【人教A版】2017-2018学年高中数学选修2-1学业分层测评打包(Word版,含答案)

文档属性

名称 【人教A版】2017-2018学年高中数学选修2-1学业分层测评打包(Word版,含答案)
格式 zip
文件大小 2.3MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2017-11-15 18:46:08

文档简介

模块综合测评
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.命题“a?A或b?B”的否定形式是(  )
A.若a?A,则b?B  B.a∈A或b∈B
C.a?A且b?B D.a∈A且b∈B
【解析】 “p或q”的否定为“綈p且綈q”,D正确.
【答案】 D
2.已知a∈R,则“a<2”是“a2<2a”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 ∵a2<2a?a(a-2)<0?0<a<2.
∴“a<2”是“a2<2a”的必要不充分条件.
【答案】 B
3.若椭圆+=1(a>b>0)的离心率为,则双曲线-=1的离心率为(  )
A.  B. 
C.   D.
【解析】 由题意,1-==,∴=,而双曲线的离心率e2=1+=1+=,∴e=.
【答案】 B
4.已知空间向量a=(t,1,t),b=(t-2,t,1),则|a-b|的最小值为(  )
A. B.
C.2 D.4
【解析】 |a-b|=≥2,故选C.
【答案】 C
5.椭圆+=1与椭圆+=1有(  )
A.相同短轴 B.相同长轴
C.相同离心率 D.以上都不对
【解析】 对于+=1,因a2>9或a2<9,因此这两个椭圆可能长轴相同,也可能短轴相同,离心率是不确定的,因此A,B,C均不正确,故选D.
【答案】 D
6.长方体ABCD-A1B1C1D1中,AB=2,AD=AA1=1,则二面角C1-AB-C为(  )
A.  B.
C.   D.
【解析】 以A为原点,直线AB,AD,AA1分别为x轴、y轴、z轴建立空间直角坐标系,则平面ABC的一个法向量为=(0,0,1),平面ABC1的一个法向量为=(0,1,-1),∴cos〈,〉==-,∴〈,〉=,又二面角C1-AB-C为锐角,即π-π=,故选D.
【答案】 D
7.(2016·湖北省黄冈市质检)命题“?x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是(  )
A.a≥4 B.a≤4
C.a≥5 D.a≤5
【解析】 ∵?x∈[1,2],1≤x2≤4,∴要使x2-a≤0为真,则a≥x2,即a≥4,本题求的是充分不必要条件,结合选项,只有C符合,故选C.
【答案】 C
8.已知p:<0,q:lg(x+2)有意义,则綈p是q的(  )
【导学号:18490126】
A.充分不必要条件 B.充要条件
C.必要不充分条件 D.既不充分也不必要条件
【解析】 不等式<0的解集为{x|x<-2},则綈p:x≥-2.q:x>-2.故綈pq,q?綈p,故选C.
【答案】 C
9.如图1,过抛物线y2=2px(p>0)的焦点F的直线,分别交抛物线的准线l、y轴、抛物线于A,B,C三点,若=3,那么直线AF的斜率是(  )
图1
A.- B.-
C.- D.-1
【解析】 过点B,C分别作准线l的垂线,垂足分别为B1,C1,设|BC|=a.因为O是EF的中点,BO∥AE,所以|AB|=|BF|=3a,|CF|=|CC1|=2a,在△ACC1中,|AC1|=2a,tan∠AFO=tan∠ACC1=,故直线AF的斜率是-,故选A.
【答案】 A
10.过椭圆C:+=1(a>b>0)的左顶点A的斜率为k的直线交椭圆C 于另一点B,且点B在x轴上的射影恰好为右焦点F,若椭圆的离心率为,则k的值为(  )
A.- B.
C.± D.±
【解析】 由题意知点B的横坐标是c,故点B的坐标为,则斜率k==±=±=±=±(1-e)=±,故选C.
【答案】 C
11.若直线y=kx-2与抛物线y2=8x交于A,B两个不同的点,抛物线的焦点为F,且|AF|,4,|BF|成等差数列,则k=(  )
A.2或-1 B.-1
C.2 D.1±
【解析】 设A(x1,y1),B(x2,y2).由消去y,得k2x2-4(k+2)x+4=0,故Δ=16(k+2)2-16k2=64(1+k)>0,解得k>-1,且x1+x2=.由|AF|=x1+=x1+2,|BF|=x2+=x2+2,且|AF|,4,|BF|成等差数列,得x1+2+x2+2=8,得x1+x2=4,所以=4,解得k=-1或k=2,又k>-1,故k=2,故选C.
【答案】 C
12.(2016·上海杨浦模考)若F1,F2为双曲线C:-y2=1的左、右焦点,点P在双曲线C上,∠F1PF2=60°,则点P到x轴的距离为(  )
A.  B.
C.   D.
【解析】 设|PF1|=r1,|PF2|=r2,点P到x轴的距离为|yP|,则S△F1PF2=r1r2sin 60°=r1r2,又4c2=r+r-2r1r2cos 60°=(r1-r2)2+2r1r2-r1r2=4a2+r1r2,得r1r2=4c2-4a2=4b2=4,所以S△F1PF2=r1r2sin 60°==·2c·|yP|=|yP|,得|yP|=,故选B.
【答案】 B
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)
13.已知空间三点的坐标为A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p+q=________.
【解析】 由已知,得=k,所以(p-1,-2,q+4)=k(1,-1,3),得到p=3,q=2,p+q=5.
【答案】 5
14.已知命题p:?x0∈R,ax+x0+≤0.若命题p是假命题,则实数a的取值范围是________.
【解析】 因为命题p为假命题,所以命题“?x∈R,ax2+x+>0”为真命题.当a=0时,取x=-1,则不等式不成立; 当a≠0时,要使不等式恒成立,令ax2+x+=0,则有即所以即实数a的取值范围是.
【答案】 
15.已知抛物线y2=4x的焦点为F,若点A,B是该抛物线上的点,∠AFB=,线段AB的中点M在抛物线的准线上的射影为N,则的最大值为______. 【导学号:18490127】
【解析】 如图所示,设|AF|=a,|BF|=b,则|AB|=,而根据抛物线的定义可得|MN|=,又≤,所以=≤,当且仅当a=b时,等号成立,即的最大值为.
【答案】 
16.四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是正方形,且PD=AB=1,G为△ABC的重心,则PG与底面ABCD所成的角θ的正弦值为________.
【解析】 如图,分别以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系,由已知P(0,0,1),A(1,0,0),B(1,1,0),C(0,1,0),则重心G,因此=(0,0,1),=,所以sin θ=|cos〈,〉|==.
【答案】 
三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分10分)设集合A={x|x2-3x+2=0},B={x|ax=1}.“x∈B”是“x∈A”的充分不必要条件,试求满足条件的实数a组成的集合.
【解】 ∵A={x|x2-3x+2=0}={1,2},
由于“x∈B”是“x∈A”的充分不必要条件.∴BA.
当B=?时,得a=0;
当B≠?时,由题意得B={1}或B={2}.
则当B={1}时,得a=1;当B={2}时,得a=.
综上所述,实数a组成的集合是.
18. (本小题满分12分)如图2,四边形MNPQ是圆C的内接等腰梯形,向量与的夹角为120°,·=2.
图2
(1)求圆C的方程;
(2)求以M,N为焦点,过点P,Q的椭圆方程.
【解】 (1)连结CQ,建立如图坐标系,由题意得△CQM为正三角形.
∴·=r2·cos 60°=2,
∴r=2,
∴圆C的方程为x2+y2=4.
(2)易知M(2,0),N(-2,0),Q(1,),
2a=|QN|+|QM|=2+2.
∴c=2,a=+1,b2=a2-c2=2.
∴椭圆的方程为+=1.
19. (本小题满分12分)如图3,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD于点M.
图3
(1)求证:AM⊥PD;
(2)求直线CD与平面ACM所成的角的余弦值.
【解】 (1)证明:∵PA⊥平面ABCD,AB?平面ABCD,∴PA⊥AB.
∵AB⊥AD,AD∩PA=A,∴AB⊥平面PAD.
∵PD?平面PAD,∴AB⊥PD.
∵BM⊥PD,AB∩BM=B,∴PD⊥平面ABM.
∵AM?平面ABM,∴AM⊥PD.
(2)如图所示,以点A为坐标原点,建立空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),B(1,0,0),C(1,2,0),D(0,2,0),M(0,1,1),
于是=(1,2,0),=(0,1,1),=(-1,0,0).
设平面ACM的一个法向量为n=(x,y,z),
由n⊥,n⊥可得
令z=1,得x=2,y=-1,于是n=(2,-1,1).
设直线CD与平面ACM所成的角为α,
则sin α==,cos α=.
故直线CD与平面ACM所成的角的余弦值为.
20. (本小题满分12分)如图4,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k>0).
图4
(1)求证:CD⊥平面ADD1A1;
(2)若直线AA1与平面AB1C所成角的正弦值为,求k的值.
【解】  (1)证明:取CD的中点E,连接BE,如图(1).
图(1)
∵AB∥DE,AB=DE=3k,
∴四边形ABED为平行四边形,
∴BE∥AD且BE=AD=4k.
在△BCE中,∵BE=4k,CE=3k,BC=5k,
∴BE2+CE2=BC2,∴∠BEC=90°,即BE⊥CD.
又∵BE∥AD,∴CD⊥AD.
∵AA1⊥平面ABCD,CD?平面ABCD,∴AA1⊥CD.
又AA1∩AD=A,∴CD⊥平面ADD1A1.
(2)以D为原点,,,的方向为x,y,z轴的正方向建立如图(2)所示的空间直角坐标系,则A(4k,0,0),C(0,6k,0),B1(4k,3k,1),A1(4k,0,1),
图(2)
∴=(-4k,6k,0),=(0,3k,1),=(0,0,1).
设平面AB1C的法向量n=(x,y,z),则由得
取y=2,得n=(3,2,-6k).
设AA1与平面AB1C所成的角为θ,则
sin θ=|cos〈,n〉|===,解得k=1,故所求k的值为1.
21. (本小题满分12分)如图5,过抛物线y2=2px(p>0)的焦点F作一条倾斜角为的直线与抛物线相交于A,B两点.
图5
(1)用p表示|AB|;
(2)若·=-3,求这个抛物线的方程.
【解】 (1)抛物线的焦点为F,过点F且倾斜角为的直线方程为y=x-.
设A(x1,y1),B(x2,y2),由
得x2-3px+=0,
∴x1+x2=3p,x1x2=,
∴|AB|=x1+x2+p=4p.
(2)由(1)知,x1x2=,x1+x2=3p,
∴y1y2==x1x2-(x1+x2)+=-+=-p2,∴·=x1x2+y1y2=-p2=-=-3,解得p2=4,∴p=2.
∴这个抛物线的方程为y2=4x.
22. (本小题满分12分)如图6,在平面直角坐标系xOy中,F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.
图6
(1)若点C的坐标为,且BF2=,求椭圆的方程;
【导学号:18490128】
(2)若F1C⊥AB,求椭圆离心率e的值.
【解】 (1)∵BF2=,而BF=OB2+OF=b2+c2=2=a2,
∵点C在椭圆上,C,
∴+=1,
∴b2=1,∴椭圆的方程为+y2=1.
(2)直线BF2的方程为+=1,与椭圆方程+=1联立方程组,
解得A点坐标为,
则C点的坐标为,
又F1为(-c,0),kF1C==,
又kAB=-,由F1C⊥AB,得·=-1,
即b4=3a2c2+c4,所以(a2-c2)2=3a2c2+c4,化简得e==.
章末综合测评(一) 常用逻辑用语
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.命题“若x2<1,则-1<x<1”的逆否命题是(  )
A.若x2≥1,则x≥1,或x≤-1
B.若-1<x<1,则x2<1
C.若x>1,或x<-1,则x2>1
D.若x≥1或x≤-1,则x2≥1
【解析】 命题“若p,则q”的逆否命题为“若綈q,则綈p”.
【答案】 D
2.命题“所有能被2整除的整数都是偶数”的否定是(  )
A.所有不能被2整除的整数都是偶数
B.所有能被2整除的整数都不是偶数
C.存在一个不能被2整除的整数是偶数
D.存在一个能被2整除的整数不是偶数
【解析】 把全称量词改为存在量词并把结论否定.
【答案】 D
3.命题p:x+y≠3,命题q:x≠1或y≠2,则命题p是q的(  )
A.充分不必要条件  B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【解析】 命题“若p,则q”的逆否命题为:“若x=1且y=2,则x+y=3”,是真命题,故原命题为真,反之不成立.
【答案】 A
4.设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的(  )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【解析】 当x=2且y=-1时,满足方程x+y-1=0, 即点P(2,-1)在直线l上.点P′(0,1)在直线l上,但不满足x=2且y=-1,∴“x=2且y=-1”是“点P(x,y)在直线l上”的充分而不必要条件.
【答案】 A
5.“关于x的不等式f(x)>0有解”等价于(  )
A.?x0∈R,使得f(x0)>0成立
B.?x0∈R,使得f(x0)≤0成立
C.?x∈R,使得f(x)>0成立
D.?x∈R,f(x)≤0成立
【解析】 “关于x的不等式f(x)>0有解”等价于“存在实数x0,使得f(x0)>0成立”.故选A.
【答案】 A
6.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的(  ) 【导学号:18490031】
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
【解析】 若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.
【答案】 A
7.命题p:函数y=lg(x2+2x-c)的定义域为R;命题q:函数y=lg(x2+2x-c)的值域为R.记命题p为真命题时c的取值集合为A,命题q为真命题时c的取值集合为B,则A∩B=(  )
A.? B.{c|c<-1}
C.{c|c≥-1} D.R
【解析】 命题p为真命题,即x2+2x-c>0恒成立,则有Δ=4+4c<0,解得c<-1,即A={c|c<-1};令f(x)=x2+2x-c,命题q为真命题,则f(x)的值域包含(0,+∞).即Δ=4+4c≥0,求得c≥-1,即B={c|c≥-1}.于是A∩B=?,故选A.
【答案】 A
8.对?x∈R,kx2-kx-1<0是真命题,则k的取值范围是(  )
A.-4≤k≤0 B.-4≤k<0
C.-4<k≤0 D.-4<k<0
【解析】 由题意知kx2-kx-1<0对任意x∈R恒成立,当k=0时,-1<0恒成立;当k≠0时,有即-4<k<0,所以-4<k≤0.
【答案】 C
9.已知命题p:若(x-1)(x-2)≠0,则x≠1且x≠2;命题q:存在实数x0,使2x0<0.下列选项中为真命题的是(  )
A.綈p B.綈p∨q
C.綈q∧p D.q
【解析】 很明显命题p为真命题,所以綈p为假命题;由于函数y=2x,x∈R的值域是(0,+∞),所以q是假命题,所以綈q是真命题.所以綈p∨q为假命题,綈q∧p为真命题,故选C.
【答案】 C
10.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的(  )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【解析】 等比数列{an}为递增数列的充要条件为或故“q>1”是“{an}为递增数列”的既不充分也不必要条件.
【答案】 D
11.已知命题p:?x>0,总有(x+1)ex>1,则綈p为(  )
A.?x0≤0,使得(x0+1)ex0≤1
B.?x0>0,使得(x0+1)ex0≤1
C.?x>0,总有(x+1)ex≤1
D.?x≤0,使得(x+1)ex≤1
【解析】 因为全称命题?x∈M,p(x)的否定为?x0∈M,綈p(x),故綈p:?x0>0,使得(x0+1)ex0≤1.
【答案】 B
12.已知p:点P在直线y=2x-3上;q:点P在直线y=-3x+2上,则使p∧q为真命题的点P的坐标是(  )
A.(0,-3) B.(1,2)
C.(1,-1) D.(-1,1)
【解析】 因为p∧q为真命题,所以p,q均为真命题.所以点P为直线y=2x-3与直线y=-3x+2的交点.解方程组得即点P的坐标为(1,-1).
【答案】 C
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)
13.命题p:若a,b∈R,则ab=0是a=0的充分条件,命题q:函数y=的定义域是[3,+∞),则“p∨q”“p∧q”“綈p”中是真命题的为________.
【解析】 p为假命题,q为真命题,故p∨q为真命题,綈p为真命题.
【答案】 p∨q与綈p
14.(2016·临川高二检测)“末位数字是1或3的整数不能被8整除”的否定形式是________________,否命题是________________.
【解析】 命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除.
【答案】 末位数字是1或3的整数能被8整除 末位数字不是1且不是3的整数能被8整除
15.已知f(x)=x2+2x-m,如果f(1)>0是假命题,f(2)>0是真命题,则实数m的取值范围是______.
【解析】 依题意,∴3≤m<8.
【答案】 [3,8)
16.给出以下判断:
①命题“负数的平方是正数”不是全称命题;
②命题“?x∈N,x3>x2”的否定是“?x0∈N,使x>x”;
③“b=0”是“函数f(x)=ax2+bx+c为偶函数”的充要条件;
④“正四棱锥的底面是正方形”的逆命题为真命题.
其中正确命题的序号是________. 【导学号:18490032】
【解析】 ①②④是假命题,③是真命题.
【答案】 ③
三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分10分)写出下列命题的否定,并判断其真假,同时说明理由.
(1)q:所有的矩形都是正方形;
(2)r:?x0∈R,x+2x0+2≤0;
(3)s:至少有一个实数x0,使x+3=0.
【解】 (1)綈q:至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题.
(2)綈r:?x∈R,x2+2x+2>0,真命题.这是由于?x∈R,x2+2x+2=(x+1)2+1≥1>0恒成立.
(3)綈s:?x∈R,x3+3≠0,假命题.这是由于当x=-时,x3+3=0.
18.(本小题满分12分)指出下列命题中,p是q的什么条件?
(1)p:{x|x>-2或x<3};q:{x|x2-x-6<0};
(2)p:a与b都是奇数;q:a+b是偶数;
(3)p:0【解】 (1)因为{x|x2-x-6<0}={x|-2所以{x|x>-2或x<3}{x|-2而{x|-2-2或x<3}.
所以p是q的必要不充分条件.
(2)因为a,b都是奇数?a+b为偶数,而a+b为偶数a,b都是奇数,所以p是q的充分不必要条件.
(3)mx2-2x+3=0有两个同号不等实根????.
所以p是q的充要条件.
19.(本小题满分12分)已知命题p:不等式2x-x2如果“綈p”与“p∧q”同时为假命题,求实数m的取值范围. 【导学号:18490033】
【解】 2x-x2=-(x-1)2+1≤1,所以p为真时,
m>1.由m2-2m-3≥0得m≤-1或m≥3,
所以q为真时,m≤-1或m≥3.
因为“綈p”与“p∧q”同时为假命题,
所以p为真命题,q为假命题,所以得

即120.(本小题满分12分)已知两个命题p:sin x+cos x>m,q:x2+mx+1>0,如果对任意x∈R,有p∨q为真,p∧q为假,求实数m的取值范围.
【解】 当命题p是真命题时,
由于x∈R,则sin x+cos x=sin≥-,
所以有m<-.
当命题q是真命题时,
由于x∈R,x2+mx+1>0,
则Δ=m2-4<0,解得-2<m<2.
由于p∨q为真,p∧q为假,所以p与q一真一假.
考虑到函数f(x)=x2+mx+1的图象为开口向上的抛物线,对任意的x∈R,x2+mx+1≤0不可能恒成立.所以只能是p为假,q为真,
此时有
解得-≤m<2,
所以实数m的取值范围是[-,2).
21.(本小题满分12分)已知命题p:对数loga(-2t2+7t-5)(a>0,且a≠1)有意义;命题q:实数t满足不等式t2-(a+3)t+a+2<0.
(1)若命题p为真,求实数t的取值范围;
(2)若p是q的充分不必要条件,求实数a的取值范围.
【解】 (1)因为命题p为真,则对数的真数-2t2+7t-5>0,解得1所以实数t的取值范围是.
(2)因为p是q的充分不必要条件,所以是不等式t2-(a+3)t+a+2<0的解集的真子集.
法一 因为方程t2-(a+3)t+a+2=0的两根为1和a+2,
所以只需a+2>,解得a>.
即实数a的取值范围为.
法二 令f(t)=t2-(a+3)t+a+2,因为f(1)=0,
所以只需f<0,解得a>.
即实数a的取值范围为.
22.(本小题满分12分)设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.
【证明】 充分性:∵∠A=90°,
∴a2=b2+c2.
于是方程x2+2ax+b2=0可化为x2+2ax+a2-c2=0,
∴x2+2ax+(a+c)(a-c)=0.
∴[x+(a+c)][x+(a-c)]=0.
∴该方程有两根x1=-(a+c),x2=-(a-c),
同样另一方程x2+2cx-b2=0也可化为x2+2cx-(a2-c2)=0,
即[x+(c+a)][x+(c-a)]=0,
∴该方程有两根x3=-(a+c),x4=-(c-a).
可以发现,x1=x3,
∴方程有公共根.
必要性:设x是方程的公共根,
则
由①+②,得x=-(a+c),x=0(舍去).
代入①并整理,可得a2=b2+c2.
∴∠A=90°.
∴结论成立.
章末综合测评(二) 圆锥曲线与方程
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.双曲线3x2-y2=9的焦距为(  )
A.   B.2  
C.2   D.4
【解析】 方程化为标准方程为-=1,
∴a2=3,b2=9.
∴c2=a2+b2=12,∴c=2,∴2c=4.
【答案】 D
2.对抛物线y=4x2,下列描述正确的是(  )
A.开口向上,焦点为(0,1)
B.开口向上,焦点为
C.开口向右,焦点为(1,0)
D.开口向右,焦点为
【解析】 抛物线可化为x2=y,故开口向上,焦点为.
【答案】 B
3.抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是(  ) 【导学号:18490079】
A. B.
C.1 D.
【解析】 抛物线y2=4x的焦点为(1,0),到双曲线x2-=1的渐近线x-y=0的距离为=,故选B.
【答案】 B
4.已知抛物线C1:y=2x2的图象与抛物线C2的图象关于直线y=-x对称,则抛物线C2的准线方程是(  )
A.x=- B.x=
C.x= D.x=-
【解析】 抛物线C1:y=2x2关于直线y=-x对称的C2的表达式为-x=2(-y)2,即y2=-x,其准线方程为x=.
【答案】 C
5.已知点F,A分别为双曲线C:-=1(a>0,b>0)的左焦点、右顶点,点B(0,b)满足·=0,则双曲线的离心率为(  )
A. B.
C. D.
【解析】 ∵·=0,∴FB⊥AB,∴b2=ac,又b2=c2-a2,∴c2-a2-ac=0,两边同除以a2,得e2-1-e=0,∴e=.
【答案】 D
6.(2013·全国卷Ⅰ)已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为(  )
A.y=±x B.y=±x
C.y=±x D.y=±x
【解析】 由e=,得=,
∴c=a,b==a.
而-=1(a>0,b>0)的渐近线方程为y=±x,
∴所求渐近线方程为y=±x.
【答案】 C
7.如图1,已知F是椭圆+=1(a>b>0)的左焦点,P是椭圆上的一点,PF⊥x轴,OP∥AB(O为原点),则该椭圆的离心率是(  )
图1
A. B.
C. D.
【解析】 因为PF⊥x轴,所以P.
又OP∥AB,所以=,即b=c.
于是b2=c2,
即a2=2c2,所以e==.
【答案】 A
8.若点O和点F(-2,0)分别为双曲线-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则·的取值范围为(  )
A.[3-2,+∞) B.[3+2,+∞)
C.  D.
【解析】 因为双曲线左焦点的坐标为F(-2,0),
所以c=2.
所以c2=a2+b2=a2+1,
即4=a2+1,解得a=.
设P(x,y),则·=x(x+2)+y2,
因为点P在双曲线-y2=1上,
所以·=x2+2x-1=--1.
又因为点P在双曲线的右支上,所以x≥.
所以当x=时,·最小,且为3+2,
即·的取值范围是[3+2,+∞).
【答案】 B
9.已知定点A,B满足|AB|=4,动点P满足|PA|-|PB|=3,则|PA|的最小值是(  )
A. B.
C. D.5
【解析】 已知定点A,B满足|AB|=4,动点P满足|PA|-|PB|=3,则点P的轨迹是以A,B为左、右焦点的双曲线的右支,且a=,c=2.所以|PA|的最小值是点A到右顶点的距离,即为a+c=2+=,选C.
【答案】 C
10.若焦点在x轴上的椭圆+=1的离心率为,则n=(  )
A. B.
C. D.
【解析】 依题意知,a=,b=,
∴c2=a2-b2=2-n,
又e=,
∴==,∴n=.
【答案】 B
11.已知直线y=k(x+2)与双曲线-=1,有如下信息:联立方程组消去y后得到方程Ax2+Bx+C=0,分类讨论:(1)当A=0时,该方程恒有一解;(2)当A≠0时,Δ=B2-4AC≥0恒成立.在满足所提供信息的前提下,双曲线离心率的取值范围是(  )
A.(1, ] B.[,+∞)
C.(1,2] D.[2,+∞)
【解析】 依题意可知直线恒过定点(-2,0),根据(1)和(2)可知直线与双曲线恒有交点,故需要定点(-2,0)在双曲线的左顶点上或左顶点的左边,即-2≤-,即0【答案】 B
12.已知点P为抛物线y2=2px(p>0)上的一点,F为抛物线的焦点,直线l过点P且与x轴平行,若同时与直线l、直线PF、x轴相切且位于直线PF左侧的圆与x轴切于点Q,则点Q(  )
A.位于原点的左侧 B.与原点重合
C.位于原点的右侧 D.以上均有可能
【解析】 设抛物线的准线与x轴、直线l分别交于点D,C,圆与直线l、直线PF分别切于点A,B.如图,由抛物线的定义知|PC|=|PF|,由切线性质知|PA|=|PB|,于是|AC|=|BF|.又|AC|=|DO|,|BF|=|FQ|,所以|DO|=|FQ|,而|DO|=|FO|,所以O,Q重合,故选B.
【答案】 B
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)
13.(2013·江苏高考)双曲线-=1的两条渐近线的方程为________.
【解析】 由双曲线方程可知a=4,b=3,
所以两条渐近线方程为y=±x.
【答案】 y=±x
14.(2016·东城高二检测)已知F1,F2为椭圆+=1的两个焦点,过F1的直线交椭圆于A,B两点.若|F2A|+|F2B|=12,则|AB|=________.
【解析】 由题意,知(|AF1|+|AF2|)+(|BF1|+|BF2|)=|AB|+|AF2|+|BF2|=2a+2a,又由a=5,可得|AB|+(|BF2|+|AF2|)=20,即|AB|=8.
【答案】 8
15.如图2所示,已知抛物线C:y2=8x的焦点为F,准线l与x轴的交点为K,点A在抛物线C上,且在x轴的上方,过点A作AB⊥l于B,|AK|=|AF|,则△AFK的面积为________. 【导学号:18490080】
图2
【解析】 由题意知抛物线的焦点为F(2,0),准线l为x=-2,∴K(-2,0),设A(x0,y0)(y0>0),∵过点A作AB⊥l于B,
∴B(-2,y0),∴|AF|=|AB|=x0-(-2)=x0+2,
|BK|2=|AK|2-|AB|2,∴x0=2,
∴y0=4,即A(2,4),∴△AFK的面积为|KF|·|y0|=×4×4=8.
【答案】 8
16.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点,若|PQ|=2,则直线l的斜率等于________.
【解析】 设直线l的方程为
y=k(x+1),A(x1,y1),B(x2,y2).
由联立得k2x2+2(k2-2)x+k2=0,
∴x1+x2=-,
∴=-=-1+,
=,
即Q.又|FQ|=2,F(1,0),
∴+=4,解得k=±1.
【答案】 ±1
三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分10分)已知椭圆C:+=1(a>b>0)的离心率为,短轴的一个端点到右焦点的距离为.求椭圆C的方程.
【解】 设椭圆的半焦距为c,依题意,
得a=且e==,
∴a=,c=,
从而b2=a2-c2=1,
因此所求椭圆的方程为+y2=1.
18.(本小题满分12分)已知F1,F2分别为椭圆+=1(0<b<10)的左、右焦点,P是椭圆上一点.
(1)求|PF1|·|PF2|的最大值;
(2)若∠F1PF2=60°,且△F1PF2的面积为,求b的值.
【解】 (1)|PF1|·|PF2|≤=100(当且仅当|PF1|=|PF2|时取等号),
∴|PF1|·|PF2|的最大值为100.
(2)S△F1PF2=|PF1|·|PF2|sin 60°=,
∴|PF1|·|PF2|=, ①
由题意知:

∴3|PF1|·|PF2|=400-4c2. ②
由①②得c=6,∴b=8.
19.(本小题满分12分)在平面直角坐标系xOy中,已知圆心在x轴上,半径为4的圆C位于y轴右侧,且与y轴相切.
(1)求圆C的方程;
(2)若椭圆+=1的离心率为,且左、右焦点为F1,F2.试探究在圆C上是否存在点P,使得△PF1F2为直角三角形?若存在,请指出共有几个这样的点?并说明理由.
【解】 (1)依题意,设圆的方程为(x-a)2+y2=16(a>0).
∵圆与y轴相切,∴a=4,
∴圆的方程为(x-4)2+y2=16.
(2)∵椭圆+=1的离心率为,
∴e===,解得b2=9.
∴c==4,
∴F1(-4,0),F2(4,0),
∴F2(4,0)恰为圆心C,
(ⅰ)过F2作x轴的垂线,交圆于点P1,P2,则∠P1F2F1=∠P2F2F1=90°,符合题意;
(ⅱ)过F1可作圆的两条切线,分别与圆相切于点P3,P4,
连接CP3,CP4,则∠F1P3F2=∠F1P4F=90°,符合题意.
综上,圆C上存在4个点P,使得△PF1F2为直角三角形.
20.(本小题满分12分)(2016·江南十校联考)已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为,且过点P(4,-).
(1)求双曲线的方程;
(2)若点M(3,m)在双曲线上,求证:·=0;
(3)求△F1MF2的面积.
【解】 (1)∵e=,
∴可设双曲线方程为x2-y2=λ.
∵过点P(4,-),
∴16-10=λ,即λ=6.
∴双曲线方程为x2-y2=6.
(2)法一 由(1)可知,双曲线中a=b=,
∴c=2,
∴F1(-2,0),F2(2,0),
∴kMF1=,kMF2=,
kMF1·kMF2==-.
∵点(3,m)在双曲线上,
∴9-m2=6,m2=3,
故kMF1·kMF2=-1,∴MF1⊥MF2.
∴·=0.
法二 ∵=(-2-3,-m),=(2-3,-m),
∴·=(3+2)×(3-2)+m2=-3+m2,
∵M点在双曲线上,
∴9-m2=6,即m2-3=0,
∴·=0.
(3)△F1MF2的底边|F1F2|=4,
△F1MF2的高h=|m|=,
∴S△F1MF2=6.
21.(本小题满分12分)(2013·北京高考)已知A,B,C是椭圆W:+y2=1上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
【解】 (1)椭圆W:+y2=1的右顶点B的坐标为(2,0).因为四边形OABC为菱形,所以AC与OB相互垂直平分.所以可设A(1,m),代入椭圆方程得+m2=1,即m=±.
所以菱形OABC的面积是
|OB|·|AC|=×2×2|m|=.
(2)四边形OABC不可能为菱形.理由如下:
假设四边形OABC为菱形.
因为点B不是W的顶点,且直线AC不过原点,所以可设AC的方程为y=kx+m(k≠0,m≠0).
由消去y并整理得
(1+4k2)x2+8kmx+4m2-4=0.
设A(x1,y1),C(x2,y2),
则=-,
=k·+m=.
所以AC的中点为M.
因为M为AC和OB的交点,所以直线OB的斜率为-.
因为k·≠-1,
所以AC与OB不垂直.
所以OABC不是菱形,与假设矛盾.
所以当点B不是W的顶点时,四边形OABC不可能是菱形.
22.(本小题满分12分)已知椭圆C:+=1(a>b>0)的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x-y+=0相切.
(1)求椭圆C的标准方程; 【导学号:18490081】
(2)若直线l:y=kx+m与椭圆C相交于A,B两点,且kOA·kOB=-.求证:△AOB的面积为定值.
【解】 (1)由题意得,b==,=,
又a2+b2=c2,
联立解得a2=4,b2=3,∴椭圆的方程为+=1.
(2)设A(x1,y1),B(x2,y2),则A,B的坐标满足
消去y化简得,(3+4k2)x2+8kmx+4m2-12=0.
∴x1+x2=-,x1x2=,
由Δ>0得4k2-m2+3>0,
y1y2=(kx1+m)(kx2+m)
=k2x1x2+km(x1+x2)+m2
=k2+km+m2=.
∵kOA·kOB=-,=-,即y1y2=-x1x2,
∴=-·,即2m2-4k2=3,
∵|AB|=
=
==.
又O到直线y=kx+m的距离d=.
∴S△AOB=d|AB|=
=
=
=,为定值.
章末综合测评(三) 空间向量与立体几何
(时间120分钟,满分150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.与向量a=(1,-3,2)平行的一个向量的坐标是(  )
A.    B.(-1,-3,2)
C. D.
【解析】 a=(1,-3,2)=-2.
【答案】 C
2.在正方体ABCD-A1B1C1D1中,=,=x+y(+),则(  )
A.x=1,y= B.x=1,y=
C.x=,y=1 D.x=1,y=
【解析】 =+=+
=+=+(+),
∴x=1,y=.应选D.
【答案】 D
3.已知A(2,-4,-1),B(-1,5,1),C(3,-4,1),D(0,0,0),令a=,b=,则a+b为(  )
A.(5,-9,2) B.(-5,9,-2)
C.(5,9,-2) D.(5,-9,-2)
【解析】 a==(-1,0,-2),b==(-4,9,0),
∴a+b=(-5,9,-2).
【答案】 B
4.在平行六面体ABCD-A1B1C1D1中,若=a+2b+3c,则abc的值等于(  ) 【导学号:18490123】
A. B.
C. D.-
【解析】 ∵=+-=a+2b+3c,∴a=1,b=,c=-.∴abc=-.
【答案】 D
5.在棱长为1的正方体ABCD-A1B1C1D1中,下列结论不正确的是(  )
A.=- B.·=0
C.·=0 D.·=0
【解析】 如图,∥,⊥,⊥B1D1,故A,B,C选项均正确.
【答案】 D
6.已知向量a,b是平面α内的两个不相等的非零向量,非零向量c在直线l上,则“c·a=0,且c·b=0”是l⊥α的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【解析】 若l⊥α,则l垂直于α内的所有直线,从而有c·a=0,c·b=0.反之,由于a,b是否共线没有确定,若共线,则结论不成立;若不共线,则结论成立.
【答案】 B
7.已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为(  )
A.2   B.3
C.4    D.5
【解析】 设BC的中点为D,则D(2,1,4),
∴=(-1,-2,2),
∴||==3,即BC边上的中线长为3.
【答案】 B
8.若向量a=(x,4,5),b=(1,-2,2),且a与b的夹角的余弦值为,则x=(  )
A.3 B.-3
C.-11 D.3或-11
【解析】 因为a·b=(x,4,5)·(1,-2,2)=x-8+10=x+2,且a与b的夹角的余弦值为,所以=,解得x=3或-11(舍去),故选A.
【答案】 A
9.如图1,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成的角的正弦值为(  )
图1
A. B.
C. D.
【解析】 以D点为坐标原点,以DA,DC,DD1所在的直线为x轴、y轴、z轴,建立空间直角坐标系(图略),则A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,1),
∴=(-2,0,1),=(-2,2,0),且为平面BB1D1D的一个法向量.
∴cos〈,〉===.
∴sin〈1,〉=|cos〈1,〉|=,
∴BC1与平面BB1D1D所成的角的正弦值为.
【答案】 D
10.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于(  )
A. B.
C. D.
【解析】 以D为坐标原点,建立空间直角坐标系,如图,设AA1=2AB=2,则D(0,0,0),C(0,1,0),B(1,1,0),C1(0,1,2),则=(0,1,0),=(1,1,0),=(0,1,2).设平面BDC1的法向量为n=(x,y,z),则n⊥,n⊥,所以有令y=-2,得平面BDC1的一个法向量为n=(2,-2,1).设CD与平面BDC1所成的角为θ,则sin θ=|cos〈n,〉|==.
【答案】 A
11.已知正方体ABCD-A1B1C1D1中,若点F是侧面CD1的中心,且=+m-n,则m,n的值分别为(  )
A.,- B.-,-
C.-, D.,
【解析】 由于=+=+(+)=++,所以m=,n=-,故选A.
【答案】 A
12.在矩形ABCD中,AB=3,AD=4,PA⊥平面ABCD,PA=,那么二面角A-BD-P的大小为(  )
A.30° B.45°
C.60° D.75°
【解析】 如图所示,建立空间直角坐标系,
则=,
=(-3,4,0).
设n=(x,y,z)为平面PBD的一个法向量,则
得
即令x=1,则n=.
又n1=为平面ABCD的一个法向量,
∴cos〈n1,n〉==.∴所求二面角为30°.
【答案】 A
二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)
13.若a=(2x,1,3),b=(1,-2y,9),且a与b为共线向量,则x=________,y=________. 【导学号:18490124】
【解析】 由题意得==,∴x=,y=-.
【答案】  -
14.△ABC的三个顶点坐标分别为A(0,0,),B,C(-1,0, ),则角A的大小为________.
【解析】 =,=(-1,0,0),则cos A===,故角A的大小为30°.
【答案】 30°
15.在空间直角坐标系Oxyz中,已知A(1,-2,3),B(2,1,-1),若直线AB交平面xOz于点C,则点C的坐标为________.
【解析】 设点C的坐标为(x,0,z),则=(x-1,2,z-3),=(1,3,-4),因为与共线,所以==,解得所以点C的坐标为.
【答案】 
16.如图2,在四棱锥S-ABCD中,底面ABCD是边长为1的正方形,S到A,B,C,D的距离都等于2.
图2
给出以下结论:①+++=0;②+--=0;③-+-=0;④·=·;⑤·=0,其中正确结论的序号是________.
【解析】 容易推出:-+-=+=0,所以③正确;又因为底面ABCD是边长为1的正方形,SA=SB=SC=SD=2,所以·=2×2cos∠ASB,·=2×2cos∠CSD,而∠ASB=∠CSD,于是·=·,因此④正确;其余三个都不正确,故正确结论的序号是③④.
【答案】 ③④
三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)
17.如图3,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
图3
(1)证明:平面PQC⊥平面DCQ;
(2)证明:PC∥平面BAQ.
【证明】 如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系Dxyz.
(1)依题意有Q(1,1,0),C(0,0,1),P(0,2,0),则=(1,1,0),=(0,0,1),=(1,-1,0),所以·=0,·=0,
即PQ⊥DQ,PQ⊥DC且DQ∩DC=D.
故PQ⊥平面DCQ.
又PQ?平面PQC,所以平面PQC⊥平面DCQ.
(2)根据题意,=(1,0,0),=(0,0,1),=(0,1,0),故有·=0,·=0,所以为平面BAQ的一个法向量.
又因为=(0,-2,1),且·=0,即DA⊥PC,且PC?平面BAQ,故有PC∥平面BAQ.
18. (本题满分12分)如图4,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1,AA1=,求异面直线BA1与AC所成角的余弦值.
图4
【解】 因为=+
=+,=-,
且·=·
=·=0,
所以·=(+)·(-)
=·-2+·-·
=-1.
又||=,||==,
所以cos〈,〉=
==-,
则异面直线BA1与AC所成角的余弦值为.
19. (本小题满分12分)如图5,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
图5
(1)求证:平面PBC⊥平面PAC;
(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.
【解】 (1)证明:由AB是圆的直径,得AC⊥BC,
由PA⊥平面ABC,BC?平面ABC,得PA⊥BC.
又PA∩AC=A,PA?平面PAC,AC?平面PAC,
所以BC⊥平面PAC.
因为BC?平面PBC.
所以平面PBC⊥平面PAC.
(2)过C作CM∥AP,则CM⊥平面ABC.
如图,以点C为坐标原点,分别以直线CB,CA,CM为x轴,y轴,z轴建立空间直角坐标系.
在Rt△ABC中,因为AB=2,AC=1,所以BC=.
又因为PA=1,所以A(0,1,0),B(,0,0),P(0,1,1).
故=(,0,0),=(0,1,1).
设平面BCP的法向量为n1=(x1,y1,z1),
则所以
不妨令y1=1,则n1=(0,1,-1).
因为=(0,0,1),=(,-1,0),
设平面ABP的法向量为n2=(x2,y2,z2),
则所以
不妨令x2=1,则n2=(1, ,0).
于是cos〈n1,n2〉==.
由图知二面角C-PB-A为锐角,故二面角C-PB-A的余弦值为.
20. (本小题满分12分)如图6,在四棱锥P-ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD.
图6
(1)求证:平面PED⊥平面PAC; 【导学号:18490125】
(2)若直线PE与平面PAC所成的角的正弦值为,求二面角A-PC-D的余弦值.
【解】 (1)∵平面PAB⊥平面ABCD,
平面PAB∩平面ABCD=AB,AB⊥PA,
∴PA⊥平面ABCD,
又∵AB⊥AD,故可建立空间直角坐标系Oxyz如图所示,
不妨设BC=4,AP=λ(λ>0),
则有D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ),
∴=(2,4,0),=(0,0,λ),=(2,-1,0),
∴·=4-4+0=0,·=0,
∴DE⊥AC,DE⊥AP且AC∩AP=A,
∴DE⊥平面PAC.
又DE?平面PED,
∴平面PED⊥平面PAC.
(2)由(1)知,平面PAC的一个法向量是=(2,-1,0),=(2,1,-λ),
设直线PE与平面PAC所成的角为θ,
∴sin θ=|cos〈,〉|==,解得λ=±2.
∵λ>0,∴λ=2,即P(0,0,2),
设平面PCD的一个法向量为n=(x,y,z),=(2,2,0),=(0,-2,2),
由n⊥,n⊥,
∴不妨令x=1,则n=(1,-1,-1).
∴cos〈n,〉==,
显然二面角A-PC-D的平面角是锐角,
∴二面角A-PC-D的余弦值为.
21. (本小题满分12分)如图7,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
图7
(1)求证:BE∥平面PAD;
(2)若BE⊥平面PCD,
①求异面直线PD与BC所成角的余弦值;
②求二面角E-BD-C的余弦值.
【解】 设AB=a,PA=b,建立如图的空间直角坐标系,则A(0,0,0),B(a,0,0),P(0,0,b),C(2a,2a,0),D(0,2a,0),E.
(1)=,=(0,2a,0),=(0,0,b),所以=+,
因为BE?平面PAD,所以BE∥平面PAD.
(2)因为BE⊥平面PCD,所以BE⊥PC,
即·=0,=(2a,2a,-b),
所以·=2a2-=0,则b=2a.
①=(0,2a,-2a),=(a,2a,0),cos〈,〉==,所以异面直线PD与BC所成角的余弦值为.
②在平面BDE和平面BDC中,=(0,a,a),=(-a,2a,0),=(a,2a,0),所以平面BDE的一个法向量为n1=(2,1,-1);平面BDC的一个法向量为n2=(0,0,1);cos〈n1,n2〉=,所以二面角E-BD-C的余弦值为.
22.(本小题满分12分)如图8,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).
图8
(1)当λ=1时,证明:直线BC1∥平面EFPQ;
(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.
【解】 以D为原点,射线DA,DC,DD1分别为x轴,y轴,z轴的正半轴建立空间直角坐标系.由已知得B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,λ),=(-2,0,2),=(-1,0,λ),=(1,1,0).
(1)当λ=1时,=(-1,0,1),
因为=(-2,0,2).
所以=2,可知BC1∥FP,
而FP?平面EFPQ,且BC1?平面EFPQ,故直线BC1∥平面EFPQ.
(2)设平面EFPQ的一个法向量为n=(x,y,z),
由得
于是可取n=(λ,-λ,1),
同理可得平面PQMN的一个法向量为m=(λ-2,2-λ,1),
若存在λ,使得平面EFPQ与平面PQMN所在的二面角为直二面角,
则m·n=(λ-2,2-λ,1)·(λ,-λ,1)=0,
即λ(λ-2)-λ(2-λ)+1=0,
解得λ=1±,
故存在λ=1±,使平面EFPQ与平面PQMN所成的二面角为直二面角.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.在空间中,下列命题正确的是(  )
A.平行直线的平行投影重合
B.平行于同一直线的两个平面平行
C.垂直于同一平面的两个平面平行
D.垂直于同一平面的两条直线平行
【解析】 A中平行投影可能平行,A为假命题.B、C中的两个平面可以平行或相交,为假命题.由线面垂直的性质知,D为真命题.
【答案】 D
2.下列命题中是假命题的是(  )
A.a·b=0(a≠0,b≠0),则a⊥b
B.若|a|=|b|,则a=b
C.若ac2>bc2,则a>b
D.若α=60°,则cos α=
【解析】 因为|a|=|b|只能说明a与b的模相等,所以a=b不一定成立,故选B.
【答案】 B
3.下列四个命题中,真命题是(  )
A.a>b,c>d?ac>bd
B.a<b?a2<b2
C.<?a>b
D.a>b,c<d?a-c>b-d
【解析】 可以通过举反例的方法说明A、B、C为假命题.
【答案】 D
4.已知实数a,b,c,d满足a+b=c+d=1,ac+bd>1,则下列四个命题为真命题的是(  )
A.在a,b,c,d中有且仅有一个是负数
B.在a,b,c,d中有且仅有两个是负数
C.在a,b,c,d中至少有一个是负数
D.在a,b,c,d中都是负数
【解析】 举例取特殊值,验证可知C是真命题.
【答案】 C
5.下面的命题中是真命题的是(  )
A.y=sin2 x的最小正周期为2π
B.若方程ax2+bx+c=0(a≠0)的两根同号,则>0
C.若a=(1,k),b=(-2,6),a∥b,则k=3
D.在△ABC中,若·>0,则B为钝角
【解析】 A中,y=sin2x=,T==π,故A为假命题;C中,∵a∥b,∴=,得k=-3,故C为假命题;D中,当·>0时,向量与的夹角为锐角,而B为钝角,故D为假命题.
【答案】 B
二、填空题
6.下列命题:①若xy=1,则x,y互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac2>bc2,则a>b.其中真命题的序号是________.
【解析】 ②中四条边相等的四边形是菱形,不一定是正方形,③中平行四边形不是梯形,①、④正确.
【答案】 ①④
7.给出下列语句:①空集是任何集合的真子集;②函数y=ax+1是指数函数吗?③一个数不是正数就是负数;④老师写的粉笔字真漂亮!⑤若x∈R,则x2+4x+5>0;⑥作△ABC≌△A1B1C1.其中为命题的序号是________,为真命题的序号是________.
【解析】 ①是命题,且是假命题,因为空集是任何非空集合的真子集;②该语句是疑问句,不是命题;③是命题,且是假命题,因为数0既不是正数,也不是负数;④该语句是感叹句,不是命题;⑤是命题,因为x2+4x+5=(x+2)2+1>0恒成立,所以是真命题;⑥该语句是祈使句,不是命题.
【答案】 ①③⑤ ⑤
8.设α和β为不重合的两个平面,给出下列命题:
①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;
②若α外一条直线l与α内的一条直线平行,则l和α平行;
③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;
④直线l与α垂直的等价条件是l与α内的两条直线垂直.
上面命题中,真命题的序号为________(写出所有真命题的序号). 【导学号:18490003】
【解析】 由线面平行及面面平行的判定定理可知,①②正确;当两平面斜交时,在α内的直线可以与交线垂直,故③不对;只有直线l与α内的两条相交直线垂直时,直线l与α垂直,故④不对.
【答案】 ①②
三、解答题
9.判断下列语句中哪些是命题?哪些不是命题?
(1)2+2是有理数;
(2)1+1>2;
(3)2100是个大数;
(4)968能被11整除;
(5)非典型性肺炎是怎样传播的?
【解】 (1)(2)(4)均是命题;(3)(5)不是命题.因为(1)(2)(4)都可以判断真假,且为陈述句;(3)中的“大数”是一个模糊的概念,无法判断其真假,所以不是命题;(5)中的语句是疑问句,所以不是命题.
10.将下列命题改写成“若p,则q”的形式,并判断真假.
(1)等腰梯形的两条对角线相等;
(2)平行四边形的两条对角线互相垂直.
【解】 (1)若一个梯形是等腰梯形,则它的两条对角线相等.真命题.
(2)若一个四边形是平行四边形,则它的两条对角线互相垂直.假命题.
[能力提升]
1.若a,b∈R,且a2+b2≠0,则下列命题:①a,b全为0;②a,b不全为0;③a,b全不为0;④a,b至少有一个不为0.其中真命题的个数为(  )
A.0   B.1   
C.2    D.3
【解析】 ②④为真命题.
【答案】 C
2.给出下列命题:
①在△ABC中,若∠A>∠B,则sin A>sin B;
②函数y=x3在R上既是奇函数又是增函数;
③函数y=f(x)的图象与直线x=a至多有一个交点;
④若将函数y=sin 2x的图象向左平移个单位,则得到函数y=sin的图象.
其中真命题的序号是(  )
A.①② B.①②③
C.①③④ D.①②③④
【解析】 ①②③是真命题.
【答案】 B
3.设a,b为正实数.现有下列命题:
①若a2-b2=1,则a-b<1;②若-=1,则a-b<1;③若|-|=1,则|a-b|<1;④若|a3-b3|=1,则|a-b|<1.
其中的真命题有________.(写出所有真命题的序号)
【解析】 将条件方程变形分析.
①中,a2-b2=(a+b)(a-b)=1,a,b为正实数,若a-b≥1,
则必有a+b>1,不合题意,故①正确.
②中,-==1,只需a-b=ab即可.如取a=2,b=满足上式,但a-b=>1,故②错.
③中,a,b为正实数,所以+>|-|=1,且|a-b|=|(+)(-)|=|+|>1, 故③错.
④中,|a3-b3|=|(a-b)(a2+ab+b2)|=|a-b|(a2+ab+b2)=1.
若|a-b|≥1,不妨取a>b>1,则必有a2+ab+b2>1,不合题意,故④正确.
【答案】 ①④
4.把下列命题改写成“若p,则q”的形式,并判断命题的真假.
(1)当m>时,方程mx2-x+1=0无实根;
(2)平行于同一平面的两条直线平行. 【导学号:18490004】
【解】 (1)命题可改写为:若m>,则mx2-x+1=0无实根.
因为当m>时,Δ=1-4m<0,
所以是真命题.
(2)命题可改写为:若两条直线平行于同一平面,则它们互相平行.
因为平行于同一平面的两条直线可能平行、相交或异面,所以是假命题.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.命题“若函数f(x)=logax(a>0,a≠1)在其定义域内是减函数,则loga2<0”的逆否命题是(  )
A.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域内不是减函数
B.若loga2<0,则函数f(x)=logax(a>0,a≠1)在其定义域内不是减函数
C.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域内是增函数
D.若loga2<0,则函数f(x)=logax(a>0,a≠1)在其定义域内是增函数
【解析】 命题“若p,则q”的逆否命题为“若綈q,则綈p”.“f(x)在其定义域内是减函数”的否定是“f(x)在其定义域内不是减函数”,不能误认为是“f(x)在其定义域内是增函数”.
【答案】 A
2.(2016·济宁高二检测)命题“已知a,b都是实数,若a+b>0,则a,b不全为0”的逆命题、否命题与逆否命题中,假命题的个数是(  )
A.0   B.1   
C.2    D.3
【解析】 逆命题“已知a,b都是实数,若a,b不全为0,则a+b>0”为假命题,其否命题与逆命题等价,所以否命题为假命题.逆否命题“已知a,b都是实数,若a,b全为0,则a+b≤0”为真命题,故选C.
【答案】 C
3.(2016·南宁高二检测)已知命题“若ab≤0,则a≤0或b≤0”,则下列结论正确的是(  )
A.原命题为真命题,否命题:“若ab>0,则a>0或b>0”
B.原命题为真命题,否命题:“若ab>0,则a>0且b>0”
C.原命题为假命题,否命题:“若ab>0,则a>0或b>0”
D.原命题为假命题,否命题:“若ab>0,则a>0且b>0”
【解析】 逆否命题“若a>0且b>0,则ab>0”,显然为真命题,又原命题与逆否命题等价,故原命题为真命题.否命题为“若ab>0,则a>0且b>0”,故选B.
【答案】 B
4.(2016·潍坊高二期末)命题“若x=3,则x2-2x-3=0”的逆否命题是(  )
A.若x≠3,则x2-2x-3≠0
B.若x=3,则x2-2x-3≠0
C.若x2-2x-3≠0,则x≠3
D.若x2-2x-3≠0,则x=3
【解析】 其逆否命题为“若x2-2x-3≠0,则x≠3”.故选C.
【答案】 C
5.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是(  )
A.若a+b+c≠3,则a2+b2+c2<3
B.若a+b+c=3,则a2+b2+c2<3
C.若a+b+c≠3,则a2+b2+c2≥3
D.若a2+b2+c2≥3,则a+b+c=3
【答案】 A
二、填空题
6.(2016·三门峡高二期中)命题“若x>2,则x2>4”的逆命题是____________. 【导学号:18490009】
【解析】 原命题的逆命题为“若x2>4,则x>2”.
【答案】 若x2>4,则x>2
7.命题“若a>b,则2a>2b-1”的否命题是________.
【解析】 否定条件与结论,得否命题“若a≤b,则2a≤2b-1”.
【答案】 若a≤b,则2a≤2b-1
8.在空间中,给出下列两个命题:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.其中逆命题为真命题的是________.
【解析】 ①的逆命题:若空间四点中任何三点都不共线,则这四点不共面,是假命题;②的逆命题:若两条直线是异面直线,则这两条直线没有公共点,是真命题.
【答案】 ②
三、解答题
9.写出命题“已知a,b∈R,若a2>b2,则a>b”的逆命题、否命题和逆否命题,并判断它们的真假.
【解】 逆命题:已知a,b∈R,若a>b,则a2>b2;
否命题:已知a,b∈R,若a2≤b2,则a≤b;
逆否命题:已知a,b∈R,若a≤b,则a2≤b2.
原命题是假命题.
逆否命题也是假命题.
逆命题是假命题.
否命题也是假命题.
10.已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.
(1)写出命题p的否命题;
(2)判断命题p的否命题的真假,并证明你的结论.
【解】 (1)命题p的否命题为“若ac<0,则二次方程ax2+bx+c=0有实根”.
(2)命题p的否命题是真命题.
证明如下:
∵ac<0,
∴-ac>0?Δ=b2-4ac>0?二次方程ax2+bx+c=0有实根.
∴该命题是真命题.
[能力提升]
1.与命题“若a·b=0,则a⊥b”等价的命题是(  )
A.若a·b≠0,则a不垂直于b
B.若a⊥b,则a·b=0
C.若a不垂直于b,则a·b≠0
D.若a·b≠0,则a⊥b
【解析】 原命题与其逆否命题为等价命题.
【答案】 C
2.(2016·福州期末)命题“若x+y是偶数,则x,y都是偶数”的逆否命题是(  )
A.若x,y都不是偶数,则x+y不是偶数
B.若x,y不都是偶数,则x+y是偶数
C.若x,y不都是偶数,则x+y不是偶数
D.若x,y都不是偶数,则x+y是偶数
【解析】 “x,y都是偶数”的否定为“x,y不都是偶数”,“x+y是偶数”的否定是“x+y不是偶数”.故选C.
【答案】 C
3.下列命题中________为真命题(填上所有正确命题的序号).
①若A∩B=A,则AB;②“若x=y=0,则x2+y2=0”的逆命题;③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.
【解析】 ①错误,若A∩B=A,则A?B;②正确,它的逆命题为“若x2+y2=0,则x=y=0”为真命题;③错误,它的逆命题为“相似三角形是全等三角形”为假命题;④正确,因为原命题为真命题,故逆否命题也为真命题.
【答案】 ②④
4.写出下列命题的逆命题、否命题、逆否命题,然后判断真假. 【导学号:18490010】
(1)等高的两个三角形是全等三角形;
(2)弦的垂直平分线平分弦所对的弧.
【解】 (1)逆命题:若两个三角形全等,则这两个三角形等高,是真命题;
否命题:若两个三角形不等高,则这两个三角形不全等,是真命题;
逆否命题:若两个三角形不全等,则这两个三角形不等高,是假命题.
(2)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线,是假命题;
否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧,是假命题;
逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线,是真命题.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知集合A={1,a},B={1,2,3},则“a=3”是“A?B”的(  ) 【导学号:18490013】
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【解析】 ∵A={1,a},B={1,2,3},A?B,∴a∈B且a≠1,∴a=2或3,∴“a=3”是“A?B”的充分而不必要条件.
【答案】 A
2.已知命题甲:“a,b,c成等差数列”,命题乙:“+=2”,则命题甲是命题乙的(  )
A.必要而不充分条件
B.充分而不必要条件
C.充要条件
D.既不充分也不必要条件
【解析】 若+=2,则a+c=2b,由此可得a,b,c成等差数列;当a,b,c成等差数列时,可得a+c=2b,但不一定得出+=2,如a=-1,b=0,c=1.所以命题甲是命题乙的必要而不充分条件.
【答案】 A
3.设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 若φ=0,则f(x)=cos(x+φ)=cos x为偶函数,充分性成立;反之,若f(x)=cos(x+φ)为偶函数,则φ=kπ(k∈Z),必要性不成立,故选A.
【答案】 A
4.“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的(  )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
【解析】 当a=-1时,函数f(x)=ax2+2x-1=-x2+2x-1只有一个零点1;但若函数f(x)=ax2+2x-1只有一个零点,则a=-1或a=0.所以“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的充分不必要条件,故选B.
【答案】 B
5.(2016·甘肃临夏期中)已知函数f(x)=x+bcos x,其中b为常数,那么“b=0”是“f(x)为奇函数”的(  )
【导学号:18490014】
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 当b=0时,f(x)=x为奇函数;当f(x)为奇函数时,f(-x)=-f(x),
∴-x+bcos x=-x-bcos x,从而2bcos x=0,b=0.
【答案】 C
二、填空题
6.“b2=ac”是“a,b,c成等比数列”的________条件.
【解析】 “b2=ac”  “a,b,c成等比数列”,如b2=ac=0;而“a,b,c成等比数列”?“b2=ac”.
【答案】 必要不充分
7.“a=-1”是“l1:x+ay+6=0与l2:(3-a)x+2(a-1)y+6=0平行”的________条件.
【解析】 若直线l1:x+ay+6=0与l2:(3-a)x+2(a-1)y+6=0平行,则需满足1×2(a-1)-a×(3-a)=0,化简整理得a2-a-2=0,解得a=-1或a=2,经验证得当a=-1时,两直线平行,当a=2时,两直线重合,故“a=-1”是“l1:x+ay+6=0与l2:(3-a)x+2(a-1)y+6=0平行”的充要条件.
【答案】 充要
8.在下列各项中选择一项填空:
①充分不必要条件;
②必要不充分条件;
③充要条件;
④既不充分也不必要条件.
(1)集合A={-1,p,2},B={2,3},则“p=3”是“A∩B=B”的________;
(2)“a=1”是“函数f(x)=|2x-a|在区间上是增函数”的________.
【解析】 (1)当p=3时,A={-1,2,3},此时A∩B=B;若A∩B=B,则必有p=3.因此“p=3”是“A∩B=B”的充要条件.
(2)当a=1时,f(x)=|2x-a|=|2x-1|在上是增函数;但由f(x)=|2x-a|在区间上是增函数不能得到a=1,如当a=0时,函数f(x)=|2x-a|=|2x|在区间上是增函数.因此“a=1”是“函数f(x)=|2x-a|在区间上是增函数”的充分不必要条件.
【答案】 (1)③ (2)①
三、解答题
9.下列各题中,p是q的什么条件,q是p的什么条件,并说明理由.
(1)p:|x|=|y|,q:x=y; 【导学号:18490015】
(2)在△ABC,p:sinA>,q:A>.
【解】 (1)因为|x|=|y|?x=y或x=-y,但x=y?|x|=|y|,
所以p是q的必要不充分条件,q是p的充分不必要条件.
(2)因为A∈(0,π)时,sin A∈(0,1],且A∈时,y=sin A单调递增,A∈时,y=sin A单调递减,所以sin A>?A>,但A>sin A>.
所以p是q的充分不必要条件,q是p的必要不充分条件.
10.设a,b,c分别是△ABC的三个内角A、B、C所对的边,证明:“a2=b(b+c)”是“A=2B”的充要条件.
【证明】 充分性:由a2=b(b+c)=b2+c2-2bccos A可得1+2cos A==.
即sin B+2sin Bcos A=sin(A+B).
化简,得sin B=sin(A-B).
由于sin B>0且在三角形中,
故B=A-B,
即A=2B.
必要性:若A=2B,
则A-B=B,sin(A-B)=sin B,
sin(A+B)=sin Acos B+cos Asin B,
sin(A-B)=sin Acos B-cos Asin B.
∴sin(A+B)=sin B(1+2cos A).
∵A,B,C为△ABC的内角,
∴sin(A+B)=sin C,
即sin C=sin B(1+2cos A).
∴=1+2cos A=1+=,
即=.
化简得a2=b(b+c).
∴“a2=b(b+c)”是“A=2B”的充要条件.
[能力提升]
1.如果A是B的必要不充分条件,B是C的充要条件,D是C的充分不必要条件,那么A是D的(  )
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分也不必要条件
【解析】 由条件,知D?C?B?A,即D?A,但AD,故选A.
【答案】 A
2.设有如下命题:
甲:相交两直线l,m在平面α内, 且都不在平面β内;
乙:l,m中至少有一条与β相交;
丙:α与β相交.
那么当甲成立时(  )
A.乙是丙的充分不必要条件
B.乙是丙的必要不充分条件
C.乙是丙的充分必要条件
D.乙既不是丙的充分条件,又不是丙的必要条件
【解析】 当l,m中至少有一条与β相交时,α与β有公共点,则α与β相交,即乙?丙,反之,当α与β相交时,l,m中也至少有一条与β相交,否则若l,m都不与β相交,又都不在β内,则l∥β,m∥β,从而α∥β,与已知α与β相交矛盾,即丙?乙,故选C.
【答案】 C
3.已知f(x)是R上的增函数,且f(-1)=-4,f(2)=2,设P={x|f(x+t)<2},Q={x|f(x)<-4},若“x∈P”是“x∈Q”的充分不必要条件,则实数t的取值范围是________.
【解析】 因为f(x)是R上的增函数,f(-1)=-4,
f(x)<-4,f(2)=2,f(x+t)<2,
所以x<-1,x+t<2,x<2-t.
又因为“x∈P”是“x∈Q”的充分不必要条件,
所以2-t<-1,即t>3.
【答案】 (3,+∞)
4.已知数列{an}的前n项和Sn=pn+q(p≠0且p≠1),求证:数列{an}为等比数列的充要条件为q=-1.【导学号:18490016】
【证明】 充分性:因为q=-1,所以a1=S1=p-1.
当n≥2时,an=Sn-Sn-1=pn-1(p-1),
显然,当n=1时,也成立.
因为p≠0,且p≠1,
所以==p,
即数列{an}为等比数列,
必要性:当n=1时,a1=S1=p+q.
当n≥2时,an=Sn-Sn-1=pn-1(p-1).
因为p≠0,且p≠1,
所以==p.
因为{an}为等比数列,
所以==p,即=p.
所以-p=pq,即q=-1.
所以数列{an}为等比数列的充要条件为q=-1.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.给出下列命题:①2014年2月14日是中国传统节日元宵节,同时也是西方的情人节;②10的倍数一定是5的倍数;③梯形不是矩形;④方程x2=1的解是x=±1.其中使用逻辑联结词的命题有(  )
A.1个        B.2个
C.3个 D.4个
【解析】 ①中使用逻辑联结词“且”;②中没有使用逻辑联结词;③中使用逻辑联结词“非”;④中使用逻辑联结词“或”.命题①③④使用逻辑联结词,共有3个,故选C.
【答案】 C
2.命题“ab≠0”是指(  )
A.a≠0且b≠0
B.a≠0或b≠0
C.a,b中至少有一个不为0
D.a,b不都为0
【解析】 只有a≠0且b≠0时,才有ab≠0.
【答案】 A
3.已知命题p:3≥3,q:3>4,则下列判断正确的是(  )
A.p∨q为真,p∧q为真,綈p为假
B.p∨q为真,p∧q为假,綈p为真
C.p∨q为假,p∧q为假,綈p为假
D.p∨q为真,p∧q为假,綈p为假
【解析】 ∵p为真命题,q为假命题,∴p∨q为真,p∧q为假,綈p为假,应选D.
【答案】 D
4.命题p:若a>0,b>0,则ab=1是a+b≥2的必要不充分条件,命题q:函数y=log2的定义域是(-∞,-2)∪(3,+∞),则(  )
A.“p∨q”为假 B.“p∧q”为真
C.p真q假 D.p假q真
【解析】 由命题p:a>0,b>0,ab=1得a+b≥2=2,倒推不成立,所以p为假命题;命题q:由>0,得x<-2或x>3,所以q为真命题.
【答案】 D
5.已知p:|x-1|≥2,q:x∈Z,若p∧q,綈q同时为假命题,则满足条件的x的集合为(  ) 【导学号:18490021】
A.{x|x≤-1或x≥3,x?Z}
B.{x|-1≤x≤3,x?Z}
C.{x|x<-1或x∈Z}
D.{x|-1<x<3,x∈Z}
【解析】 p:x≥3或x≤-1,q:x∈Z,由p∧q,綈q同时为假命题知,p假q真,∴x满足-1<x<3且x∈Z,故满足条件的集合为{x|-1<x<3,x∈Z}.
【答案】 D
二、填空题
6.已知条件p:(x+1)2>4,条件q:x>a,且綈p是綈q的充分不必要条件,则a的取值范围是________.
【解析】 由綈p是綈q的充分不必要条件,可知綈p?綈q,但綈q綈p,由一个命题与它的逆否命题等价,可知q?p但p q,又p:x>1或x<-3,可知{x|x>a}{x|x<-3或x>1},所以a≥1.
【答案】 [1,+∞)
7.分别用“p或q”,“p且q”,“非p”填空:
(1)命题“非空集A∩B中的元素既是A中的元素,也是B中的元素”是________的形式;
(2)命题“非空集A∪B中的元素是A中元素或B中的元素”是________的形式;
(3)命题“非空集?UA的元素是U中的元素但不是A中的元素”是________的形式.
【解析】 (1)命题可以写为“非空集A∩B中的元素是A中的元素,且是B中的元素”,故填p且q;(2)“是A中元素或B中的元素”含有逻辑联结词“或”,故填p或q;(3)“不是A中的元素”暗含逻辑联结词“非”,故填非p.
【答案】 p且q p或q 非p
8.在一次射击比赛中,甲、乙两位运动员各射击一次,设命题p:“甲的成绩超过9环”,命题q:“乙的成绩超过8环”,则命题“p∨(綈q)”表示________.
【解析】 綈q表示乙的成绩没有超过8环,所以命题“p∨(綈q)”表示甲的成绩超过9环或乙的成绩没有超过8环.
【答案】 甲的成绩超过9环或乙的成绩没有超过8环
三、解答题
9.用“且”“或”改写下列命题并判断真假.
(1)1不是质数也不是合数;
(2)2既是偶数又是质数;
(3)5和7都是质数;
(4)2≤3.
【解】 (1)p:1不是质数;q:1不是合数,p∧q:1不是质数且1不是合数.(真)
(2)p:2是偶数;q:2是质数;p∧q:2是偶数且2是质数.(真)
(3)p:5是质数;q:7是质数;p∧q:5是质数且7是质数.(真)
(4)2≤3?2<3或2=3.(真)
10.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p是“第一次击中飞机”,命题q是“第二次击中飞机”.试用p,q以及逻辑联结词“或”“且”“非”(∨,∧,綈)表示下列命题:
【导学号:18490022】
(1)命题s:两次都击中飞机;
(2)命题r:两次都没击中飞机;
(3)命题t:恰有一次击中了飞机;
(4)命题u:至少有一次击中了飞机.
【解】 (1)两次都击中飞机表示:第一次击中飞机且第二次击中飞机,所以命题s表示为p∧q.
(2)两次都没击中飞机表示:第一次没有击中飞机且第二次没有击中飞机,所以命题r表示为綈p∧綈q.
(3)恰有一次击中了飞机包含两种情况:
①第一次击中飞机且第二次没有击中飞机,此时表示为p∧綈q;
②第一次没有击中飞机且第二次击中飞机,此时表示为綈p∧q.
所以命题t表示为(p∧綈q)∨(綈p∧q).
(4)法一 命题u表示:第一次击中飞机或第二次击中飞机,所以命题u表示为p∨q.
法二 綈u:两次都没击中飞机,即是命题r,所以命题u是綈r,从而命题u表示为綈(綈p∧綈q).
法三 命题u表示:第一次击中飞机且第二次没有击中飞机,或者第一次没有击中飞机且第二次击中飞机,或者第一次击中飞机且第二次击中飞机,所以命题u表示为(p∧綈q)∨(綈p∧q)∨(p∧q).
[能力提升]
1.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为(  )
A.(綈p)∨(綈q) B.p∨(綈q)
C.(綈p)∧(綈q) D.p∨q
【解析】 依题意,綈p:“甲没有降落在指定范围”,綈q:“乙没有降落在指定范围”,因此“至少有一位学员没有降落在指定范围”可表示为(綈p)∨(綈q).
【答案】 A
2.已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数.则在命题q1:p1∨p2,q2:p1∧p2,q3:(綈p1)∨p2,q4:p1∧(綈p2)中,真命题是(  )
A.q1,q3 B.q2,q3
C.q1,q4 D.q2,q4
【解析】 ∵y=2x在R上是增函数,y=2-x在R上是减函数,∴y=2x-2-x在R上是增函数为真命题,y=2x+2-x在R上为减函数是假命题.
因此p1是真命题,则綈p1为假命题;p2是假命题,则綈p2为真命题.
∴q1:p1∨p2是真命题,q2:p1∧p2是假命题,
∴q3:(綈p1)∨p2为假命题,q4:p1∧(綈p2)为真命题.
∴真命题是q1,q4,故选C.
【答案】 C
3.命题p:若mx2-mx-1<0恒成立,则-4<m<0.命题q:关于x的不等式(x-a)(x-b)<0的解集为{x|a【解析】 若mx2-mx-1<0恒成立,
则m=0或
解得-4<m≤0.∴命题p是假命题.
又(x-a)(x-b)<0的解集与a,b的大小有关,
∴q假.
因此“綈p”为真,“p∨q”与“綈p∧q”为假.
【答案】 綈p
4.已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围. 【导学号:18490023】
【解】 p:-2≤x≤6,q:2-m≤x≤2+m(m>0).
(1)∵p是q的充分条件,
∴解之得m≥4.
故实数m的取值范围是[4,+∞).
(2)当m=5时,q:-3≤x≤7.
∵“p或q”为真命题,“p且q”为假命题,
∴p,q一真一假,
当p真q假时,无解;
当p假q真时,
解得-3≤x<-2或6综上,实数x的取值范围是[-3,-2)∪(6,7].
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.下列命题为特称命题的是(  )
A.奇函数的图象关于原点对称
B.正四棱柱都是平行六面体
C.棱锥仅有一个底面
D.存在大于等于3的实数x,使x2-2x-3≥0
【解析】 A,B,C中命题都省略了全称量词“所有”,所以A,B,C都是全称命题;D中命题含有存在量词“存在”,所以D是特称命题,故选D.
【答案】 D
2.下列命题为真命题的是(  )
A.?x∈R,cos x<2
B.?x∈Z,log2(3x-1)<0
C.?x>0,3x>3
D.?x∈Q,方程x-2=0有解
【解析】 A中,由于函数y=cos x的最大值是1,又1<2,所以A是真命题;B中,log2(3x-1)<0?0<3x-1<1?【答案】 A
3.下列命题的否定是真命题的是(  )
A.存在向量m,使得在△ABC中,m∥且m∥
B.所有正实数x,都有x+≥2
C.所有第四象限的角α,都有sin α<0
D.有的幂函数的图象不经过点(1,1)
【解析】 A中,当m=0时,满足m∥且m∥,所以A是真命题,其否定是假命题;B中,由于x>0,所以x+≥2=2,当且仅当x=即x=1时等号成立,所以B是真命题,其否定是假命题;C中,由于第四象限角的正弦值是负数,所以C是真命题,其否定是假命题;D中,对于幂函数f(x)=xα,均有f(1)=1,所以幂函数的图象均经过点(1,1),所以D是假命题,其否定是真命题,故选D.
【答案】 D
4.已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(  )
A.?x∈R,f(x)≤f(x0)
B.?x∈R,f(x)≥f(x0)
C.?x∈R,f(x)≤f(x0)
D.?x∈R,f(x)≥f(x0)
【解析】 f(x)=ax2+bx+c=a+(a>0),
∵2ax0+b=0,∴x0=-,
当x=x0时,函数f(x)取得最小值,
∴?x∈R,f(x)≥f(x0),从而A,B,D为真命题,C为假命题.
【答案】 C
5.对下列命题的否定说法错误的是(  )
A.p:能被2整除的数是偶数;綈p:存在一个能被2整除的数不是偶数
B.p:有些矩形是正方形;綈p:所有的矩形都不是正方形
C.p:有的三角形为正三角形;綈p:所有的三角形不都是正三角形
D.p:?n∈N,2n≤100;綈p:?n∈N,2n>100
【答案】 C
二、填空题
6.命题“偶函数的图象关于y轴对称”的否定是_____________.
【解析】 题中的命题是全称命题,省略了全称量词,加上全称量词后该命题可以叙述为:所有偶函数的图象关于y轴对称.将命题中的全称量词“所有”改为存在量词“有些”,结论“关于y轴对称”改为“关于y轴不对称”,所以该命题的否定是“有些偶函数的图象关于y轴不对称”.
【答案】 有些偶函数的图象关于y轴不对称
7.已知命题:“?x0∈[1,2],使x+2x0+a≥0”为真命题,则实数a的取值范围是__________.
【解析】 当x∈[1,2]时,x2+2x=(x+1)2-1是增函数,所以3≤x2+2x≤8,由题意有a+8≥0,∴a≥-8.
【答案】 [-8,+∞)
8.下列命题:
①存在x<0,使|x|>x;
②对于一切x<0,都有|x|>x;
③已知an=2n,bn=3n,对于任意n∈N*,都有an≠bn;
④已知A={a|a=2n},B={b|b=3n},对于任意n∈N*,都有A∩B=?.
其中,所有正确命题的序号为________. 【导学号:18490027】
【解析】 命题①②显然为真命题;③由于an-bn=2n-3n=-n<0,对于?n∈N*,都有an【答案】 ①②③
三、解答题
9.写出下列命题的否定:
(1)p:一切分数都是有理数;
(2)q:有些三角形是锐角三角形;
(3)r:?x0∈R,x+x0=x0+2;
(4)s:?x∈R,2x+4≥0.
【解】 (1)綈p:有些分数不是有理数.
(2)綈q:所有的三角形都不是锐角三角形.
(3)綈r:?x∈R,x2+x≠x+2.
(4)綈s:?x0∈R,2x0+4<0.
10.若x∈[-2,2],关于x的不等式x2+ax+3≥a恒成立,求a的取值范围.
【解】 设f(x)=x2+ax+3-a,则此问题转化为当x∈[-2,2]时,f(x)min≥0即可.
①当-<-2,即a>4时,f(x)在[-2,2]上单调递增,
f(x)min=f(-2)=7-3a≥0,解得a≤.
又因为a>4,所以a不存在.
②当-2≤-≤2,即-4≤a≤4时,
f(x)min=f=≥0,解得-6≤a≤2.
又因为-4≤a≤4,所以-4≤a≤2.
③当->2,即a<-4时,
f(x)在[-2,2]上单调递减,
f(x)min=f(2)=7+a≥0,
解得a≥-7.
又因为a<-4,所以-7≤a<-4.
综上所述,a的取值范围是{a|-7≤a≤2}.
[能力提升]
1.已知命题p:?x0∈(-∞,0),2x0<3x0,命题q:?x∈,cos x<1,则下列命题为真命题的是(  )
A.p∧q       B.p∨(綈q)
C.(綈p)∧q D.p∧(綈q)
【解析】 当x0<0时,2x0>3x0,
∴不存在x0∈(-∞,0)使得2x0<3x0成立,即p为假命题,显然?x∈,恒有0【答案】 C
2.(2013·四川高考)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:?x∈A,2x∈B,则(  )
A.綈p:?x∈A,2x∈B B.綈p:?x?A,2x∈B
C.綈p:?x∈A,2x?B D.綈p:?x?A,2x?B
【解析】 命题p是全称命题: ?x∈M,p(x),则綈p是特称命题:?x∈M,綈p(x).故选C.
【答案】 C
3.已知函数f(x)=x2+m,g(x)=,若对任意x1∈[-1,3],存在x2∈[0,2],使f(x1)≥g(x2),则实数m的取值范围是________.
【解析】 因为对任意x1∈[-1,3],f(x1)∈[m,9+m],即f(x)min=m.存在x2∈[0,2],使f(x1)≥g(x2)成立,只要满足g(x)min≤m即可,而g(x)是单调递减函数,故g(x)min=g(2)==,得m≥.
【答案】 
4.已知a>且a≠1,条件p:函数f(x)=log(2a-1)x在其定义域上是减函数;条件q:函数g(x)=的定义域为R,如果p∨q为真,试求a的取值范围. 【导学号:18490028】
【解】 若p为真,则0<2a-1<1,得若q为真,则x+|x-a|-2≥0对?x∈R恒成立.
记f(x)=x+|x-a|-2,
则f(x)=
所以f(x)的最小值为a-2,即q为真时,a-2≥0,即a≥2.
于是p∨q为真时,得学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.对于空间中任意三个向量a,b,2a-b,它们一定是(  )
A.共面向量     B.共线向量
C.不共面向量 D.既不共线也不共面向量
【解析】 由共面向量定理易得答案A.
【答案】 A
2.已知向量a,b,且=a+2b,=-5a+6b,=7a-2b,则一定共线的三点是(  )
A.A,B,D B.A,B,C
C.B,C,D D.A,C,D
【解析】 =+=-5a+6b+7a-2b=2a+4b,=-=-a-2b,∴=-2,
∴与共线,
又它们经过同一点B,
∴A,B,D三点共线.
【答案】 A
3.A,B,C不共线,对空间任意一点O,若=++,则P,A,B,C四点(  )
A.不共面 B.共面
C.不一定共面 D.无法判断
【解析】 ∵++=1,
∴点P,A,B,C四点共面.
【答案】 B
4.在平行六面体ABCD-A1B1C1D1中,用向量,,表示向量的结果为(  )
图3-1-11
A.=-+
B.=+-
C.=+-
D.=++
【解析】 =++=-++.故选B.
【答案】 B
5.如图3-1-12,在平行六面体ABCD-A1B1C1D1中,E,F,G,H,P,Q分别是A1A,AB,BC,CC1,C1D1,D1A1的中点,则(  )
图3-1-12
A.++=0
B.--=0
C.+-=0
D.-+=0
【解析】 由题图观察,、、平移后可以首尾相接,故有++=0.
【答案】 A
二、填空题
6.已知两非零向量e1,e2,且e1与e2不共线,若a=λe1+μe2(λ,μ∈R,且λ2+μ2≠0),则下列三个结论有可能正确的是________.(填序号)
①a与e1共线;②a与e2共线;③a与e1,e2共面.
【解析】 当λ=0时,a=μe2,故a与e2共线,同理当μ=0时,a与e1共线,由a=λe1+μe2知,a与e1,e2共面.
【答案】 ①②③
7.已知O为空间任意一点,A,B,C,D四点满足任意三点不共线,但四点共面,且=2x+3y+4z,则2x+3y+4z的值为________.
【解析】 由题意知A,B,C,D共面的充要条件是对空间任意一点O,存在实数x1,y1,z1,使得=x1+y1+z1,且x1+y1+z1=1,因此2x+3y+4z=-1.
【答案】 -1
8.设e1,e2是空间两个不共线的向量,已知=2e1+ke2,=e1+3e2,=2e1-e2,且A,B,D三点共线,则k=________.
【导学号:18490085】
【解析】 由已知可得:=-=(2e1-e2)-(e1+3e2)=e1-4e2,∵A,B,D三点共线,
∴与共线,即存在λ∈R使得=λ.
∴2e1+ke2=λ(e1-4e2)=λe1-4λe2,
∵e1,e2不共线,
∴解得k=-8.
【答案】 -8
三、解答题
9.已知四边形ABCD为正方形,P是四边形ABCD所在平面外一点,P在平面ABCD上的射影恰好是正方形ABCD的中心O,Q是CD的中点.求下列各式中x,y的值.
(1)=+x+y;
(2)=x+y+.
【解】 如图所示,
(1)∵=-
=-(+)
=--,
∴x=y=-.
(2)∵+=2,
∴=2-.
又∵+=2,
∴=2-.
从而有=2-(2-)
=2-2+.
∴x=2,y=-2.
10.如图3-1-13,四边形ABCD、四边形ABEF都是平行四边形,且不共面,M,N分别是AC,BF的中点,判断与是否共线.
图3-1-13
【解】 ∵M,N分别是AC,BF的中点,
又四边形ABCD、四边形ABEF都是平行四边形,
∴=++=++.
又∵=+++=-+--,
∴++=-+--.
∴=+2+=2(++),
∴=2,∴∥,即与共线.
[能力提升]
1.若P,A,B,C为空间四点,且有=α+β,则α+β=1是A,B,C三点共线的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 若α+β=1,则-=β(-),即=β,显然A,B,C三点共线;若A,B,C三点共线,则有=λ,故-=λ(-),整理得=(1+λ)-λ,令α=1+λ,β=-λ,则α+β=1,故选C.
【答案】 C
2.已知正方体ABCD-A1B1C1D1中,P,M为空间任意两点,如果有=+7+6-4,那么M必(  )
A.在平面BAD1内 B.在平面BA1D内
C.在平面BA1D1内 D.在平面AB1C1内
【解析】 由于=+7+6-4=++6-4=++6-4=+6(-)-4(-)=11-6-4,于是M,B,A1,D1四点共面,故选C.
【答案】 C
3.已知两非零向量e1,e2,且e1与e2不共线,若a=λe1+μ e2(λ,μ∈R,且λ2+μ2≠0),则下列三个结论有可能正确的是________. 【导学号:18490086】
①a与e1共线;②a与e2共线;③a与e1,e2共面.
【解析】 当λ=0时,a=μ e2,故a与e2共线,同理当μ=0时,a与e1共线,由a=λe1+μ e2,知a与e1,e2共面.
【答案】 ①②③
4.如图3-1-14所示,M,N分别是空间四边形ABCD的棱AB,CD的中点.试判断向量与向量,是否共面.
图3-1-14
【解】 由题图可得:=++, ①
∵=++, ②
又=-,=-,
所以①+②得:
2=+,
即=+,故向量与向量,共面.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.设a,b,c是任意的非零平面向量,且它们相互不共线,下列命题:①(a·b)c-(c·a)b=0;②|a|=;③a2b=b2a;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中正确的有(  )
A.①②       B.②③
C.③④ D.②④
【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中,|a|2·b=|b|2·a不一定成立,④运算正确.
【答案】 D
2.已知a+b+c=,|a|=2,|b|=3,|c|=4,则a与b的夹角〈a,b〉=(  )
A.30° B.45°
C.60° D.以上都不对
【解析】 ∵a+b+c=0,∴a+b=-c,∴(a+b)2=|a|2+|b|2+2a·b=|c|2,∴a·b=,∴cos〈a,b〉==.
【答案】 D
3.已知四边形ABCD为矩形,PA⊥平面ABCD,连接AC,BD,PB,PC,PD,则下列各组向量中,数量积不为零的是(  )
A.与 B.与
C.与 D.与
【解析】 用排除法,因为PA⊥平面ABCD,所以PA⊥CD,故·=0,排除D;因为AD⊥AB,PA⊥AD,又PA∩AB=A,所以AD⊥平面PAB,所以AD⊥PB,故·=0,排除B,同理·=0,排除C.
【答案】 A
4.如图3-1-25,已知空间四边形每条边和对角线都等于a,点E,F,G分别是AB,AD,DC的中点,则下列向量的数量积等于a2的是(  )
图3-1-25
A.2· B.2·
C.2· D.2·
【解析】 2·=-a2,故A错;2·=-a2,故B错;2·=-a2,故D错;2·=2=a2,故只有C正确.
【答案】 C
5.在正方体ABCD-A1B1C1D1中,有下列命题:
①(++)2=32;
②·(-)=0;
③与的夹角为60°.
其中正确命题的个数是(  ) 【导学号:18490091】
A.1个  B.2个
C.3个   D.0个
【解析】 由题意知①②都正确,③不正确,与的夹角为120°.
【答案】 B
二、填空题
6.已知|a|=2,|b|=3,〈a,b〉=60°,则|2a-3b|=________.
【解析】 |2a-3b|2=(2a-3b)2=4a2-12a·b+9b2
=4×|a|2+9×|b|2-12×|a|·|b|·cos 60°=61,
∴|2a-3b|=.
【答案】 
7.已知|a|=2,|b|=1,〈a,b〉=60°,则使向量a+λb与λa-2b的夹角为钝角的实数λ的取值范围是________.
【解析】 由题意知
即
得λ2+2λ-2<0.
∴-1-<λ<-1+.
【答案】 (-1-,-1+)
8.如图3-1-26,已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是________.
图3-1-26
【解析】 不妨设棱长为2,则1=-,=+,
cos〈,〉=
==0,故填90°.
【答案】 90°
三、解答题
9.如图3-1-27,在正方体ABCD-A1B1C1D1中,O为AC与BD的交点,G为CC1的中点.求证:A1O⊥平面BDG.
图3-1-27
【证明】 设=a,=b,=c.
则a·b=0,a·c=0,b·c=0.
而=+
=+(+)
=c+(a+b),
=-=b-a,
=+
=(+)+
=(a+b)+c.
∴·=·(b-a)
=c·(b-a)+(a+b)·(b-a)
=c·b-c·a+(b2-a2)
=(|b|2-|a|2)=0.
∴⊥.
∴A1O⊥BD.
同理可证⊥.
∴A1O⊥OG.
又OG∩BD=O且A1O?平面BDG,
∴A1O⊥平面BDG.
10.已知长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=4,E为侧面AB1的中心,F为A1D1的中点,试计算:(1)·;(2)·;(3)·.
【解】 如图所示,设=a,=b,=c,
则|a|=|c|=2,|b|=4,a·b=b·c=c·a=0.
(1)·=·(+)
=·
=b·
=|b|2=42=16.
(2)·=(+)·(+)
=·(+)
=·(a+c)
=|c|2-|a|2=22-22=0.
(3)·=(+)·(+)
=·
=·
=(-a+b+c)·
=-|a|2+|b|2=2.
[能力提升]
1.已知边长为1的正方体ABCD-A1B1C1D1的上底面A1B1C1D1的中心为O1,则·的值为(  )
A.-1 B.0
C.1 D.2
【解析】 =+=+(+)=+(+),而=+,则·=(2+2)=1,故选C.
【答案】 C
2.已知a,b是两异面直线,A,B∈a,C,D∈b,AC⊥b,BD⊥b且AB=2,CD=1,则直线a,b所成的角为(  )
A.30° B.60°
C.90° D.45°
【解析】 由于=++,则·=(++)·=2=1.
cos〈,〉==,得〈,〉=60°.
【答案】 B
3.已知正三棱柱ABC-DEF的侧棱长为2,底面边长为1,M是BC的中点,若直线CF上有一点N,使MN⊥AE,则=________. 【导学号:18490092】
【解析】 设=m,由于=+,=+m,
又·=0,
得×1×1×+4m=0,
解得m=.
【答案】 
4.如图3-1-28,平行六面体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,∠BAD=90°,∠BAA1=∠DAA1=60°,求AC1的长.
图3-1-28
【解】 ∵=++,
∴||==
.
∵AB=1,AD=2,AA1=3,∠BAD=90°,∠BAA1=∠DAA1=60°,
∴〈,〉=90°,〈,〉=〈,〉=60°,
∴||
=
=.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.点A(-1,2,1)在x轴上的投影点和在xOy平面上的投影点的坐标分别为(  )
A.(-1,0,1),(-1,2,0)
B.(-1,0,0),(-1,2,0)
C.(-1,0,0),(-1,0,0)
D.(-1,2,0),(-1,2,0)
【解析】 点A在x轴上的投影点的横坐标不变,纵、竖坐标都为0,在xOy平面上的投影点横、纵坐标不变,竖坐标为0,故应选B.
【答案】 B
2.在空间直角坐标系Oxyz中,下列说法正确的是(  )
A.向量的坐标与点B的坐标相同
B.向量的坐标与点A的坐标相同
C.向量与向量的坐标相同
D.向量与向量-的坐标相同
【解析】 因为A点不一定为坐标原点,所以A,B,C都不对;由于=-,故D正确.
【答案】 D
3.在平行六面体ABCD-A1B1C1D1中,M是上底面对角线AC与BD的交点,若=a,=b,=c,则可表示为(  )
A.a+b+c   B.a-b+c
C.-a-b+c D.-a+b+c
【解析】 由于=+=+(+)=-a+b+c,故选D.
【答案】 D
4.正方体ABCD-A′B′C′D′中,O1,O2,O3分别是AC,AB′,AD′的中点,以{1,2,3}为基底,=x1+y+z3,则x,y,z的值是(  )
A.x=y=z=1 B.x=y=z=
C.x=y=z= D.x=y=z=2
【解析】 =++
=(+)+(+)+(+)
=++=++,
由空间向量的基本定理,得x=y=z=1.
【答案】 A
5.已知空间四点A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,则x的值为(  ) 【导学号:18490096】
A.4   B.1
C.10    D.11
【解析】 =(-2,2,-2),=(-1,6,-8),=(x-4,-2,0),
∵A,B,C,D共面,
∴,,共面,
∴存在实数λ,μ,使=λ+μ,
即(x-4,-2,0)=(-2λ-μ,2λ+6μ,-2λ-8μ),
∴得
【答案】 D
二、填空题
6.设{i,j,k}是空间向量的单位正交基底,a=3i+2j-k,b=-2i+4j+2k,则向量a与b的位置关系是________.
【解析】 ∵a·b=-6i2+8j2-2k2=-6+8-2=0.
∴a⊥b.
【答案】 a⊥b
7.如图3-1-32, 在平行六面体ABCD-A1B1C1D1中,M为AC和BD的交点,若=a,=b,=c,则=________.
图3-1-32
【解析】 =-
=(+)-(+)=-+-=-a+b-c.
【答案】 -a+b-c
8.已知点A在基底{a,b,c}下的坐标为(2,1,3),其中a=4i+2j,b=2j+3k,c=3k-j,则点A在基底{i,j,k}下的坐标为________.
【解析】 由题意知点A对应的向量为2a+b+3c=2(4i+2j)+(2j+3k)+3(3k-j)=8i+3j+12k,
∴点A在基底{i,j,k}下的坐标为(8,3,12).
【答案】 (8,3,12)
三、解答题
9.已知{e1,e2,e3}为空间一基底,且=e1+2e2-e3,=-3e1+e2+2e3,=e1+e2-e3,能否以,,作为空间的一个基底? 【导学号:18490097】
【解】 假设,,共面,
根据向量共面的充要条件有=x+y,
即e1+2e2-e3=x(-3e1+e2+2e3)+y(e1+e2-e3)
=(-3x+y)e1+(x+y)e2+(2x-y)e3.
∴此方程组无解.
∴,,不共面.
∴{,,}可作为空间的一个基底.
10.如图3-1-33,在平行六面体ABCD-A1B1C1D1中,=-,=,设=a,=b,=c,试用a,b,c表示.
图3-1-33
【解】 连接AN,则=+.
由已知可得四边形ABCD是平行四边形,从而可得
=+=a+b,
=-=-(a+b),
又=-=b-c,
故=+=-=-
=b-(b-c),
=+=-(a+b)+b-(b-c)
=(-a+b+c).
[能力提升]
1.已知空间四边形OABC,其对角线为AC,OB.M,N分别是OA,BC的中点,点G是MN的中点,则等于(  )
A.++
B.(++)
C.(++)
D.++
【解析】 如图,
=(+)
=+×(+)
=++
=(++).
【答案】 B
2.若向量,,的起点M和终点A,B,C互不重合无三点共线,则能使向量,,成为空间一组基底的关系是(  )
A.=++
B.=+
C.=++
D.=2-
【答案】 C
3.在空间四边形ABCD中,=a-2c,=5a-5b+8c,对角线AC,BD的中点分别是E,F,则=________.
【解析】 =(+)=(+)+(+)=+++++=(+)=3a-b+3c.
【答案】 3a-b+3c
4.在直三棱柱ABO -A1B1O1中,∠AOB=,AO=4,BO=2,AA1=4,D为A1B1的中点,在如图3-1-34所示的空间直角坐标系中,求,的坐标.
图3-1-34
【解】 ∵=-=-(+)
=-[+(+)]=---.
又||=||=4,||=4,||=2,
∴=(-2,-1,-4).
∵=-=-(+)
=--.
又||=2,||=4,||=4,
∴=(-4,2,-4).
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知a=(1,-2,1),a-b=(-1,2,-1),则b=(  )
A.(2,-4,2)     B.(-2,4,-2)
C.(-2,0,-2) D.(2,1,-3)
【解析】 b=a-(-1,2,-1)=(1,-2,1)-(-1,2,-1)=(2,-4,2).
【答案】 A
2.设A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离|CM|的值为(  )
A. B.
C. D.
【解析】 ∵AB的中点M,∴=,故|CM|=||= =.
【答案】 C
3.已知向量a=(2,3),b=(k,1),若a+2b与a-b平行,则k的值是(  )
A.-6 B.-
C.  D.14
【解析】 由题意得a+2b=(2+2k,5),且a-b=(2-k,2),又因为a+2b和a-b平行,则2(2+2k)-5(2-k)=0,解得k=.
【答案】 C
4.如图3-1-36,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=,E,F分别是平面A1B1C1D1、平面BCC1B1的中心,则E,F两点间的距离为(  )
图3-1-36
A.1 B.
C. D.
【解析】 以点A为原点,建立如图所示的空间直角坐标系,则E(1,1,),F,所以|EF|=
=,故选C.
【答案】 C
5.已知a=(1-t,1-t,t),b=(2,t,t),则|b-a|的最小值是(  )
A. B.
C. D.
【解析】 b-a=(1+t,2t-1,0),
∴|b-a|2=(1+t)2+(2t-1)2+02
=5t2-2t+2=5+.
∴|b-a|=.
∴|b-a|min=.
【答案】 C
二、填空题
6.已知点A(1,2,3),B(2,1,2),P(1,1,2),O(0,0,0),点Q在直线OP上运动,当·取得最小值时,点Q的坐标为________.
【解析】 设=λ=(λ,λ,2λ),故Q(λ,λ,2λ),故=(1-λ,2-λ,3-2λ),=(2-λ,1-λ,2-2λ).则·=6λ2-16λ+10=6-,当·取最小值时,λ=,此时Q点的坐标为.
【答案】 
7.若=(-4,6,-1),=(4,3,-2),|a|=1,且a⊥,a⊥,则a=________.
【解析】 设a=(x,y,z),由题意有代入坐标可解得或
【答案】 或
8.若A(m+1,n-1,3),B(2m,n,m-2n),C(m+3,n-3,9)三点共线,则m+n=________.
【解析】 因为=(m-1,1,m-2n-3),=(2,-2,6),由题意得∥,则==,所以m=0,n=0,m+n=0.
【答案】 0
三、解答题
9.已知向量a=(1,-3,2),b=(-2,1,1),点A(-3,-1,4),B(-2,-2,2).
(1)求|2a+b|; 【导学号:18490101】
(2)在直线AB上,是否存在一点E,使得⊥b?(O为原点)
【解】 (1)2a+b=(2,-6,4)+(-2,1,1)
=(0,-5,5),
故|2a+b|==5.
(2)=+=+t=(-3,-1,4)+t(1,-1,-2)=(-3+t,-1-t,4-2t),
若⊥b,则·b=0,
所以-2(-3+t)+(-1-t)+(4-2t)=0,解得t=,
因此存在点E,使得⊥b,E点坐标为.
10.在正方体ABCD-A1B1C1D1中,M是棱DD1的中点,O是正方形ABCD的中心.
求证:⊥.
【证明】 建立空间直角坐标系,如图所示,设正方形的棱长为1个单位,则A(1,0,0),A1(1,0,1),M,O.
∴=,=.
∵·=×(-1)+×0+1×=0,
∴⊥.
[能力提升]
1.已知向量a=(-2,x,2),b=(2,1,2),c=(4,-2,1),若a⊥(b-c),则x的值为(  )
A.-2 B.2
C.3 D.-3
【解析】 ∵b-c=(-2,3,1),a·(b-c)=4+3x+2=0,∴x=-2.
【答案】 A
2.已知a=(cos α,1,sin α),b=(sin α,1,cos α),则向量a+b与a-b的夹角是(  )
A.90° B.60°
C.45° D.30°
【解析】 a+b=(cos α+sin α,2,sin α+cos α),a-b=(cos α-sin α,0,sin α-cos α),∴(a+b)·(a-b)=0,
∴(a+b)⊥(a-b).
【答案】 A
3.已知a=(3,-2,-3),b=(-1,x-1,1),且a与b的夹角为钝角,则x的取值范围是________.
【解析】 因为a与b的夹角为钝角,所以a·b<0,所以3×(-1)+(-2)×(x-1)+(-3)×1<0,解得x>-2.若a与b的夹角为π,则x=,
所以x∈∪.
【答案】 ∪
4.在正三棱柱ABC-A1B1C1中,平面ABC和平面A1B1C1为正三角形,所有的棱长都是2,M是BC边的中点,则在棱CC1上是否存在点N,使得异面直线AB1和MN所夹的角等于45°?
【导学号:18490102】
【解】 以A点为原点,建立如图所示的空间直角坐标系Axyz.由题意知A(0,0,0),C(0,2,0),B(,1,0),B1(,1,2),M.
又点N在CC1上,可设N(0,2,m)(0≤m≤2),
则=(,1,2),=,
所以||=2,||=,·=2m-1.
如果异面直线AB1和MN所夹的角等于45°,那么向量和的夹角等于45°或135°.
又cos〈,〉==.
所以=±,解得m=-,这与0≤m≤2矛盾.
所以在CC1上不存在点N,使得异面直线AB1和MN所夹的角等于45°.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.l1的方向向量为v1=(1,2,3),l2的方向向量v2=(λ,4,6),若l1∥l2,则λ=(  )
A.1   B.2   
C.3    D.4
【解析】 ∵l1∥l2,∴v1∥v2,则=,∴λ=2.
【答案】 B
2.若=λ+μ,则直线AB与平面CDE的位置关系是(  )
A.相交 B.平行
C.在平面内 D.平行或在平面内
【解析】 ∵=λ+μ,∴,,共面,则AB与平面CDE的位置关系是平行或在平面内.
【答案】 D
3.已知平面α内有一个点A(2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是(  )
A.(1,-1,1) B.
C. D.
【解析】 对于B,=,
则n·=(3,1,2)·=0,
∴n⊥,则点P在平面α内.
【答案】 B
4.已知直线l的方向向量是a=(3,2,1),平面α的法向量是u=(-1,2,-1),则l与α的位置关系是(  )
A.l⊥α B.l∥α
C.l与α相交但不垂直 D.l∥α或l?α
【解析】 因为a·u=-3+4-1=0,所以a⊥u.所以l∥α或l?α.
【答案】 D
5.若u=(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是(  )
A.(0,-3,1) B.(2,0,1)
C.(-2,-3,1) D.(-2,3,-1)
【解析】 同一个平面的法向量平行,故选D.
【答案】 D
二、填空题
6.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的值为________.
【解析】 因为α⊥β,那么它们的法向量也互相垂直,则有-x-2-8=0,所以x=-10.
【答案】 -10
7.若a=(2x,1,3),b=(1,-2y,9),且a与b为共线向量,则x=________,y=________.
【解析】 由题意得==,∴x=,y=-.
【答案】  -
8.已知A(4,1,3),B(2,3,1),C(3,7,-5),点P(x,-1,3)在平面ABC内,则x=________.
【解析】 =(-2,2,-2),=(-1,6,-8),
=(x-4,-2,0),由题意知A,B,C,P四点共面,
∴=λ+μ=(-2λ,2λ,-2λ)+(-μ,6μ,-8μ)=(-2λ-μ,2λ+6μ,-2λ-8μ).
∴∴
而x-4=-2λ-μ,∴x=11.
【答案】 11
三、解答题
9.已知O,A,B,C,D,E,F,G,H为空间的9个点(如图3-2-6所示),并且=k,=k,=k,=+m,=+m.求证: 【导学号:18490106】
图3-2-6
(1)A,B,C,D四点共面,E,F,G,H四点共面;
(2)∥;
(3)=k.
【解】 (1)由=+m,=+m,知A,B,C,D四点共面,E,F,G,H四点共面.
(2)∵=+m=-+m(-)
=k(-)+km(-)=k+km
=k(+m)=k,
∴∥.
(3)由(2)知=-=k-k
=k(-)=k.
∴=k.
10.在正方体ABCD-A1B1C1D1中,E,F分别是BB1,DC的中点,求证:是平面A1D1F的法向量.
【证明】 设正方体的棱长为1,建立如图所示的空间直角坐标系,则A(1,0,0),E,D1(0,0,1),F,A1(1,0,1),=,
=,=(-1,0,0).
∵·=·
=-=0,
又·=0,
∴⊥,⊥.
又A1D1∩D1F=D1,
∴AE⊥平面A1D1F,
∴是平面A1D1F的法向量.
[能力提升]
1.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是(  )
A.(4,2,-2) B.(2,0,4)
C.(2,-1,-5) D.(4,-2,2)
【解析】 ∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),解得应选D.
【答案】 D
2.已知直线l过点P(1,0,-1),平行于向量a=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量不可能是(  )
A.(1,-4,2) B.
C. D.(0,-1,1)
【解析】 因为=(0,2,4),直线l平行于向量a,若n是平面α的法向量,则必须满足把选项代入验证,只有选项D不满足,故选D.
【答案】 D
3.若A,B,C是平面α内的三点,设平面α的法向量a=(x,y,z),则x∶y∶z=________.
【解析】 因为=,
=,
又因为a·=0,a·=0,
所以
解得
所以x∶y∶z=y∶y∶=2∶3∶(-4).
【答案】 2∶3∶(-4)
4.如图3-2-7,四棱锥P-ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1.问:在棱PD上是否存在一点E,使得CE∥平面PAB?若存在,求出E点的位置;若不存在,请说明理由.
【导学号:18490107】
图3-2-7
【解】 分别以AB,AD,AP为x,y,z轴建立空间直角坐标系,如图,则P(0,0,1),C(1,1,0),D(0,2,0), 设E(0,y,z),则
=(0,y,z-1),
=(0,2,-1),
∵∥,∴y(-1)-2(z-1)=0, ①
∵=(0,2,0)是平面PAB的法向量,
=(-1,y-1,z),
∴由CE∥平面PAB, 可得⊥,
∴(-1,y-1,z)·(0,2,0)=2(y-1)=0,
∴y=1,代入①式得z=.∴E是PD的中点,
即存在点E为PD中点时,CE∥平面PAB.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知平面α的法向量为a=(1,2,-2),平面β的法向量为b=(-2,-4,k),若α⊥β,则k=(  )
A.4   B.-4  
C.5   D.-5
【解析】 ∵α⊥β,∴a⊥b,∴a·b=-2-8-2k=0.
∴k=-5.
【答案】 D
2.在菱形ABCD中,若是平面ABCD的法向量,则以下等式中可能不成立的是(  )
A.⊥ B.⊥
C.⊥ D.⊥
【解析】 由题意知PA⊥平面ABCD,所以PA与平面上的线AB,CD都垂直,A,B正确;又因为菱形的对角线互相垂直,可推得对角线BD⊥平面PAC,故PC⊥BD,C选项正确.
【答案】 D
3.已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为(  )
A.,-,4 B.,-,4
C.,-2,4 D.4,,-15
【解析】 ∵⊥,∴·=0,即3+5-2z=0,得z=4,
又BP⊥平面ABC,∴⊥,⊥,
则解得
【答案】 B
4.已知点A(1,0,0),B(0,1,0),C(0,0,1),点D满足条件:DB⊥AC,DC⊥AB,AD=BC,则点D的坐标为(  )
A.(1,1,1)
B.(-1,-1,-1)或
C.
D.(1,1,1)或
【解析】 设D(x,y,z),则=(x,y-1,z),=(x,y,z-1),=(x-1,y,z),=(-1,0,1),=(-1,1,0),=(0,-1,1).
又DB⊥AC?-x+z=0  ①,
DC⊥AB?-x+y=0  ②,
AD=BC?(x-1)2+y2+z2=2  ③,
联立①②③得x=y=z=1或x=y=z=-,所以点D的坐标为(1,1,1)或.故选D.
【答案】 D
5.设A是空间一定点,n为空间内任一非零向量,满足条件·n=0的点M构成的图形是(  )
A.圆 B.直线
C.平面 D.线段
【解析】 M构成的图形经过点A,且是以n为法向量的平面.
【答案】 C
二、填空题
6.已知直线l与平面α垂直,直线l的一个方向向量u=(1,-3,z),向量v=(3,-2,1)与平面α平行,则z=________. 【导学号:18490112】
【解析】 由题意知u⊥v,∴u·v=3+6+z=0,∴z=-9.
【答案】 -9
7.已知a=(x,2,-4),b=(-1,y,3),c=(1,-2,z),且a,b,c两两垂直,则(x,y,z)=________.
【解析】 由题意,知
解得x=-64,y=-26,z=-17.
【答案】 (-64,-26,-17)
8.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,-1,-4),=(4,2,0),=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③是平面ABCD的法向量;④∥.其中正确的是________.
【解析】 ∵·=0,·=0,
∴AB⊥AP,AD⊥AP,则①②正确.
又与不平行,
∴是平面ABCD的法向量,则③正确.
由于=-=(2,3,4),=(-1,2,-1),
∴与不平行,故④错误.
【答案】 ①②③
三、解答题
9.如图3-2-15,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:AM⊥平面BDF.
图3-2-15
【证明】 以C为坐标原点,建立如图所示的空间直角坐标系,则A(,,0),B(0,,0),D(,0,0),F(,,1),M.
所以=,=(0, ,1),=(,-,0).
设n=(x,y,z)是平面BDF的法向量,
则n⊥,n⊥,
所以?
取y=1,得x=1,z=-.
则n=(1,1,-).
因为=.
所以n=- ,得n与共线.
所以AM⊥平面BDF.
10.底面ABCD是正方形,AS⊥平面ABCD,且AS=AB,E是SC的中点.求证:平面BDE⊥平面ABCD.
【证明】 法一 设AB=BC=CD=DA=AS=1,建立如图所示的空间直角坐标系Axyz,则B(1,0,0),D(0,1,0),A(0,0,0),S(0,0,1),E.
连接AC,设AC与BD相交于点O,连接OE,则点O的坐标为.
因为=(0,0,1),=,
所以=.所以OE∥AS.
又因为AS⊥平面ABCD,
所以OE⊥平面ABCD.
又因为OE?平面BDE,
所以平面BDE⊥平面ABCD.
法二 设平面BDE的法向量为n1=(x,y,z),
因为=(-1,1,0),=,
所以即
令x=1,可得平面BDE的一个法向量为n1=(1,1,0).
因为AS⊥平面ABCD,
所以平面ABCD的一个法向量为n2==(0,0,1).
因为n1·n2=0,
所以平面BDE⊥平面ABCD.
[能力提升]
1.如图3-2-16,在正方体ABCD-A1B1C1D1中,以D为原点建立空间直角坐标系,E为BB1的中点,F为A1D1的中点,则下列向量中,能作为平面AEF的法向量的是(  )
图3-2-16
A.(1,-2,4)
B.(-4,1,-2)
C.(2,-2,1)
D.(1,2,-2)
【解析】 设平面AEF的一个法向量为n=(x,y,z),正方体ABCD-A1B1C1D1的棱长为1,
则A(1,0,0),E,F.
故=,=.
所以
即所以
当z=-2时,n=(-4,1,-2),故选B.
【答案】 B
2.如图3-2-17,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面A1B1C1,∠BAC=90°,AB=AC=AA1=1,D是棱CC1的中点,P是AD的延长线与A1C1的延长线的交点.若点Q在线段B1P上,则下列结论正确的是(  )
图3-2-17
A.当点Q为线段B1P的中点时,DQ⊥平面A1BD
B.当点Q为线段B1P的三等分点时,DQ⊥平面A1BD
C.在线段B1P的延长线上,存在一点Q,使得DQ⊥平面A1BD
D.不存在DQ与平面A1BD垂直
【解析】 以A1为原点,A1B1,A1C1,A1A所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则由已知得A1(0,0,0),B1(1,0,0),C1(0,1,0),B(1,0,1),D,P(0,2,0),=(1,0,1),=,=(-1,2,0),=.设平面A1BD的法向量为n=(x,y,z),则取z=-2,则x=2,y=1,所以平面A1BD的一个法向量为n=(2,1,-2).假设DQ⊥平面A1BD,且=λ=λ(-1,2,0)=(-λ,2λ,0),则=+=,因为也是平面A1BD的法向量,所以n=(2,1,-2)与=共线,于是有===成立,但此方程关于λ无解.故不存在DQ与平面A1BD垂直,故选D.
【答案】 D
3.如图3-2-18,四棱锥P-ABCD的底面ABCD是边长为1的正方形,PD⊥底面ABCD,且PD=1,若E,F分别为PB,AD中点,则直线EF与平面PBC的位置关系________.
图3-2-18
【解析】 以D为原点,DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系,则E,F,∴=,平面PBC的一个法向量n=(0,1,1),∵=-n,
∴∥n,
∴EF⊥平面PBC.
【答案】 垂直
4.如图3-2-19,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD.若PA=AB=BC=AD.
图3-2-19
(1)求证:CD⊥平面PAC;
(2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明,若不存在,请说明理由. 【导学号:18490113】
【解】 因为∠PAD=90°,所以PA⊥AD.又因为侧面PAD⊥底面ABCD,且侧面PAD∩底面ABCD=AD,所以PA⊥底面ABCD.又因为∠BAD=90°,所以AB,AD,AP两两垂直.分别以AB,AD,AP所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系.
设AD=2,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1).
(1)=(0,0,1),=(1,1,0),=(-1,1,0),
可得·=0,·=0,所以AP⊥CD,AC⊥CD.
又因为AP∩AC=A,所以CD⊥平面PAC.
(2)设侧棱PA的中点是E,则E,=.
设平面PCD的法向量是n=(x,y,z),则因为=(-1,1,0),=(0,2,-1),所以取x=1,则y=1,z=2,所以平面PCD的一个法向量为n=(1,1,2).
所以n·=(1,1,2)·=0,所以n⊥.
因为BE?平面PCD,所以BE∥平面PCD.
综上所述,当E为PA的中点时,BE∥平面PCD.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.若异面直线l1的方向向量与l2的方向向量的夹角为150°,则l1与l2所成的角为(  )
A.30°       B.150°
C.30°或150° D.以上均不对
【解析】 l1与l2所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为.应选A.
【答案】 A
2.已知A(0,1,1),B(2,-1,0),C(3,5,7),D(1,2,4),则直线AB与直线CD所成角的余弦值为(  )
A. B.-
C. D.-
【解析】 =(2,-2,-1),=(-2,-3,-3),
∴cos〈,〉===,
∴直线AB,CD所成角的余弦值为.
【答案】 A
3.正方形ABCD所在平面外一点P,PA⊥平面ABCD,若PA=AB,则平面PAB与平面PCD的夹角为(  )
A.30°  B.45°
C.60°   D.90°
【解析】 如图所示,建立空间直角坐标系,设PA=AB=1.则A(0,0,0),D(0,1,0),P(0,0,1).于是=(0,1,0).
取PD中点为E,
则E,∴=,
易知是平面PAB的法向量,是平面PCD的法向量,∴cos?,?=,
∴平面PAB与平面PCD的夹角为45°.
【答案】 B
4.如图3-2-28,在空间直角坐标系Dxyz中,四棱柱ABCD-A1B1C1D1为长方体,AA1=AB=2AD,点E,F分别为C1D1,A1B的中点,则二面角B1-A1B-E的余弦值为(  )
【导学号:18490121】
图3-2-28
A.- B.-
C.  D. 
【解析】 设AD=1,则A1(1,0,2),B(1,2,0),因为E,F分别为C1D1,A1B的中点,所以E(0,1,2),F(1,1,1),所以=(-1,1,0),=(0,2,-2),设m=(x,y,z)是平面A1BE的法向量,则所以所以取x=1,则y=z=1,所以平面A1BE的一个法向量为m=(1,1,1),又DA⊥平面A1B1B,所以=(1,0,0)是平面A1B1B的一个法向量,所以cos〈m,〉===,又二面角B1-A1B-E为锐二面角,所以二面角B1-A1B-E的余弦值为,故选C.
【答案】 C
5.如图3-2-29,空间正方体ABCD-A1B1C1D1中,M,N分别是CD,CC1的中点,则异面直线A1M与DN所成角的大小是(  )
图3-2-29
A. B.
C. D.
【解析】 以D为原点,DA,DC,DD1所在直线为坐标轴建系,则=,=,
cos〈,〉==0.
∴〈,〉=.
【答案】 D
二、填空题
6.在棱长为1的正方体ABCD-A1B1C1D1中,M,N分别为A1B1,BB1的中点,则异面直线AM与CN所成角的余弦值是________.
【解析】 依题意,建立如图所示的坐标系,则A(1,0,0),M,C(0,1,0),N,
∴=,
=,
∴cos〈,〉==,
故异面直线AM与CN所成角的余弦值为.
【答案】 
7.在空间直角坐标系Oxyz中,已知A(1,-2,0),B(2,1,),则向量与平面xOz的法向量的夹角的正弦值为________.
【解析】 设平面xOz的法向量为n=(0,t,0)(t≠0),=(1,3, ),所以cos〈n,〉==,因为〈n,〉∈[0,π],所以sin〈n,〉==.
【答案】 
8.已知点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则平面AEF与平面ABC所成的二面角的正切值等于________.
【解析】 如图,建立空间直角坐标系.
设正方体的棱长为1,平面ABC的法向量为n1=(0,0,1),平面AEF的法向量为n2=(x,y,z).
所以A(1,0,0),E,F,
所以=,=,
则即
取x=1,则y=-1,z=3.故n2=(1,-1,3).
所以cos〈n1,n2〉==.
所以平面AEF与平面ABC所成的二面角的平面角α满足cos α=,sin α=,所以tan α=.
【答案】 
三、解答题
9.如图3-2-30所示,在四面体ABCD中,O,E分别是BD,BC的中点,CA=CB=CD=BD=2,AB=AD=. 【导学号:18490119】
图3-2-30
(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的余弦值.
【解】 (1)证明:连接OC,
由题意知BO=DO,AB=AD,
∴AO⊥BD.
又BO=DO,BC=CD,∴CO⊥BD.
在△AOC中,由已知可得AO=1,CO=,
又AC=2,∴AO2+CO2=AC2,
∴∠AOC=90°,即AO⊥OC.
∵BD∩OC=O,∴AO⊥平面BCD.
(2)以O为坐标原点建立空间直角坐标系,
则B(1,0,0),D(-1,0,0),C(0, ,0),A(0,0,1),
E,
∴=(-1,0,1),=(-1,-,0),
∴cos〈,〉==.
∴异面直线AB与CD所成角的余弦值为.
10.四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当PD=AB且E为PB的中点时,求AE与平面PDB所成的角的大小.
【解】 如图,以D为原点建立空间直角坐标系Dxyz,设AB=a,PD=h,则
A(a,0,0),B(a,a,0),C(0,a,0),D(0,0,0),P(0,0,h),
(1)∵=(-a,a,0),=(0,0,h),=(a,a,0),
∴·=0,·=0,
∴AC⊥DP,AC⊥DB,又DP∩DB=D,
∴AC⊥平面PDB,
又AC?平面AEC,∴平面AEC⊥平面PDB.
(2)当PD=AB且E为PB的中点时,P(0,0,a),E,
设AC∩BD=O,O,连接OE,由(1)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所成的角,
∵=,=,
∴cos∠AEO==,
∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.
[能力提升]
1.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为(  )
A.60° B.90°
C.45° D.以上都不对
【解析】 以点D为原点,分别以DA,DC,DD1所在直线为x轴、y轴、z轴,建立空间直角坐标系,如图.
由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).
设平面A1ED1的一个法向量为n=(x,y,z),
则
得
令z=1,得y=1,x=0,所以n=(0,1,1),
cos〈n,〉===-1.
所以〈n,〉=180°.
所以直线AE与平面A1ED1所成的角为90°.
【答案】 B
2.在三棱柱ABC-A1B1C1中,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为(  )
图3-2-31
A. B.
C. D.
【解析】 不妨设CA=CC1=2CB=2,
则=(-2,2,1),=(0,-2,1),
所以cos〈,〉=
==-.
因为直线BC1与直线AB1的夹角为锐角,所以所求角的余弦值为.
【答案】 A
3.在空间中,已知平面α过(3,0,0)和(0,4,0)及z轴上一点(0,0,a)(a>0),如果平面α与平面xOy的夹角为45°,则a=________.
【解析】 平面xOy的法向量为n=(0,0,1),设平面α的法向量为u=(x,y,z),则
即3x=4y=az,取z=1,则u=.
而cos〈n,u〉==,
又∵a>0,∴a=.
【答案】 
4.如图3-2-32,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.
图3-2-32
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.
【导学号:18490120】
【解】 (1)以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4) ,C1(0,2,4),
所以=(2,0,-4),=(1,-1,-4).
因为cos〈,〉===,
所以异面直线A1B与C1D所成角的余弦值为.
(2)设平面ADC1的法向量为n1=(x,y,z),因为=(1,1,0),=(0,2,4),所以n1·=0,n1·=0,即x+y=0且y+2z=0,取z=1,得x=2,y=-2,所以n1=(2,-2,1)是平面ADC1的一个法向量.取平面AA1B的一个法向量为n2=(0,1,0),设平面ADC1与平面ABA1所成二面角的大小为θ.
由|cos θ|===,
得sin θ=.
因此,平面ADC1与平面ABA1所成二面角的正弦值为.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.曲线x2-xy-y2-3x+4y-4=0与x轴的交点坐标是(  )
A.(4,0)和(-1,0)   B.(4,0)和(-2,0)
C.(4,0)和(1,0) D.(4,0)和(2,0)
【解析】 在曲线x2-xy-y2-3x+4y-4=0中,令y=0,则x2-3x-4=0,∴x=-1或x=4.
∴交点坐标为(-1,0)和(4,0).
【答案】 A
2.方程(x2-4)(y2-4)=0表示的图形是(  )
A.两条直线 B.四条直线
C.两个点 D.四个点
【解析】 由(x2-4)(y2-4)=0得(x+2)(x-2)(y+2)·(y-2)=0,所以x+2=0或x-2=0或y+2=0或y-2=0,表示四条直线.
【答案】 B
3.在平面直角坐标系xOy中,若定点A(1,2)与动点P(x,y)满足·=4,则点P的轨迹方程是(  )
A.x+y=4 B.2x+y=4
C.x+2y=4 D.x+2y=1
【解析】 由=(x,y),=(1,2)得·=(x,y)·(1,2)=x+2y=4,则x+2y=4即为所求的轨迹方程,故选C.
【答案】 C
4.方程(2x-y+2)·=0表示的曲线是(  )
A.一个点与一条直线
B.两个点
C.两条射线或一个圆
D.两个点或一条直线或一个圆
【解析】 原方程等价于x2+y2-1=0,即x2+y2=1,或故选C.
【答案】 C
5.已知方程y=a|x|和y=x+a(a>0)所确定的两条曲线有两个交点,则a的取值范围是(  )
A.a>1 B.0<a<1
C.0<a<1或a>1 D.a∈?
【答案】 A
二、填空题
6.“曲线C上的点的坐标都是方程f(x,y)=0的解”是“方程f(x,y)=0是曲线C的方程”的________条件.
【解析】 “方程f(x,y)=0是曲线C的方程 ”?“曲线C上的点的坐标都是方程f(x,y)=0的解”,反之不成立.
【答案】 必要不充分
7.方程·(x+y+1)=0表示的几何图形是________________.
【解析】 由方程得或x-3=0,
即x+y+1=0(x≥3)或x=3.
【答案】 一条射线和一条直线
8.(2016·广东省华南师大附中月考)已知定点F(1,0),动点P在y轴上运动,点M在x轴上,且·=0,延长MP到点N,使得||=||,则点N的轨迹方程是________. 【导学号:18490037】
【解析】 由于||=||,则P为MN的中点.设N(x,y),则M(-x,0),P,由·=0,得·=0,所以(-x)·1+·=0,则y2=4x,即点N的轨迹方程是y2=4x.
【答案】 y2=4x
三、解答题
9.如图2-1-1,圆O1与圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1、圆O2的切线PM,PN(M,N分别为切点),使得|PM|=|PN|,试建立适当的坐标系,并求动点P的轨迹方程.
图2-1-1
【解】 以O1O2的中点为原点,O1O2所在直线为x轴,建立如图所示的平面直角坐标系,
得O1(-2,0),O2(2,0).
连结PO1,O1M,PO2,O2N.
由已知|PM|=|PN|,得
|PM|2=2|PN|2,
又在Rt△PO1M中,|PM|2=|PO1|2-|MO1|2,
在Rt△PO2N中,|PN|2=|PO2|2-|NO2|2,
即得|PO1|2-1=2(|PO2|2-1).
设P(x,y),则(x+2)2+y2-1=2[(x-2)2+y2-1],
化简得(x-6)2+y2=33.
因此所求动点P的轨迹方程为(x-6)2+y2=33.
10.△ABC的三边长分别为|AC|=3,|BC|=4,|AB|=5,点P是△ABC内切圆上一点,求|PA|2+|PB|2+|PC|2的最小值与最大值.
【解】 因为|AB|2=|AC|2+|BC|2,所以∠ACB=90°.
以C为原点O,CB,CA所在直线分别为x轴、y轴建立如图所示的平面直角坐标系,由于|AC|=3,|BC|=4,得C(0,0),A(0,3),B(4,0).
设△ABC内切圆的圆心为(r,r),
由△ABC的面积=×3×4=r+2r+r,
得r=1,
于是内切圆的方程为(x-1)2+(y-1)2=1?x2+y2=2x+2y-1,
由(x-1)2≤1?0≤x≤2.
设P(x,y),那么|PA|2+|PB|2+|PC|2=x2+(y-3)2+(x-4)2+y2+x2+y2=3(x2+y2)-8x-6y+25=3(2x+2y-1)-8x-6y+25=22-2x,
所以当x=0时,|PA|2+|PB|2+|PC|2取最大值为22,
当x=2时取最小值为18.
[能力提升]
1.到点A(0,0),B(-3,4)的距离之和为5的轨迹方程是(  )
A.y=-x(-3≤x≤0)
B.y=-x(0≤x≤4)
C.y=-x(-3≤x≤4)
D.y=-x(0≤x≤5)
【解析】 注意到|AB|=5,则满足到点A(0,0),B(-3,4)的距离之和为5的点必在线段AB上,因此,方程为y=-x(-3≤x≤0),故选A.
【答案】 A
2.(2016·河南省实验中学月考)已知动点P到定点(1,0)和定直线x=3的距离之和为4,则点P的轨迹方程为(  )
A.y2=4x
B.y2=-12(x-4)
C.y2=4x(x≥3)或y2=-12(x-4)(x<3)
D.y2=4x(x≤3)或y2=-12(x-4)(x>3)
【解析】 设P(x,y),由题意得+|x-3|=4.若x≤3,则y2=4x;若x>3,则y2=-12(x-4),故选D.
【答案】 D
3.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于________.
【解析】 设动点P(x,y),
依题意|PA|=2|PB|,
∴=2,
化简得(x-2)2+y2=4,
方程表示半径为2的圆,
因此图形的面积S=π·22=4π.
【答案】 4π
4.过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.
【导学号:18490038】
【解】 法一 设点M的坐标为(x,y),
∵M为线段AB的中点,
∴A点的坐标为(2x,0),B点的坐标为(0,2y).
∵l1⊥l2,且l1,l2过点P(2,4),
∴PA⊥PB,即kPA·kPB=-1,
而kPA==(x≠1),
kPB==,
∴·=-1(x≠1),
整理得x+2y-5=0(x≠1).
∵当x=1时,A,B的坐标分别为(2,0),(0,4),
∴线段AB的中点坐标是(1,2),它满足方程x+2y-5=0.
综上所述,点M的轨迹方程是x+2y-5=0.
法二 设点M的坐标为(x,y),则A,B两点的坐标分别是(2x,0),(0,2y),连结PM.
∵l1⊥l2,∴2|PM|=|AB|.
而|PM|=,
|AB|=,
∴2=,
化简得x+2y-5=0,即为所求的点M的轨迹方程.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.(2016·潍坊高二检测)如果方程+=1表示焦点在x轴上的椭圆,则实数a的取值范围是(  )
A.(3,+∞)
B.(-∞,-2)
C.(3,+∞)∪(-∞,-2)
D.(3,+∞)∪(-6,-2)
【解析】 由于椭圆的焦点在x轴上,
所以即
解得a>3或-6<a<-2,故选D.
【答案】 D
2.已知椭圆过点P和点Q,则此椭圆的标准方程是(  )
A.+x2=1
B.+y2=1或x2+=1
C.+y2=1
D.以上都不对
【解析】 设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),
则
∴
∴椭圆的方程为x2+=1.
【答案】 A
3.(2016·合肥高二月考)设F1,F2是椭圆+=1的两个焦点,P是椭圆上的点,且|PF1|∶|PF2|=2∶1,则△F1PF2的面积等于(  )
A.5   B.4   
C.3    D.1
【解析】 由椭圆方程,得a=3,b=2,c=,∴|PF1|+|PF2|=2a=6,又|PF1|∶|PF2|=2∶1,∴|PF1|=4,|PF2|=2,由22+42=(2)2,可知△F1PF2是直角三角形,故△F1PF2的面积为|PF1|·|PF2|=×4×2=4,故选B.
【答案】 B
4.椭圆mx2+ny2=-mn(m【导学号:18490042】
A.(0,±) B.(±,0)
C.(0,±) D.(±,0)
【解析】 将mx2+ny2=-mn(m-n>0,得焦点在y轴上,即a2=-m,b2=-n,得c2=a2-b2=n-m,故选C.
【答案】 C
5.设P是椭圆+=1上一点,P到两焦点F1,F2的距离之差为2,则△PF1F2是(  )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.等腰直角三角形
【解析】 由椭圆定义知,|PF1|+|PF2|=2a=8,
又|PF1|-|PF2|=2,∴|PF1|=5,|PF2|=3,
又|F1F2|=2c=2=4,
即|F1F2|2+|PF2|2=|PF1|2,
∴△PF1F2为直角三角形.
【答案】 B
二、填空题
6.已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上一点,且⊥.若△PF1F2的面积为9,则b=________.
【解析】 依题意,有
可得4c2+36=4a2,即a2-c2=9,故有b=3.
【答案】 3
7.已知椭圆C经过点A(2,3),且点F(2,0)为其右焦点,则椭圆C的标准方程为________.
【解析】 法一:依题意,可设椭圆C的方程为+=1(a>b>0),且可知左焦点为F′(-2,0).
从而有
解得
又a2=b2+c2,所以b2=12,
故椭圆C的标准方程为+=1.
法二:依题意,可设椭圆C的方程为
+=1(a>b>0),
则
解得b2=12或b2=-3(舍去),
从而a2=16,所以椭圆C的标准方程为+=1.
【答案】 +=1
8.已知P是椭圆+=1上的一动点,F1,F2是椭圆的左、右焦点,延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹方程是________.
【解析】 如图,依题意,|PF1|+|PF2|=2a(a是常数且a>0).
又|PQ|=|PF2|,
∴|PF1|+|PQ|=2a,
即|QF1|=2a.
由题意知,a=2,b=,c===1.
∴|QF1|=4,F1(-1,0),
∴动点Q的轨迹是以F1为圆心,4为半径的圆,
∴动点Q的轨迹方程是(x+1)2+y2=16.
【答案】 (x+1)2+y2=16
三、解答题
9.设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点.设椭圆C上一点到两焦点F1,F2的距离和等于4,写出椭圆C的方程和焦点坐标.
【解】 ∵椭圆上一点到两焦点的距离之和为4,
∴2a=4,a2=4,
∵点是椭圆上的一点,
∴+=1,
∴b2=3,∴c2=1,
∴椭圆C的方程为+=1.
焦点坐标分别为(-1,0),(1,0).
10.求满足下列条件的椭圆的标准方程:
(1)焦点在y轴上,焦距是4,且经过点M(3,2);
(2)c∶a=5∶13,且椭圆上一点到两焦点的距离的和为26. 【导学号:18490043】
【解】 (1)由焦距是4,可得c=2,且焦点坐标为(0,-2),(0,2).
由椭圆的定义知,
2a=+=8,
所以a=4,所以b2=a2-c2=16-4=12.又焦点在y轴上,
所以椭圆的标准方程为+=1.
(2)由题意知,2a=26,即a=13,又因为c∶a=5∶13,所以c=5,
所以b2=a2-c2=132-52=144,
因为焦点所在的坐标轴不确定,
所以椭圆的标准方程为+=1或+=1.
[能力提升]
1.“0A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 曲线+=1表示椭圆等价于
得t∈∪.故选B.
【答案】 B
2.已知椭圆+=1的焦点为F1,F2,点P在椭圆上.若线段PF1的中点在y轴上,则|PF1|是|PF2|的(  )
A.7倍 B.5倍
C.4倍 D.3倍
【解析】 由已知F1(-3,0),F2(3,0),
由条件,知P,即|PF2|=.
由椭圆的定义,知|PF1|+|PF2|=2a=4.
所以|PF1|=.
所以|PF1|=7|PF2|.
【答案】 A
3.椭圆+=1的一个焦点为F1,点P在椭圆上.如果线段PF1的中点M在y轴上,那么点M的纵坐标是________.
【解析】 由条件可取F1(-3,0),∵PF1的中点在y轴上,
∴设P(3,y0),由P在椭圆+=1上得y0=±,
∴M的坐标为.
【答案】 ±
4.设椭圆C:+=1(a>b>0)的左右焦点分别为F1,F2,过点F2的直线与椭圆C相交于A,B两点(如图2-2-3),∠F1F2B=,△F1F2A的面积是△F1F2B面积的2倍.若|AB|=,求椭圆C的方程.
【导学号:18490044】
图2-2-3
【解】 由题意可得S△F1F2A=2S△F1F2B,
∴|F2A|=2|F2B|,
由椭圆的定义得
|F1B|+|F2B|=|F1A|+|F2A|=2a,
设|F2A|=2|F2B|=2m,
在△F1F2B中,由余弦定理得
(2a-m)2=4c2+m2-2·2c·m·cos?
m=.
在△F1F2A中,同理可得m=,
所以=,解得2a=3c,
可得m=,|AB|=3m==,c=4.
由=,得a=6,b2=20,
所以椭圆C的方程为+=1.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.(2016·人大附中月考)焦点在x轴上,短轴长为8,离心率为的椭圆的标准方程是(  )
A.+=1     B.+=1
C.+=1 D.+=1
【解析】 由题意知2b=8,得b=4,所以b2=a2-c2=16,又e==,解得c=3,a=5,又焦点在x轴上,故椭圆的标准方程为+=1,故选C.
【答案】 C
2.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为(  )
A. B.
C. D.
【解析】 由题意知a=2c,∴e===.
【答案】 A
3.曲线+=1与+=1(0A.有相等的焦距,相同的焦点
B.有相等的焦距,不同的焦点
C.有不等的焦距,不同的焦点
D.以上都不对
【解析】 曲线+=1的焦距为2c=8,而曲线+=1(0<k<9)表示的椭圆的焦距也是8,但由于焦点所在的坐标轴不同,故选B.
【答案】 B
4.已知O是坐标原点,F是椭圆+=1的一个焦点,过F且与x轴垂直的直线与椭圆交于M,N两点,则cos∠MON的值为(  )
A. B.-
C. D.-
【解析】 由题意,a2=4,b2=3,
故c===1.
不妨设M(1,y0),N(1,-y0),所以+=1,
解得y0=±,
所以|MN|=3,|OM|=|ON|==.
由余弦定理知cos∠MON===-.
【答案】 B
5.如图2-2-4,直线l:x-2y+2=0过椭圆的左焦点F1和一个顶点B,该椭圆的离心率为(  )
图2-2-4
A. B.
C. D.
【答案】 D
二、填空题
6.已知长方形ABCD,AB=4,BC=3,则以A,B为焦点,且过C、D的椭圆的离心率为________. 【导学号:18490048】
【解析】 如图,AB=2c=4,∵点C在椭圆上,∴CB+CA=2a=3+5=8,∴e===.
【答案】 
7.设AB是椭圆+=1的不垂直于对称轴的弦,M为AB的中点,O为坐标原点,则kAB·kOM=________.
【解析】 设A(x1,y1),B(x2,y2),则中点坐标M,得kAB=,
kOM=,kAB·kOM=,
b2x+a2y=a2b2,b2x+a2y=a2b2,
得b2(x-x)+a2(y-y)=0,即=-.
【答案】 -
8.已知P(m,n)是椭圆x2+=1上的一个动点,则m2+n2的取值范围是________.
【解析】 因为P(m,n)是椭圆x2+=1上的一个动点,所以m2+=1,即n2=2-2m2,所以m2+n2=2-m2,又-1≤m≤1,所以1≤2-m2≤2,所以1≤m2+n2≤2.
【答案】 [1,2]
三、解答题
9.(1)求与椭圆+=1有相同的焦点,且离心率为的椭圆的标准方程;
(2)已知椭圆的两个焦点间的距离为8,两个顶点坐标分别是(-6,0),(6,0),求焦点在x轴上的椭圆的标准方程.
【解】 (1)∵c==,
∴所求椭圆的焦点为(-,0),(,0).
设所求椭圆的方程为+=1(a>b>0).
∵e==,c=,
∴a=5,b2=a2-c2=20,
∴所求椭圆的方程为+=1.
(2)因为椭圆的焦点在x轴上,
所以设它的标准方程为+=1(a>b>0),
∵2c=8,∴c=4,
又a=6,∴b2=a2-c2=20.
∴椭圆的方程为+=1.
10.设椭圆+=1(a>b>0)与x轴交于点A,以OA为边作等腰三角形OAP,其顶点P在椭圆上,且∠OPA=120°,求椭圆的离心率.
【解】 不妨设A(a,0),点P在第一象限内,由题意知,点P的横坐标是,设P,由点P在椭圆上,得+=1,y2=b2,即P,又∠OPA=120°,所以∠POA=30°,故tan∠POA==,所以a=3b,所以e====.
[能力提升]
1.(2016·福州高二期末)设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是(  )
A. B.-1
C.2- D.
【解析】 设椭圆的方程为+=1(a>b>0),
由题意得|PF2|==2c,
即=2c,
得离心率e=-1,故选B.
【答案】 B
2.“m=3”是“椭圆+=1的离心率为”的(  )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】 椭圆+=1的离心率为,
当0当m>4时,=,得m=,
即“m=3”是“椭圆+=1的离心率为”的充分不必要条件.
【答案】 A
3.(2016·济南历城高二期末)已知椭圆+=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若=2,则椭圆的离心率是________.
【解析】 由=2,得|AO|=2|FO|(O为坐标原点),即a=2c,
则离心率e=.
【答案】 
4.已知点A,B分别是椭圆+=1的左、右顶点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)求点P的坐标; 【导学号:18490049】
(2)设M是椭圆长轴AB上的一点,且M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.
【解】 (1)由已知可得A(-6,0),B(6,0),F(4,0),
设点P的坐标是(x,y),
则=(x+6,y),=(x-4,y).
由已知得
则2x2+9x-18=0,解得x=或x=-6.
由于y>0,所以只能取x=,于是y=.
所以点P的坐标是.
(2)直线AP的方程是x-y+6=0.
设点M的坐标是(m,0),
则M到直线AP的距离是,又B(6,0),
于是=|m-6|,
又-6≤m≤6,解得m=2,
设椭圆上的点(x,y)到点M的距离为d,有
d2=(x-2)2+y2=x2-4x+4+20-x2
=+15,
由于-6≤x≤6,所以当x=时,d取最小值为.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知椭圆+=1上的焦点为F,直线x+y-1=0和x+y+1=0与椭圆分别相交于点A,B和C,D,则|AF|+|BF|+|CF|+|DF|=(  )
A.2  B.4  
C.4    D.8
【解析】 由题可得a=2.如图,设F1为椭圆的下焦点,两条平行直线分别经过椭圆的两个焦点,连接AF1,BF1,CF,FD.由椭圆的对称性可知, 四边形AFDF1为平行四边形,
∴|AF1|=|FD|,同理可得|BF1|=|CF|,∴|AF|+|BF|+|CF|+|DF|=|AF|+|BF|+|BF1|+|AF1|=4a=8,故选D.
【答案】 D
2.若直线y=x+2与椭圆+=1有两个公共点,则m的取值范围是(  )
A.(-∞,0)∪(1,+∞) B.(1,3)∪(3,+∞)
C.(-∞,-3)∪(-3,0) D.(1,3)
【解析】 由
消去y,整理得(3+m)x2+4mx+m=0.
若直线与椭圆有两个公共点,
则
解得
由+=1表示椭圆,知m>0且m≠3.综上可知,m>1且m≠3,故选B.
【答案】 B
3.若点P(a,1)在椭圆+=1的外部,则a的取值范围为(  )
A.
B.∪
C.
D.
【解析】 因为点P在椭圆+=1的外部,所以+>1,解得a>或a<-,故选B.
【答案】 B
4.椭圆mx2+ny2=1(m>0,n>0且m≠n)与直线y=1-x交于M,N两点,过原点与线段MN中点所在直线的斜率为,则的值是(  )
A. B.
C. D.
【解析】 联立方程组可得
得(m+n)x2-2nx+n-1=0,
设M(x1,y1),N(x2,y2),MN的中点P(x0,y0),
则x0==,
y0=1-x0=1-=.
∴kOP===.故选A.
【答案】 A
5.已知椭圆C:+y2=1的右焦点为F,直线l:x=2,点A∈l,线段AF交椭圆C于点B,若=3,则||=(  )
A. B.2
C. D.3
【解析】 设点A(2,n),B(x0,y0).
由椭圆C:+y2=1知a2=2,b2=1,
∴c2=1,即c=1,∴右焦点F(1,0).
由=3,得(1,n)=3(x0-1,y0).
∴1=3(x0-1)且n=3y0.
∴x0=,y0=n.
将x0,y0代入+y2=1,得
×+=1.
解得n2=1,
∴||===.
【答案】 A
二、填空题
6.若直线x-y-m=0与椭圆+y2=1有且仅有一个公共点,则m=________. 【导学号:18490053】
【解析】 将直线方程代入椭圆方程,消去x,得到10y2+2my+m2-9=0,
令Δ=0,解得m=±.
【答案】 ±
7.已知F1为椭圆C:+y2=1的左焦点,直线l:y=x-1与椭圆C交于A,B两点,那么|F1A|+|F1B|的值为________.
【解析】 设点A(x1,y1),B(x2,y2)(x1<x2),
由消去y,得3x2-4x=0.
∴A(0,-1),B.
∴|AB|=,
∴|F1A|+|F1B|=4a-|AB|=4-=.
【答案】 
8.过椭圆+=1的右焦点F作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则△OAB的面积为________.
【解析】 由已知可得直线方程为y=2x-2,联立方程组
解得A(0,-2),B,
∴S△AOB=·|OF|·|yA-yB|=.
【答案】 
三、解答题
9.已知椭圆4x2+y2=1及直线y=x+m.
(1)当直线和椭圆有公共点时,求实数m的取值范围;
(2)求被椭圆截得的最长弦所在的直线方程.
【解】 (1)由题意得消去y,整理得:
5x2+2mx+m2-1=0.
∵直线与椭圆有公共点,
∴Δ=4m2-20(m2-1)=20-16m2≥0,
∴-≤m≤.
(2)设直线与椭圆的交点为A(x1,y1),B(x2,y2),
则由(1)得
∴|AB|=|x1-x2|
=·
=·
=.
∵-≤m≤,
∴0≤m2≤,
∴当m=0时,|AB|取得最大值,此时直线方程为y=x,即x-y=0.
10.已知椭圆C:+=1(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.
【解】 (1)由题意得
解得b=,
所以椭圆C的方程为+=1.
(2)由
得(1+2k2)x2-4k2x+2k2-4=0,
设点M,N的坐标分别为(x1,y1),(x2,y2),则
y1=k(x1-1),y2=k(x2-1),
x1+x2=,x1x2=,
所以|MN|=
=
=,
又因为点A(2,0)到直线y=k(x-1)的距离
d=,
所以△AMN的面积为S=|MN|·d=,
由=,
化简得7k4-2k2-5=0,解得k=±1.
[能力提升]
1.设F1,F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P,Q两点,当四边形PF1QF2的面积最大时,则·的值等于(  )
A.0 B.2
C.4 D.-2
【解析】 由题意得c==,
又S四边形PF1QF2=2S△PF1F2=2××|F1F2|·h(h为F1F2边上的高),
所以当h=b=1时,S四边形PF1QF2取最大值,
此时∠F1PF2=120°.
所以·=||·||·cos 120°=2×2×=-2.
故选D.
【答案】 D
2.过椭圆+=1内一点P (2,-1)的弦恰好被P点平分,则这条弦所在的直线方程是(  )
A.5x-3y+13=0 B.5x+3y+13=0
C.5x-3y-13=0 D.5x+3y-13=0
【解析】 设弦的两端点A(x1,y1),B(x2,y2),
联立方程组
两式作差可得:
5(x1+x2)(x1-x2)=-6(y1+y2)(y1-y2), ①
又弦的中点为(2,-1),
可得x1+x2=4,y1+y2=-2, ②
将②代入①式可得k==,
故直线的方程为y+1=(x-2),
化为一般式为5x-3y-13=0,故选C.
【答案】 C
3.斜率为1的直线l与椭圆+y2=1相交于A,B两点,则|AB|的最大值为________. 【导学号:18490054】
【解析】 法一 设直线l的方程为y=x+t,
由消去y,得
+(x+t)2=1,
整理得5x2+8tx+4(t2-1)=0.
∵Δ=64t2-80(t2-1)>0,
∴-设直线与椭圆交于A(x1,y1),B(x2,y2)两点,
则x1+x2=-,x1·x2=.
∴|AB|=
=
=.
当t=0时,|AB|为最大,即|AB|max=.
法二 根据椭圆的对称性,当直线斜率固定时,直线过原点时截椭圆所得弦长最长,将y=x代入+y2=1得交点坐标为A和B,
故|AB|=.
【答案】 
4.(2013·天津高考)设椭圆+=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若·+·=8,求k的值.
【解】 (1)设F(-c,0),由=,知a=c.
过点F且与x轴垂直的直线为x=-c,
代入椭圆方程有+=1,
解得y=±,于是=,
解得b=,
又a2-c2=b2,从而a=,c=1,
所以椭圆的方程为+=1.
(2)设点C(x1,y1),D(x2,y2),
由F(-1,0)得直线CD的方程为y=k(x+1),
由方程组消去y,
整理得(2+3k2)x2+6k2x+3k2-6=0.
可得x1+x2=-,x1x2=.
因为A(-,0),B(,0),
所以·+·
=(x1+,y1)·(-x2,-y2)+(x2+,y2)·(-x1,-y1)
=6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1)
=6-(2+2k2)x1x2-2k2(x1+x2)-2k2
=6+.
由已知得6+=8,
解得k=±.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.方程-=1表示双曲线,则m的取值范围为(  )
A.-2<m<2     B.m>0
C.m≥0 D.|m|≥2
【解析】 ∵已知方程表示双曲线,∴(2+m)(2-m)>0.∴-2<m<2.
【答案】 A
2.设动点P到A(-5,0)的距离与它到B(5,0)距离的差等于6,则P点的轨迹方程是(  )
A.-=1 B.-=1
C.-=1(x≤-3) D.-=1(x≥3)
【解析】 由题意知,轨迹应为以A(-5,0),B(5,0)为焦点的双曲线的右支.由c=5,a=3,知b2=16,
∴P点的轨迹方程为-=1(x≥3).
【答案】 D
3.已知双曲线的中心在原点,两个焦点F1,F2分别为(,0)和(-,0),点P在双曲线上,且PF1⊥PF2,△PF1F2的面积为1,则双曲线的方程为(  )
A.-=1 B.-=1
C.-y2=1 D.x2-=1
【解析】 由
?(|PF1|-|PF2|)2=16,
即2a=4,解得a=2,又c=,所以b=1,故选C.
【答案】 C
4.已知椭圆方程+=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为(  )
A. B.
C.2 D.3
【解析】 椭圆的焦点为(1,0),顶点为(2,0),即双曲线中a=1,c=2,所以双曲线的离心率为e===2.
【答案】 C
5.若k>1,则关于x,y的方程(1-k)x2+y2=k2-1所表示的曲线是(  )
A.焦点在x轴上的椭圆
B.焦点在y轴上的椭圆
C.焦点在y轴上的双曲线
D.焦点在x轴上的双曲线
【解析】 原方程化为标准方程为+=1,
∵k>1,∴1-k<0,k2-1>0,
∴此曲线表示焦点在y轴上的双曲线.
【答案】 C
二、填空题
6.设点P是双曲线-=1上任意一点,F1,F2分别是其左、右焦点,若|PF1|=10,则|PF2|=________.
【解析】 由双曲线的标准方程得a=3,b=4.
于是c==5.
(1)若点P在双曲线的左支上,
则|PF2|-|PF1|=2a=6,∴|PF2|=6+|PF1|=16;
(2)若点P在双曲线的右支上,
则|PF1|-|PF2|=6,
∴|PF2|=|PF1|-6=10-6=4.
综上,|PF2|=16或4.
【答案】 16或4
7.已知F1(-3,0),F2(3,0),满足条件|PF1|-|PF2|=2m-1的动点P的轨迹是双曲线的一支,则m可以是下列数据中的________.(填序号)
①2;②-1;③4;④-3.
【解析】 设双曲线的方程为-=1,则c=3,∵2a<2c=6,∴|2m-1|<6,且|2m-1|≠0,∴-【答案】 ①②
8.已知△ABP的顶点A,B分别为双曲线C:-=1的左、右焦点,顶点P在双曲线C上,则的值等于________. 【导学号:18490058】
【解析】 由方程-=1知a2=16,b2=9,即a=4,c==5.
在△ABP中,利用正弦定理和双曲线的定义知,====.
【答案】 
三、解答题
9.求与双曲线-=1有相同焦点且过点P(2,1)的双曲线的方程.
【解】 ∵双曲线-=1的焦点在x轴上.
依题意,设所求双曲线为-=1(a>0,b>0).
又两曲线有相同的焦点,
∴a2+b2=c2=4+2=6. ①
又点P(2,1)在双曲线-=1上,
∴-=1. ②
由①②联立得a2=b2=3,
故所求双曲线方程为-=1.
10.已知方程kx2+y2=4,其中k为实数,对于不同范围的k值分别指出方程所表示的曲线类型.
【解】 (1)当k=0时,y=±2,表示两条与x轴平行的直线;
(2)当k=1时,方程为x2+y2=4,表示圆心在原点,半径为2的圆;
(3)当k<0时,方程为-=1,表示焦点在y轴上的双曲线;
(4)当0<k<1时,方程为+=1,表示焦点在x轴上的椭圆;
(5)当k>1时,方程为+=1,表示焦点在y轴上的椭圆.
[能力提升]
1.椭圆+=1与双曲线-=1有相同的焦点,则a的值为(  )
A.1   B.   
C.2    D.3
【解析】 由题意知椭圆、双曲线的焦点在x轴上,且
a>0.∵4-a2=a+2,∴a2+a-2=0,
∴a=1或a=-2(舍去).故选A.
【答案】 A
2.已知F1,F2为双曲线C:x2-y2=1的左、右焦点,点P在双曲线C上,∠F1PF2=60°,则|PF1|·|PF2|等于(  )
A.2 B.4
C.6 D.8
【解析】 不妨设P是双曲线右支上一点,
在双曲线x2-y2=1中,a=1,b=1,c=,
则|PF1|-|PF2|=2a=2,|F1F2|=2,
∵|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cos∠F1PF2,
∴8=|PF1|2+|PF2|2-2|PF1|·|PF2|·,
∴8=(|PF1|-|PF2|)2+|PF1|·|PF2|,
∴8=4+|PF1||PF2|,
∴|PF1||PF2|=4.故选B.
【答案】 B
3.已知双曲线-=1的左焦点为F,点P为双曲线右支上的一点,且PF与圆x2+y2=16相切于点N,M为线段PF的中点,O为坐标原点,则|MN|-|MO|=________.
【解析】 设F′是双曲线的右焦点,连接PF′(图略),因为M,O分别是FP,FF′的中点,所以|MO|=|PF′|,又|FN|==5,由双曲线的定义知|PF|-|PF′|=8,故|MN|-|MO|=|MF|-|FN|-|PF′|=(|PF|-|PF′|)-|FN|=×8-5=-1.
【答案】 -1
4.已知双曲线-=1的两焦点为F1,F2.
(1)若点M在双曲线上,且·=0,求点M到x轴的距离; 【导学号:18490059】
(2)若双曲线C与已知双曲线有相同焦点,且过点(3,2),求双曲线C的方程.
【解】 (1)不妨设M在双曲线的右支上,M点到x轴的距离为h,·=0,
则MF1⊥MF2,
设|MF1|=m,|MF2|=n,
由双曲线定义知,m-n=2a=8, ①
又m2+n2=(2c)2=80, ②
由①②得m·n=8,
∴mn=4=|F1F2|·h,∴h=.
(2)设所求双曲线C的方程为
-=1(-4<λ<16),
由于双曲线C过点(3,2),
所以-=1,
解得λ=4或λ=-14(舍去).
∴所求双曲线C的方程为-=1.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.等轴双曲线的一个焦点是F1(-6,0),则它的标准方程是(  )
A.-=1    B.-=1
C.-=1 D.-=1
【解析】 设等轴双曲线方程为-=1(a>0),
∴a2+a2=62,∴a2=18,故双曲线方程为-=1.
【答案】 B
2.已知双曲线方程为x2-=1,过P(1,0)的直线l与双曲线只有一个公共点,则共有l(  )
A.4条 B.3条
C.2条 D.1条
【解析】 因为双曲线方程为x2-=1,所以P(1,0)是双曲线的右顶点,所以过P(1,0)并且和x轴垂直的直线是双曲线的一条切线,与双曲线只有一个公共点,另外还有两条就是过点P(1,0)分别和两条渐近线平行的直线,所以符合要求的共有3条,故选B.
【答案】 B
3.双曲线C:-=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则双曲线C的焦距等于(  ) 【导学号:18490063】
A.2   B.2
C.4    D.4
【解析】 由已知得e==2,所以a=c,故b==c,从而双曲线的渐近线方程为y=±x=±x,由焦点到渐近线的距离为,得c=,解得c=2,故2c=4,故选C.
【答案】 C
4.若实数k满足0A.实半轴长相等 B.虚半轴长相等
C.离心率相等 D.焦距相等
【解析】 若00,16-k>0,故方程-=1表示焦点在x轴上的双曲线,且实半轴的长为4,虚半轴的长为,焦距2c=2,离心率e=;同理方程-=1也表示焦点在x轴上的双曲线,实半轴的长为,虚半轴的长为,焦距2c=2,离心率e=.可知两曲线的焦距相等,故选D.
【答案】 D
5.双曲线两条渐近线互相垂直,那么它的离心率为(  )
A.2 B.
C. D.
【解析】 双曲线为等轴双曲线,两条渐近线方程为y=±x,即=1,e==.
【答案】 C
二、填空题
6.在平面直角坐标系xOy中,若双曲线-=1的离心率为,则m的值为________.
【解析】 ∵c2=m+m2+4,
∴e2===5,
∴m2-4m+4=0,∴m=2.
【答案】 2
7.已知F为双曲线C:-=1的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为________.
【解析】 由双曲线方程知,b=4,a=3,c=5,则虚轴长为8,则|PQ|=16.由左焦点F(-5,0),且A(5,0)恰为右焦点,知线段PQ过双曲线的右焦点,则P,Q都在双曲线的右支上.由双曲线的定义可知|PF|-|PA|=2a,|QF|-|QA|=2a,两式相加得,|PF|+|QF|-(|PA|+|QA|)=4a,则|PF|+|QF|=4a+|PQ|=4×3+16=28,故△PQF的周长为28+16=44.
【答案】 44
8.设直线x-3y+m=0(m≠0)与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A,B,若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是________.
【解析】 由得点A的坐标为:
,
由得点B的坐标为,
则AB的中点C的坐标为,
∵kAB=,
∴kCP==-3,
即=-3,化简得a2=4b2,
即a2=4(c2-a2),∴4c2=5a2,
∴e2=,∴e=.
【答案】 
三、解答题
9.双曲线与椭圆+=1有相同的焦点,它的一条渐近线为y=x,求双曲线的标准方程和离心率.
【解】 由椭圆+=1,知c2=64-16=48,且焦点在y轴上,
∵双曲线的一条渐近线为y=x,
∴设双曲线方程为-=1.
又c2=2a2=48,∴a2=24.
∴所求双曲线的方程为-=1.
由a2=24,c2=48,
得e2==2,
又e>0,∴e=.
10.已知双曲线-=1的右焦点为(2,0).
(1)求双曲线的方程;
(2)求双曲线的渐近线与直线x=-2围成的三角形的面积.
【解】 (1)∵双曲线的右焦点坐标为(2,0),且双曲线方程为-=1,∴c2=a2+b2=3+b2=4,∴b2=1,
∴双曲线的方程为-y2=1.
(2)∵a=,b=1,
∴双曲线的渐近线方程为y=±x,
令x=-2,则y=±,
设直线x=-2与双曲线的渐近线的交点为A,B,
则|AB|=,记双曲线的渐近线与直线x=-2围成的三角形的面积为S,
则S=××2=.
[能力提升]
1.已知双曲线-=1(a>0,b>0)的两条渐近线均与曲线C:x2+y2-6x+5=0相切,则该双曲线的离心率等于(  )
A. B.
C. D.
【解析】 曲线C的标准方程为(x-3)2+y2=4,所以圆心坐标为C(3,0),半径r=2,双曲线的渐近线为y=±x,不妨取y=x,即bx-ay=0,因为渐近线与圆相切,所以圆心到直线的距离d==2,即9b2=4(a2+b2),所以5b2=4a2,b2=a2=c2-a2,即a2=c2,所以e2=,e=,选A.
【答案】 A
2.设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(  )
A.3x±4y=0 B.3x+5y=0
C.5x±4y=0 D.4x±3y=0
【解析】 由题意可知|PF2|=|F1F2|=2c,所以△PF1F2为等腰三角形,所以由F2向直线PF1作的垂线也是中线,因为F2到直线PF1的距离等于双曲线的实轴长2a,所以|PF1|=2=4b,又|PF1|-|PF2|=2a,所以4b-2c=2a,所以2b-a=c,两边平方可得4b2-4ab+a2=c2=a2+b2,所以3b2=4ab,所以4a=3b,从而=,所以该双曲线的渐近线方程为4x±3y=0,故选D.
【答案】 D
3.过双曲线x2-=1的左焦点F1,作倾斜角为的直线AB,其中A,B分别为直线与双曲线的交点,则|AB|的长为________.
【解析】 双曲线的左焦点为F1(-2,0),
将直线AB的方程y=(x+2)代入双曲线方程,
得8x2-4x-13=0.显然Δ>0,
设A(x1,y1),B(x2,y2),
∴x1+x2=,x1x2=-,
∴|AB|=·
=× =3.
【答案】 3
4.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).
(1)求双曲线C的方程; 【导学号:18490064】
(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2,其中O为原点,求k的取值范围.
【解】 (1)设双曲线C的方程为-=1(a>0,b>0),由已知得a=,c=2.
又因为a2+b2=c2,所以b2=1,
故双曲线C的方程为-y2=1.
(2)将y=kx+代入-y2=1中,
得(1-3k2)x2-6kx-9=0,
由直线l与双曲线交于不同的两点得:

即k2≠且k2<1. ①
设A(xA,yA),B(xB,yB),
则xA+xB=,xAxB=,
由·>2得xAxB+yAyB>2,
而xAxB+yAyB=xAxB+(kxA+)(kxB+)
=(k2+1)xAxB+k(xA+xB)+2
=(k2+1)·++2=,
于是>2,
解此不等式得由①②得故k的取值范围是∪.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.准线与x轴垂直,且经过点(1,-)的抛物线的标准方程是(  )
A.y2=-2x     B.y2=2x
C.x2=2y D.x2=-2y
【解析】 由题意可设抛物线的标准方程为y2=ax,则(-)2=a,解得a=2,因此抛物线的标准方程为y2=2x,故选B.
【答案】 B
2.以双曲线-=1的右顶点为焦点的抛物线的标准方程为(  )
A.y2=16x B.y2=-16x
C.y2=8x D.y2=-8x
【解析】 因为双曲线-=1的右顶点为(4,0),即抛物线的焦点坐标为(4,0),所以抛物线的标准方程为y2=16x.
【答案】 A
3.已知双曲线-=1(a>0,b>0)的一条渐近线的斜率为,且右焦点与抛物线y2=4x的焦点重合,则该双曲线的离心率等于(  )
A. B.
C.2 D.2
【解析】 抛物线的焦点为(,0),即c=.双曲线的渐近线方程为y=x,由=,即b=a,所以b2=2a2=c2-a2,所以c2=3a2,即e2=3,e=,即离心率为.
【答案】 B
4.抛物线y2=12x的准线与双曲线-=-1的两条渐近线所围成的三角形的面积为(  )
A.3 B.2
C.2 D.
【解析】 抛物线y2=12x的准线为x=-3,双曲线的两条渐近线为y=±x,它们所围成的三角形为边长等于2的正三角形,所以面积为3,故选A.
【答案】 A
5.抛物线y2=8x的焦点到准线的距离是(  )
A.1 B.2
C.4 D.8
【解析】 由y2=2px=8x知p=4,又焦点到准线的距离就是p.故选C.
【答案】 C
二、填空题
6.抛物线y2=2x上的两点A,B到焦点的距离之和是5,则线段AB的中点到y轴的距离是________.
【解析】 抛物线y2=2x的焦点为F,准线方程为x=-,设A(x1,y1),B(x2,y2),则|AF|+|BF|=x1++x2+=5,解得x1+x2=4,故线段AB的中点横坐标为2.故线段AB的中点到y轴的距离是2.
【答案】 2
7.对标准形式的抛物线,给出下列条件:
①焦点在y轴上;②焦点在x轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④由原点向过焦点的某直线作垂线,垂足坐标为(2,1).
其中满足抛物线方程为y2=10x的是________.(要求填写适合条件的序号)
【解析】 抛物线y2=10x的焦点在x轴上,②满足,①不满足;设M(1,y0)是y2=10x上的一点,则|MF|=1+=1+=≠6,所以③不满足;由于抛物线y2=10x的焦点为,过该焦点的直线方程为y=k,若由原点向该直线作垂线,垂足为(2,1)时,则k=-2,此时存在,所以④满足.
【答案】 ②④
8.抛物线y=2x2的准线方程为________.
【解析】 化方程为标准方程为x2=y,故=,开口向上,
∴准线方程为y=-.
【答案】 y=-
三、解答题
9.求焦点在x轴上,且焦点在双曲线-=1上的抛物线的标准方程.
【解】 由题意可设抛物线方程为y2=2mx(m≠0),
则焦点为.
∵焦点在双曲线-=1上,
∴=1,求得m=±4,
∴所求抛物线方程为y2=8x或y2=-8x.
10.已知平面上动点P到定点F(1,0)的距离比点P到y轴的距离大1,求动点P的轨迹方程. 【导学号:18490069】
【解】 法一 设点P的坐标为(x,y),
则有=|x|+1.
两边平方并化简,得y2=2x+2|x|.
∴y2=
即点P的轨迹方程为y2=4x(x≥0)或y=0(x<0).
法二 由题意知,动点P到定点F(1,0)的距离比到y轴的距离大1,由于点F(1,0)到y轴的距离为1,故当x<0时,直线y=0上的点符合条件;当x≥0时,原命题等价于点P到点F(1,0)与到直线x=-1的距离相等,故点P的轨迹是以F为焦点,x=-1为准线的抛物线,方程为y2=4x.故所求动点P的轨迹方程为y2=4x(x≥0)或y=0(x<0).
[能力提升]
1.已知P为抛物线y2=4x上的一个动点,直线l1:x=-1,l2:x+y+3=0,则P到直线l1,l2的距离之和的最小值为(  )
A.2 B.4
C. D.+1
【解析】 将P点到直线l1:x=-1的距离转化为点P到焦点F(1,0)的距离,过点F作直线l2的垂线,交抛物线于点P,此即为所求最小值点,∴P到两直线的距离之和的最小值为=2,故选A.
【答案】 A
2.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O为原点,若|AF|=3,则△AOB的面积为(  )
A. B.
C. D.2
【解析】 根据题意画出简图(图略),设∠AFO=θ(0<θ<π),|BF|=m,则点A到准线l:x=-1的距离为3,得3=2+3cos θ,得cos θ=,又m=2+mcos(π-θ),得m==,△AOB的面积为S=·|OF|·|AB|·sin θ=×1××=,故选C.
【答案】 C
3.如图2-4-1是抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4 m.水位下降1 m后,水面宽________m.
图2-4-1
【解析】 以拱顶为坐标原点,建立如图所示的平面直角坐标系.
设抛物线的标准方程为x2=-2py(p>0).
则A(2,-2),代入方程得p=1,
∴抛物线的方程为x2=-2y,
设B(x0,-3)(x0<0)代入方程得x0=-.
∴此时的水面宽度为2 m.
【答案】 2
4.已知抛物线y2=2px(p>0)的准线过双曲线-=1(a>0,b>0)的左焦点F1,点M是两条曲线的一个公共点. 【导学号:18490070】
(1)求抛物线的方程;
(2)求双曲线的方程.
【解】 (1)把M代入方程y2=2px,
得p=2,
因此抛物线的方程为y2=4x.
(2)抛物线的准线方程为x=-1,所以F1(-1,0),设双曲线的右焦点为F,则F(1,0),
于是2a=||MF1|-|MF||==,
因此a=.
又因为c=1,所以b2=c2-a2=,
于是,双曲线的方程为-=1.
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知点P(6,y)在抛物线y2=2px(p>0)上,若点P到抛物线焦点F的距离等于8,则焦点F到抛物线准线的距离等于(  )
A.2   B.1   
C.4    D.8
【解析】 抛物线y2=2px(p>0)的准线为x=-,因为P(6,y)为抛物线上的点,所以点P到焦点F的距离等于它到准线的距离,所以6+=8,所以p=4,即焦点F到抛物线的距离等于4,故选C.
【答案】 C
2.抛物线y2=4x的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,当△FPM为等边三角形时,其面积为(  )
A.2 B.4
C.6 D.4
【解析】 据题意知,△FPM为等边三角形,|PF|=|PM|=|FM|,∴PM⊥抛物线的准线.设P,则M(-1,m),等边三角形边长为1+,又由F(1,0),|PM|=|FM|,得1+=,得m=2,∴等边三角形的边长为4,其面积为4,故选D.
【答案】 D
3.已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为(  )
A.x=1 B.x=-1
C.x=2 D.x=-2
【解析】 设A(x1,y1),B(x2,y2),代入抛物线方程得

①-②得,
(y1+y2)(y1-y2)=2p(x1-x2).
又∵y1+y2=4,∴===k=1,∴p=2.
∴所求抛物线的准线方程为x=-1.
【答案】 B
4.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=(  )
A. B.6
C.12 D.7
【解析】 焦点F的坐标为,直线AB的斜率为,所以直线AB的方程为y=,
即y=x-,代入y2=3x,
得x2-x+=0,
设A(x1,y1),B(x2,y2),
则x1+x2=,
所以|AB|=x1+x2+=+=12,故选C.
【答案】 C
5.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),若x1+x2=6,那么|AB|等于(  )
A.10 B.8
C.6 D.4
【解析】 由题意知p=2,|AB|=x1+x2+p=8.故选B.
【答案】 B
二、填空题
6.抛物线y2=x上到其准线和顶点距离相等的点的坐标为________.
【解析】 设抛物线上点的坐标为(x,±),此点到准线的距离为x+,到顶点的距离为,由题意有x+=,∴x=,∴y=±,∴此点坐标为.
【答案】 
7.直线y=kx+2与抛物线y2=8x有且只有一个公共点,则k=________.
【解析】 当k=0时,直线与抛物线有唯一交点,当k≠0时,联立方程消去y得k2x2+4(k-2)x+4=0,由题意Δ=16(k-2)2-16k2=0,∴k=1.
【答案】 0或1
8.平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=-1的距离相等.若机器人接触不到过点P(-1,0)且斜率为k的直线,则k的取值范围是________. 【导学号:18490074】
【解析】 设机器人为A(x,y),依题意得点A在以F(1,0)为焦点,x=-1为准线的抛物线上,该抛物线的标准方程为y2=4x.
过点P(-1,0),斜率为k的直线为y=k(x+1).
由
得ky2-4y+4k=0.
当k=0时,显然不符合题意;
当k≠0时,依题意得Δ=(-4)2-4k·4k<0,
化简得k2-1>0,解得k>1或k<-1,因此k的取值范围为(-∞,-1)∪(1,+∞).
【答案】 (-∞,-1)∪(1,+∞)
三、解答题
9.若抛物线的顶点在原点,开口向上,F为焦点,M为准线与y轴的交点,A为抛物线上一点,且|AM|=,|AF|=3,求此抛物线的标准方程.
【解】 设所求抛物线的标准方程为x2=2py(p>0),
设A(x0,y0),由题知M.
∵|AF|=3,∴y0+=3,
∵|AM|=,
∴x+=17,
∴x=8,代入方程x=2py0,
得8=2p,解得p=2或p=4.
∴所求抛物线的标准方程为x2=4y或x2=8y.
10.已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A,B两点.
(1)若直线l的倾斜角为60°,求|AB|的值;
(2)若|AB|=9,求线段AB的中点M到准线的距离.
【解】 (1)因为直线l的倾斜角为60°,所以其斜率k=tan 60°=.
又F,所以直线l的方程为y=.
联立
消去y得x2-5x+=0.
设A(x1,y1),B(x2,y2),则x1+x2=5,
而|AB|=|AF|+|BF|=x1++x2+=x1+x2+p,
所以|AB|=5+3=8.
(2)设A(x1,y1),B(x2,y2),由抛物线定义知
|AB|=|AF|+|BF|=x1+x2+p=x1+x2+3,所以x1+x2=6,于是线段AB的中点M的横坐标是3.
又准线方程是x=-,所以M到准线的距离为3+=.
[能力提升]
1.(2016·菏泽期末)已知抛物线x2=2py(p>0)的焦点为F,过F作倾斜角为30°的直线与抛物线交于A,B两点,若∈(0,1),则=(  )
A. B.
C. D.
【解析】 因为抛物线的焦点为F,故过点F且倾斜角为30°的直线的方程为y=x+,与抛物线方程联立得x2-px-p2=0,解方程得xA=-p,xB=p,所以==,故选C.
【答案】 C
2.已知抛物线C:y2=8x与点M(-2,2),过抛物线C的焦点且斜率为k的直线与C交于A,B两点,若·=0,则k=(  )
A. B.
C. D.2
【解析】 由题意可知抛物线的焦点坐标为(2,0),则过焦点且斜率为k的直线的方程为y=k(x-2),与抛物线方程联立,消去y化简得k2x2-(4k2+8)x+4k2=0,设点A(x1,y1),B(x2,y2),则x1+x2=4+,x1x2=4,所以y1+y2=k(x1+x2)-4k=,y1y2=k2[x1x2-2(x1+x2)+4]=-16,因为·=0,所以(x1+2)(x2+2)+(y1-2)(y2-2)=0(*),将上面各个量代入(*),化简得k2-4k+4=0,所以k=2,故选D.
【答案】 D
3.抛物线x2=2py(p>0)的焦点为F,其准线与双曲线-=1相交于A,B两点,若△ABF为等边三角形,则p=________.
【解析】 由于x2=2py(p>0)的准线为y=-,由
解得准线与双曲线x2-y2=3的交点为
A,B,所以AB=2.
由△ABF为等边三角形,得AB=p,解得p=6.
【答案】 6
4.已知抛物线x=-y2与过点(-1,0)且斜率为k的直线相交于A,B两点,O为坐标原点,当△OAB的面积等于时,求k的值. 【导学号:18490075】
【解】 过点(-1,0)且斜率为k的直线方程为y=k(x+1),
由方程组
消去x,整理得ky2+y-k=0,
设A(x1,y1),B(x2,y2),由根与系数之间的关系得y1+y2=-,y1y2=-1.
设直线与x轴交于点N,显然N点的坐标为(-1,0).
∵S△OAB=S△OAN+S△OBN=|ON||y1|+|ON||y2|=|ON||y1-y2|,
∴S△OAB===,
解得k=-或.