan θ=2tan=-2,
∴kOP==.
【答案】 A
9.已知曲线C的极坐标方程为ρ=6sin θ,以极点为平面直角坐标系的原点,极轴为x轴正半轴,直线l的参数方程为(t为参数),则直线l与曲线C相交所得弦长为(  )
A.1 B.2
C.3 D.4
【解析】 曲线C的直角坐标方程为x2+y2-6y=0,即x2+(y-3)2=9,
直线的直角坐标方程为x-2y+1=0,
∵圆心C到直线l的距离
d==,
∴直线l与圆C相交所得弦长为
2=2=4.
【答案】 D
10.直线(t为参数)与圆ρ=2cos θ的位置关系为(  )
A.相离 B.相切
C.相交 D.无法确定
【解析】 直线(t为参数)的普通方程为3x+4y+2=0,圆ρ=2cos θ的普通方程为x2+y2-2x=0,即(x-1)2+y2=1,圆心到直线3x+4y+2=0的距离d=1=r,所以直线与圆的位置关系为相切.故选B.
【答案】 B
11.已知曲线的参数方程是(α为参数),若以此曲线所在的直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线的极坐标方程为(  )
A.ρ=sin θ B.ρ=2sin θ
C.ρ=2cos θ D.ρ=cos θ
【解析】 由(α为参数)得普通方程为+y2=,
故圆心为C,半径r=,
所以极坐标方程为ρ=cos θ.
【答案】 D
12.若动点(x,y)在曲线+=1(b>0)上变化,则x2+2y的最大值为(  )
A.  
B.
C.+4
D.2b
【解析】 设动点的坐标为(2cos θ,bsin θ),
代入x2+2y=4cos2θ+2bsin θ
=-+4+,
当0当b>4时,(x2+2y)max=-+4+=2b.
【答案】 A
二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上)
13.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知射线θ=与曲线(t为参数)相交于A,B两点,则线段AB的中点的直角坐标为________.
【解析】 射线θ=的普通方程为y=x(x≥0),代入得t2-3t=0,解得t=0或t=3.
当t=0时,x=1,y=1,即A(1,1);
当t=3时,x=4,y=4,即B(4,4).
所以AB的中点坐标为.
【答案】 
14.极坐标系中,曲线ρ=-4cos θ上的点到直线ρ=8的距离的最大值是________.
【解析】 曲线方程化为:ρ2=-4ρcos θ,即x2+y2+4x=0,化为:(x+2)2+y2=4,圆心坐标为(-2,0),半径为r=2,直线方程化为:x+y-8=0,圆心到直线的距离为:d==5,所以最大距离为:5+2=7.
【答案】 7
15.直线(t为参数)与曲线(α为参数)的交点个数为________.
【解析】 直线与曲线的普通方程分别为
x+y-1=0,    ①
x2+y2=9, ②
②表示圆心为O(0,0),半径为3的圆,
设O到直线的距离为d,则d==,
∵<3,∴直线与圆有2个交点.
【答案】 2
16.已知曲线C的参数方程为(t为参数),C在点(1,1)处的切线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l的极坐标方程为________.
【解析】 由sin2t+cos2t=1得曲线C的普通方程为x2+y2=2,过原点O及切点(1,1)的直线的斜率为1,故切线l的斜率为-1,所以切线l的方程为y-1=-(x-1),即x+y-2=0.把x=ρcos θ,y=ρsin θ代入直线l的方程可得ρcos θ+ρsin θ-2=0,
即ρsin-2=0,
化简得ρsin=.
【答案】 ρsin=
三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.
【解】 由题设知,椭圆的长半轴长a=5,短半轴长b=3,从而c==4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程x-2y+2=0.故所求直线的斜率为,因此其方程为y=(x-4),即x-2y-4=0.
18.(本小题满分12分)在平面直角坐标系中, 以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标为,直线l的极坐标方程为ρcos=a,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.
【解】 (1)由点A在直线ρcos=a上,可得a=,
所以直线l的方程可化为ρcos θ+ρsin θ=2,
从而直线l的直角坐标方程为x+y-2=0.
(2)由已知得圆C的直角坐标方程为(x-1)2+y2=1,
所以圆C的圆心为(1,0),半径r=1.
因为圆心C到直线l的距离d==<1,
所以直线l与圆C相交.
19.(本小题满分12分)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).
【解】 (1)将消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.
将代入x2+y2-8x-10y+16=0得
ρ2-8ρcos θ-10ρsin θ+16=0,
所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.
(2)C2的普通方程为x2+y2-2y=0.

解得或
所以C1与C2交点的极坐标分别为,.
20.(本小题满分12分)在直角坐标系xOy中,圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);
(2)求圆C1与C2的公共弦的参数方程.
【解】 (1)圆C1的极坐标方程为ρ=2,圆C2的极坐标方程为ρ=4cos θ.
解得ρ=2,θ=±.
故圆C1与圆C2交点的坐标为
或.
注:极坐标系下点的表示不惟一.
(2)法一 将x=1代入得ρcos θ=1,从而ρ=.于是圆C1与C2的公共弦的参数方程为.
法二 由得圆C1与圆C2交点的直角坐标分别为(1,-)或(1,).
故圆C1与C2公共弦的参数方程为
(-≤t≤).
21.(本小题满分12分)在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立坐标系,已知曲线C:ρsin2θ=2acos θ(a>0),已知过点P(-2,-4)的直线l的参数方程为(t为参数),直线l与曲线C分别交于M,N两点.
(1)写出曲线C和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.
【解】 (1)曲线C:y2=2ax,直线l:x-y-2=0.
(2)将直线的参数表达式代入抛物线得
t2-(4+a)t+16+4a=0,
所以t1+t2=8+2a,t1t2=32+8a.
因为|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|,
由题意知,|t1-t2|2=|t1t2|?(t1+t2)2=5t1t2,
代入得a=1.
22.(本小题满分12分)如图1,已知抛物线y2=2px(p>0)的焦点为F,过F的直线交抛物线于A,B两点.
图1
(1)求证:+为定值;
(2)求AB的中点M的轨迹方程.
【解】 设直线AB的方程为(t为参数,α≠0),代入y2=2px整理,得t2sin2α-2ptcos α-p2=0.
设A、B两点对应的参数分别为t1、t2,
则由根与系数的关系,得
t1+t2=,t1t2=-.
(1)+=+=
==
==(定值).
(2)设AB的中点M(x,y),
则M对应的参数为t==,
∴(α为参数),
消去α,得y2=p为所求的轨迹方程.
章末综合测评(一) 坐标系
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.将曲线y=sin 2x按照伸缩变换后得到的曲线方程为(  )
A.y′=3sin x′ B.y′=3sin 2x′
C.y′=3sinx′ D.y′=sin 2x′
【解析】 由伸缩变换,得x=,y=.
代入y=sin 2x,有=sin x′,即y′=3sin x′.
【答案】 A
2.(2016·重庆七校联盟)在极坐标系中,已知两点A,B的极坐标分别为,,则△AOB(其中O为极点)的面积为(  )
A.1 B.2
C.3 D.4
【解析】 如图所示,OA=3,OB=4,∠AOB=,所以S△AOB=×3×4×=3.
【答案】 C
3.已知点P的极坐标为(1,π),那么过点P且垂直于极轴的直线的极坐标方程是(  )
A.ρ=1 B.ρ=cos θ
C.ρ=- D.ρ=
【答案】 C
4.在极坐标系中,点A与B之间的距离为(  )
A.1 B.2 C.3 D.4
【解析】 由A与B,知∠AOB=,
∴△AOB为等边三角形,因此|AB|=2.
【答案】 B
5.极坐标方程4ρ·sin2=5表示的曲线是(  )
A.圆 B.椭圆
C.双曲线的一支 D.抛物线
【解析】 由4ρ·sin2=4ρ·=2ρ-2ρcos θ=5,得方程为2-2x=5,化简得y2=5x+,
∴该方程表示抛物线.
【答案】 D
6.直线ρcos θ+2ρsin θ=1不经过(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
【解析】 由ρcos θ+2ρsin θ=1,得x+2y=1,
∴直线x+2y=1不过第三象限.
【答案】 C
7.点M的直角坐标为(,1,-2),则它的球坐标为(  )
A. B.
C. D.
【解析】 设M的球坐标为(r,φ,θ),
则解得
【答案】 A
8.在极坐标系中,直线θ=(ρ∈R)截圆
ρ=2cos所得弦长是(  )
【导学号:91060014】
A.1 B.2
C.3 D.4
【解析】 化圆的极坐标方程ρ=2cos为直角坐标方程得+=1,圆心坐标为,半径长为1,化直线θ=(ρ∈R)的直角坐标方程为x-y=0,由于-×=0,即直线x-y=0过圆+=1的圆心,故直线θ=(ρ∈R)截圆ρ=2cos所得弦长为2.
【答案】 B
9.若点P的柱坐标为,则P到直线Oy的距离为(  )
A.1 B.2
C. D.
【解析】 由于点P的柱坐标为(ρ,θ,z)=,故点P在平面xOy内的射影Q到直线Oy的距离为ρcos =,可得P到直线Oy的距离为.
【答案】 D
10.设正弦曲线C按伸缩变换后得到曲线方程为y′=sin x′,则正弦曲线C的周期为(  )
A. B.π
C.2π D.4π
【解析】 由伸缩变换知3y=sin x,
∴y=sin x,∴T==4π.
【答案】 D
11.(2016·惠州调研)已知点A是曲线ρ=2cos θ上任意一点,则点A到直线ρsin=4的距离的最小值是(  )
A.1 B. C. D.
【解析】 曲线ρ=2cos θ即(x-1)2+y2=1,表示圆心为(1,0),半径等于1的圆,直线ρsin=4,即x+y-8=0,圆心(1,0)到直线的距离等于=,所以点A到直线ρsin=4的距离的最小值是-1=.
【答案】 C
12.极坐标方程ρ=2sin的图形是(  )
【解析】 法一 圆ρ=2sin是把圆ρ=2sin θ绕极点按顺时针方向旋转而得,圆心的极坐标为,故选C.
法二 圆ρ=2sin的直角坐标方程为+=1,圆心为,半径为1,故选C.
【答案】 C
二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)
13.(2016·深圳调研)在极坐标系中,经过点作圆ρ=4sin θ的切线,则切线的极坐标方程为________.
【解析】 圆ρ=4sin θ的直角坐标方程为x2+y2=4y,化成标准方程得x2+(y-2)2=4,表示以点(0,2)为圆心,以2为半径长的圆,点的直角坐标为(2,2),由于22+(2-2)2=4,即点(2,2)在圆上,故过点且与圆相切的直线的方程为x=2,其极坐标方程为ρcos θ=2.
【答案】 ρcos θ=2
14.已知圆的极坐标方程为ρ=4cos θ,圆心为C,点P的极坐标为,则|CP|=________.
【解析】 由ρ=4cos θ可得x2+y2=4x,即(x-2)2+y2=4,因此圆心C的直角坐标为(2,0).又点P的直角坐标为(2,2),因此|CP|=2.
【答案】 2
15.在极坐标系中,曲线C1:ρ(cos θ+sin θ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,则a=________.
【解析】 ρ(cos θ+sin θ)=1,即ρcos θ+ρsin θ=1对应的直角坐标方程为x+y-1=0,ρ=a(a>0)对应的普通方程为x2+y2=a2.在x+y-1=0中,令y=0,得x=.将代入x2+y2=a2得a=.
【答案】 
16.直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为________.
【解析】 直线2ρcos θ=1可化为2x=1,即x=,圆ρ=2cos θ两边同乘ρ得ρ2=2ρcos θ,化为直角坐标方程是x2+y2=2x,
即(x-1)2+y2=1,其圆心为(1,0),半径为1,
∴弦长为2× =.
【答案】 
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)已知⊙C:ρ=cos θ+sin θ, 直线l:ρ=.求⊙C上点到直线l距离的最小值.
【解】 ⊙C的直角坐标方程是x2+y2-x-y=0,
即+=.
又直线l的极坐标方程为ρ(cos θ-sin θ)=4,
所以直线l的直角坐标方程为x-y-4=0.
设M为⊙C上任意一点,M点到直线l的距离
d=
=,
当θ=时,dmin==.
18.(本小题满分12分)已知直线的极坐标方程ρsin=,求极点到直线的距离.
【解】 ∵ρsin=,∴ρsin θ+ρcos θ=1,
即直角坐标方程为x+y=1.
又极点的直角坐标为(0,0),
∴极点到直线的距离d==.
19.(本小题满分12分)(1)在极坐标系中,求以点(1,1)为圆心,半径为1的圆C的方程;
(2)将上述圆C绕极点逆时针旋转得到圆D,求圆D的方程.
【解】 (1)设M(ρ,θ)为圆上任意一点,如图,圆C过极点O,∠COM=θ-1,
作CK⊥OM于K,则ρ=|OM|=2|OK|=2cos(θ-1),
∴圆C的极坐标方程为ρ=2cos(θ-1).
(2)将圆C:ρ=2cos(θ-1)按逆时针方向旋转得到圆D:ρ=2cos,
即ρ=-2sin(1-θ).
20.(本小题满分12分)如图1,正方体OABC-D′A′B′C′中,|OA|=3,A′C′与B′D′相交于点P,分别写出点C、B′、P的柱坐标.
图1
【解】 设点C的柱坐标为(ρ1,θ1,z1),
则ρ1=|OC|=3,θ1=∠COA=,z1=0,
∴C的柱坐标为;
设点B′的柱坐标为(ρ2,θ2,z2),则ρ2=|OB|===3,
θ2=∠BOA=,z2=3,
∴B′的柱坐标为;
如图,取OB的中点E,连接PE,
设点P的柱坐标为(ρ3,θ3,z3),则ρ3=|OE|=|OB|=,θ3=∠AOE=,z3=3,
点P的柱坐标为.
21.(本小题满分12分)已知曲线C1的极坐标方程为ρcos=-1,曲线C2的极坐标方程为ρ=2cos,判断两曲线的位置关系.
【解】 将曲线C1,C2化为直角坐标方程得:
C1:x+y+2=0,
C2:x2+y2-2x-2y=0,即C2:(x-1)2+(y-1)2=2,
圆心到直线的距离d==>,
∴曲线C1与C2相离.
22.(本小题满分12分)在极坐标系中,极点为O,已知曲线C1:ρ=2与曲线C2:ρsin=交于不同的两点A,B.
(1)求|AB|的值;
(2)求过点C(1,0)且与直线AB平行的直线l的极坐标方程.
【解】 (1)∵ρ=2,∴x2+y2=4.
又∵ρsin=,∴y=x+2,
∴|AB|=2=2=2.
(2)∵曲线C2的斜率为1,∴过点(1,0)且与曲线C2平行的直线l的直角坐标方程为y=x-1,
∴直线l的极坐标为ρsin θ=ρcos θ-1,
即ρcos=.
章末综合测评(二) 参数方程
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列点不在直线(t为参数)上的是(  )
A.(-1,2) B.(2,-1)
C.(3,-2) D.(-3,2)
【解析】 直线l的普通方程为x+y-1=0,
因此点(-3,2)的坐标不适合方程x+y-1=0.
【答案】 D
2.圆的参数方程为(θ为参数,0≤θ<2π),若Q(-2,2)是圆上一点,则对应的参数θ的值是(  )
A.   B.π   C.π    D.π
【解析】 ∵点Q(-2,2)在圆上,
∴且0≤θ<2π,∴θ=π.
【答案】 B
3.直线(t为参数)的斜率为(  )
A.2 B.-2
C. D.-
【解析】 直线的普通方程为2x+y-8=0,
∴斜率k=-2.
【答案】 B
4.已知O为原点,当θ=-时,参数方程
(θ为参数)上的点为A,则直线OA的倾斜角为(  )
A. B. C. D.
【解析】 当θ=-时,x=,y=-,
∴kOA=tan α==-,且0≤α<π,
因此α=.
【答案】 C
5.已知A(4sin θ,6cos θ),B(-4cos θ,6sin θ),当θ为一切实数时,线段AB的中点轨迹为(  )
A.直线 B.圆
C.椭圆 D.双曲线
【解析】 设线段AB的中点为M(x,y),
则(θ为参数),

∴(3x+2y)2+(3x-2y)2=144,
整理得+=1,表示椭圆.
【答案】 C
6.椭圆(θ为参数)的离心率是(  )
A. B.
C. D.
【解析】 椭圆的标准方程为+=1,∴e=.故选A.
【答案】 A
7.(2016·汕头月考)已知圆M:x2+y2-2x-4y=10,则圆心M到直线(t为参数)的距离为(  )
A.1 B.2
C.3 D.4
【解析】 由题意易知圆的圆心M(1,2),由直线的参数方程化为一般方程为3x-4y-5=0,所以圆心到直线的距离为d==2.
【答案】 B
8.若直线(t为参数)与圆
(φ为参数)相切,那么直线的倾斜角为(  )
A.或 B.或
C.或 D.-或-
【解析】 直线的普通方程为y=tan α·x,圆的普通方程为(x-4)2+y2=4,由于直线与圆相切,则=2.
∴tan α=±,∴α=或.故选A.
【答案】 A
9.若直线y=x-b与曲线θ∈[0,2π)有两个不同的公共点,则实数b的取值范围是(  )
【导学号:91060032】
A.(2-,1)
B.[2-,2+]
C.(-∞,2-)∪(2+,+∞)
D.(2-,2+)
【解析】 由消去θ,得
(x-2)2+y2=1.(*)
将y=x-b代入(*),化简得
2x2-(4+2b)x+b2+3=0,
依题意,Δ=[-(4+2b)]2-4×2(b2+3)>0,
解得2-【答案】 D
10.实数x,y满足3x2+2y2=6x,则x2+y2的最大值是(  )
A.2 B.4
C. D.5
【解析】 由3x2+2y2=6x,得3(x-1)2+2y2=3,
令x=1+cos θ,y=sin θ,代入x2+y2,得
x2+y2=(1+cos θ)2+sin2θ=-(cos θ-2)2+,∴当cos θ=1时,(x2+y2)max=4.
【答案】 B
11.参数方程(θ为参数,0≤θ<2π)所表示的曲线是(  )
A.椭圆的一部分
B.双曲线的一部分
C.抛物线的一部分,且过点
D.抛物线的一部分,且过点
【解析】 由y=cos2
==,
可得sin θ=2y-1,
由x= 得x2-1=sin θ,
∴参数方程可化为普通方程x2=2y.
又x=∈[0,],故选D.
【答案】 D
12.已知直线l:(t为参数),抛物线C的方程y2=2x,l与C交于P1,P2,则点A(0,2)到P1,P2两点距离之和是(  )
A.4+ B.2(2+)
C.4(2+) D.8+
【解析】 将直线l参数方程化为(t′为参数),代入y2=2x,得t′2+4(2+)t′+16=0,设其两根为t1′、t2′,则t1′+t2′=-4(2+),
t1′t2′=16>0.
由此知在l上两点P1,P2都在A(0,2)的下方,则|AP1|+|AP2|=|t1′|+|t2′|=|t1′+t2′|=4(2+).
【答案】 C
二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上)
13.双曲线(φ是参数)的渐近线方程为________.
【解析】 化参数方程为普通方程,得y2-x2=1.故其渐近线为y=±x,即x±y=0.
【答案】 x±y=0
14.(2016·东莞模拟)在极坐标系中,直线过点(1,0)且与直线θ=(ρ∈R)垂直,则直线极坐标方程为________.
【解析】 由题意可知在直角坐标系中,直线θ=的斜率是,所求直线是过点(1,0),且斜率是-,所以直线方程为y=-(x-1),化为极坐标方程ρsin θ=-(ρcos θ-1),化简得2ρsin=1.
【答案】 2ρsin=1或2ρcos=1或ρcos θ+ρsin θ=1
15.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知射线θ=与曲线(t为参数)相交于A,B两点,则线段AB的中点的直角坐标为________.
【解析】 曲线可化为y=(x-2)2,射线θ=可化为y=x(x≥0),联立这两个方程得:x2-5x+4=0,点A,B的横坐标就是此方程的根,线段AB的中点的直角坐标为.
【答案】 
16.在直角坐标系xOy中,椭圆C的参数方程为(φ为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为ρsin=m(m为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为________.
【解析】 由已知可得椭圆标准方程为+=1(a>b>0).
由ρsin=m可得ρsin θ+ρcos θ=m,即直线的普通方程为x+y=m.又圆的普通方程为x2+y2=b2,不妨设直线l经过椭圆C的右焦点(c,0),则得c=m.又因为直线l与圆O相切,所以=b,因此c=b,即c2=2(a2-c2).整理,得=,故椭圆C的离心率为e=.
【答案】 
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)已知圆O的参数方程为(θ为参数,0≤θ<2π).
(1)求圆心和半径;
(2)若圆O上点M对应的参数θ=,求点M的坐标.
【解】 (1)由(0≤θ<2π),
平方得x2+y2=4,
∴圆心O(0,0),半径r=2.
(2)当θ=时,x=2cos θ=1,y=2sin θ=-,
∴点M的坐标为(1,-).
18.(本小题满分12分)已知曲线C:(φ为参数).
(1)将C的方程化为普通方程;
(2)若点P(x,y)是曲线C上的动点,求2x+y的取值范围.
【解】 (1)由曲线C:得
+=1即+=1.
(2)2x+y=8cos φ+3sin φ=sin(φ+θ),

∴2x+y∈[-,],
∴2x+y的取值范围是[-,].
19.(本小题满分12分)已知直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数).
(1)将曲线C的参数方程化为普通方程;
(2)若直线l与曲线C交于A,B两点,求线段AB的长.
【解】 (1)由曲线C:得x2+y2=16,
∴曲线C的普通方程为x2+y2=16.
(2)将代入x2+y2=16,
整理,得t2+3t-9=0.
设A,B对应的参数为t1,t2,则
t1+t2=-3,t1t2=-9.
|AB|=|t1-t2|==3.
20.(本小题满分12分)已知动点P、Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.
【解】 (1)依题意有P(2cos α,2sin α),
Q(2cos 2α,2sin 2α),
因此M(cos α+cos 2α,sin α+sin 2α).
M的轨迹的参数方程为(α为参数,0<α<2π).
(2)M点到坐标原点的距离
d==(0<α<2π).
当α=π时,d=0,故M的轨迹过坐标原点.
21.(本小题满分12分)(2016·昆明调研)在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cos θ.
(1)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;
(2)若曲线C与直线相交于不同的两点M,N,求|PM|+|PN|的取值范围.
【解】 (1)直线l的参数方程为(t为参数).
∵ρ=4cos θ,∴ρ2=4ρcos θ,所以C:x2+y2=4x.
(2)直线l的参数方程为(t为参数),代入C:x2+y2=4x,得
t2+4(sin α+cos α)t+4=0,
则有
∴sin α·cos α>0,又α∈[0,π),
所以α∈,t1<0,t2<0.
而|PM|+|PN|
=+
=|t1|+|t2|
=-t1-t2=4(sin α+cos α)=4sin.
∵α∈,∴α+∈,
所以|PM|+|PN|的取值范围为(4,4].
22.(本小题满分12分)在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.
(1)分别说明C1,C2是什么曲线,并求出a与b的值;
(2)设当α=时,l与C1,C2的交点分别为A1,B1,当α=-时,l与C1,C2的交点分别为A2,B2,求四边形A1A2B2 B1的面积.
【解】 (1)C1是圆,C2是椭圆.
当α=0时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3.
当α=时,射线l与C1,C2交点的直角坐标分别为(0,1),(0,b),因为这两点重合,所以b=1.
(2)C1,C2的普通方程分别为x2+y2=1和+y2=1.
当α=时,射线l与C1交点A1的横坐标为x=,与C2交点B1的横坐标为x′=.
当α=-时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此四边形A1A2B2B1为梯形.
故四边形A1A2B2B1的面积为
=.
学业分层测评(一)
(建议用时:45分钟)
[学业达标]
一、选择题
1.动点P到直线x+y-4=0的距离等于它到点M(2,2)的距离,则点P的轨迹是(  )
A.直线  B.椭圆
C.双曲线 D.抛物线
【解析】 ∵M(2,2)在直线x+y-4=0上,
∴点P的轨迹是过M与直线x+y-4=0垂直的直线.
【答案】 A
2.已知线段BC长为8,点A到B,C两点距离之和为10,则动点A的轨迹为(  )
A.直线 B.圆
C.椭圆 D.双曲线
【解析】 由椭圆的定义可知,动点A的轨迹为一椭圆.
【答案】 C
3.若△ABC三个顶点的坐标分别是A(1,2),B(2,3),C(3,1),则△ABC的形状为(  )
A.等腰三角形 B.等边三角形
C.直角三角形 D.钝角三角形
【解析】 |AB|==,
|BC|==,
|AC|==,
|BC|=|AC|≠|AB|,△ABC为等腰三角形.
【答案】 A
4.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所围成的图形的面积等于(  )
A.π B.4π
C.8π D.9π
【解析】 设P点的坐标为(x,y),
∵|PA|=2|PB|,
∴(x+2)2+y2=4[(x-1)2+y2],
即(x-2)2+y2=4.
故P点的轨迹是以(2,0)为圆心,以2为半径的圆,它的面积为4π.
【答案】 B
5.在同一平面直角坐标系中,将曲线y=cos 2x按伸缩变换后为(  )
A.y′=cos x′ B.y′=3cosx′
C.y′=2cosx′ D.y′=cos 3x′
【解析】 由得
代入y=cos 2x,得=cos x′,
∴y′=cos x′.
【答案】 A
二、填空题
6.若点P(-2 016,2 017)经过伸缩变换后的点在曲线x′y′=k上,则k=________.
【解析】 ∵P(-2 016,2 017)经过伸缩变换得
代入x′y′=k,
得k=-1.
【答案】 -1
7.将点P(2,3)变换为点P′(1,1)的一个伸缩变换公式为________.
【导学号:91060002】
【解析】 设伸缩变换为
由解得∴
【答案】 
8.平面直角坐标系中,在伸缩变换φ:
作用下仍是其本身的点为________.
【解析】 设P(x,y)在伸缩变换φ:作用下得到P′(λx,μy).
依题意得其中λ>0,μ>0,λ≠1,μ≠1,
∴x=y=0,即P(0,0)为所求.
【答案】 (0,0)
三、解答题
9.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形.
(1)x2-y2=1;
(2)+=1.
【解】 由伸缩变换得①
(1)将①代入x2-y2=1得9x′2-4y′2=1,
因此,经过伸缩变换后,双曲线x2-y2=1变成双曲线9x′2-4y′2=1,如图甲所示.
(2)将①代入+=1得x′2+=1,因此,经过伸缩变换后,椭圆+=1变成椭圆x′2+=1,如图乙所示.
10.台风中心从A地以20 km/h的速度向东北方向移动,离台风中心30 km内的地区为危险区,城市B在A地正东40 km处.求城市B处于危险区内的时间.
【解】 以A为坐标原点,AB所在直线为x轴,建立平面直角坐标系,则B(40,0),
以点B为圆心,30为半径的圆的方程为(x-40)2+y2=302,
台风中心移动到圆B内时,城市B处于危险区.台风中心移动的轨迹为直线y=x,与圆B相交于点M,N,
点B到直线y=x的距离d==20.
求得|MN|=2=20(km),故=1,
所以城市B处于危险区的时间为1 h.
[能力提升]
1.在同一平面直角坐标系中经过伸缩变换后曲线C变为曲线2x′2+8y′2=0,则曲线C的方程为(  )
A.25x2+36y2=0 B.9x2+100y2=0
C.10x+24y=0 D.x2+y2=0
【解析】 将代入2x′2+8y′2=0,得:
2·(5x)2+8·(3y)2=0,即:25x2+36y2=0.
【答案】 A
2.如图1-1-1,在平面直角坐标系中,Ω是一个与x轴的正半轴、y轴的正半轴分别相切于点C、D的定圆所围成的区域(含边界),A、B、C、D是该圆的四等分点.若点P(x,y)、点P′(x′,y′)满足x≤x′且y≥y′,则称P优于P′.如果Ω中的点Q满足:不存在Ω中的其他点优于点Q,那么所有这样的点Q组成的集合是劣弧(  )
图1-1-1
A.    B. C.     D.
【解析】 如图,过任一点P作与坐标轴平行的直线,则两直线将平面分为Ⅰ,Ⅱ,Ⅲ,Ⅳ四部分,由题意,Ⅱ(包含边界)区域内的点优于P,在圆周上取点,易知只有P在上时,Ⅱ(含边界)内才不含Ω内的点,故点Q的集合为.
【答案】 D
3.已知A(2,-1),B(-1,1),O为坐标原点,动点M满足=m+n,其中m,n∈R,且2m2-n2=2,则M的轨迹方程为________.
【解析】 设M(x,y),则(x,y)=m(2,-1)+n(-1,1)=(2m-n,n-m),∴
又2m2-n2=2,消去m,n得-y2=1.
【答案】 -y2=1
4.学校科技小组在计算机上模拟航天器变轨返回试验.设计方案如图1-1-2,航天器运行(按顺时针方向)的轨迹方程为+=1,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为对称轴,M为顶点的抛物线的实线部分,降落点为D(8,0),观测点A(4,0),B(6,0)同时跟踪航天器.
图1-1-2
(1)求航天器变轨后的运行轨迹所在的曲线方程;
(2)试问:当航天器在x轴上方时,观测点A,B测得离航天器的距离分别为多少时,应向航天器发出变轨指令?
【解】 (1)设曲线方程为y=ax2+.
因为D(8,0)在抛物线上,∴a=-,
∴曲线方程为y=-x2+.
(2)设变轨点为C(x,y).
根据题意可知
∴4y2-7y-36=0,
解得y=4或y=-(不合题意,舍去),
∴y=4.
解得x=6或x=-6(不合题意,舍去),
∴C点的坐标为(6,4),|AC|=2,|BC|=4.
即当观测点A、B测得离航天器的距离分别为2、4时,应向航天器发出变轨指令.
学业分层测评(二)
(建议用时:45分钟)
[学业达标]
一、选择题
1.下列各点中与不表示极坐标系中同一个点的是(  )
A. B.
C. D.
【解析】 与极坐标相同的点可以表示为(k∈Z),只有不适合.
【答案】 C
2.将点的极坐标(π,-2π)化为直角坐标为(  )
A.(π,0) B.(π,2π)
C.(-π,0) D.(-2π,0)
【解析】 x=πcos(-2π)=π,y=πsin(-2π)=0,
所以点的极坐标(π,-2π)化为直角坐标为(π,0).
【答案】 A
3.若ρ1+ρ2=0,θ1+θ2=π,则点M1(ρ1,θ1)与点M2(ρ2,θ2)的位置关系是(  )
A.关于极轴所在直线对称
B.关于极点对称
C.关于过极点垂直于极轴的直线对称
D.两点重合
【解析】 因为点(ρ,θ)关于极轴所在直线对称的点为(-ρ,π-θ).由此可知点(ρ1,θ1)和(ρ2,θ2)满足ρ1+ρ2=0,θ1+θ2=π,是关于极轴所在直线对称.
【答案】 A
4.在极坐标系中,已知点P1、P2,则|P1P2|等于(  )
A.9   B.10 C.14   D.2
【解析】 ∠P1OP2=-=,∴△P1OP2为直角三角形,由勾股定理可得|P1P2|=10.
【答案】 B
5.在平面直角坐标系xOy中,点P的直角坐标为(1,-).若以原点O为极点,x轴正半轴为极轴建立极坐标系,则点P的极坐标可以是
(  )
【导学号:91060005】
A. B.
C. D.
【解析】 极径ρ==2,极角θ满足tan θ==-,
∵点(1,-)在第四象限,∴θ=-.
【答案】 A
二、填空题
6.平面直角坐标系中,若点P经过伸缩变换后的点为Q,则极坐标系中,极坐标为Q的点到极轴所在直线的距离等于________.
【解析】 ∵点P经过伸缩变换后的点为Q,则极坐标系中,极坐标为Q的点到极轴所在直线的距离等于6=3.
【答案】 3
7.已知点P在第三象限角的平分线上,且到横轴的距离为2,则当ρ>0,θ∈[0,2π)时,点P的极坐标为________.
【解析】 ∵点P(x,y)在第三象限角的平分线上,且到横轴的距离为2,
∴x=-2,且y=-2,
∴ρ==2,
又tan θ==1,且θ∈[0,2π),∴θ=.
因此点P的极坐标为.
【答案】 
8.极坐标系中,点A的极坐标是,则
(1)点A关于极轴的对称点的极坐标是________;
(2)点A关于极点的对称点的极坐标是________;
(3)点A关于过极点且垂直于极轴的直线的对称点的极坐标是________.(本题中规定ρ>0,θ∈[0,2π))
【解析】 点A关于极轴的对称点的极坐标为;点A关于极点的对称点的极坐标为;点A关于过极点且垂直于极轴的直线的对称点的极坐标为.
【答案】 (1) (2) (3)
三、解答题
9.(1)已知点的极坐标分别为A,B,C,D,求它们的直角坐标.
(2)已知点的直角坐标分别为A(3,),B,C(-2,-2),求它们的极坐标(ρ≥0,0≤θ<2π).
【解】 (1)根据x=ρcos θ,y=ρsin θ,
得A,
B(-1,),C,
D(0,-4).
(2)根据ρ2=x2+y2,tan θ=得A,B,C.
10.在极坐标系中,已知△ABC的三个顶点的极坐标分别为A,B(2,π),C.
(1)判断△ABC的形状;
(2)求△ABC的面积.
【解】 (1)如图所示,由A,B(2,π),C,
得|OA|=|OB|=|OC|=2,
∠AOB=∠BOC=∠AOC=,
∴△AOB≌△BOC≌△AOC,∴AB=BC=CA,故△ABC为等边三角形.
(2)由上述可知,
AC=2OAsin=2×2×=2.
∴S△ABC=×(2)2=3.
[能力提升]
1.已知极坐标平面内的点P,则P关于极点的对称点的极坐标与直角坐标分别为 (  )
A.,(1,)
B.,(1,-)
C.,(-1,)
D.,(-1,-)
【解析】 点P关于极点的对称点为

即,且x=2cos=-2cos
=-1,y=2sin=-2sin=-.
【答案】 D
2.已知极坐标系中,极点为O,0≤θ<2π,M,在直线OM上与点M的距离为4的点的极坐标为________.
【解析】 如图所示,|OM|=3,∠xOM=,在直线OM上取点P、Q,使|OP|=7,|OQ|=1,∠xOP=,∠xOQ=,显然有|PM|=|OP|-|OM|=7-3=4,|QM|=|OM|+|OQ|=3+1=4.
【答案】 或
3.直线l过点A,B,则直线l与极轴夹角等于________.
【解析】 如图所示,先在图形中找到直线l与极轴夹角(要注意夹角是个锐角),然后根据点A,B的位置分析夹角大小.
因为|AO|=|BO|=3,
∠AOB=-=,
所以∠OAB==,
所以∠ACO=π--=.
【答案】 
4.某大学校园的部分平面示意图如图1-2-3:用点O,A,B,C,D,E,F,G分别表示校门,器材室,操场,公寓,教学楼,图书馆,车库,花园,其中|AB|=|BC|,|OC|=600 m.建立适当的极坐标系,写出除点B外各点的极坐标(限定ρ≥0,0≤θ<2π且极点为(0,0)).
图1-2-3
【解】 以点O为极点,OA所在的射线为极轴Ox(单位长度为1 m),建立极坐标系,
由|OC|=600 m,∠AOC=,∠OAC=,得|AC|=300 m,|OA|=300 m,
又|AB|=|BC|,所以|AB|=150 m.
同理,得|OE|=2|OG|=300 m,
所以各点的极坐标分别为O(0,0),A(300,0),
C,D,E,F(300,π),G.
学业分层测评(三)
(建议用时:45分钟)
[学业达标]
一、选择题
1.极坐标方程ρ=1表示(  )
A.直线  B.射线
C.圆 D.椭圆
【解析】 由ρ=1,得ρ2=1,即x2+y2=1,故选C.
【答案】 C
2.过极点且倾斜角为的直线的极坐标方程可以为(  )
A.θ= B.θ=,ρ≥0
C.θ=,ρ≥0 D.θ=和θ=,ρ≥0
【解析】 以极点O为端点,所求直线上的点的极坐标分成两条射线.
∵两条射线的极坐标方程为θ=和θ=π,
∴直线的极坐标方程为θ=和θ=π(ρ≥0).
【答案】 D
3.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是(  )
A. B.
C.(1,0) D.(1,π)
【解析】 由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x2+y2=-2y,化成标准方程为x2+(y+1)2=1,圆心坐标为(0,-1),其对应的极坐标为.
【答案】 B
4.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为(  )
A.θ=0(ρ∈R)和ρcos θ=2
B.θ=(ρ∈R)和ρcos θ=2
C.θ=(ρ∈R)和ρcos θ=1
D.θ=0(ρ∈R)和ρcos θ=1
【解析】 由ρ=2cos θ,得ρ2=2ρcos θ,化为直角坐标方程为x2+y2-2x=0,即(x-1)2+y2=1,其垂直于极轴的两条切线方程为x=0和x=2,相应的极坐标方程为θ=(ρ∈R)和ρcos θ=2.
【答案】 B
5.在极坐标系中与圆ρ=4sin θ相切的一条直线的方程为(  )
【导学号:91060008】
A.ρcos θ= B.ρcos θ=2
C.ρ=4sin D.ρ=4sin
【解析】 极坐标方程ρ=4sin θ化为ρ2=4ρsin θ,即x2+y2=4y,即x2+(y-2)2=4.
由所给的选项中ρcos θ=2知,x=2为其对应的直角坐标方程,该直线与圆相切.
【答案】 B
二、填空题
6.在极坐标系中,圆ρ=4被直线θ=分成两部分的面积之比是________.
【解析】 ∵直线θ=过圆ρ=4的圆心,
∴直线把圆分成两部分的面积之比是1∶1.
【答案】 1∶1
7.(2016·惠州模拟)若直线l的极坐标方程为ρcosθ-=3,曲线C:ρ=1上的点到直线l的距离为d,则d的最大值为________.
【解析】 直线的直角坐标方程为x+y-6=0,曲线C的方程为x2+y2=1,为圆;d的最大值为圆心到直线的距离加半径,即为dmax=+1=3+1.
【答案】 3+1
8.在极坐标系中,圆ρ=4sin θ的圆心到直线θ=(ρ∈R)的距离是________.
【解析】 极坐标系中的圆ρ=4sin θ转化为平面直角坐标系中的一般方程为:x2+y2=4y,即x2+(y-2)2=4,其圆心为(0,2),直线θ=转化为平面直角坐标系中的方程为y=x,即x-3y=0,
∴圆心(0,2)到直线x-3y=0的距离为=.
【答案】 
三、解答题
9.(2016·银川月考)在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos=1,M,N分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求M,N的极坐标;
(2)设MN的中点为P,求直线OP的极坐标方程.
【解】 (1)由ρcos=1,
得ρ=1.
又x=ρcos θ,y=ρsin θ,
∴曲线C的直角坐标方程为+y=1,
即x+y-2=0.
当θ=0时,ρ=2,∴点M(2,0).
当θ=时,ρ=,∴点N.
(2)由(1)知,M点的坐标(2,0),点N的坐标.
又P为MN的中点,
∴点P,则点P的极坐标为.
所以直线OP的极坐标方程为θ=(ρ∈R).
10.(2016·南通期中)在极坐标系下,已知圆O:ρ=cos θ+sin θ和直线l:ρsin=,
(1)求圆O和直线l的直角坐标方程;
(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.
【解】 (1)由ρ=cos θ+sin θ,可得ρ2=ρcos θ+ρsin θ,
又代入得⊙O:x2+y2-x-y=0,
由l:ρsin=,得:ρsin θ-ρcos θ=,ρsin θ-ρcos θ=1,
又代入得:x-y+1=0.
(2)由解得
又得
又因为θ∈(0,π),则θ=,故为.
[能力提升]
1.在极坐标系中,曲线ρ=4sin关于(  )
A.直线θ=对称 B.直线θ=对称
C.点对称 D.极点对称
【解析】 由方程ρ=4sin,
得ρ2=2ρsin θ-2ρcos θ,
即x2+y2=2y-2x,
配方,得(x+)2+(y-1)2=4.
它表示圆心在(-,1)、半径为2且过原点的圆,
所以在极坐标系中,它关于直线θ=成轴对称.
【答案】 B
2.(2016·湛江模拟)在极坐标方程中,曲线C的方程是ρ=4sin θ,过点作曲线C的切线,则切线长为(  )
A.4 B.
C.2 D.2
【解析】 ρ=4sin θ化为直角坐标方程为x2+(y-2)2=4,点化为直角坐标为(2,2),切线长、圆心到定点的距离及半径构成直角三角形,由勾股定理:切线长为=2.
【答案】 C
3.在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sin θ与ρcos θ=-1的交点的极坐标为________.
【解析】 由ρ=2sin θ,得ρ2=2ρsin θ,
其直角坐标方程为x2+y2=2y,
ρcos θ=-1的直角坐标方程为x=-1,
联立
解得点(-1,1)的极坐标为.
【答案】 
4.在极坐标系中,O为极点,已知圆C的圆心为,半径r=1,P在圆C上运动.
(1)求圆C的极坐标方程;
(2)在直角坐标系(与极坐标系取相同的长度单位,且以极点O为原点,以极轴为x轴正半轴)中,若Q为线段OP的中点,求点Q轨迹的直角坐标方程.
【解】 (1)设圆C上任一点坐标为(ρ,θ),由余弦定理得12=ρ2+22-2·2ρcos,
所以圆的极坐标方程为ρ2-4ρcos+3=0.
(2)设Q(x,y),则P(2x,2y),由于圆C的直角坐标方程为(x-1)2+(y-)2=1,P在圆C上,所以(2x-1)2+(2y-)2=1,则Q的直角坐标方程为+=.
学业分层测评(四)
(建议用时:45分钟)
[学业达标]
一、选择题
1.空间直角坐标系Oxyz中,下列柱坐标对应的点在平面yOz内的是(  )
A. B.
C. D.
【解析】 由P(ρ,θ,z),当θ=时,点P在平面yOz内.
【答案】 A
2.设点M的直角坐标为(2,0,2),则点M的柱坐标为(  )
A.(2,0,2) B.(2,π,2)
C.(,0,2) D.(,π,2)
【解析】 设点M的柱坐标为(ρ,θ,z),
∴ρ==2,tan θ==0,
∴θ=0,z=2,∴点M的柱坐标为(2,0,2).
【答案】 A
3.在空间球坐标系中,方程r=2表示(  )
A.圆 B.半圆
C.球面 D.半球面
【解析】 设动点M的球坐标为(r,φ,θ),由于r=2,0≤φ≤,0≤θ<2π.动点M的轨迹是球心在点O,半径为2的上半球面.
【答案】 D
4.已知点M的直角坐标为(0,0,1),则点M的球坐标可以是(  )
A.(1,0,0) B.(0,1,0)
C.(0,0,1) D.(1,π,0)
【解析】 设M的球坐标为(r,φ,θ),
则r==1,θ=0,
又cos φ==1,∴φ=0.
故点M的球坐标为(1,0,0).
【答案】 A
5.在直角坐标系中,点P的坐标为,则其球坐标为(  )
【导学号:91060011】
A. B.
C. D.
【解析】 r===,
cos φ===,
∴φ=.
tan θ==,又y>0,x>0,∴θ=.
∴球坐标为.
【答案】 B
二、填空题
6.已知点M的球坐标为,则点M到Oz轴的距离为________.
【解析】 设M的直角坐标为(x,y,z),
则由(r,φ,θ)=,
知x=4sincos=-2,
y=4sinsin=2,
z=4cos=2,
∴点M的直角坐标为(-2,2,2).
故点M到OZ轴的距离=2.
【答案】 2
7.在柱坐标系中,点M的柱坐标为,则|OM|=________.
【解析】 设点M的直角坐标为(x,y,z).
由(ρ,θ,z)=知
x=ρcos θ=2cosπ=-1,y=2sinπ=,
因此|OM|=
==3.
【答案】 3
8.(2015·广东高考)已知直线l的极坐标方程为
2ρsin=,点A的极坐标为A,则点A到直线l的距离为________.
【解析】 由2ρsin=,
得2ρ=,∴y-x=1.
由点A的极坐标为得点A的直角坐标为(2,-2),∴d==.
【答案】 
三、解答题
9.在柱坐标系中,求满足的动点M(ρ,θ,z)围成的几何体的体积.
【解】 根据柱坐标系与点的柱坐标的意义可知,满足ρ=1,0≤θ<2π,0≤z≤2的动点M(ρ,θ,z)的轨迹如图所示,是以直线Oz为轴,轴截面为正方形的圆柱,圆柱的底面半径r=1,h=2,
∴V=Sh=πr2h=2π.
10.经过若干个固定和流动的地面遥感观测站监测,并通过数据汇总,计算出一个航天器在某一时刻的位置,离地面2 384千米,地球半径为6 371千米,此时经度为80°,纬度为75°.试建立适当的坐标系,确定出此时航天器点P的坐标.
【解】 在赤道平面上,选取地球球心为极点,以O为原点且与零子午线相交的射线Ox为极轴,建立球坐标系.由已知航天器位于经度为80°,可知θ=80°=.
由航天器位于纬度75°,可知,φ=90°-75°=15°=,由航天器离地面2 384千米,地球半径为6 371千米,可知r=2 384+6 371=8 755千米,所以点P的球坐标为.
[能力提升]
1.空间点P的柱坐标为(ρ,θ,z),关于点O(0,0,0)的对称的点的坐标为(0<θ≤π)(  )
A.(-ρ,-θ,-z) B.(ρ,θ,-z)
C.(ρ,π+θ,-z) D.(р,π-θ,-z)
【解析】 点P(ρ,θ,z)关于点O(0,0,0)的对称点为P′(ρ,π+θ,-z).
【答案】 C
2.点P的柱坐标为,则点P到原点的距离为________.
【解析】 x=ρcos θ=4cos=2,
y=ρsin θ=4sin=2,
即点P的直角坐标为(2,2,3),其到原点距离为=5.
【答案】 5
3.以地球中心为坐标原点,地球赤道平面为xOy坐标面,由原点指向北极点的连线方向为z轴正向,本初子午线所在平面为zOx坐标面,如图1-4-4所示,若某地在西经60°,南纬45°,地球的半径为R,则该地的球坐标可表示为________.
图1-4-4
【解析】 由球坐标的定义可知,该地的球坐标为.
【答案】 
4.已知在球坐标系Oxyz中,M,
N,求|MN|.
【解】 法一 由题意知,
|OM|=|ON|=6,∠MON=,
∴△MON为等边三角形,∴|MN|=6.
法二 设M点的直角坐标为(x,y,z),

故点M的直角坐标为,
同理得点N的直角坐标为,
∴|MN|

==6.
模块综合测评
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.不等式|3x-2|>4的解集是(  )
A.{x|x>2} B.
C. D.
【解析】 因为|3x-2|>4,所以3x-2>4或3x-2<-4,所以x>2或x<-.
【答案】 C
2.能用来表示二维形式的柯西不等式的是(  )
A.a2+b2≥2ab(a,b∈R)
B.(a2+b2)(c2+d2)≥(ac+bd)2(a,b,c,d∈R)
C.(a2+b2)(c2+d2)≥(ab+cd)2(a,b,c,d∈R)
D.(a2+b2)(c2+d2)≤(ac+bd)2(a,b,c,d∈R)
【解析】 根据柯西不等式的结构特征可知只有B正确,故选B.
【答案】 B
3.若实数x,y满足|tan x|+|tan y|>|tan x+tan y|,且y∈,则|tan x-tan y|等于(  )
A.tan x-tan y B.tan y-tan x
C.tan x+tan y D.|tan y|-|tan x|
【解析】 由|tan x|+|tan y|>|tan x+tan y|,得tan x和tan y异号,且y∈,得tan y>0.
故|tan x-tan y|=tan y-tan x.
【答案】 B
4.已知a,b为非零实数,且a【导学号:32750076】
A.a2C.< D.<
【解析】 对于C中,-=<0,
∴<.
【答案】 C
5.用数学归纳法证明2n>n2(n∈N+,n≥5)成立时,第二步归纳假设的正确写法是(  )
A.假设n=k时命题成立
B.假设n=k(k∈N+)时命题成立
C.假设n=k(k≥5)时命题成立
D.假设n=k(k>5)时命题成立
【答案】 C
6.已知不等式(x+y)≥a对任意正实数x,y恒成立,则实数a的最大值为(  )
A.2 B.4
C. D.16
【解析】 由(x+y)≥(1+1)2=4.
因此不等式(x+y)·≥a对任意正实数x,y恒成立,即a≤4.
【答案】 B
7.某人要买房,随着楼层的升高,上、下楼耗费的体力增多,因此不满意度升高.设住第n层楼,上下楼造成的不满意度为n;但高处空气清新,嘈杂音较小,环境较为安静,因此随楼层升高,环境不满意度降低,设住第n层楼时,环境不满意程度为,则此人应选(  )
A.1楼 B.2楼
C.3楼 D.4楼
【解析】 设第n层总的不满意程度为f(n),则f(n)=n+≥2=2×3=6,当且仅当n=,即n=3时取等号,故选C.
【答案】 C
8.对任意实数x,若不等式|x+1|-|x-2|>k恒成立,对k的取值范围是(  )
A.k<3 B.k<-3
C.k≤3 D.k≤-3
【解析】 ∵|x+1|-|x-2|≥-|(x+1)-(x-2)|=-3,∴|x+1|-|x-2|的最小值为-3.
∴不等式恒成立,应有k<-3.
【答案】 B
9.用数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)(n∈N+)”时,从n=k到n=k+1时等号左边应增添的式子是(  )
A.2k+1 B.
C. D.
【解析】 当n=k时,有f(k)=(k+1)·(k+2)·…·(k+k),
当n=k+1时,有f(k+1)
=(k+2)(k+3)·…·(k+k)(k+k+1)(k+k+2),
∴f(k+1)=f(k)·.
【答案】 B
10.对一切正数m,不等式n<+2m2恒成立,则常数n的取值范围是(  )
A.(-∞,0) B.(-∞,6)
C.(0,+∞) D.[6,+∞)
【解析】 要使不等式恒成立,只要n小于+2m2的最小值.∵+2m2=++2m2≥3=6,∴n<6.
【答案】 B
11.若n棱柱有f(n)个对角面,则(n+1)棱柱含有对角面的个数为(  )
A.2f(n) B.f(n)+(n-1)
C.f(n)+n D.f(n)+2
【解析】 由n=k到n=k+1时增加的对角面的个数与底面上由n=k到n=k+1时增加的对角线一样,设n=k时,底面为A1A2…Ak,n=k+1时底面为A1A2A3…AkAk+1,增加的对角线为A2Ak+1,A3Ak+1,A4Ak+1,…,Ak-1Ak+1,A1Ak,共有(k-1)条,因此对角面也增加了(k-1)个,故选B.
【答案】 B
12.记满足下列条件的函数f(x)的集合为M,当|x1|≤2,|x2|≤2时,|f(x1)-f(x2)|≤6|x1-x2|,又令g(x)=x2+2x-1,则g(x)与M的关系是(  )
A.g(x)?M B.g(x)∈M
C.g(x)?M D.不能确定
【解析】 ∵g(x1)-g(x2)=x+2x1-x-2x2=(x1-x2)(x1+x2+2),
∴|g(x1)-g(x2)|=|x1-x2|·|x1+x2+2|≤|x1-x2|(|x1|+|x2|+2)≤6|x1-x2|,
所以g(x)∈M.故选B.
【答案】 B
二、填空题(本大题共4小题,每小题5分,共20分.把正确答案填在题中横线上)
13.若关于实数x的不等式|x-5|+|x+3|【导学号:32750077】
【解析】 ∵|x-5|+|x+3|
=|5-x|+|x+3|≥|5-x+x+3|=8,
∴(|x-5|+|x+3|)min=8,
要使|x-5|+|x+3|【答案】 (-∞,8]
14.若正数a,b满足ab=a+b+8,则ab的最小值为________.
【解析】 ∵ab=a+b+8,且a>0,b>0,
∴ab-8=a+b≥2,
∴()2-2-8≥0,
∴≥4或≤-2(舍去),
∴ab≥16,即ab的最小值为16.
【答案】 16
15.用数学归纳法证明≥ (a,b是非负实数,n∈N+),假设n=k时不等式≥k(*)成立,再推证n=k+1时不等式也成立的关键是将(*)式两边同乘________.
【解析】 要想办法出现,两边同乘以,右边也出现了要求证的k+1.
【答案】 
16.设a,b,c,d,m,n∈R+,P=+,Q=·,则P,Q的大小关系为________.
【解析】 由柯西不等式 P= + ≤·=Q,
∴P≤Q.
【答案】 P≤Q
三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)已知a>b>c,求证:+≥.
【证明】 因为a>b>c,所以a-b>0,b-c>0,a-c>0,
所以(a-c)=[(a-b)+(b-c)]+=++2≥2+2=4,
当且仅当a-b=b-c,即a+c=2b时等号成立.
故+≥成立.
18.(本小题满分12分)(2016·全国乙卷)已知函数f(x)=|x+1|-|2x-3|.
(1)画出y=f(x)的图象;
(2)求不等式|f(x)|>1的解集.
图1
【解】 (1)由题意得f(x)=
故y=f(x)的图象如图所示.
(2)由f(x)的函数表达式及图象可知,
当f(x)=1时,可得x=1或x=3;
当f(x)=-1时,可得x=或x=5.
故f(x)>1的解集为{x|1<x<3},
f(x)<-1的解集为.
所以|f(x)|>1的解集为.
19.(本小题满分12分)设m,n∈R+,m+n=p,求证:+≥,并指出等号成立的条件.
【证明】 根据柯西不等式,得(m+n)
≥=4,
于是+≥=,
当m=n=时,等号成立.
20.(本小题满分12分)某自来水厂要制作容积为500 m3的无盖长方体水箱,现有三种不同规格的长方形金属制箱材料(单位:m):①19×19;②30×10;③25×12.
请你选择其中的一种规格材料,并设计出相应的制作方案(要求:①用料最省;②简便易行).
【解】 设无盖长方体水箱的长、宽、高分别为a,b,c.
由题意,可得abc=500,
长方体水箱的表面积为S=2bc+2ac+ab.
由均值不等式,知S=2bc+2ac+ab≥
3=3=3×102=300.
当且仅当2bc=2ca=ab,即a=b=10,c=5时,S=2bc+2ac+ab=300为最小,
这表明将无盖长方体的尺寸设计为10×10×5(即2∶2∶1)时,其用料最省.
如何选择材料并设计制作方案?就要研究三种供选择的材料,哪一种更易制作成长方体水箱的平面展开图.逆向思维,先将无盖长方体展开成平面图:下图(1)进一步剪拼成图(2)的长30 m,宽10 m(长∶宽=3∶1)的长方形.因此,应选择规格30×10的制作材料,制作方案如图(3).
(1)     (2)       (3)  
可以看出,图(3)这种“先割后补”的方案不但可使用料最省,而且简便易行.
21.(本小题满分12分)设f(n)>0(n∈N+),对任意自然数n1和n2总有f(n1+n2)=f(n1)f(n2),又f(2)=4.
(1)求f(1),f(3)的值;
(2)猜想f(n)的表达式,并证明你的猜想.
【解】 (1)由于对任意自然数n1和n2,总有f(n1+n2)=f(n1)·f(n2),
取n1=n2=1,得f(2)=f(1)·f(1),即f2(1)=4.
∵f(n)>0(n∈N+),
∴f(1)=2,
取n1=1,n2=2,得f(3)=23.
(2)由f(1)=21,f(2)=4=22,f(3)=23,初步归纳猜想f(n)=2n.
证明:①当n=1时,f(1)=2成立;
②假设n=k时,f(k)=2k成立.
f(k+1)=f(k)·f(1)=2k·2=2k+1,
即当n=k+1时,猜想也成立.
由①②得,对一切n∈N+,f(n)=2n都成立.
22.(本小题满分12分)设数列{an}的首项a1∈(0,1),an=,n=2,3,4,….
【导学号:32750078】
(1)求{an}的通项公式;
(2)设bn=an,求证:bn【解】 (1)由an=,得2an=3-an-1,
即=-,
所以数列{1-an}是以1-a1(a1∈(0,1))为首项,以-为公比的等比数列,
所以1-an=(1-a1)n-1,
因此an=1-(1-a1).
(2)证明:由(1)可知00.
那么b-b=a(3-2an+1)-a(3-2an)
=-a(3-2an)
=(an-1)2.又由(1)知an>0且an≠1,
故b-b>0,因此bn章末综合测评(一)
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知>,则下列不等式一定成立的是(  )
A.a2>b2 B.lg a>lg b
C.> D.>
【解析】 由>,得a>b(c≠0),
显然,当a,b异号或其中一个为0时,A,B,C不正确.
【答案】 D
2.下面四个条件中,使a>b成立的充分而不必要的条件是(  )
A.a>b+1 B.a>b-1
C.a2>b2 D.a3>b3
【解析】 由a>b+1,得a>b+1>b,即a>b,而由a>b不能得出a>b+1,因此,使a>b成立的充分不必要条件是a>b+1,选A.
【答案】 A
3.若a>b,x>y,下列不等式不正确的是(  )
A.a+x>b+y B.y-a<x-b
C.|a|x>|a|y D.(a-b)x>(a-b)y
【解析】 对于A,两式相加可得a+x>b+y,A正确;
对于B,a>b?-a<-b,与y<x相加得y-a<x-b,B正确;
对于D,∵a-b>0,∴(a-b)x>(a-b)y,D正确;
对于C,当a=0时,不等式不正确,故选C.
【答案】 C
4.如果关于x的不等式5x2-a≤0的非负整数解是0,1,2,3,那么实数a的取值范围是(  )
A.45≤a<80 B.50C.a<80 D.a>45
【解析】 由5x2-a≤0,得-≤x≤,而正整数解是1,2,3,则3≤<4,解得45≤a<80.
【答案】 A
5.若a,b为非零实数,那么不等式恒成立的是(  )
A.|a+b|>|a-b| B.≥
C.≥ab D.+≥2
【解析】 a,b为非零实数时,A,B,D均不一定成立.
而-ab=≥0恒成立.
【答案】 C
6.在下列函数中,当x取正数时,最小值为2的是(  )
【导学号:32750026】
A.y=x+
B.y=lg x+
C.y=+
D.y=sin x+(0【解析】 y=x+≥2=4,A错;当0当=时,x=0,
∴y=+≥2此时等号取不到,C错;
y=sin x+≥2,此时sin x=1,D正确.
【答案】 D
7.不等式|2x-log2x|<|2x|+|log2x|的解为(  )
A.1<x<2 B.0<x<1
C.x>1 D.x>2
【解析】 由题意知
∴log2x>0,
解得x>1,故选C.
【答案】 C
8.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于(  )
A.2 B.3
C.6 D.9
【解析】 f′(x)=12x2-2ax-2b,
由f(x)在x=1处有极值,
得f′(1)=12-2a-2b=0,
∴a+b=6.
又a>0,b>0,∴ab≤==9,
当且仅当a=b=3时取到等号,故选D.
【答案】 D
9.设a>b>c,n∈N,且+≥恒成立,则n的最大值是(  )
A.2 B.3
C.4 D.6
【解析】 ∵+=+=2++≥4,当且仅当=时,取等号,
∴+≥,而+≥恒成立,得n≤4.
【答案】 C
10.若0A.最小值为 B.最大值为
C.最小值为 D.最大值为
【解析】 x2(1-2x)=x·x(1-2x)
≤=.
当且仅当x=时,等号成立.
【答案】 B
11.关于x的不等式|x-1|+|x-2|≤a2+a+1的解集是空集,则a的取值范围是(  )
A.(0,1) B.(-1,0)
C.(1,2) D.(-∞,-1)
【解析】 |x-1|+|x-2|的最小值为1,
故只需a2+a+1<1,
∴-1【答案】 B
12.已知a1>a2>a3>0,则使得(1-aix)2<1(i=1,2,3)都成立的x的取值范围是(  )
A. B.
C. D.
【解析】 由(1-aix)2<1,
得0又ai>0,
∴0则x小于的最小值.
又a1>a2>a3,
∴的最小值为,
则x<.
因此x的取值范围为,选B.
【答案】 B
二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)
13.不等式|2x-1|-|x-2|<0的解集为________.
【导学号:32750027】
【解析】 |2x-1|-|x-2|<0,即|2x-1|<|x-2|,两边平方并整理得,x2<1,解得-1【答案】 {x|-114.设x>0,y>0,且xy-(x+y)=1,则x+y的取值范围为__________.
【解析】 因为xy-(x+y)=1,且xy≤,所以1=xy-(x+y)≤-(x+y).设x+y=a,则-a-1≥0(a>0),则a≥2+2,即x+y≥2+2,故x+y的取值范围为[2+2,+∞).
【答案】 [2+2,+∞)
15.已知不等式(x+y)≥9对任意正实数x,y恒成立,则正实数a的最小值为__________.
【解析】 (x+y)=1+a++≥1+a+2,∴1+a+2≥9,即a+2-8≥0,故a≥4.
【答案】 4
16.设变量x,y满足|x|+|y|≤1,则x+2y的最大值和最小值分别为________.
【解析】 如图,先画出不等式|x|+|y|≤1表示的平面区域,易知当直线x+2y=u经过点B,D时分别对应u的最大值和最小值,所以umax=2,umin=-2.
【答案】 2 -2
三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)解不等式x+|2x-1|<3.
【解】 法一 原不等式可化为

解得≤x<或-2<x<.
所以原不等式的解集是.
法二 由于|2x-1|<3-x,
∴x-3<2x-1<3-x,
解得x>-2且x<.
∴原不等式的解集是
.
18.(本小题满分12分)(2016·全国甲卷)已知函数f(x)=+,M为不等式f(x)<2的解集.
(1)求M;
(2)证明:当a,b∈M时,|a+b|<|1+ab|.
【解】 (1)f(x)=
当x≤-时,由f(x)<2得-2x<2,解得x>-1;
当-<x<时,f(x)<2;
当x≥时,由f(x)<2得2x<2,解得x<1.
所以f(x)<2的解集M={x|-1<x<1}.
(2)证明:由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.
因此|a+b|<|1+ab|.
19.(本小题满分12分)已知实数x,y满足:|x+y|<,|2x-y|<,求证:|y|<.
【证明】 因为3|y|=|3y|=|2(x+y)-(2x-y)|≤2|x+y|+|2x-y|,
由题设知|x+y|<,|2x-y|<,
从而3|y|<+=,所以|y|<.
20.(本小题满分12分)已知a和b是任意非零实数.
(1)求的最小值;
(2)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求实数x的取值范围.
【解】 (1)∵|2a+b|+|2a-b|≥|2a+b+2a-b|=4|a|对于任意非零实数a和b恒成立,
当且仅当(2a+b)(2a-b)≥0时取等号,
∴的最小值等于4.
(2)∵|2+x|+|2-x|≤恒成立,
故|2+x|+|2-x|不大于的最小值.
由(1)可知的最小值等于4.
实数x的取值范围即为不等式|2+x|+|2-x|≤4的解,
解不等式得-2≤x≤2,
∴x的取值范围是[-2,2].
21.(本小题满分12分)已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)当a=-2时,求不等式f(x)<g(x)的解集;
(2)设a>-1时,且当x∈时,f(x)≤g(x),求a的取值范围.
【导学号:32750028】
【解】 
(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.
设函数y=|2x-1|+|2x-2|-x-3,
则y=
其图象如图所示,由图象可知,当且仅当x∈(0,2)时,y<0,所以原不等式的解集是{x|0<x<2}.
(2)当x∈时,f(x)=1+a,
不等式f(x)≤g(x)化为1+a≤x+3,
所以x≥a-2对x∈都成立,故-≥a-2,即a≤.
从而a的取值范围是.
22.(本小题满分12分)某小区要建一座八边形的休闲小区,如图1所示,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的面积为200平方米的十字形地域.计划在正方形MNPQ上建一座花坛,造价为每平方米4 200元,并在四周的四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为每平方米210元,再在四个空角上铺草坪,造价为每平方米80元.
图1
(1)设总造价为S元,AD长为x米,试求S关于x的函数关系式;
(2)当x为何值时,S取得最小值?并求出这个最小值.
【解】 (1)设DQ=y米,又AD=x米,
故x2+4xy=200,
即y=.
依题意,得S=4 200x2+210×4xy+80×2y2
=4 200x2+210(200-x2)+160
=38 000+4 000x2+.
依题意x>0,且y=>0,
∴0故所求函数为
S=38 000+4 000x2+,x∈(0,10).
(2)因为x>0,
所以S≥38 000+2=118 000,
当且仅当4 000x2=,
即x=时取等号.
∴当x=∈(0,10)时,
Smin=118 000元.
故AD=米时,S有最小值118 000元.
章末综合测评(二)
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知a,b,c,d都是正数,且bc>ad,则,,,中最大的是(  )
A.   B.   C.   D.
【解析】 因为a,b,c,d均是正数且bc>ad,
所以有>. ①
又-==>0,
∴>, ②
-==>0,
∴>. ③
由①②③知最大,故选D.
【答案】 D
2.已知x>y>z,且x+y+z=1,则下列不等式中恒成立的是(  )
【导学号:32750045】
A.xy>yz B.xz>yz
C.x|y|>z|y| D.xy>xz
【解析】 法一 特殊值法:令x=2,y=0,z=-1,可排除A,B,C,故选D.
法二 3z<x+y+z<3x,∴x>>z,
由x>0,y>z,得xy>xz.故D正确.
【答案】 D
3.对于x∈[0,1]的任意值,不等式ax+2b>0恒成立,则代数式a+3b的值(  )
A.恒为正值 B.恒为非负值
C.恒为负值 D.不确定
【解析】 依题意2b>0,∴b>0,
且a+2b>0,∴a+2b+b>0,即a+3b恒为正值.
【答案】 A
4.已知数列{an}的通项公式an=,其中a,b均为正数,那么an与an+1的大小关系是(  )
A.an>an+1 B.an<an+1
C.an=an+1 D.与n的取值有关
【解析】 an+1-an=-
=.
∵a>0,b>0,n>0,n∈N+,
∴an+1-an>0,因此an+1>an.
【答案】 B
5.若实数a,b满足a+b=2,则3a+3b的最小值是(  )
A.18 B.6
C.2 D.
【解析】 3a+3b≥2=2=2×3=6,选B.
【答案】 B
6.设a=lg 2-lg 5,b=ex(x<0),则a与b的大小关系是(  )
A.a<b B.a>b C.a=b D.a≤b
【解析】 a=lg 2-lg 5=lg <0.
又x<0,知0<ex<1,即0<b<1,∴a<b.
【答案】 A
7.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=(  )
A. B.2 C.6 D.2或6
【解析】 ∵|kx-4|≤2,∴-2≤kx-4≤2,
∴2≤kx≤6,
∵不等式的解集为{x|1≤x≤3},
∴k=2.
【答案】 B
8.设a=x4+y4,b=x3y+xy3,c=2x2y2(x,y∈R+),则下列结论中不正确的是(  )
A.a最大 B.b最小
C.c最小 D.a,b,c可以相等
【解析】 因为b=x3y+xy3≥2=2x2y2=c,故B错,应选B.
【答案】 B
9.要使-<成立,a,b应满足的条件是(  )
A.ab<0且a>b
B.ab>0且a>b
C.ab<0且a<b
D.ab>0且a>b或ab<0且a<b
【解析】 -<?(-)3<a-b
?3<3?ab(a-b)>0.
当ab>0时,a>b;当ab<0时,a<b.
【答案】 D
10.已知x=a+(a>2),y=(b<0),则x,y之间的大小关系是(  )
A.x>y B.x<y
C.x=y D.不能确定
【解析】 因为x=a-2++2≥2+2=4(a>2).
又b2-2>-2(b<0),
即y=<-2=4,所以x>y.
【答案】 A
11.若a>0,b>0,则p=(a·b),q=ab·ba的大小关系是(  )
A.p≥q B.p≤q
C.p>q D.p【解析】 ==a·b=.
若a≥b>0,则≥1,a-b≥0,从而≥1,得p≥q;
若b≥a>0,则0<≤1,a-b≤0,从而≥1,得p≥q.
综上所述,p≥q.
【答案】 A
12.在△ABC中,A,B,C分别为a,b,c所对的角,且a,b,c成等差数列,则角B适合的条件是(  )
A.0<B≤ B.0<B≤
C.0<B≤ D.<B<π
【解析】 由a,b,c成等差数列,得2b=a+c,
∴cos B==,
==-≥.
当且仅当a=b=c时,等号成立.
∴cos B的最小值为.
又y=cos B在上是减函数,∴0<B≤.
【答案】 B
二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上)
13.用反证法证明命题“三角形中最多只有一个内角是钝角”时的假设是________.
【解析】 “三角形中最多只有一个内角是钝角”的对立事件是“三角形中内角有2个钝角或3个全是钝角”,故应填三角形中至少有两个内角是钝角.
【答案】 三角形中至少有两个内角是钝角
14.若实数m,n,x,y满足m2+n2=a,x2+y2=b(a≠b),则mx+ny的最大值为________.
【导学号:32750046】
【解析】 设m=cos α,n=sin α,x=cos β,y=sin β,
则mx+ny=cos αcos β+sin αsin β
=cos(α-β).
当cos(α-β)=1时,mx+ny取得最大值.
【答案】 
15.用分析法证明:若a,b,m都是正数,且a<b,则>.完成下列证明过程:
∵b+m>0,b>0,
∴要证原不等式成立,只需证明
b(a+m)>a(b+m),
即只需证明________.
∵m>0,∴只需证明b>a,
由已知显然成立.∴原不等式成立.
【解析】 b(a+m)>a(b+m)与bm>am等价,
因此欲证b(a+m)>a(b+m)成立,
只需证明bm>am即可.
【答案】 bm>am
16.已知a,b,c,d∈R+,且S=+++,则S的取值范围是________.
【解析】 由放缩法,得<<;
<<;
<<;
<<.
以上四个不等式相加,得1<S<2.
【答案】 (1,2)
三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)已知m>0,a,b∈R,求证:≤.
【证明】 ∵m>0,∴1+m>0.
所以要证原不等式成立,
只需证(a+mb)2≤(1+m)(a2+mb2),
即证m(a2-2ab+b2)≥0,
即证(a-b)2≥0,
而(a-b)2≥0显然成立,
故原不等式得证.
18.(本小题满分12分)实数a,b,c,d满足a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数.
【证明】 假设a,b,c,d都是非负数,
即a≥0,b≥0,c≥0,d≥0,
则1=(a+b)(c+d)=(ac+bd)+(ad+bc)≥ac+bd,
这与已知中ac+bd>1矛盾,∴原假设错误,
∴a,b,c,d中至少有一个是负数.
19.(本小题满分12分)设a,b,c是不全相等的正实数.求证:lg +lg +lg >lg a+lg b+lg c.
【证明】 法一 要证:lg +lg +lg >lg a+lg b+lg c,
只需证lg>lg(abc),
只需证··>abc.
∵≥>0,≥>0,≥>0,
∴··≥abc>0成立.
∵a,b,c为不全相等的正数,∴上式中等号不成立.
∴原不等式成立.
法二 ∵a,b,c∈{正实数},
∴≥>0,≥>0,≥>0.
又∵a,b,c为不全相等的实数,
∴··>abc,
∴lg>lg(abc),
即lg +lg +lg >lg a+lg b+lg c.
20.(本小题满分12分)若0<a<2,0<b<2,0<c<2,求证:(2-a)b,(2-b)c,(2-c)a不能同时大于1.
【证明】 假设三数能同时大于1,
即(2-a)b>1,(2-b)c>1,(2-c)a>1.
那么≥>1,
同理>1,>1,
三式相加>3,
即3>3.
上式显然是错误的,∴该假设不成立.
∴(2-a)b,(2-b)c,(2-c)a不能同时都大于1.
21.(本小题满分12分)求证:2(-1)<1+++…+<2(n∈N+).
【导学号:32750047】
【证明】 ∵=>
=2(-),k∈N+,
∴1+++…+
>2[(-1)+(-)+…+(-)]
=2(-1).
又=<=2(-),k∈N+,
∴1+++…+
<1+2[(-1)+(-)+…+(-)]
=1+2(-1)=2-1<2.
∴2(-1)<1+++…+<2(n∈N+).
22.(本小题满分12分)等差数列{an}各项均为正整数,a1=3,前n项和为Sn.等比数列{bn}中,b1=1,且b2S2=64,{b}是公比为64的等比数列.
(1)求an与bn;
(2)证明:++…+<.
【解】 (1)设{an}的公差为d(d∈N),{bn}的公比为q,则an=3+(n-1)d,bn=qn-1.
依题意
由①知,q=64=2, ③
由②知,q为正有理数,
所以d为6的因子1,2,3,6中之一,
因此由②③知,d=2,q=8.
故an=3+2(n-1)=2n+1,bn=8n-1.
(2)证明:Sn=3+5+7+…+(2n+1)=n(n+2),
则==.
∴+++…+

=<×=.
章末综合测评(三)
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.设xy>0,则的最小值为(  )
A.-9   B.9   C.10   D.0
【解析】 
≥=9.
【答案】 B
2.已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,则e的取值范围为(  )
A. B.
C. D.
【解析】 ∵4(a2+b2+c2+d2)
=(1+1+1+1)(a2+b2+c2+d2)
≥(a+b+c+d)2,
即4(16-e2)≥(8-e)2,
64-4e2≥64-16e+e2,即5e2-16e≤0,
∴e(5e-16)≤0,
故0≤e≤.
【答案】 C
3.学校要开运动会,需要买价格不同的奖品40件、50件、20件,现在选择商店中为5元、3元、2元的奖品,则至少要花(  )
A.300元 B.360元 C.320元 D.340元
【解析】 由排序原理,反序和最小,
∴最小值为50×2+40×3+20×5=320(元).
【答案】 C
4.已知a,b,c为非零实数,则(a2+b2+c2)++的最小值为(  )
A.7 B.9 C.12 D.18
【解析】 由(a2+b2+c2)
≥2=9,
所以所求最小值为9.
【答案】 B
5.设a,b,c均小于0,且a2+b2+c2=3,则ab+bc+ca的最大值为(  )
【导学号:32750061】
A.0 B.1 C.3 D.
【解析】 由排序不等式a2+b2+c2≥ab+bc+ac,
所以ab+bc+ca≤3.
【答案】 C
6.若x+2y+4z=1,则x2+y2+z2的最小值是(  )
A.21 B. C.16 D.
【解析】 ∵1=x+2y+4z≤ ·,
∴x2+y2+z2≥,
即x2+y2+z2的最小值为.
【答案】 B
7.函数f(x)=+cos x,则f(x)的最大值是(  )
A. B. C.1 D.2
【解析】 f(x)=·+cos x.
又(·+cos x)2≤(2+1)(sin2x+cos 2x)=3,∴f(x)的最大值为.
【答案】 A
8.已知a,b,x1,x2为互不相等的正数,若y1=,y2=,则y1y2与x1x2的关系为(  )
A.y1y2C.y1y2>x1x2 D.不能确定
【解析】 ∵a,b,x1,x2为互不相等的正数,
∴y1y2=·


>
==x1x2.
【答案】 C
9.已知半圆的直径AB=2R,P是弧AB上一点,则2|PA|+3|PB|的最大值是(  )
A.R B.R
C.2R D.4R
【解析】 由2|PA|+3|PB|

==·2R.
【答案】 C
10.设a1,a2,…,an为正实数,P=,Q=,则P,Q间的大小关系为(  )
A.P>Q B.P≥Q
C.P【解析】 ∵(a1+a2+…+an)≥=n2,
∴≥,
即P≥Q.
【答案】 B
11.设a1,a2,a3为正数,则++与a1+a2+a3大小为(  )
A.> B.≥ C.< D.≤
【解析】 不妨设a1≥a2≥a3>0,于是
≤≤,a2a3≤a3a1≤a1a2,
由排序不等式得,
++≥·a2a3+·a3a1+·a1a2
=a3+a1+a2,即++≥a1+a2+a3.
【答案】 B
12.设c1,c2,…,cn是a1,a2,…,an的某一排列(a1,a2,…,an均为正数),则++…+的最小值是(  )
A.n B. C. D.2n
【解析】 不妨设0≤a1≤a2≤…≤an,
则≥≥…≥,,,…,是,,…,的一个排列.
再利用排序不等式的反序和≤乱序和求解,
所以++…+≥++…+=n,
当且仅当a1=a2=…=an时等号成立.故选A.
【答案】 A
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.设x,y,z∈R,且满足x2+y2+z2=1,x+2y+3z=,则x+y+z=________.
【导学号:32750062】
【解析】 由柯西不等式可得(x2+y2+z2)(12+22+32)≥(x+2y+3z)2,即(x+2y+3z)2≤14,因此x+2y+3z≤.因为x+2y+3z=,所以x==,解得x=,y=,z=,于是x+y+z=.
【答案】 
14.已知实数m,n>0,则+________.(填“≥”“>”“≤”或“<”)
【解析】 因为m,n>0,利用柯西不等式,
得(m+n)≥(a+b)2,
所以+≥.
【答案】 ≥
15.函数y=的最小值是________.
【解析】 由柯西不等式,得
y=

=≥(1+)2=3+2.
当且仅当=,即α=时等号成立.
【答案】 3+2
16.如图1所示,矩形OPAQ中,a1≤a2,b1≤b2,则阴影部分的矩形的面积之和________空白部分的矩形的面积之和.
图1
【解析】 由题图可知,阴影面积=a1b1+a2b2,而空白面积=a1b2+a2b1,根据顺序和≥逆序和可知答案为≥.
【答案】 ≥
三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)设x2+2y2=1,求u(x,y)=x+2y的最值.
【解】 由柯西不等式,有|u(x,y)|
=|1·x+·y|≤·=,
得umax=,umin=-.
分别在,时取得最大值和最小值.
18.(本小题满分12分)已知正数x,y,z满足x+y+z=1.求证:++≥.
【证明】 因为x>0,y>0,z>0,所以由柯西不等式得:
[(y+2z)+(z+2x)+(x+2y)]++≥(x+y+z)2,又因为x+y+z=1,
所以++≥
=.
19.(本小题满分12分)已知a,b,c∈R+,求证:a+b+c≤++≤++.
【证明】 不妨设a≥b≥c>0,则a2≥b2≥c2,≥≥.
由排序不等式,可得a2·+b2·+c2·≥a2·+b2·+c2·,①
a2·+b2·+c2·≥a2·+b2·+c2·,②
由(①+②)÷2,可得
++≥a+b+c.
又因为a≥b≥c>0,
所以a3≥b3≥c3,≥≥.
由排序不等式,得
a3·+b3·+c3·≥a3·+b3·+c3·,③
a3·+b3·+c3·≥a3·+b3·+c3·,④
由(③+④)÷2,可得++≥++.
综上可知原式成立.
20.(本小题满分12分)已知a,b,c大于0,且acos2θ+bsin2θ<,求证:cos2θ+sin2θ【导学号:32750063】
【证明】 由柯西不等式,得(cos2θ+sin2θ)2
≤[(cos θ)2+(sin θ)2](cos2θ+sin2θ)
=acos2θ+bsin2θ.
又acos2θ+bsin2θ<,
∴(cos2θ+sin2θ)2<.
因此,cos2θ+sin2θ21.(本小题满分12分)设a,b,c为正数,且a+b+c=1,求证:++≥9.
【证明】 构造两组数,,;,,.
于是由柯西不等式有
[()2+()2+()2]
≥,
即(a+b+c)≥32.
因为a+b+c=1,所以++≥9.
22.(本小题满分12分)设a,b,c∈R+,利用排序不等式证明:
(1)aabb>abba(a≠b);
(2)a2ab2bc2c≥ab+cbc+aca+b.
【证明】 (1)不妨设a>b>0,则lg a>lg b.
从而alg a+blg b>alg b+blg a,
∴lg aa+lg bb>lg ba+lg ab,
即lg aabb>lg baab,故aabb>baab.
(2)不妨设a≥b≥c>0,则lg a≥lg b≥lg c,
∴alg a+blg b+clg c≥blg a+clg b+alg c,
alg a+blg b+clg c≥clg a+alg b+blg c,
∴2alg a+2blg b+2clg c
≥(b+c)lg a+(a+c)lg b+(a+b)lg c,
∴lg(a2a·b2b·c2c)≥lg (ab+c·ba+c·ca+b).
故a2ab2bc2c≥ab+cbc+aca+b.
章末综合测评(四)
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.用数学归纳法证明“1+2+22+…+25n-1(n∈N+)能被31整除”,当n=1时原式为(  )
A.1 B.1+2
C.1+2+3+4 D.1+2+22+23+24
【解析】 左边=1+2+22+…+25n-1,所以n=1时,应为1+2+…+25×1-1=1+2+22+23+24.故选D.
【答案】 D
2.下列说法中正确的是(  )
A.若一个命题当n=1,2时为真,则此命题为真命题
B.若一个命题当n=k时成立且推得n=k+1时也成立,则此命题为真命题
C.若一个命题当n=1,2时为真,则当n=3时此命题也为真
D.若一个命题当n=1时为真,n=k时为真能推得n=k+1时亦为真,则此命题为真命题
【解析】 由数学归纳法定义可知,只有当n的初始取值成立且由n=k成立能推得n=k+1时也成立时,才可以证明结论正确,二者缺一不可.A,B,C项均不全面.
【答案】 D
3.设S(n)=+++…+,则(  )
A.S(n)共有n项,当n=2时,S(2)=+
B.S(n)共有n+1项,当n=2时,S(2)=++
C.S(n)共有n2-n项,当n=2时,S(2)=++
D.S(n)共有n2-n+1项,当n=2时,S(2)=++
【解析】 S(n)共有n2-n+1项,当n=2时,S(2)=++.
【答案】 D
4.数列{an}中,已知a1=1,当n≥2时,an-an-1=2n-1,依次计算a2,a3,a4后,猜想an的表达式是(  )
【导学号:32750073】
A.3n-2 B.n2
C.3n-1 D.4n-3
【解析】 计算知a1=1,a2=4,a3=9,a4=16,
所以可猜想an=n2.
【答案】 B
5.平面内原有k条直线,他们的交点个数记为f(k),则增加一条直线l后,它们的交点个数最多为(  )
A.f(k)+1 B.f(k)+k
C.f(k)+k+1 D.k·f(k)
【解析】 第k+1条直线与前k条直线都有不同的交点,此时应比原先增加k个交点.
【答案】 B
6.下列代数式,n∈N+,能被13整除的是(  )
A.n3+5n B.34n+1+52n+1
C.62n-1+1 D.42n+1+3n+2
【解析】 当n=1时,n3+5n=6,34n+1+52n+1=368,62n-1+1=7,42n+1+3n+2=91,
只有91能被13整除.
【答案】 D
7.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”时,第二步正确的证明方法是(  )
A.假设n=k(k∈N+)时成立,证明n=k+1时命题也成立
B.假设n=k(k是正奇数)时成立,证明n=k+1时命题也成立
C.假设n=2k+1(k∈N+)时成立,证明n=2k+3时命题也成立
D.假设n=2k-1(k∈N+)时成立,证明n=2k+1时命题也成立
【解析】 假设n的取值必须取到初始值1,且后面的n的值比前面的值大2.A,B,C错.故选D.
【答案】 D
8.设0<θ<,已知a1=2cos θ,an+1=,则猜想an为(  )
A.2cos B.2cos
C.2cos D.2sin
【解析】 a1=2cos θ,a2==2cos ,a3==2cos ,
猜想an=2cos .
【答案】 B
9.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上(  )
A.k2
B.(k+1)2
C.
D.(k2+1)+(k2+2)+…+(k+1)2
【解析】 当n=k时,左端=1+1+2+3+…+k2,
当n=k+1时,左端=1+2+3+…+k2+(k2+1)+(k2+2)+…+(k+1)2.
故当n=k+1时,左端应在n=k的基础上加上(k2+1)+(k2+2)+…+(k+1)2.
【答案】 D
10.用数学归纳法证明“42n-1+3n+1(n∈N+)能被13整除”的第二步中,当n=k+1时为了使用归纳假设,对42k+1+3k+2变形正确的是(  )
A.16(42k-1+3k+1)-13×3k+1
B.4×42k+9×3k
C.(42k-1+3k+1)+15×42k-1+2×3k+1
D.3(42k-1+3k+1)-13×42k-1
【解析】 42k+1+3k+2=16×42k-1+3k+2=16(42k-1+3k+1)+3k+2-16×3k+1=16(42k-1+3k+1)-13×3k+1.
【答案】 A
11.如果命题P(n)对于n=k成立,则它对n=k+2亦成立,又若P(n)对n=2成立,则下列结论正确的是(  )
A.P(n)对所有自然数n成立
B.P(n)对所有偶自然数n成立
C.P(n)对所有正自然数n成立
D.P(n)对所有比1大的自然数n成立
【解析】 因为n=2时,由n=k+2的“递推”关系,可得到n=4成立,再得到n=6成立,依次类推,因此,命题P(n)对所有偶自然数n成立.
【答案】 B
12.在数列{an}中,a1=且Sn=n(2n-1)an,通过求a2,a3,a4,猜想an的表达式为(  )
A. B.
C. D.
【解析】 ∵a1=,
由Sn=n(2n-1)an,得a1+a2=2(2×2-1)a2,
解得a2==,
a1+a2+a3=3×(2×3-1)a3,
解得a3==,
a1+a2+a3+a4=4(2×4-1)a4,
解得a4==,
所以猜想an=.
【答案】 C
二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上)
13.探索表达式A=(n-1)(n-1)!+(n-2)(n-2)!+…+2·!+1·1!(n>1且n∈N+)的结果时,第一步n=________时,A=________.
【导学号:32750074】
【解析】  第一步n=2时,
A=(2-1)(2-1)!=1.
【答案】 2 1
14.已知1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+c对一切n∈N+都成立,那么a=________,b=________,c=________.
【解析】 先分别取n=1,2,3并联立方程组得
解得a=,b=,c=.
然后可用数学归纳法证明.
【答案】   
15.证明1++++…+>(n∈N+),假设n=k时成立,当n=k+1时,左边增加的项数是________.
【解析】 左边增加的项数为2k+1-1-2k+1=2k.
【答案】 2k
16.假设凸k边形的对角线有f(k)条,则凸k+1边形的对角线的条数f(k+1)为________.
【解析】 凸k+1边形的对角线的条数等于凸k边形的对角线的条线,加上多的那个点向其他点引的对角线的条数(k-2)条,再加上原来有一边成为对角线,共有f(k)+k-1条对角线.
【答案】 f(k)+k-1
三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)用数学归纳法证明:
+++…+=(n∈N+).
【证明】 (1)当n=1时,
左边==,
右边==,
左边=右边.
所以当n=1时,等式成立.
(2)假设n=k(k∈N+)时等式成立,即有
+++…+=,
则当n=k+1时,++++=+
==
==.
所以当n=k+1时,等式也成立.
由(1)(2)可知,对于一切n∈N+等式都成立.
18.(本小题满分12分)求证:对于整数n≥0时,11n+2+122n+1能被133整除.
【证明】 (1)n=0时,原式=112+12=133能被133整除.
(2)假设n=k(k≥0,k∈N)时,11k+2+122k+1能被133整除,
n=k+1时,原式=11k+3+122k+3
=11(11k+2+122k+1)-11·122k+1+122k+3
=11(11k+2+122k+1)+122k+1·133也能被133整除.
由(1)(2)可知,对于整数n≥0,11n+2+122n+1能被133整除.
19.(本小题满分12分)平面内有n个圆,任意两个圆都相交于两点,任意三个圆不相交于同一点,求证:这n个圆将平面分成f(n)=n2-n+2个部分(n∈N+).
【证明】 (1)当n=1时,一个圆将平面分成两个部分,且f(1)=1-1+2=2,所以n=1时命题成立.
(2)假设n=k(k∈N+,k≥1)时命题成立,即k个圆把平面分成f(k)=k2-k+2个部分.
则n=k+1时,在k+1个圆中任取一个圆O,剩下的k个圆将平面分成f(k)个部分,而圆O与k个圆有2k个交点,这2k个交点将圆O分成2k段弧,每段弧将原平面一分为二,故得f(k+1)=f(k)+2k=k2-k+2+2k=(k+1)2-(k+1)+2.
所以当n=k+1时,命题成立.
由(1)(2)可知,对一切n∈N+,命题成立,即这几个圆将平面分成f(n)=n2-n+2个部分(n∈N+).
20.(本小题满分12分)求证:+++…+>(n≥2).
【导学号:32750075】
【证明】 (1)当n=2时,>0,不等式成立.
(2)假设n=k(k≥2)时,原不等式成立,
即++++…+>.
则当n=k+1时,
左边=+++…++++…+
>+++…+
>+++…+
=+=
=.
所以当n=k+1时,原不等式成立.
由(1)(2)知,原不等式对n≥2的所有的自然数都成立.
21.(本小题满分12分)如果数列{an}满足条件:a1=-4,an+1=(n=1,2,…),证明:对任何自然数n,都有an+1>an且an<0.
【证明】 (1)由于a1=-4,
a2===>a1.
且a1<0,因此,当n=1时不等式成立.
(2)假设当n=k(k≥1)时,ak+1>ak且ak<0.
那么ak+1=<0.
当n=k+1时,
有ak+2=,
∴ak+2-ak+1=-
=>0.
因此ak+2>ak+1且ak+1<0,
这就是说,当n=k+1时不等式也成立,
根据(1)(2),不等式对任何自然数n都成立.
因此,对任何自然数n,都有an+1>an且an<0.
22.(本小题满分12分)已知数列{an}的前n项和为Sn,且Sn,an的等差中项为1.
(1)写出a1,a2,a3;
(2)猜想an的表达式,并用数学归纳法证明.
【解】 (1)由题意Sn+an=2,可得a1=1,a2=,a3=.
(2)猜想an=.
下面用数学归纳法证明:
①当n=1时,a1=1,==1,等式成立.
②假设当n=k时,等式成立,即ak=,
则当n=k+1时,由Sk+1+ak+1=2,Sk+ak=2,
得(Sk+1-Sk)+ak+1-ak=0,
即2ak+1=ak,
∴ak+1=ak=·=,
即当n=k+1时,等式成立.
由①②可知,对n∈N+,an=.
学业分层测评(一)
(建议用时:45分钟)
[学业达标]
一、选择题
1.设a,b,c,d∈R,且a>b,c>d,则下列结论正确的是(  )
A.a+c>b+d B.a-c>b-d
C.ac>bd D.>
【解析】 ∵a>b,c>d,∴a+c>b+d.
【答案】 A
2.设a,b∈R,若a-|b|>0,则下列不等式中正确的是(  )
A.b-a>0 B.a3+b3<0
C.b+a>0 D.a2-b2<0
【解析】 a-|b|>0?|b|0.故选C.
【答案】 C
3.若aA.> B.2a>2b
C.|a|>|b|>0 D.>
【解析】 考查不等式的基本性质及其应用.取a=-2,b=-1验证即可求解.
【答案】 B
4.已知a<0,-1<b<0,那么(  )
A.a>ab>ab2 B.ab2>ab>a
C.ab>a>ab2 D.ab>ab2>a
【解析】 ab2-ab=ab(b-1),
∵a<0,-1<b<0,
∴b-1<0,ab>0,∴ab2-ab<0,即ab2<ab;
又ab2-a=a(b2-1),
∵-1<b<0,∴b2<1,
即b2-1<0.又a<0,
∴ab2-a>0,即ab2>a.
故ab>ab2>a.
【答案】 D
5.设a,b为实数,则“0<ab<1”是“b<”的(  )
【导学号:32750004】
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 ∵0<ab<1,
当a<0且b<0时可推得b>,
所以“0<ab<1”不是“b<”的充分条件, ①
反过来,若b<,
当b<0且a>0时,有ab<0,推不出“0<ab<1”,
所以“0<ab<1”也不是“b<”的必要条件, ②
由①②知,应选D.
【答案】 D
二、填空题
6.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是f(x)________g(x).
【解析】 f(x)-g(x)=(3x2-x+1)-(2x2+x-1)=x2-2x+2=(x-1)2+1≥1>0,
∴f(x)>g(x).
【答案】 >
7.给出四个条件:
①b>0>a,②0>a>b,③a>0>b,④a>b>0.
能得出<成立的有________.(填序号)
【解析】 ∴①②④可推出<成立.
【答案】 ①②④
8.已知α,β满足-1≤α+β≤1,1≤α+2β≤3,则α+3β的取值范围是________.
【解析】 设α+3β=λ(α+β)+μ(α+2β),
可解得λ=-1,μ=2,∴α+3β=-(α+β)+2(α+2β).
又-1≤α+β≤1,1≤α+2β≤3,∴1≤α+3β≤7.
【答案】 [1,7]
三、解答题
9.(1)已知a>b>0,c<d<0,求证:<;
(2)若a>b>0,c<d<0,e<0,
求证:>.
【证明】 (1)∵c<d<0,∴-c>-d>0.
∴0<-<-.又a>b>0,
∴->->0,
∴ >,即->-.
两边同乘以-1,得<.
(2)∵c<d<0,∴-c>-d>0.
∵a>b>0,∴a-c>b-d>0,
∴(a-c)2>(b-d)2>0,∴<.
又∵e<0,
∴>.
10.设x,y为实数,且3≤xy2≤8,4≤≤9,求的取值范围.
【解】 由4≤≤9,得16≤≤81. ①
又3≤xy2≤8,∴≤≤. ②
由①×②得×16≤·≤81×,
即2≤≤27,因此的取值范围是[2,27].
[能力提升]
1.若a,b为实数,则“0<ab<1”是“a<或b>”的(  )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【解析】 对于0<ab<1,如果a>0,则b>0,a<成立,如果a<0,则b<0,b>成立,因此“0<ab<1”是“a<或b>”的充分条件;反之,若a=-1,b=2,结论“a<或b>”成立,但条件0<ab<1不成立,因此“0<ab<1”不是“a<或b>”的必要条件,即“0<ab<1”是“a<或b>”的充分而不必要条件.
【答案】 A
2.设a>b>1,c<0,给出下列三个结论:
①>;②ac<bc;③logb(a-c)>loga(b-c).
其中所有的正确结论的序号是(  )
A.① B.①②
C.②③ D.①②③
【解析】 由a>b>1,c<0,得<,>;幂函数y=xc(c<0)是减函数,所以ac<bc;因为a-c>b-c,所以logb(a-c)>loga(a-c)>loga(b-c),①②③均正确.
【答案】 D
3.给出下列条件:①1<a<b;②0<a<b<1;③0<a<1<b.其中能推出logb<loga<logab成立的条件的序号是________.(填所有可能的条件的序号)
【解析】 ∵logb=-1,
若1<a<b,则<<1<b,
∴loga<loga=-1,故条件①不可以;
若0<a<b<1,则b<1<<,
∴logab>loga>loga=-1=logb,
故条件②可以;
若0<a<1<b,则0<<1,
∴loga>0,
logab<0,条件③不可以.故应填②.
【答案】 ②
4.已知f(x)=ax2+c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围.
【导学号:32750005】
【解】 由-4≤f(1)≤-1,-1≤f(2)≤5,得
设u=a+c,v=4a+c,则有a=,c=,
∴f(3)=9a+c=-u+v.
又∴
∴-1≤-u+v≤20,
即-1≤f(3)≤20.
∴f(3)的取值范围为[-1,20].
学业分层测评(二)
(建议用时:45分钟)
[学业达标]
一、选择题
1.函数f(x)=的最大值为(  )
A.    B.    C.    D.1
【解析】 显然x≥0.当x=0时,f(x)=0;
当x>0时,x+1≥2,∴f(x)≤,
当且仅当x=1时,等号成立,
∴f(x)max=.
【答案】 B
2.设0<a<b,则下列不等式中正确的是(  )
A.a<b<<
B.a<<<b
C.a<<b<
D.<a<<b
【解析】 取特殊值法.取a=2,b=8,则=4,=5,所以a<<<b.故选B.
【答案】 B
3.已知x≥,则f(x)=有(  )
A.最大值为 B.最小值为
C.最大值为1 D.最小值为1
【解析】 ∵x≥,∴x-2≥,
∴f(x)==(x-2)+≥
2=1,当且仅当=,
即x=3时,等号成立,∴f(x)min=1.
【答案】 D
4.已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则的最小值是(  )
A.0 B.1
C.2 D.4
【解析】 由题意知a+b=x+y,cd=xy,
∴(a+b)2=(x+y)2≥4xy=4cd,
∴≥4,当且仅当x=y时,取等号.
【答案】 D
5.已知a,b是不相等的正数,x=,y=,则x,y的关系是(  )
A.x>y B.y>x
C.x>y D.y>x
【解析】 因为a,b是不相等的正数,所以x2=+<+=a+b=y2,即x2【答案】 B
二、填空题
6.若实数x,y满足x2+y2+xy=1,则x+y的最大值是________.
【导学号:32750010】
【解析】 x2+y2+xy=(x+y)2-xy≥(x+y)2-=(x+y)2,∴(x+y)2≤,∴|x+y|≤,即x+y的最大值为.
【答案】 
7.已知x,y∈R+,且满足+=1,则xy的最大值为________.
【解析】 因为x>0,y>0,
所以+≥2=,即≤1,解得xy≤3,所以其最大值为3.
【答案】 3
8.已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为________.
【解析】 ∵a,b,m,n∈R+,且a+b=1,mn=2,
∴(am+bn)(bm+an)
=abm2+a2mn+b2mn+abn2
=ab(m2+n2)+2(a2+b2)
≥2ab·mn+2(a2+b2)
=4ab+2(a2+b2)
=2(a2+b2+2ab)
=2(a+b)2=2,
当且仅当m=n=时,取“=”,
∴所求最小值为2.
【答案】 2
三、解答题
9.已知a,b,x,y∈R+,x,y为变量,a,b为常数,且a+b=10,+=1,x+y的最小值为18,求a,b.
【解】 ∵x+y=(x+y)
=a+b++≥a+b+2=(+)2,
当且仅当=时取等号.
又(x+y)min=(+)2=18,
即a+b+2=18. ①
又a+b=10, ②
由①②可得或
10.已知x1,x2,x3为正实数,若x1+x2+x3=1,求证:++≥1.
【证明】 ∵+x1++x2++x3≥2+2+2=2(x1+x2+x3)=2,
∴++≥1.
[能力提升]
1.设x,y∈R+,且满足x+4y=40,则lg x+lg y的最大值是(  )
A.40 B.10
C.4 D.2
【解析】 因为x,y∈R+,∴≤,
∴≤=10,∴xy≤100.
∴lg x+lg y=lg xy≤lg 100=2.
【答案】 D
2.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与仓库到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站(  )
A.5千米处 B.4千米处
C.3千米处 D.2千米处
【解析】 由已知:y1=,
y2=0.8x(x为仓库到车站的距离).
费用之和y=y1+y2=0.8x+
≥2=8.
当且仅当0.8x=,
即x=5时等号成立.
【答案】 A
3.y=(x>0)的最小值是________.
【解析】 ∵x>0,∴y==+x+1-1≥2-1.
当且仅当x+1=时取等号.
【答案】 2-1
4.若对任意x>0,≤a恒成立,求实数a的取值范围.
【导学号:32750011】
【解】 由x>0,知原不等式等价于
0<≤=x++3恒成立.
又x>0时,x+≥2=2,
∴x++3≥5,当且仅当x=1时,取等号.
因此min=5,
从而0<≤5,解得a≥.
故实数a的取值范围为.
学业分层测评(三)
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知正数x,y,z,且x+y+z=6,则lg x+lg y+lg z的取值范围是(  )
A.(-∞,lg 6] B.(-∞,3lg 2]
C.[lg 6,+∞) D.[3lg 2,+∞)
【解析】 ∵6=x+y+z≥3,
∴xyz≤8.
∴lg x+lg y+lg z
=lg(xyz)≤lg 8=3lg 2.
【答案】 B
2.已知x∈R+,有不等式:x+≥2=2,x+=++≥3=3,….启发我们可能推广结论为:x+≥n+1(n∈N+),则a的值为(  )
A.nn    B.2n    C.n2    D.2n+1
【解析】 x+=+,要使和式的积为定值,则必须nn=a,故选A.
【答案】 A
3.设0A. B.1 C. D.
【解析】 ∵0∴0<1-x<1,
∴x(1-x)2=·2x·(1-x)·(1-x)
≤3=.
当且仅当x=时,等号成立.
【答案】 D
4.已知a,b,c∈R+,x=,y=,z=,则(  )
【导学号:32750016】
A.x≤y≤z B.y≤x≤z
C.y≤z≤x D.z≤y≤x
【解析】 由a,b,c大于0,易知≥,即x≥y.又z2=,x2=,
且x2=≤=,
∴x2≤z2,则x≤z,
因此z≥x≥y.
【答案】 B
5.设x,y,z>0,且x+3y+4z=6,则x2y3z的最大值为(  )
A.2 B.7
C.8 D.1
【解析】 ∵6=x+3y+4z=++y+y+y+4z≥6,
∴x2y3z≤1,当=y=4z时,取“=”,
即x=2,y=1,z=时,x2y3z取得最大值1.
【答案】 D
二、填空题
6.若记号“*”表示求两个实数a与b的算术平均的运算,即a*b=,则两边均含有运算“*”和“+”,且对任意3个实数a,b,c都能成立的一个等式可以是________.
【解析】 由题意知a+(b*c)=a+=,
(a+b)*(a+c)==,
所以a+(b*c)=(a+b)*(a+c).
【答案】 a+(b*c)=(a+b)*(a+c)
7.若a>2,b>3,则a+b+的最小值为________.
【解析】 ∵a>2,b>3,∴a-2>0,b-3>0,
则a+b+=(a-2)+(b-3)++5
≥3+5=8.
当且仅当a-2=b-3=,即a=3,b=4时等号成立.
【答案】 8
8.已知a>0,b>0,c>0,且a+b+c=1,对于下列不等式:①abc≤;②≥27;③a2+b2+c2≥.
其中正确的不等式序号是________.
【解析】 ∵a,b,c∈(0,+∞),
∴1=a+b+c≥3,
0从而①正确,②也正确.又a+b+c=1,
∴a2+b2+c2+2(ab+bc+ca)=1,
因此1≤3(a2+b2+c2),即a2+b2+c2≥,③正确.
【答案】 ①②③
三、解答题
9.已知a,b,c均为正数,证明:a2+b2+c2+(++)≥6,并确定a,b,c为何值时,等号成立.
【证明】 因为a,b,c均为正数,由算术-几何平均不等式,得a2+b2+c2≥3(abc), ①
++≥3(abc).
所以≥9(abc). ②
故a2+b2+c2+
≥3(abc)+9(abc).
又3(abc)+9(abc)≥2=6, ③
所以原不等式成立.
当且仅当a=b=c时,①式和②式等号成立.
当且仅当3(abc)=9(abc)时,③式等号成立.
即当且仅当a=b=c=时,原式等号成立.
10.已知x,y,z∈R+,x+y+z=3.
(1)求++的最小值;
(2)证明:3≤x2+y2+z2<9.
【解】 (1)因为x+y+z≥3>0,++≥>0,
所以(x+y+z)≥9,即++≥3,
当且仅当x=y=z=1时,==取最小值3.
(2)证明:x2+y2+z2=

==3.
又x2+y2+z2-9=x2+y2+z2-(x+y+z)2=-2(xy+yz+zx)<0,
所以3≤x2+y2+z2<9.
[能力提升]
1.已知圆柱的轴截面周长为6,体积为V,则下列总成立的是(  )
A.V≥π  B.V≤π  C.V≥π  D.V≤π
【解析】 设圆柱半径为r,则圆柱的高h=,所以圆柱的体积为V=πr2·h=πr2·=πr2(3-2r)≤π=π.
当且仅当r=3-2r,即r=1时取等号.
【答案】 B
2.若实数x,y满足xy>0,且x2y=2,则xy+x2的最小值是(  )
【导学号:32750017】
A.1    B.2    C.3    D.4
【解析】 xy+x2=xy+xy+x2≥
3=3=3=3.
【答案】 C
3.已知关于x的不等式2x+≥7在x∈(a,+∞)上恒成立,则实数a的最小值为________.
【解析】 ∵2x+=(x-a)+(x-a)++2a.又∵x-a>0,
∴2x+≥3+2a
=3+2a,
当且仅当x-a=,即x=a+1时,取等号.
∴2x+的最小值为3+2a.
由题意可得3+2a≥7,得a≥2.
【答案】 2
4.如图1-1-3(1)所示,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,如图1-1-3(2)所示,求这个正六棱柱容器容积的最大值.
图1-1-3
【解】 设正六棱柱容器底面边长为x(0<x<1),高为h,
由图可有2h+x=,
∴h=(1-x),
V=S底·h=6×x2·h=x2··(1-x)
=9×××(1-x)≤9×3=.
当且仅当=1-x,即x=时,等号成立.
所以当底面边长为时,正六棱柱容器容积最大值为.
学业分层测评(四)
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知a,b,c∈R,且a>b>c,则有(  )
A.|a|>|b|>|c| B.|ab|>|bc|
C.|a+b|>|b+c| D.|a-c|>|a-b|
【解析】 当a,b,c均为负数时,则A,B,C均不成立,
如a=-1,b=-2,c=-3时,有|a|<|b|<|c|,故A错;
|ab|=2,而|bc|=6,此时|ab|<|bc|,故B错;
|a+b|=3,|b+c|=5,与C中|a+b|>|b+c|矛盾,故C错;只有D正确.故选D.
【答案】 D
2.已知|a|≠|b|,m=,n=,则m,n之间的大小关系为(  )
A.m>n B.mC.m=n D.m≤n
【解析】 由|a|-|b|≤|a±b|≤|a|+|b|,得≤1,≥1.
【答案】 D
3.已知a,b∈R,ab>0,则下列不等式中不正确的是(  )
A.|a+b|>a-b B.2≤|a+b|
C.|a+b|<|a|+|b| D.≥2
【解析】 当ab>0时,|a+b|=|a|+|b|,C错.
【答案】 C
4.若|a-c|<b,则下列不等式不成立的是(  )
A.|a|<|b|+|c| B.|c|<|a|+|b|
C.b>||c|-|a|| D.b<||a|-|c||
【解析】 b>|a-c|>|a|-|c|,
b>|a-c|>|c|-|a|,故A,B成立,
∴b>||a|-|c||,故C成立.
应选D(此题代入数字也可判出).
【答案】 D
5.“|x-a|<m且|y-a|<m”是“|x-y|<2m”(x,y,a,m∈R)的(  )
【导学号:32750020】
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 ∵|x-a|<m,|y-a|<m,
∴|x-a|+|y-a|<2m.
又∵|(x-a)-(y-a)|≤|x-a|+|y-a|,
∴|x-y|<2m,但反过来不一定成立,
如取x=3,y=1,a=-2,m=2.5,|3-1|<2×2.5,
但|3-(-2)|>2.5,|1-(-2)|>2.5,
∴|x-y|<2m不一定有|x-a|<m且|y-a|<m,故“|x-a|<m且|y-a|<m”是“|x-y|<2m(x,y,a,m∈R)”的充分不必要条件.
【答案】 A
二、填空题
6.设a,b∈R,|a-b|>2,则关于实数x的不等式|x-a|+|x-b|>2的解集是________.
【解析】 因为a,b∈R,则|a-b|>2,其几何意义是数轴上表示数a,b的两点间距离大于2,|x-a|+|x-b|的几何意义为数轴上任意一点到a,b两点的距离之和,当x处于a,b之间时|x-a|+|x-b|取最小值,距离恰为a,b两点间的距离,由题意知其恒大于2,故原不等式解集为R.
【答案】 R
7.下列四个不等式:
①logx10+lg x≥2(x>1);
②|a-b|<|a|+|b|;③≥2(ab≠0);
④|x-1|+|x-2|≥1.
其中恒成立的是________(填序号).
【解析】 logx10+lg x=+lg x≥2,①正确.
ab≤0时,|a-b|=|a|+|b|,②不正确;
∵ab≠0,与同号,
∴=+≥2,③正确;
由|x-1|+|x-2|的几何意义知
|x-1|+|x-2|≥1恒成立,④也正确.
综上,①③④正确.
【答案】 ①③④
8.已知α,β是实数,给出三个论断:
①|α+β|=|α|+|β|;
②|α+β|>5;
③|α|>2,|β|>2.
以其中的两个论断为条件,另一个论断作为结论,写出你认为正确的一个命题是________.
【解析】 ①,③成立时,则|α+β|=|α|+|β|>4>5.
【答案】 ①③?②
三、解答题
9.设ε>0,|x-a|<,|y-b|<.求证:|2x+3y-2a-3b|<ε.
【证明】 ∵|2x+3y-2a-3b|=|2(x-a)+3(y-b)|≤2|x-a|+3|y-b|<2×+3×=ε.
10.(2014·全国卷Ⅱ)设函数f(x)=+|x-a|(a>0).
(1)证明:f(x)≥2;
(2)若f(3)<5,求a的取值范围.
【解】 (1)证明:由a>0,有f(x)=+|x-a|≥=+a≥2,所以f(x)≥2.
(2)f(3)=+|3-a|.
当a>3时,f(3)=a+,由f(3)<5,得3当0综上,a的取值范围是.
[能力提升]
1.对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1| 的最小值为(  )
A.1 B.2
C.3 D.4
【解析】 ∵x,y∈R,∴|x-1|+|x|≥|(x-1)-x|=1,
|y-1|+|y+1|≥|(y-1)-(y+1)|=2,
∴|x-1|+|x|+|y-1|+|y+1|≥3.
∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.
【答案】 C
2.以下三个命题:
(1)若|a-b|<1,则|a|<|b|+1;
(2)若a,b∈R,则|a+b|-2|a|≤|a-b|;
(3)若|x|<2,|y|>3,则<.
其中正确的有________个.
【解析】 (1)1>|a-b|≥|a|-|b|,
∴1+|b|>|a|成立,(1)正确;
(2)|a+b|-2|a|=|a+b|-|2a|≤|a+b-2a|=|a-b|正确;
(3)=<<,正确.
【答案】 3
3.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.
【导学号:32750021】
【解析】 |x-a|+|x-1|≥|a-1|,则只需要|a-1|≤3,解得-2≤a≤4.
【答案】 -2≤a≤4
4.若1<a<8,-4<b<2,则a-|b|的取值范围是____________.
【解析】 ∵-4<b<2,则0≤|b|<4,∴-4<-|b|≤0.
又∵1<a<8,∴-3<a-|b|<8.
【答案】 (-3,8)
5.(2016·江苏高考)设a>0,|x-1|<,|y-2|<,求证:|2x+y-4|<a.
【证明】 因为|x-1|<,|y-2|<,
所以|2x+y-4|=|2(x-1)+(y-2)|≤2|x-1|+|y-2|<2×+=a.
学业分层测评(五)
(建议用时:45分钟)
[学业达标]
一、选择题
1.不等式1<|x+1|<3的解集为(  )
A.(0,2) B.(-2,0)∪(2,4)
C.(-4,0) D.(-4,-2)∪(0,2)
【解析】 由1<|x+1|<3,得
1∴0∴不等式的解集为(-4,-2)∪(0,2).
【答案】 D
2.不等式>的解集是(  )
A.(0,2) B.(-∞,0)
C.(2,+∞) D.(-∞,0)∪(2,+∞)
【解析】 由绝对值的意义知,>等价于<0,即x(x-2)<0,解得0【答案】 A
3.若不等式|ax+2|<6的解集为(-1,2),则实数a的取值为(  )
A.8 B.2
C.-4 D.-8
【解析】 原不等式化为-6<ax+2<6,
即-8<ax<4.
又∵-1<x<2,∴验证选项易知a=-4适合.
【答案】 C
4.若不等式|x+1|+|x-2|≥a的解集为R,则实数a的取值范围是(  )
A.a≥3 B.a≤3
C.a>3 D.a<3
【解析】 令t=|x+1|+|x-2|,由题意知
只要tmin≥a即可,
因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以tmin=3,∴a≤3.
即实数a的取值范围是(-∞,3],故选B.
【答案】 B
5.设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R},若A?B,则实数a,b必满足(  )
A.|a+b|≤3 B.|a+b|≥3
C.|a-b|≤3 D.|a-b|≥3
【解析】 由|x-a|<1,得a-1由|x-b|>2,得xb+2.
∵A?B,∴a-1≥b+2或a+1≤b-2,
即a-b≥3或a-b≤-3,∴|a-b|≥3.
【答案】 D
二、填空题
6.不等式|x-5|-|x+3|≥4的解集为________.
【导学号:32750023】
【解析】 当x<-3时,原不等式为8≥4恒成立;当-3≤x≤5时,原不等式为(5-x)-(x+3)≥4,解得x≤-1,所以-3≤x≤-1;当x>5时,原不等式为(x-5)-(x+3)≥4,无解.综上可知,不等式|x-5|-|x+3|≥4的解集为{x|x≤-1}.
【答案】 {x|x≤-1}
7.若关于x的不等式|ax-2|<3的解集为,则a=________.
【解析】 ∵|ax-2|<3,∴-1当a>0时,-当a=0时,x∈R,与已知条件不符;
当a<0时,【答案】 -3
8.若关于x的不等式|x+2|+|x-1|<a的解集为?,则a的取值范围为________.
【解析】 法一:由|x+2|+|x-1|=|x+2|+|1-x|≥|x+2+1-x|=3,知a≤3时,原不等式无解.
法二:数轴上任一点到-2与1的距离之和最小值为3.
所以当a≤3时,原不等式的解集为?.
【答案】 (-∞,3]
三、解答题
9.已知关于x的不等式|x|>ax+1的解集为{x|x≤0}的子集,求a的取值范围.
【解】 设y1=|x|,y2=ax+1.
则y1=
在同一直角坐标系中作出两函数图象,如图所示.
|x|>ax+1,只需考虑函数y1=|x|的图象位于y2=ax+1的图象上方的部分,可知a≥1,即a的取值范围是[1,+∞).
10.已知函数f(x)=|x-3|+|x-2|+k.
(1)若f(x)≥3恒成立,求k的取值范围;
(2)当k=1时,求不等式f(x)<3x的解集.
【解】 (1)|x-3|+|x-2|+k≥3,对任意x∈R恒成立,即(|x-3|+|x-2|)min≥3-k.
又|x-3|+|x-2|≥|x-3-x+2|=1,(|x-3|+|x-2|)min=1≥3-k,解得k≥2.
(2)当x≤2时,5x>6,解得x>,∴当22,解得x>,∴2当x≥3时,x>-4,∴x≥3.
综上,解集为.
[能力提升]
1.如果关于x的不等式|x-a|+|x+4|≥1的解集是全体实数,则实数a的取值范围是(  )
A.(-∞,3]∪[5,+∞)
B.[-5,-3]
C.[3,5]
D.(-∞,-5]∪[-3,+∞)
【解析】 在数轴上,结合绝对值的几何意义可知a≤-5或a≥-3.
【答案】 D
2.若关于x的不等式|x+1|≥kx恒成立,则实数k的取值范围是(  )
A.(-∞,0] B.[-1,0]
C.[0,1] D.[0,+∞)
【解析】 作出y=|x+1|与y=kx的图象,如图,当k<0时,直线一定经过第二、四象限,从图看出明显不恒成立;当k=0时,直线为x轴,符合题意;当k>0时,要使|x+1|≥kx恒成立,只需k≤1.
综上可知k∈[0,1].
【答案】 C
3.若关于x的不等式|x-1|+|x-a|≥a的解集为R(其中R是实数集),则实数a的取值范围是________.
【解析】 不等式|x-1|+|x-a|≥a恒成立,
a不大于|x-1|+|x-a|的最小值,
∵|x-1|+|x-a|≥|1-a|,
∴|1-a|≥a,1-a≥a或1-a≤-a,
解得a≤.
【答案】 
4.已知a∈R,设关于x的不等式|2x-a|+|x+3|≥2x+4的解集为A.
(1)若a=1,求A;
(2)若A=R,求a的取值范围.
【导学号:32750024】
【解】 (1)当x≤-3时,原不等式化为-3x-2≥2x+4,得x≤-3.
当-3<x≤时,原不等式化为4-x≥2x+4,得-3<x≤0.
当x>时,原不等式化为3x+2≥2x+4,得x≥2.
综上,A={x|x≤0或x≥2}.
(2)当x≤-2时,|2x-a|+|x+3|≥0≥2x+4成立.
当x>-2时,|2x-a|+|x+3|=|2x-a|+x+3≥2x+4,
得x≥a+1或x≤,
所以a+1≤-2或a+1≤,得a≤-2.
综上,a的取值范围为(-∞,-2].
学业分层测评(十)
(建议用时:45分钟)
[学业达标]
一、选择题
1.设a,b,c∈R+,且a+b+c=1,则++的最大值是(  )
A.1 B.
C.3 D.9
【解析】 由柯西不等式得[()2+()2+()2](12+12+12)≥(++)2,∴(++)2≤3×1=3,
当且仅当a=b=c=时等号成立.
∴++的最大值为.故选B.
【答案】 B
2.设a,b,c是正实数,且a+b+c=9,则++的最小值为(  )
【导学号:32750054】
A.4 B.3
C.6 D.2
【解析】 ∵(a+b+c)
=[()2+()2+()2]·

2=18.
∴++≥2.
【答案】 D
3.设a1,a2,…,an为实数,P=,Q=,则P与Q的大小关系为(  )
A.P>Q B.P≥Q
C.P<Q D.不确定
【解析】 由柯西不等式知
≥a1+a2+…+an,
∴·≥a1+a2+…+an,
即得≥,∴P≥Q.
【答案】 B
4.若实数x+y+z=1,则F=2x2+y2+3z2的最小值为(  )
A.1    B.6 C.11    D.
【解析】 ∵(2x2+y2+3z2)≥x·+y·1+z·=(x+y+z)2=1,
∴2x2+y2+3z2≥=,即F≥,当且仅当2x=y=3z时,取等号.
【答案】 D
5.已知x,y,z均大于0,且x+y+z=1,则++的最小值为(  )
A.24    B.30    C.36    D.48
【解析】 (x+y+z)
≥2=36,
∴++≥36.
【答案】 C
二、填空题
6.已知a,b,c∈R,且2a+2b+c=8,则(a-1)2+(b+2)2+(c-3)2的最小值是__________.
【解析】 由柯西不等式得:(4+4+1)×[(a-1)2+(b+2)2+(c-3)2]≥[2(a-1)+2(b+2)+c-3]2,
∴9[(a-1)2+(b+2)2+(c-3)2]≥(2a+2b+c-1)2.
∵2a+2b+c=8,∴(a-1)2+(b+2)2+(c-3)2≥,
∴(a-1)2+(b+2)2+(c-3)2的最小值是.
【答案】 
7.已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为________.
【解析】 ∵a+2b+3c=6,∴1×a+1×2b+1×3c=6.
∴(a2+4b2+9c2)(12+12+12)≥(a+2b+3c)2,即a2+4b2+9c2≥12.当且仅当==,即a=2,b=1,c=时取等号.
【答案】 12
8.设x,y,z∈R,若(x-1)2+(y+2)2+z2=4,则3x-y-2z的取值范围是__________.又3x-y-2z取最小值时,x的值为__________.
【解析】 [(x-1)2+(y+2)2+z2][32+(-1)2+
(-2)2]≥(3x-3-y-2-2z)2,4×14≥(3x-y-2z-5)2,
∴-2≤3x-y-2z-5≤2,
即5-2≤3x-y-2z≤5+2.
若3x-y-2z=5-2,又===t,
∴3(3t+1)-(-t-2)-2(-2t)=5-2,
∴t=-,∴x=-+1.
【答案】 [5-2,5+2] -+1
三、解答题
9.已知正数x,y,z满足x+y+z=1.
(1)求证:++≥;
(2)求4x+4y+4z2的最小值.
【解】 (1)证明:·(y+2z+z+2x+x+2y)≥·+·+·=1,
即3≥1,
∴++≥.
(2)由基本不等式,得4x+4y+4z2≥3,
因为x+y+z=1,
所以x+y+z2=1-z+z2=2+≥,
故4x+4y+4z2≥3=3,
当且仅当x=y=,z=时等号成立,
所以4x+4y+4z2的最小值为3.
10.已知f(x)=ax2+bx+c的所有系数均为正数,且a+b+c=1,求证:对于任何正数x1,x2,当x1·x2=1时,必有f(x1)·f(x2)≥1.
【证明】 由于f(x)=ax2+bx+c,
且a,b,c大于0,
∴f(x1)·f(x2)=(ax+bx1+c)(ax+bx2+c)
≥(x1·x2+·+c)2
=(ax1x2+b+c)2
=[f()]2=[f(1)]2.
又f(1)=a+b+c,且a+b+c=1,
∴f(x1)·f(x2)≥1.
[能力提升]
1.若2a>b>0,则a+的最小值为(  )
A.1 B.3
C.8 D.12
【解析】 ∵2a>b>0,∴2a-b>0,
∴a+=
≥·3=3.
当且仅当2a-b=b=,即a=b=2时等号成立,
∴当a=b=2时,a+有最小值3.
【答案】 B
2.设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=(  )
A. B.
C. D.
【解析】 由柯西不等式得,(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2=400,当且仅当===时取等号,因此有=.
【答案】 C
3.已知a,b,c∈R+,且a+b+c=6,则++的最大值为________.
【导学号:32750055】
【解析】 由柯西不等式得:(++)2=(1×+1×+1×)2≤(12+12+12)(2a+2b+1+2c+3)=3(2×6+4)=48.
当且仅当==,
即2a=2b+1=2c+3时等号成立.
又a+b+c=6,∴a=,b=,c=时,
++取得最大值4.
【答案】 4
4.△ABC的三边长为a,b,c,其外接圆半径为R.
求证:(a2+b2+c2)≥36R2.
【证明】 由三角形中的正弦定理,得
sin A=,所以=,
同理=,=,
于是由柯西不等式可得
左边=(a2+b2+c2)
≥2=36R2,
∴原不等式得证.
学业分层测评(十一)
(建议用时:45分钟)
[学业达标]
一、选择题
1.设a≥b>0,P=a3+b3,Q=a2b+ab2,则P与Q的大小关系是(  )
A.P>Q  B.P≥Q  C.P【解析】 ∵a≥b>0,∴a2≥b2>0.
因此a3+b3≥a2b+ab2(排序不等式),
则P≥Q.
【答案】 B
2.设a1≤a2≤a3≤…≤an,b1≤b2≤b3≤…≤bn为两组实数,在排序不等式中,顺序和,反序和,乱序和的大小关系为(  )
A.反序和≥乱序和≥顺序和
B.反序和=乱序和=顺序和
C.反序和≤乱序和≤顺序和
D.反序和、乱序和、顺序和大小关系不确定
【答案】 C
3.设正实数a1,a2,a3的任一排列为a′1,a′2,a′3,则++的最小值为(  )
A.3 B.6
C.9 D.12
【解析】 设a1≥a2≥a3>0,则≥≥>0,由乱序和不小于反序和知,
++≥++=3,
∴++的最小值为3,故选A.
【答案】 A
4.若A=x+x+…+x,B=x1x2+x2x3+…+xn-1xn+xnx1,其中x1,x2,…,xn都是正数,则A与B的大小关系为(  )
A.A>B B.A<B
C.A≥B D.A≤B
【解析】 依序列{xn}的各项都是正数,不妨设0<x1≤x2≤…≤xn,则x2,x3,…,xn,x1为序列{xn}的一个排列.依排序原理,得x1x1+x2x2+…+xnxn≥x1x2+x2x3+…+xnx1,即x+x+…+x≥x1x2+x2x3+…+xnx1.故选C.
【答案】 C
5.已知a,b,c为正实数,则a2(a2-bc)+b2(b2-ac)+c2(c2-ab)的正负情况是(  )
A.大于零 B.大于等于零
C.小于零 D.小于等于零
【解析】 设a≥b≥c>0,所以a3≥b3≥c3,
根据排序原理,得a3×a+b3×b+c3×c≥a3b+b3c+c3a.
又知ab≥ac≥bc,a2≥b2≥c2,所以a3b+b3c+c3a≥a2bc+b2ca+c2ab,
∴a4+b4+c4≥a2bc+b2ca+c2ab,
即a2(a2-bc)+b2(b2-ac)+c2(c2-ab)≥0.
【答案】 B
二、填空题
6.若a,b,c∈R+,则++________a+b+c.
【解析】 不妨设a≥b≥c>0,则bc≤ca≤ab,≤≤,
∴++≥++=a+b+c.
【答案】 ≥
7.有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5 s,4 s,3 s,7 s,每个人接完水后就离开,则他们总的等候时间最短为________s.
【解析】 等候的最短时间为:3×4+4×3+5×2+7×1=41(s).
【答案】 41
8.设a1,a2,a3为正数,且a1+a2+a3=1,则++的最小值为________.
【导学号:32750058】
【解析】 不妨设a3>a1>a2>0,则<<,
所以a1a2设乱序和S=++=a1+a2+a3=1,
顺序和S′=++.
由排序不等式得++≥a1+a2+a3=1,
所以++的最小值为1.
【答案】 1
三、解答题
9.设a,b,c大于0,求证:
(1)a3+b3≥ab(a+b);
(2)++≤.
【证明】 (1)不妨设a≥b≥c>0,
则a2≥b2≥c2>0,
∴a3+b3=a2·a+b2·b≥a2b+b2a,
∴a3+b3≥ab(a+b).
(2)由(1)知,同理b3+c3≥bc(b+c),c3+a3≥ac(c+a),
所以++
≤+


=·=.
故原不等式得证.
10.已知a,b,c都是正数,求++的最小值.
【解】 由对称性,不妨设0<c≤b≤a,则有a+b≥a+c≥b+c>0,所以0<≤≤.
由排序不等式得
++
≥++,①
++≥++.②
由①②知2≥3,
∴++≥.
当且仅当a=b=c时,++取最小值.
[能力提升]
1.锐角三角形中,设P=,Q=acos C+bcos B+ccos A,则P,Q的关系为(  )
A.P≥Q B.P=Q
C.P≤Q D.不能确定
【解析】 不妨设A≥B≥C,则a≥b≥c,
cos A≤cos B≤cos C,则由排序不等式有Q=acos C+bcos B+ccos A≥acos B+bcos C+ccos A
=R(2sin Acos B+2sin Bcos C+2sin Ccos A)
≥R[sin(A+B)+sin(B+C)+sin(A+C)]
=R(sin C+sin A+sin B)==P.
【答案】 C
2.已知a+b+c=1,a,b,c为正数,则++的最小值是________.
【解析】 不妨设a≥b≥c,∴≥≥,
∴++≥++,①
++≥++,②
①+②得++≥,
∴++≥.
【答案】 
3.在Rt△ABC中,∠C为直角,A,B所对的边分别为a,b,则aA+bB与(a+b)的大小关系为________.
【导学号:32750059】
【解析】 不妨设a≥b>0,
则A≥B>0,由排序不等式
?2(aA+bB)≥a(A+B)+b(A+B)
=(a+b),
∴aA+bB≥(a+b).
【答案】 aA+bB≥(a+b)
4.已知0<α<β<γ<,求证:sin αcos β+sin βcos γ+sin γcos α>(sin 2α+sin 2β+sin 2γ).
【证明】 ∵0<α<β<γ<,且y=sin x在上为增函数,y=cos x在上为减函数,
∴0cos β>cos γ>0.
根据排序不等式得:乱序和>反序和.
∴sin αcos β+sin βcos γ+sin γcos α
>sin αcos α+sin βcos β+sin γcos γ
=(sin 2α+sin 2β+sin 2γ).
故原不等式得证.
学业分层测评(九)
(建议用时:45分钟)
[学业达标]
一、选择题
1.若a2+b2=1,x2+y2=2,则ax+by的最大值为(  )
A.1 B.2
C. D.4
【解析】 ∵(ax+by)2≤(a2+b2)(x2+y2)=2,
∴ax+by≤.
【答案】 C
2.已知a≥0,b≥0,且a+b=2,则(  )
A.ab≤ B.ab≥
C.a2+b2≥2 D.a2+b2≤3
【解析】 ∵(12+12)(a2+b2)≥(a+b)2=4,
∴a2+b2≥2.
【答案】 C
3.已知a,b∈R+,且a+b=1,则P=(ax+by)2与Q=ax2+by2的关系是(  )
【导学号:32750050】
A.P≤Q B.PC.P≥Q D.P>Q
【解析】 设m=(x,y),n=(,),
则|ax+by|=|m·n|≤|m||n|
=·
=·=,
∴(ax+by)2≤ax2+by2,即P≤Q.
【答案】 A
4.若a,b∈R,且a2+b2=10,则a-b的取值范围是(  )
A.[-2,2] B.[-2,2]
C.[-,] D.(-,)
【解析】 (a2+b2)[12+(-1)2]≥(a-b)2.
∵a2+b2=10,∴(a-b)2≤20.
∴-2≤a-b≤2.
【答案】 A
5.若a+b=1且a,b同号,则2+2的最小值为(  )
A.1 B.2
C. D.
【解析】 +
=a2+2++b2+2+=(a2+b2)+4.
∵a+b=1,ab≤=,
∴a2+b2=(a2+b2)·(1+1)
≥·(a+b)2=,1+≥1+42=17,
∴+≥+4=.
【答案】 C
二、填空题
6.设实数x,y满足3x2+2y2≤6,则P=2x+y的最大值为________.
【解析】 由柯西不等式得(2x+y)2≤[(x)2+(y)2]·=(3x2+2y2)·≤6×=11,
于是2x+y≤.
【答案】 
7.设xy>0,则·的最小值为________.
【解析】 原式=≥=9(当且仅当xy=时取等号).
【答案】 9
8.设x,y∈R+,且x+2y=8,则+的最小值为________.
【解析】 (x+2y)
=[()2+()2][+]≥=25,当且仅当·=·,即x=,y=时,“=”成立.又x+2y=8,
∴+≥.
【答案】 
三、解答题
9.已知θ为锐角,a,b均为正实数.求证:(a+b)2≤+.
【证明】 设m=,n=(cos θ,sin θ),
则|a+b|=
=|m·n|≤|m||n|= ·
= ,
∴(a+b)2≤+.
10.已知实数a,b,c满足a+2b+c=1,a2+b2+c2=1,求证:-≤c≤1.
【证明】 因为a+2b+c=1,a2+b2+c2=1,
所以a+2b=1-c,a2+b2=1-c2.
由柯西不等式得(12+22)(a2+b2)≥(a+2b)2,
当且仅当b=2a时,等号成立,即5(1-c2)≥(1-c)2,
整理得3c2-c-2≤0,解得-≤c≤1.
[能力提升]
1.函数y=+2的最大值是(  )
A.    B. C.3    D.5
【解析】 根据柯西不等式,知y=1×+2×≤×=.
【答案】 B
2.已知4x2+5y2=1,则2x+y的最大值是(  )
A.    B.1 C.3    D.9
【解析】 ∵2x+y=2x·1+y·1
≤·=·=.
∴2x+y的最大值为.
【答案】 A
3.函数f(x)=+的最大值为______.
【导学号:32750051】
【解析】 设函数有意义时x满足≤x2≤2,由柯西不等式得[f(x)]2=
≤(1+2)=,
∴f(x)≤,
当且仅当2-x2=,即x2=时取等号.
【答案】 
4.在半径为R的圆内,求内接长方形的最大周长.
【解】 如图所示,设内接长方形ABCD的长为x,宽为,于是 ABCD的周长l=2(x+)=2(1·x+1×).
由柯西不等式
l≤2[x2+()2](12+12)=2·2R
=4R,
当且仅当=,即x=R时,等号成立.
此时,宽==R,即ABCD为正方形,
故内接长方形为正方形时周长最大,其周长为4R.
学业分层测评(六)
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知a>2,b>2,则(  )
A.ab≥a+b B.ab≤a+b
C.ab>a+b D.ab<a+b
【解析】 ∵a>2,b>2,∴-1>0,-1>0,
则ab-(a+b)=a+b>0,
∴ab>a+b.
【答案】 C
2.已知a>b>-1,则与的大小关系为(  )
A.> B.<
C.≥ D.≤
【解析】 ∵a>b>-1,∴a+1>0,b+1>0,a-b>0,则-=<0,∴<.
【答案】  B
3.a,b都是正数,P=,Q=,则P,Q的大小关系是(  )
【导学号:32750031】
A.P>Q B.P<Q
C.P≥Q D.P≤Q
【解析】 ∵a,b都是正数,
∴P>0,Q>0,
∴P2-Q2=-()2
=≤0(当且仅当a=b时取等号),
∴P2-Q2≤0.
∴P≤Q.
【答案】 D
4.下列四个数中最大的是(  )
A.lg 2 B.lg
C.(lg 2)2 D.lg(lg 2)
【解析】 ∵0<lg 2<1<<2,
∴lg(lg 2)<0<lg <lg 2,
且(lg 2)2<lg 2,故选A.
【答案】 A
5.在等比数列{an}和等差数列{bn}中,a1=b1>0,a3=b3>0,a1≠a3,则a5与b5的大小关系是(  )
A.a5b5
C.a5=b5 D.不确定
【解析】 设{an}的公比为q,{bn}的公差为d,
则a5-b5=a1q4-(b1+4d)=a1q4-(a1+4d).
∵a3=b3,∴a1q2=b1+2d,即a1q2=a1+2d,
∴aq4=(a1+2d)2=a+4a1d+4d2,
∴a5-b5=
==.
∵a1>0,d≠0,∴a5-b5>0,
∴a5>b5.
【答案】 B
二、填空题
6.设P=a2b2+5,Q=2ab-a2-4a,若P>Q,则实数a,b满足的条件为________.
【导学号:32750032】
【解析】 P-Q=a2b2+5-(2ab-a2-4a)
=a2b2+5-2ab+a2+4a
=a2b2-2ab+1+4+a2+4a
=(ab-1)2+(a+2)2.
∵P>Q,∴P-Q>0,
即(ab-1)2+(a+2)2>0,
∴ab≠1或a≠-2.
【答案】 ab≠1或a≠-2
7.若x<y<0,M=(x2+y2)(x-y),N=(x2-y2)(x+y),则M,N的大小关系为________.
【解析】 M-N=(x2+y2)(x-y)-(x2-y2)(x+y)
=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).
∵x<y<0,∴xy>0,x-y<0,
∴-2xy(x-y)>0,∴M-N>0,即M>N.
【答案】 M>N
8.已知a>0,1>b>0,a-b>ab,则与的大小关系是________.
【解析】 ∵a>0,1>b>0,a-b>ab,
∴(1+a)(1-b)=1+a-b-ab>1.
从而=>1,
∴>.
【答案】 >
三、解答题
9.已知a>2,求证:loga(a-1)<log(a+1)a.
【证明】 ∵a>2,
则a-1>1,
∴loga(a-1)>0,log(a+1)a>0,
由于=loga(a-1)·loga(a+1)

=.
∵a>2,∴0<loga(a2-1)<logaa2=2,
∴<=1,
因此<1.
∵log(a+1)a>0,∴loga(a-1)<log(a+1)a.
10.已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列.
(1)求q的值;
(2)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
【解】 (1)由题设知2a3=a1+a2,
即2a1q2=a1+a1q.
又a1≠0,∴2q2-q-1=0,∴q=1或-.
(2)若q=1,则Sn=2n+==.
当n≥2时,Sn-bn=Sn-1=>0,
故Sn>bn.
若q=-,则Sn=2n+·==.
当n≥2时,Sn-bn=Sn-1=-,
故对于n∈N+,当2≤n≤9时,Sn>bn;
当n=10时,Sn=bn;
当n≥11时,Sn<bn.
[能力提升]
1.已知a>0,b>0,m=+,=+,p=,则m,n,p的大小顺序是(  )
A.m≥n>p B.m>n≥p
C.n>m>p D.n≥m>p
【解析】 由已知m=+,n=+,得a=b>0时m=n,可否定B,C.比较A,D项,不必论证与p的关系.取特值a=4,b=1,则m=4+=,n=2+1=3,∴m>n,可排除D.
【答案】 A
2.设m>n,n∈N*,a=(lg x)m+(lg x)-m,b=(lg x)n+(lg x)-n,x>1,则a与b的大小关系为(  )
A.a≥b B.a≤b
C.与x值有关,大小不定 D.以上都不正确
【解析】 要比较a与b的大小,通常采用比较法,根据a与b均为对数表达式,只有作差,a与b两个对数表达式才能运算、整理化简,才有可能判断出a与b的大小.
a-b=lgmx+lg-mx-lgnx-lg-nx
=(lgmx-lgnx)-
=(lgmx-lgnx)-
=(lgmx-lgnx)
=(lgmx-lgnx).
∵x>1,∴lg x>0.
当0<lg x<1时,a>b;
当lg x=1时,a=b;
当lg x>1时,a>b.
∴应选A.
【答案】 A
3.一个个体户有一种商品,其成本低于元.如果月初售出可获利100元,再将本利存入银行,已知银行月息为2.5%,如果月末售出可获利120元,但要付成本的2%的保管费,这种商品应________出售(填“月初”或“月末”).
【解析】 设这种商品的成本费为a元.
月初售出的利润为L1=100+(a+100)×2.5%,
月末售出的利润为L2=120-2%a,
则L1-L2=100+0.025a+2.5-120+0.02a
=0.045,
∵a<,∴L1<L2,月末出售好.
【答案】 月末
4.若实数x,y,m满足|x-m|<|y-m|,则称x比y接近m.对任意两个不相等的正数a,b,证明:a2b+ab2比a3+b3接近2ab.
【证明】 ∵a>0,b>0,且a≠b,
∴a2b+ab2>2ab,a3+b3>2ab.
∴a2b+ab2-2ab>0,
a3+b3-2ab>0.
∴|a2b+ab2-2ab|-|a3+b3-2ab|
=a2b+ab2-2ab-a3-b3+2ab
=a2b+ab2-a3-b3=a2(b-a)+b2(a-b)
=(a-b)(b2-a2)=-(a-b)2(a+b)<0,
∴|a2b+ab2-2ab|<|a3+b3-2ab|,
∴a2b+ab2比a3+b3接近2ab.
学业分层测评(七)
(建议用时:45分钟)
[学业达标]
一、选择题
1.若a,b,c∈R,a>b,则下列不等式成立的是(  )
A.< B.a2>b2
C.> D.a|c|>b|c|
【解析】 ∵a>b,c2+1>0,
∴>,故选C.
【答案】 C
2.设<<<1,则(  )
A.aa<ab<ba B.aa<ba<ab
C.ab<aa<ba D.ab<ba<aa
【解析】 ∵<<<1,
∴0<a<b<1,∴=aa-b>1,∴ab<aa,
=.∵0<<1,a>0,
∴<1,∴aa<ba,∴ab<aa<ba.故选C.
【答案】 C
3.已知条件p:ab>0,q:+≥2,则p与q的关系是(  )
【导学号:32750037】
A.p是q的充分而不必要条件
B.p是q的必要而不充分条件
C.p是q的充要条件
D.以上答案都不对
【解析】 当ab>0时,>0,>0,
∴+≥2 =2.
当+≥2时,
∴≥0,≥0,
(a-b)2≥0,∴ab>0,
综上,ab>0是+≥2的充要条件.
【答案】 C
4.已知a,b∈R+,那么下列不等式中不正确的是(  )
A.+≥2 B.+≥a+b
C.+≤ D.+≥
【解析】 A满足基本不等式;B可等价变形为(a-b)2(a+b)≥0,正确;C选项中不等式的两端同除以ab,不等式方向不变,所以C选项不正确;D选项是A选项中不等式的两端同除以ab得到的,D正确.
【答案】 C
5.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则(  )
A.S≥2P B.P<S<2P
C.S>P D.P≤S<2P
【解析】 ∵a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,
∴a2+b2+c2≥ab+bc+ca,
即S≥P.
又三角形中|a-b|<c,∴a2+b2-2ab<c2,
同理b2-2bc+c2<a2,c2-2ac+a2<b2,
∴a2+b2+c2<2(ab+bc+ca),即S<2P.
【答案】 D
二、填空题
6.有以下四个不等式:
①(x+1)(x+3)>(x+2)2;②ab-b2<a2;③>0;④a2+b2≥2|ab|.
其中恒成立的为________(写出序号即可).
【解析】 对于①,x2+4x+3>x2+4x+4,3>4不成立;对于②,当a=b=0时, 0<0不成立;③④显然成立.
【答案】 ③④
7.在Rt△ABC中,∠C=90°,c为斜边,则的取值范围是________.
【解析】 ∵a2+b2=c2,∴(a+b)2=a2+b2+2ab≤2(a2+b2)=2c2,∴≤,当且仅当a=b时,取等号.又∵a+b>c,∴>1.
【答案】 (1,]
8.已知a>0,b>0,若P是a,b的等差中项,Q是a,b的正的等比中项,是,的等差中项,则P,Q,R按从大到小的排列顺序为________.
【解析】 ∵P=,Q=,=+,
∴R=≤Q=≤P=,
当且仅当a=b时取等号.
【答案】 P≥Q≥R
三、解答题
9.设a>0,b>0,c>0.证明:
(1)+≥;
(2)++≥++.
【证明】 (1)∵a>0,b>0,
∴(a+b)
≥2·2=4,
∴+≥.
(2)由(1)知+≥,
同时+≥,+≥,三式相加得:
2≥++,
∴++≥++.
10.已知a≥1,求证:-<-.
【证明】 要证原不等式成立,
只要证明+<2.
因为a≥1,+>0,2>0,
所以只要证明2a+2<4a,
即证 <a.
所以只要证明a2-1<a2,
即证-1<0即可.
而-1<0显然成立,
所以-<-.
[能力提升]
1.若xy+yz+zx=1,则x2+y2+z2与1的关系是(  )
【导学号:32750038】
A.x2+y2+z2≥1 B.x2+y2+z2≤1
C.x2+y2+z2=1 D.不确定
【解析】 x2+y2+z2=(x2+y2+y2+z2+z2+x2)≥(2xy+2yz+2zx)=1,当且仅当x=y=z=时,取等号.
【答案】 A
2.设a,b,c都是正实数,且a+b+c=1,若M=··,则M的取值范围是________.
【解析】 ∵a+b+c=1,
∴M=··
=··
=··
≥2·2·2=8,
即M的取值范围是[8,+∞).
【答案】 [8,+∞)
3.已知|a|<1,|b|<1,求证:<1.
【证明】 要证<1,只需证|a+b|<|1+ab|,
只需证a2+2ab+b2<1+2ab+a2b2,
即证(1-a2)-b2(1-a2)>0,
也就是(1-a2)(1-b2)>0,
∵|a|<1,|b|<1,∴最后一个不等式显然成立.
因此原不等式成立.
4.若不等式++>0在条件a>b>c时恒成立,求实数λ的取值范围.
【解】 不等式可化为+>.
∵a>b>c,
∴a-b>0,
b-c>0,a-c>0,
∴λ<+恒成立.
∵+=+
=2++≥2+2=4,
∴λ≤4.
故实数λ的取值范围是(-∞,4].
学业分层测评(八)
(建议用时:45分钟)
[学业达标]
一、选择题
1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用(  )
①结论相反的判断,即假设;
②原命题的条件;
③公理、定理、定义等;
④原结论.
A.①②  B.①②④  C.①②③  D.②③
【解析】 由反证法的推理原理可知,反证法必须把结论的相反判断作为条件应用于推理,同时还可应用原条件以及公理、定理、定义等.
【答案】 C
2.用反证法证明命题“如果a>b,那么>”时,假设的内容是(  )
A.=
B.<
C.=且<
D.=或<
【解析】 应假设≤,
即=或<.
【答案】 D
3.对“a,b,c是不全相等的正数”,给出下列判断:
①(a-b)2+(b-c)2+(c-a)2≠0;
②a>b与a<b及a≠c中至少有一个成立;
③a≠c,b≠c,a≠b不能同时成立.
其中判断正确的个数为(  )
A.0个   B.1个 C.2个   D.3个
【解析】 对于①,若(a-b)2+(b-c)2+(c-a)2=0,则a=b=c,与已知矛盾,故①对;
对于②,当a>b与a<b及a≠c都不成立时,有a=b=c,不符合题意,故②对;对于③,显然不正确.
【答案】 C
4.若a,b,c∈R+,且a+b+c=1,设M=,N=(a+c)·(a+b),则(  )
A.M≥N B.M≤N
C.M>N D.M【解析】 依题意易知1-a,1-b,1-c∈R+,由均值不等式知≤[(1-a)+(1-b)+(1-c)]=,∴(1-a)(1-b)(1-c)≤,
从而有≥(1-b)(1-c),即M≥N,当且仅当a=b=c=时,取等号.故选A.
【答案】 A
5.设x,y,z都是正实数,a=x+,b=y+,c=z+,则a,b,c三个数(  )
A.至少有一个不大于2
B.都小于2
C.至少有一个不小于2
D.都大于2
【解析】 ∵a+b+c=x++y++z+≥2+2+2=6,当且仅当x=y=z=1时等号成立,
∴a,b,c三者中至少有一个不小于2.
【答案】 C
二、填空题
6.若要证明“a,b至少有一个为正数”,用反证法的反设应为________.
【导学号:32750042】
【答案】 a,b中没有任何一个为正数(或a≤0且b≤0)
7.lg 9·lg 11与1的大小关系是________.
【解析】 ∵lg 9>0,lg 11>0,
∴<=<=1,
∴lg 9·lg 11<1.
【答案】 lg 9·lg 11<1
8.设M=+++…+,则M与1的大小关系为________.
【解析】 ∵210+1>210,210+2>210,…,211-1>210,
∴M=+++…+
<=1.
【答案】 M<1
三、解答题
9.若实数a,b,c满足2a+2b=2a+b,2a+2b+2c=2a+b+c,求c的最大值.
【解】 2a+b=2a+2b≥2,当且仅当a=b时,即2a+b≥4时取“=”,
由2a+2b+2c=2a+b+c,
得2a+b+2c=2a+b·2c,
∴2c==1+≤1+=,
故c≤log2=2-log23.
10.已知n∈N+,求证:<++…+<.
【证明】 k<<=(2k+1)(k=1,2,…,n).
若记Sn=++…+,则
Sn>1+2+…+n=,
Sn<(3+5+…+2n+1)=(n2+2n)<.
[能力提升]
1.否定“自然数a,b,c中恰有一个为偶数”时正确的反设为(  )
A.a,b,c都是奇数
B.a,b,c都是偶数
C.a,b,c中至少有两个偶数
D.a,b,c中至少有两个偶数或都是奇数
【解析】 三个自然数的奇偶情况有“三偶、三奇、两偶一奇、两奇一偶”4种,而自然数a,b,c中恰有一个为偶数包含“两奇一偶”的情况,故反面的情况有3种,只有D项符合.
【答案】 D
2.设x,y都是正实数,且xy-(x+y)=1,则(  )
A.x+y≥2(+1) B.xy≤+1
C.x+y≤(+1)2 D.xy≥2(+1)
【解析】 由已知
(x+y)+1=xy≤,
∴(x+y)2-4(x+y)-4≥0.
∵x,y都是正实数,
∴x>0,y>0,
∴x+y≥2+2=2(+1).
【答案】 A
3.已知a>2,则loga(a-1)loga(a+1)________1(填“>”“<”或“=”).
【解析】 ∵a>2,
∴loga(a-1)>0,loga(a+1)>0.
又loga(a-1)≠loga(a+1),

<,
而=loga(a2-1)
<logaa2=1,
∴loga(a-1)loga(a+1)<1.
【答案】 <
4.已知数列{an}满足a1=2,an+1=2·an(n∈N+),
【导学号:32750043】
(1)求a2,a3,并求数列{an}的通项公式;
(2)设cn=,求证:c1+c2+c3+…+cn<.
【解】 (1)∵a1=2,an+1=2·an(n∈N+),
∴a2=22·a1=16,a3=2·a2=72.
又∵=2·,n∈N+,
∴为等比数列.
∴=·2n-1=2n,
∴an=n2·2n.
(2)证明:cn==,
∴c1+c2+c3+…+cn
=+++…+
<+++·
=+·
<+·=+
==<=,所以结论成立.
学业分层测评(十二)
(建议用时:45分钟)
[学业达标]
一、选择题
1.设f(n)=1+++…+(n∈N+),则f(n+1)-f(n)等于(  )
A. B.+
C.+ D.++
【解析】 因为f(n)=1+++…+,所以f(n+1)=1+++…++++,所以f(n+1)-f(n)=++.故选D.
【答案】 D
2.在应用数学归纳法证明凸n边形的对角线为n(n-3)条时,第一步检验第一个值n0等于(  )
A.1 B.2
C.3 D.0
【解析】 边数最少的凸n边形是三角形.
【答案】 C
3.已知a1=,an+1=,猜想an等于(  )
【导学号:32750066】
A. B.
C. D.
【解析】 a2==,
a3==,
a4===,
猜想an=.
【答案】 D
4.用数学归纳法证明:(n+1)(n+2)…·(n+n)=2n×1×3…(2n-1)时,从“k到k+1”左边需增乘的代数式是(  )
A.2k+1 B.
C.2(2k+1) D.
【解析】 当n=k+1时,左边=(k+1+1)(k+1+2)…·(k+1+k+1)=(k+1)·(k+2)·(k+3)…(k+k)·=(k+1)(k+2)(k+3)…(k+k)·2(2k+1).
【答案】 C
5.记凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)等于f(k)加上(  )
A. B.π
C.2π D.π
【解析】 从n=k到n=k+1时,
内角和增加π.
【答案】 B
二、填空题
6.观察式子1=1,1-4=-(1+2),1-4+9=1+2+3,…,猜想第n个式子应为________.
【答案】 1-4+9-16+…+(-1)n-1n2
=(-1)n+1·
7.用数学归纳法证明“1+2+22+…+2n-1=2n-1(n∈N+)”的过程中,第二步假设n=k时等式成立,则当n=k+1时应得到________.
【解析】 ∵n=k时,命题为“1+2+22+…+2k-1=2k-1”,
∴n=k+1时为使用归纳假设,
应写成1+2+22+…+2k-1+2k=2k-1+2k=2k+1-1.
【答案】 1+2+22+…+2k-1+2k=2k+1-1
8.用数学归纳法证明34n+1+52n+1(n∈N+)能被14整除,当n=k+1时,对于34(k+1)+1+52(k+1)+1应变形为________.
【解析】 34(k+1)+1+52(k+1)+1=34k+5+52k+3=81×34k+1+25×52k+1=81×34k+1+81×52k+1-56×52k+1=81×(34k+1+52k+1)-56×52k+1.
【答案】 81×(34k+1+52k+1)-56×52k+1
三、解答题
9.用数学归纳法证明:
…=(n≥2,n∈N+).
【证明】 (1)当n=2时,左边=1-=,右边==.
∴等式成立.
(2)假设当n=k(k≥2,k∈N+)时,等式成立,
即…=(k≥2,k∈N+).
当n=k+1时,

=·=
==,
∴当n=k+1时,等式成立.
根据(1)和(2)知,对n≥2,n∈N+时,等式成立.
10.用数学归纳法证明:对于任意正整数n,整式an-bn都能被a-b整除.
【证明】 (1)当n=1时,an-bn=a-b能被a-b整除.
(2)假设当n=k(k∈N+,k≥1)时,ak-bk能被a-b整除,那么当n=k+1时,ak+1-bk+1=ak+1-akb+akb-bk+1=ak(a-b)+b(ak-bk).因为(a-b)和ak-bk都能被a-b整除,所以上面的和ak(a-b)+b(ak-bk)也能被a-b整除.这也就是说当n=k+1时,ak+1-bk+1能被a-b整除.
根据(1)(2)可知对一切正整数n,an-bn都能被a-b整除.
[能力提升]
1.设f(n)=+++…+(n∈N+),那么f(n+1)-f(n)等于(  )
【导学号:32750067】
A. B.
C.+ D.-
【解析】 因为f(n)=++…+,
所以f(n+1)=++…+++,
所以f(n+1)-f(n)=+-=-.
【答案】 D
2.某同学回答“用数学归纳法证明<n+1(n∈N+)的过程如下:
证明:(1)当n=1时,显然命题是正确的:
(2)假设n=k时有<k+1,那么当n=k+1时,=<=(k+1)+1,所以当n=k+1时命题是正确的.由(1)(2)可知对于n∈N+,命题都是正确的.以上证法是错误的,错误在于(  )
A.从k到k+1的推理过程没有使用归纳假设
B.归纳假设的写法不正确
C.从k到k+1的推理不严密
D.当n=1时,验证过程不具体
【解析】 证明<(k+1)+1时进行了一般意义的放大.而没有使用归纳假设<k+1.
【答案】 A
3.用数学归纳法证明22+32+…+n2=-1(n∈N+,且n>1)时,第一步应验证n=________,当n=k+1时,左边的式子为________.
【解析】 ∵所证明的等式为
22+32+…+n2=-1(n∈N+,n>1).
又∵第一步验证的值应为第一个值(初始值),
∴n应为2.
又∵当n=k+1时,等式左边的式子实际上是将左边式子中所有的n换成k+1,
即22+32+…+k2+(k+1)2.
【答案】 2 22+32+…+k2+(k+1)2
4.是否存在常数a,b,c使等式(n2-12)+2(n2-22)+…+n(n2-n2)=an4+bn2+c对一切正整数n成立?证明你的结论.
【解】 存在.分别用n=1,2,3代入,解方程组得
故原等式右边=-.
下面用数学归纳法证明.
(1)当n=1时,由上式可知等式成立.
(2)假设当n=k(k∈N+,k≥1)时等式成立,即(k2-12)+2(k2-22)+…+k(k2-k2)=k4-k2.
则当n=k+1时,
左边=[(k+1)2-12]+2[(k+1)2-22]+…+k[(k+1)2-k2]+(k+1)·[(k+1)2-(k+1)2]=(k2-12)+2(k2-22)+…+k(k2-k2)+(2k+1)+2(2k+1)+…+k(2k+1)=k4-k2+(2k+1)·=(k+1)4-(k+1)2,故n=k+1时,等式成立.
由(1)(2)得等式对一切n∈N+均成立.
学业分层测评(十三)
(建议用时:45分钟)
[学业达标]
一、选择题
1.设f(x)是定义在正整数集上的函数,且f(x)满足:当f(k)≥k2成立时,总可推出f(k+1)≥(k+1)2成立.那么下列命题总成立的是(  )
A.若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立
B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立
C.若f(7)<49成立,则当k≥8时,均有f(k)<k2成立
D.若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立
【解析】 根据题中条件可知:由f(k)≥k2,必能推得f(k+1)≥(k+1)2,但反之不成立,因为D中f(4)=25>42,故可推得k≥4时,f(k)≥k2,故只有D正确.
【答案】 D
2.用数学归纳法证明“对于任意x>0和正整数n,都有xn+xn-2+xn-4+…+++≥n+1”时,需验证的使命题成立的最小正整数值n0应为(  )
A.n0=1 B.n0=2
C.n0=1,2 D.以上答案均不正确
【解析】 需验证:n0=1时,x+≥1+1成立.
【答案】 A
3.利用数学归纳法证明不等式1+++…+【导学号:32750070】
A.1项   B.k项   C.2k-1项  D.2k项
【解析】 1+++…+-1+++…+=+++…+,
∴共增加2k项.
【答案】 D
4.若不等式++…+>对大于1的一切自然数n都成立,则自然数m的最大值为(  )
A.12 B.13
C.14 D.不存在
【解析】 令f(n)=++…+,
易知f(n)是单调递增的,
∴f(n)的最小值为f(2)=+=.
依题意>,∴m<14.因此取m=13.
【答案】 B
5.用数学归纳法证明不等式++…+<(n≥2,n∈N+)的过程中,由n=k递推到n=k+1时不等式左边(  )
A.增加了一项
B.增加了两项,
C.增加了B中两项但减少了一项
D.以上各种情况均不对
【解析】 ∵n=k时,左边=++…+,n=k+1时,左边=++…+++,
∴增加了两项,,少了一项.
【答案】 C
二、填空题
6.用数学归纳法证明“2n+1≥n2+n+2(n∈N+)”时,第一步的验证为________.
【解析】 当n=1时,21+1≥12+1+2,即4≥4成立.
【答案】 21+1≥12+1+2
7.证明<1+++…+<n+1(n>1),当n=2时,要证明的式子为________.
【解析】 当n=2时,要证明的式子为
2<1+++<3.
【答案】 2<1+++<3
8.在△ABC中,不等式++≥成立;在四边形ABCD中,不等式+++≥成立;在五边形ABCDE中,不等式++++≥成立.猜想在n边形A1A2…An中,类似成立的不等式为________.
【解析】 由题中已知不等式可猜想:
+++…+
≥(n≥3且n∈N+).
【答案】 +++…+≥(n≥3且n∈N+)
三、解答题
9.已知数列{an}的前n项和为Sn,且满足a1=,an+2SnSn-1=0(n≥2).
(1)判断是否为等差数列,并证明你的结论;
(2)证明:S+S+…+S≤-.
【解】 (1)S1=a1=,∴=2.
当n≥2时,an=Sn-Sn-1,即Sn-Sn-1=-2SnSn-1,
∴-=2.
故是以2为首项,2为公差的等差数列.
(2)证明:①当n=1时,S==-,不等式成立.
②假设n=k(k≥1,且k∈N+)时,不等式成立,即S+S+…+S≤-成立,
则当n=k+1时,S+S+…+S+S≤-+=-
=-·<-·=-.
即当n=k+1时,不等式成立.
由①②可知对任意n∈N+不等式成立.
10.已知函数f(x)=x3-x,数列{an}满足条件:a1≥1,且an+1≥f′(an+1),证明:an≥2n-1(n∈N*).
【证明】 由f(x)=x3-x,
得f′(x)=x2-1.
因此an+1≥f′(an+1)=(an+1)2-1=an(an+2),
(1)当n=1时,a1≥1=21-1,不等式成立.
(2)假设当n=k时,不等式成立,即ak≥2k-1,
当n=k+1时,
ak+1≥ak(ak+2)≥(2k-1)(2k-1+2)=22k-1.
又k≥1,∴22k≥2k+1,∴n=k+1时,ak+1≥2k+1-1,即不等式成立.
根据(1)和(2)知,对任意n∈N+,an≥2n-1成立.
[能力提升]
1.对于正整数n,下列不等式不正确的是(  )
A.3n≥1+2n B.0.9n≥1-0.1n
C.0.9n≤1-0.1n D.0.1n≤1-0.9n
【解析】 排除法,取n=2,只有C不成立.
【答案】 C
2.利用数学归纳法证明“<”时,n的最小取值n0应为________.
【导学号:32750071】
【解析】 n0=1时不成立,n0=2时,<,再用数学归纳法证明,故n0=2.
【答案】 2
3.设a,b均为正实数(n∈N+),已知M=(a+b)n,N=an+nan-1b,则M,N的大小关系为____________________.
【解析】 当n=1时,M=a+b=N,
当n=2时,M=(a+b)2,N=a2+2ab<M,
当n=3时,M=(a+b)3,N=a3+3a2b<M,
归纳得M≥N.
【答案】 M≥N
4.已知f(x)=,对于n∈N+,试比较f()与的大小并说明理由.
【解】 据题意f(x)===1-,
∴f()=1-.
又=1-,∴要比较f()与的大小,只需比较2n与n2的大小即可,
当n=1时,21=2>12=1,
当n=2时,22=4=22,
当n=3时,23=8<32=9,
当n=4时,24=16=42,
当n=5时,25=32>52=25,
当n=6时,26=64>62=36.
故猜测当n≥5(n∈N+)时,2n>n2,
下面用数学归纳法加以证明.
(1)当n=5时,不等式显然成立.
(2)假设n=k(k≥5且k∈N+)时,不等式成立,
即2k>k2.
则当n=k+1时,
2k+1=2·2k>2·k2=k2+k2+2k+1-2k-1
=(k+1)2+(k-1)2-2>(k+1)2,
即n=k+1时,
不等式也成立.
由(1)(2)可知,
对一切n≥5,n∈N+,2n>n2成立.
综上所述,当n=1或n≥5时,f()>,
当n=2或n=4时,f()=,
当n=3时,f()<.