【备考2018】数学中考一轮复习学案 第15节 一次函数的应用

文档属性

名称 【备考2018】数学中考一轮复习学案 第15节 一次函数的应用
格式 rar
文件大小 2.5MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2018-01-06 10:55:45

文档简介


第三章函数 第15节 一次函数的应用
一般步骤
(1)设出实际问题中的变量;
(2)建立一次函数关系式;
(3)利用待定系数法求出一次函数关系式;
(4)确定自变量的取值范围;
(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;
(6)做答.
■考点1. 函数图象的交点.
从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.
通过图象获取信息
?通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.【来源:21cnj*y.co*m】
■考点2.利用一次函数的性质解决方案问题.
“方案决策型”问题是指一个问题有多种不同方案的情形下,如何选择其中最科学、最合理、最能合乎要求的方案,通常涉及两个变量,其中一个变量最大或最小,一般利用这个最值解决问题。
命题角度:
1.求一次函数的解析式,利用一次函数的性质求最大值或最小值;
2.利用一次函数进行方案选择;
3.利用一次函数解决个税收取问题;
4.利用一次函数解决水、电、煤气等资源收费问题。
■考点3.一次函数的优化问题
一次函数本身并没有最值,通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.
■考点4.一次函数与几何图形问题
首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.
■考点1:函数图象的交点
◇典例:
(2016·重庆市B卷 )为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第   秒.
【考点】一次函数的应用.
【分析】分别求出OA、BC的解析式,然后联立方程,解方程就可以求出第一次相遇时间.
【解答】解:设直线OA的解析式为y=kx,
代入A(200,800)得800=200k,
解得k=4,
故直线OA的解析式为y=4x,
设BC的解析式为y1=k1x+b,由题意,得,
解得:,
∴BC的解析式为y1=2x+240,
当y=y1时,4x=2x+240,
解得:x=120.
则她们第一次相遇的时间是起跑后的第120秒.
故答案为120.
【点评】本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.
(2016·浙江省绍兴市 )根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游
泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:21cnjy.com
(1)暂停排水需要多少时间?排水孔排水速度是多少?
(2)当2≤t≤3.5时,求Q关于t的函数表达式.
【考点】一次函数的应用.
【分析】(1)暂停排水时,游泳池内的水量Q保持不变,图象为平行于横轴的一条线段,由此得出暂停排水需要的时间;由图象可知,该游泳池3个小时排水900(m3),根据速度公式求出排水速度即可;
(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0),再求出(2,450)在直线y=kt+b上,然后利用待定系数法求出表达式即可.
解:(1)暂停排水需要的时间为:2﹣1.5=0.5(小时).
∵排水数据为:3.5﹣0.5=3(小时),一共排水900m3,
∴排水孔排水速度是:900÷3=300m3/h;
(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0).
∵t=1.5时,排水300×1.5=450,此时Q=900﹣450=450,
∴(2,450)在直线Q=kt+b上;
把(2,450),(3.5,0)代入Q=kt+b,
得,解得,
∴Q关于t的函数表达式为Q=﹣300t+1050.
◆变式训练
(2017西宁中考)首条贯通丝绸之路经济带的高铁线——宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,
两车同时出发,设普通列车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系,根据图象进行以下探究:
【信息读取】
(1)西宁到西安两地相距________km,两车出发后________h相遇;
(2)普通列车到达终点共需________h,普通列车的速度是________km/h;
【解决问题】
(3)求动车的速度;
(4)普通列车行驶t小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安.

(2015?青海西宁 )兰新铁路的通车,圆了全国人民的一个梦,坐上火车去观赏青海门源百里油菜花海,感受大美青海独特的高原风光,暑假某校准备组织学生、老师到门源进行社会实践,为了便于管理,师生必须乘坐在同一列高铁上,根据报名人数,若都买一等座单程火车票需2340元,若都买二等座单程火车票花钱最少,则需1650元:
西宁到门源的火车票价格如下表
运行区间
票价
上车站
下车站
一等座
二等座
西宁
门源
36元
30元
(1)参加社会实践的学生、老师各有多少人?
(2)由于各种原因,二等座火车票单程只能买x张(参加社会实践的学生人数<x<参加社会实践的总人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐并且总费用最低的前提下,请你写出购买火车票的总费用(单程)y与x之间的函数关系式.

■考点2:利用一次函数的性质解决方案问题.
◇典例 (2017上海中考)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.
甲公司方案:每月的养护费用y(元)与绿化面积x(m2)是一次函数关系,如图所示.
乙公司方案:绿化面积不超过1 000 m2时,每月收取费用5 500 元;绿化面积超过1 000 m2时,每月在收取5 500元的基础上,超过部分每平方米收取4元.2·1·c·n·j·y
(1)求如图所示的y与x的函数解析式;(不要求写出定义域)
(2)如果某学校目前的绿化面积是1 200 m2,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【来源:21·世纪·教育·网】
解:(1)设y=kx+b,
则有解得
∴y=5x+400;
(2)绿化面积是1 200 m2时,
甲公司的费用为5×1 200+400=6 400(元),
乙公司的费用为5 500+4×200=6 300(元),
∵6 300<6 400,∴选择乙公司的服务,每月的绿化养护费用较少.
◆变式训练
(2016·湖北荆门·12分)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.21教育名师原创作品
(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;21*cnjy*com
(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;
(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?
【考点】一次函数的应用;一元一次不等式的应用.

■考点3:一次函数的优化问题
◇典例: (2016·湖北武汉·10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:
产品
每件售价(万元)
每件成本(万元)
每年其他费用(万元)
每年最大产销量(件)

6
a
20
200

20
10
40+0.05x2
80
其中a为常数,且3≤a≤5.
(1) 若产销甲、 乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式; 21世纪教育网版权所有
(2)分别求出产销两种产品的最大年利润;
(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.
【考点】二次函数的应用,一次函数的应用
【答案】 (1)y1=(6-a)x-20(0<x≤200),y2=-0.05x2+10x-40(0<x≤80);(2) 产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)当3≤a<3.7时,选择甲产品;当a=3.7时,选择甲乙产品;当3.7<a≤5时,选择乙产品
【解析】解:(1) y1=(6-a)x-20(0<x≤200),y2=-0.05x2+10x-40(0<x≤80);
(2)甲产品:∵3≤a≤5,∴6-a>0,∴y1随x的增大而增大.
∴当x=200时,y1max=1180-200a(3≤a≤5)
乙产品:y2=-0.05x2+10x-40(0<x≤80)
∴当0<x≤80时,y2随x的增大而增大.
当x=80时,y2max=440(万元).
∴产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)1180-200>440,解得3≤a<3.7时,此时选择甲产品;21教育网
1180-200=440,解得a=3.7时,此时选择甲乙产品;
1180-200<440,解得3.7<a≤5时,此时选择乙产品.
∴当3≤a<3.7时,生产甲产品的利润高;
当a=3.7时,生产甲乙两种产品的利润相同;
当3.7<a≤5时,上产乙产品的利润高.
◆变式训练
(2016·湖北荆州·8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.2-1-c-n-j-y
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.

考点4.一次函数与几何图形问题
◇典例:如图,直线l1:y1=-x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C.两条直线相交于点D,连接AB.
(1)求两直线交点D的坐标;
(2)求△ABD的面积;
(3)根据图象直接写出y1>y2时自变量x的取值范围.
解:(1)将A(0,6)代入y1=-x+m得,m=6;
将B(-2,0)代入y2=kx+1得,k=.
组成方程组得解得
故D点坐标为(4,3);
(2)由y2=x+1可知,C点坐标为(0,1),
S△ABD=S△ABC+S△ACD=×5×2+×5×4=15;
(3)由图可知,在D点左侧时,y1>y2,即x<4时,y1>y2.
◆变式训练
如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).
(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?
(2)求点C在x轴上移动时,点P所在函数图象的解析式.

1.(2016年湖北 )在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以akm/h,bkm/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图,观察图象,下列说法:
①出发mh内小明的速度比小刚快;
②a=26;
③小刚追上小明时离起点43km;
④此次越野赛的全程为90km,
其中正确的说法有(  )
A.1个 B.2个 C.3个 D.4个

2.(2016年北京市怀柔区中考数学一模 )甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.当甲、乙两车相距50千米时,时间t的值最多有(  )
A.1个 B.2个 C.3个 D.4个

3.(2017.校级模拟卷)如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为(?????)
A.y=-x+2 B.y=x+2 C.y=x-2 D.y=-x-2

4.(2017年重庆市中考数学试卷(A卷) )A.B两地之间的路程为2380米,甲、乙两人分别从A.B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A.B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是   米.

5.(2017年湖北省随州市中考 )在一条笔直的公路上有A.B、C三地,C地位于A.B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是   (填写所有正确结论的序号).

6.(重庆一中2016届中考数学三模试 )甲、乙两车分别从A.B两地同时出发,相向而行,甲车从A地行驶到B地后,立即按原速度返回A地,乙车从B地行驶到A地,两车到达A地均停止运动.两车之间的距离y(单位:千米)与乙车行驶时间x(单位:小时)之间的函数关系如图所示,问两车第二次相遇时乙车行驶的时间为  小时.

(2017·丽水)如图,在平面直角坐标系xOy中,直线y=-x+m分别交于x轴、y轴于A,B两点,已知点C(2,0).
(1)当直线AB经过点C时,点O到直线AB的距离是________;
(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是________.

8.(2017年临沂市中考 )某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?21·世纪*教育网

9.(内蒙古通辽市2016年中考 )在我市双城同创的工作中,某社区计划对1200m2的区域进行绿化,经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为300m2区域的绿化时,甲队比乙队少用3天.
(1)甲、乙两施工队每天分别能完成绿化的面积是多少?
(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数关系式.
(3)若甲队每天绿化费用为0.4万元,乙队每天绿化费用为0.15万元,且甲、乙两队施工的总天数不超过14天,则如何安排甲、乙两队施工的天数,使施工费用最少?并求出最少费用.

10.(湖南省衡阳市2016年中考 )为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:
港口
运费(元/台)
甲库
乙库
A港
14
20
B港
10
8
(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;
(2)求出最低费用,并说明费用最低时的调配方案.


1.(2017?德州)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是(  )
A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P

2.(2017?辽阳)甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:www.21-cn-jy.com
①A、B之间的距离为1200m;
②乙行走的速度是甲的1.5倍;
③b=960;
④a=34.
以上结论正确的有(  )
A.①② B.①②③ C.①③④ D.①②④

3.(2017?鄂州)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:
①打电话时,小东和妈妈的距离为1400米;
②小东和妈妈相遇后,妈妈回家速度为50m/min;
③小东打完电话后,经过27min到达学校;
④小东家离学校的距离为2900m.
其中正确的个数是(  )
A.1个 B.2个 C.3个 D.4个

 
4.(2017?南充)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为   km.

5.(2017?重庆)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是   米.

6.(2017?达州)甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为   .(并写出自变量取值范围)

7.(2017?随州)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地.在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是   (填写所有正确结论的序号).

8.(2017?丽水)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).
(1)当直线AB经过点C时,点O到直线AB的距离是  ;
(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是   .

9.(2017?青岛)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:
(1)表示乙离A地的距离与时间关系的图象是   (填l1或l2);
甲的速度是   km/h,乙的速度是   km/h;
(2)甲出发多少小时两人恰好相距5km?

10.(2017?仙桃)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.
(1)直接写出y甲,y乙关于x的函数关系式;
(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?


11.(2017?衢州)“五?一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
根据以上信息,解答下列问题:
(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算.


12.(2017?咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.21*cnjy*com
(1)第24天的日销售量是   件,日销售利润是   元.
(2)求y与x之间的函数关系式,并写出x的取值范围;
(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?

13.(2017?长沙)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.www-2-1-cnjy-com
(1)求一件A,B型商品的进价分别为多少元?
(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;
(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.

14.(2017?新疆)某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.
(1)活动中心与小宇家相距 22 千米,小宇在活动中心活动时间为   小时,他从活动中心返家时,步行用了  小时;【版权所有:21教育】
(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);
(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.

15.(2017?南京)张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x个甲种文具时,需购买y个乙种文具.
(1)①当减少购买1个甲种文具时,x=   ,y=   ;
②求y与x之间的函数表达式.
(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲、乙两种文具各购买了多少个?

16.(2017?台湾)如图,在坐标平面上,O为原点,另有A(0,3),B(﹣5,0),C(6,0)三点,直线L通过C点且与y轴相交于D点,请回答下列问题:
(1)已知直线L的方程为5x﹣3y=k,求k的值.
(2)承(1),请完整说明△AOB与△COD相似的理由.

17.(2017?黑龙江)在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.【出处:21教育名师】
(1)甲、乙两地相距   千米.
(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.
(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?

18.(2017?无锡)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.
(1)点P(a,b)经过T变换后得到的点Q的坐标为   ;若点M经过T变换后得到点N(6,﹣),则点M的坐标为   .
(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.
①求经过点O,点B的直线的函数表达式;
②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.

 
19.(2017?黑龙江)如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=
(1)求点B的坐标;
(2)求直线BN的解析式;
(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.21·cn·jy·com

20.(2017?鞍山)如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.
(1)求直线CE的解析式;
(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.


第三章函数 第15节 一次函数的应用
一般步骤
(1)设出实际问题中的变量;
(2)建立一次函数关系式;
(3)利用待定系数法求出一次函数关系式;
(4)确定自变量的取值范围;
(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;
(6)做答.
■考点1. 函数图象的交点.
从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.
通过图象获取信息
?通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.21教育名师原创作品
■考点2.利用一次函数的性质解决方案问题.
“方案决策型”问题是指一个问题有多种不同方案的情形下,如何选择其中最科学、最合理、最能合乎要求的方案,通常涉及两个变量,其中一个变量最大或最小,一般利用这个最值解决问题。
命题角度:
1.求一次函数的解析式,利用一次函数的性质求最大值或最小值;
2.利用一次函数进行方案选择;
3.利用一次函数解决个税收取问题;
4.利用一次函数解决水、电、煤气等资源收费问题。
■考点3.一次函数的优化问题
一次函数本身并没有最值,通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.
■考点4.一次函数与几何图形问题
首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.
■考点1:函数图象的交点
◇典例:
(2016·重庆市B卷 )为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第 120 秒.
【考点】一次函数的应用.
【分析】分别求出OA、BC的解析式,然后联立方程,解方程就可以求出第一次相遇时间.
【解答】解:设直线OA的解析式为y=kx,
代入A(200,800)得800=200k,
解得k=4,
故直线OA的解析式为y=4x,
设BC的解析式为y1=k1x+b,由题意,得,
解得:,
∴BC的解析式为y1=2x+240,
当y=y1时,4x=2x+240,
解得:x=120.
则她们第一次相遇的时间是起跑后的第120秒.
故答案为120.
【点评】本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.
(2016·浙江省绍兴市 )根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:
(1)暂停排水需要多少时间?排水孔排水速度是多少?
(2)当2≤t≤3.5时,求Q关于t的函数表达式.
【考点】一次函数的应用.
【分析】(1)暂停排水时,游泳池内的水量Q保持不变,图象为平行于横轴的一条线段,由此得出暂停排水需要的时间;由图象可知,该游泳池3个小时排水900(m3),根据速度公式求出排水速度即可;21*cnjy*com
(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0),再求出(2,450)在直线y=kt+b上,然后利用待定系数法求出表达式即可.
解:(1)暂停排水需要的时间为:2﹣1.5=0.5(小时).
∵排水数据为:3.5﹣0.5=3(小时),一共排水900m3,
∴排水孔排水速度是:900÷3=300m3/h;
(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0).
∵t=1.5时,排水300×1.5=450,此时Q=900﹣450=450,
∴(2,450)在直线Q=kt+b上;
把(2,450),(3.5,0)代入Q=kt+b,
得,解得,
∴Q关于t的函数表达式为Q=﹣300t+1050.
◆变式训练
(2017西宁中考)首条贯通丝绸之路经济带的高铁线——宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,
两车同时出发,设普通列车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系,根据图象进行以下探究:
【信息读取】
(1)西宁到西安两地相距________km,两车出发后________h相遇;
(2)普通列车到达终点共需________h,普通列车的速度是________km/h;
【解决问题】
(3)求动车的速度;
(4)普通列车行驶t小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安.
解:(1)1 000,3;
(2)12,;
(3)设动车的速度为x km/h,
根据题意,得:3x+3×=1 000,
解得x=250,
答:动车的速度为250 km/h;
(4)∵t==4(h),
∴4×=(km),
∴1 000-=(km),
答:此时普通列车还需行驶 km到达西安.
(2015?青海西宁 )兰新铁路的通车,圆了全国人民的一个梦,坐上火车去观赏青海门源百里油菜花海,感受大美青海独特的高原风光,暑假某校准备组织学生、老师到门源进行社会实践,为了便于管理,师生必须乘坐在同一列高铁上,根据报名人数,若都买一等座单程火车票需2340元,若都买二等座单程火车票花钱最少,则需1650元:
西宁到门源的火车票价格如下表
运行区间
票价
上车站
下车站
一等座
二等座
西宁
门源
36元
30元
(1)参加社会实践的学生、老师各有多少人?
(2)由于各种原因,二等座火车票单程只能买x张(参加社会实践的学生人数<x<参加社会实践的总人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐并且总费用最低的前提下,请你写出购买火车票的总费用(单程)y与x之间的函数关系式.
【解析】 一次函数的应用;二元一次方程组的应用.(1)设参加社会实践的学生有m人,老师有n人,根据都买一等座单程火车票需2340元,若都买二等座单程火车票花钱最少,则需1650元,列出方程组即可;
(2)当50<x<65时,费用最低的购票方案为:学生都买学生票共50张,(x﹣50)名老师买二等座火车票,(65﹣x)名老师买一等座火车票,然后列出函数关系式即可.
解;(1)设参加社会实践的学生有m人,老师有n人.
若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,根据题意得:

解得:.
答:参加社会实践的学生、老师分别为50人、15人;
(2)由(1)知所有参与人员总共有65人,其中学生有50人.
当50<x<65时,费用最低的购票方案为:
学生都买学生票共50张,(x﹣50)名老师买二等座火车票,(65﹣x)名老师买一等座火车票.
∴火车票的总费用(单程)y与x之间的函数关系式为:y=30×0.8×50+30(x﹣50)+36(65﹣x)即y=﹣6x+2040(50<x<65).21cnjy.com
答:购买火车票的总费用(单程)y与x之间的函数关系式是y=﹣6x+2040(50<x<65).
【点评】本题主要考查的是二元一次方程组的应用和列函数关系式,分别求得购买二等座火车票的教师的人数和一等座火车票的人数是解题的关键.
■考点2:利用一次函数的性质解决方案问题.
◇典例 (2017上海中考)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.
甲公司方案:每月的养护费用y(元)与绿化面积x(m2)是一次函数关系,如图所示.
乙公司方案:绿化面积不超过1 000 m2时,每月收取费用5 500 元;绿化面积超过1 000 m2时,每月在收取5 500元的基础上,超过部分每平方米收取4元.
(1)求如图所示的y与x的函数解析式;(不要求写出定义域)
(2)如果某学校目前的绿化面积是1 200 m2,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.
解:(1)设y=kx+b,
则有解得
∴y=5x+400;
(2)绿化面积是1 200 m2时,
甲公司的费用为5×1 200+400=6 400(元),
乙公司的费用为5 500+4×200=6 300(元),
∵6 300<6 400,∴选择乙公司的服务,每月的绿化养护费用较少.
◆变式训练
(2016·湖北荆门·12分)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.
(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;
(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;
(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?
【考点】一次函数的应用;一元一次不等式的应用.
【分析】(1)A城运往C乡的化肥为x吨,则可得A城运往D乡的化肥为30﹣x吨,B城运往C乡的化肥为34﹣x吨,B城运往D乡的化肥为40﹣(34﹣x)吨,从而可得出W与x大的函数关系.
(2)根据题意得140x+12540≥16460求得28≤x≤30,于是得到有3种不同的调运方案,写出方案即可;
(3)根据题意得到W=x+12540,所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小=10740元.于是得到结论.
解:(1)W=250x+200(30﹣x)+150(34﹣x)+240(6+x)=140x+12540(0<x≤30);
(2)根据题意得140x+12540≥16460,
∴x≥28,
∵x≤30,
∴28≤x≤30,
∴有3种不同的调运方案,
第一种调运方案:从A城调往C城28台,调往D城2台,从,B城调往C城6台,调往D城34台;
第二种调运方案:从A城调往C城29台,调往D城1台,从,B城调往C城5台,调往D城35台;
第三种调运方案:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台,
(3)W=x+200(30﹣x)+150(34﹣x)+240(6+x)=x+12540,
所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小=10740元.
此时的方案为:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台.
■考点3:一次函数的优化问题
◇典例: (2016·湖北武汉·10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:
产品
每件售价(万元)
每件成本(万元)
每年其他费用(万元)
每年最大产销量(件)

6
a
20
200

20
10
40+0.05x2
80
其中a为常数,且3≤a≤5.
(1) 若产销甲、 乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;
(2)分别求出产销两种产品的最大年利润;
(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.
【考点】二次函数的应用,一次函数的应用
【答案】 (1)y1=(6-a)x-20(0<x≤200),y2=-0.05x2+10x-40(0<x≤80);(2) 产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)当3≤a<3.7时,选择甲产品;当a=3.7时,选择甲乙产品;当3.7<a≤5时,选择乙产品
【解析】解:(1) y1=(6-a)x-20(0<x≤200),y2=-0.05x2+10x-40(0<x≤80);
(2)甲产品:∵3≤a≤5,∴6-a>0,∴y1随x的增大而增大.
∴当x=200时,y1max=1180-200a(3≤a≤5)
乙产品:y2=-0.05x2+10x-40(0<x≤80)
∴当0<x≤80时,y2随x的增大而增大.
当x=80时,y2max=440(万元).
∴产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)1180-200>440,解得3≤a<3.7时,此时选择甲产品;
1180-200=440,解得a=3.7时,此时选择甲乙产品;
1180-200<440,解得3.7<a≤5时,此时选择乙产品.
∴当3≤a<3.7时,生产甲产品的利润高;
当a=3.7时,生产甲乙两种产品的利润相同;
当3.7<a≤5时,上产乙产品的利润高.
◆变式训练
(2016·湖北荆州·8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
【分析】(1)利用得到系数法求解析式,列出方程组解答即可;
(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答.
【解答】解:(1)设y与x的函数关系式为:y=kx+b,
把(20,160),(40,288)代入y=kx+b得:
解得:
∴y=6.4x+32.
(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,

∴22.5≤x≤35,
设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,
∵k=﹣0.6,
∴y随x的增大而减小,
∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=137(元).
【点评】此题主要考查了一次函数的应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.
考点4.一次函数与几何图形问题
◇典例:如图,直线l1:y1=-x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C.两条直线相交于点D,连接AB.
(1)求两直线交点D的坐标;
(2)求△ABD的面积;
(3)根据图象直接写出y1>y2时自变量x的取值范围.
解:(1)将A(0,6)代入y1=-x+m得,m=6;
将B(-2,0)代入y2=kx+1得,k=.
组成方程组得解得
故D点坐标为(4,3);
(2)由y2=x+1可知,C点坐标为(0,1),
S△ABD=S△ABC+S△ACD=×5×2+×5×4=15;
(3)由图可知,在D点左侧时,y1>y2,即x<4时,y1>y2.
◆变式训练
如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).
(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?
(2)求点C在x轴上移动时,点P所在函数图象的解析式.
【考点】一次函数综合题
【分析】(1)由等边三角形的性质易证AO=AB,AC=AP,∠CAP=∠OAB=60°;然后由图示知∠CAP+∠PAO=∠OAB+∠PAO,即∠CAO=∠PAB.所以根据SAS证得结论; (2)利用(1)中的结论PB⊥AB.根据等边三角形的性质易求点B的坐标为B(,).再由旋转的性质得到当点P移动到y轴上的坐标是(0,-3),所以根据点B、P的坐标易求直线BP的解析式.
【解答】(1)证明:∵△AOB与△ACP都是等边三角形,
∴AO=AB,AC=AP,∠CAP=∠OAB=60°,
∴∠CAP+∠PAO=∠OAB+∠PAO,
∴∠CAO=∠PAB,
在△AOC与△ABP中,
∴△AOC≌△ABP(SAS).
∴∠COA=∠PBA=90°,
∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.
故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;
(2)解:点P在过点B且与AB垂直的直线上.
∵△AOB是等边三角形,A(0,3),
∴B(,).
当点C移动到点P在y轴上时,得P(0,﹣3).
设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得

解得 ,
所以点P所在的函数图象的解析式为:y=x﹣3.
1.(2016年湖北 )在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以akm/h,bkm/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图,观察图象,下列说法:
①出发mh内小明的速度比小刚快;
②a=26;
③小刚追上小明时离起点43km;
④此次越野赛的全程为90km,
其中正确的说法有(  )
A.1个 B.2个 C.3个 D.4个
【考点】一次函数的应用.
【分析】①根据函数图象可以判断出发mh内小明的速度比小刚快是否正确;
②根据图象可以得到关于a、b、m的三元一次方程组,从而可以求得a、b、m的值,从而可以解答本题;
③根据②中的b、m的值可以求得小刚追上小明时离起点的路程,本题得以解决;
④根据②中的数据可以求得此次越野赛的全程.
解:由图象可知,
出发mh内小明的速度比小刚快,故①正确;
由图象可得,,
解得,,
故②正确;
小刚追上小明走过的路程是:36×(0.5+0.7)=36×1.2=43.2km>43km,故③错误;
此次越野赛的全程是:36×(0.5+2)=36×2.5=90km,故④正确;
故选C.
2.(2016年北京市怀柔区中考数学一模 )甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.当甲、乙两车相距50千米时,时间t的值最多有(  )
A.1个 B.2个 C.3个 D.4个
【考点】一次函数的应用.
【分析】由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,再令两函数解析式的差为50,可求得t,即可得出答案.21世纪教育网版权所有
解:设甲车离开A城的距离y与t的关系式为y甲=kt,
把(5,300)代入可求得k=60,则y甲=60t.
设乙车离开A城的距离y与t的关系式为y乙=mt+n,
把(1,0)和(4,300)代入可得
,解得:,
所以y乙=100t﹣100.
令|y甲﹣y乙|=50,
可得|60t﹣100t+100|=50,即|100﹣40t|=50,
当100﹣40t=50时,可解得t=,
当100﹣40t=﹣50时,可解得t=,
又当t=时,y甲=50,此时乙还没出发,
当t=时,乙到达B城,y甲=250;
综上可知当t的值为或或或时,两车相距50千米.
故选D.
3.(2017.校级模拟卷)如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为(?????)2-1-c-n-j-y
A.y=-x+2 B.y=x+2 C.y=x-2 D.y=-x-2
【考点】一次函数的定义,一次函数的图象,一次函数的应用
【分析】首先设出一次函数的解析式y=kx+b(k≠0),根据图象确定A和B的坐标,代入求出k和b的值即可.
解:设一次函数的解析式y=kx+b(k≠0),一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,
在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入
一次函数的解析式y=kx+b得:2=b1=-k+b,
解得b=2k=1,该一次函数的表达式为y=x+2.
故选B.
4.(2017年重庆市中考数学试卷(A卷) )A.B两地之间的路程为2380米,甲、乙两人分别从A.B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A.B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是   米.
【考点】一次函数的应用.
【分析】根据题意和函数图象中的数据可以求得甲乙的速度和各段用的时间,从而可以求得乙到达A地时,甲与A地相距的路程.
解:由题意可得,
甲的速度为:÷5=60米/分,
乙的速度为:÷(14﹣5)﹣60=70米/分,
则乙从B到A地用的时间为:2380÷70=34分钟,
他们相遇的时间为:2080÷(60+70)=16分钟,
∴甲从开始到停止用的时间为:(16+5)×2=42分钟,
∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,
故答案为:180.
5.(2017年湖北省随州市中考 )在一条笔直的公路上有A.B、C三地,C地位于A.B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是   (填写所有正确结论的序号).
【考点】一次函数的应用.
【分析】①观察函数图象可知,当t=2时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2h时,两车相遇,结论③正确;④结合函数图象可知当甲到C地时,乙车离开C地0.5小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.
解:①观察函数图象可知,当t=2时,两函数图象相交,
∵C地位于A.B两地之间,
∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;
②甲车的速度为240÷4=60(km/h),
乙车的速度为200÷(3.5﹣1)=80(km/h),
∵÷(60+80)=1.5(h),
∴乙车出发1.5h时,两车相距170km,结论②正确;
③∵÷(60+80)=2(h),
∴乙车出发2h时,两车相遇,结论③正确;
④∵80×(4﹣3.5)=40(km),
∴甲车到达C地时,两车相距40km,结论④正确.
综上所述,正确的结论有:②③④.
故答案为:②③④.
6.(重庆一中2016届中考数学三模试 )甲、乙两车分别从A.B两地同时出发,相向而行,甲车从A地行驶到B地后,立即按原速度返回A地,乙车从B地行驶到A地,两车到达A地均停止运动.两车之间的距离y(单位:千米)与乙车行驶时间x(单位:小时)之间的函数关系如图所示,问两车第二次相遇时乙车行驶的时间为  小时.
【考点】一次函数的应用.
【分析】先根据函数图象提供的信息,求得乙车的速度和甲车的速度,再根据甲车到达B地需要的时间,求得乙车行驶的距离,最后根据甲车返回后与乙车第二次相遇,求得所需的时间即可.
解:根据函数图象可得,A.B两地相距100km,乙车从B地行驶到A地用10h,
∴乙车的速度v乙=100÷10=10(km/h),
根据两车第一次相遇用3h可得,甲车的速度v甲=﹣10=(km/h),
∴甲车到达B地需要:100÷=(h),
此时,乙车行驶的距离为:10×=(km),
设甲车从B地返回与乙车再次相遇需要t小时,
依题意得t=10t+,
解得t=,
∴两车第二次相遇时乙车行驶的时间为: +=.
故答案为:
(2017·丽水)如图,在平面直角坐标系xOy中,直线y=-x+m分别交于x轴、y轴于A,B两点,已知点C(2,0).
(1)当直线AB经过点C时,点O到直线AB的距离是________;
(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是________.
【考点】相似三角形的应用,一次函数的性质 解:(1)当直线AB经过点C时,点A与点C重合, 当x=2时,y=-2+m=0,即m=2. ∴直线AB为y=-x+2,则B(0,2) ∴OB=OA=2,AB=2 , 设点O到直线AB的距离是d, 由S△OAB= , 则4=2 d, ∴d= . 2)作OD=OC=2,则∠PDC=45°,如图,
由y=-x+m可得A(m,0),B(0,m), 则可得OA=OB,则∠OBA=∠OAB=45°, 当m<0时,∠APO>∠OBA=45°,∴此时∠CPA>45°,故不符合, ∴m>0. ∵∠CPA=∠ABO=45°, ∴∠BPA+∠OPC=∠BAP+∠BPA=135°, 即∠OPC=∠BAP, 则△PCD~△APB, ∴ , 即 , 解得m=12. 故答案为 ;12.
8.(2017年临沂市中考 )某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?
【分析】(1)根据函数图象可以分别设出各段的函数解析式,然后根据函数图象中的数据求出相应的函数解析式;
(2)根据题意对x进行取值进行讨论,从而可以求得该用户二、三月份的用水量各是多少m3.
解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,
15k=27,得k=1.8,
即当0≤x≤15时,y与x的函数关系式为y=1.8x,
当x>15时,设y与x的函数关系式为y=ax+b,
,得,
即当x>15时,y与x的函数关系式为y=2.4x﹣9,
由上可得,y与x的函数关系式为y=;
(2)设二月份的用水量是xm3,
当15<x≤25时,2.4x﹣9+2.4(40﹣x)﹣9=79.8,
解得,x无解,
当0<x≤15时,1.8x+2.4(40﹣x)﹣9=79.8,
解得,x=12,
∴40﹣x=28,
答:该用户二、三月份的用水量各是12m3、28m3.
9.(内蒙古通辽市2016年中考 )在我市双城同创的工作中,某社区计划对1200m2的区域进行绿化,经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为300m2区域的绿化时,甲队比乙队少用3天.
(1)甲、乙两施工队每天分别能完成绿化的面积是多少?
(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数关系式.
(3)若甲队每天绿化费用为0.4万元,乙队每天绿化费用为0.15万元,且甲、乙两队施工的总天数不超过14天,则如何安排甲、乙两队施工的天数,使施工费用最少?并求出最少费用.【来源:21cnj*y.co*m】
【考点】一次函数的应用;分式方程的应用.
【分析】(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为300m2区域的绿化时,甲队比乙队少用3天,列方程求解;
(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率即可求解;
(3)设应安排甲队工作a天,乙队的工作天,列不等式组求解.
解:(1)设乙工程队每天能完成绿化的面积是xm2,
根据题意得:﹣=3,
解得:x=50,
经检验,x=50是原方程的解,
则甲工程队每天能完成绿化的面积是50×2=100(m2),
答:甲、乙两工程队每天能完成的面积分别是100m2、50m2;
(2)由题意得:100x+50y=1200,
整理得:y==24﹣2x;
(3)设应甲队的工作a天,则乙队工作b天,(0≤a≤14,0≤b≤14)
根据题意得,100a+50b=1200,
∴b=24﹣2a
a+b≤14,
∴a+24﹣2a≤14,
∴a≥10
w=04a+0.15b=0.4a+0.15(24﹣2a)=0.1a+3.6,
∴当a=10时,W最少=0.1×10+3.6=4.6万元.
10.(湖南省衡阳市2016年中考 )为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:
港口
运费(元/台)
甲库
乙库
A港
14
20
B港
10
8
(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;
(2)求出最低费用,并说明费用最低时的调配方案.
【考点】一次函数的应用.
【分析】(1)根据题意表示出甲仓库和乙仓库分别运往A.B两港口的物资数,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简;最后根据不等式组得出x的取值;
(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=80时,y最小,并求出最小值,写出运输方案.
解(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,
从乙仓库运往A港口的有吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,
所以y=14x+20+10(80﹣x)+8(x﹣30)=﹣8x+2560,
x的取值范围是30≤x≤80.
(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,
当x=80时,y=﹣8×80+2560=1920,
此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.

1.(2017?德州)公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是(  )
A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P
【分析】A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,由此即可得出结论.
解:∵10<80,0.5<5,
∴A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,
∴A选项表示这是一个短而硬的弹簧.
故选A. 
2.(2017?辽阳)甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:
①A、B之间的距离为1200m;
②乙行走的速度是甲的1.5倍;
③b=960;
④a=34.
以上结论正确的有(  )
A.①② B.①②③ C.①③④ D.①②④
【分析】①由x=0时y=1200,可得出A、B之间的距离为1200m,结论①正确;②根据速度=路程÷时间可求出乙的速度,再根据甲的速度=路程÷时间﹣乙的速度可求出甲的速度,二者相除即可得出乙行走的速度是甲的1.5倍,结论②正确;③根据路程=二者速度和×运动时间,即可求出b=800,结论③错误;④根据甲走完全程所需时间=两地间的距离÷甲的速度+4,即可求出a=34,结论④正确.综上即可得出结论.
解:①当x=0时,y=1200,
∴A、B之间的距离为1200m,结论①正确;
②乙的速度为1200÷(24﹣4)=60(m/min),
甲的速度为1200÷12﹣60=40(m/min),
60÷40=1.5,
∴乙行走的速度是甲的1.5倍,结论②正确;
③b=(60+40)×(24﹣4﹣12)=800,结论③错误;
④a=1200÷40+4=34,结论④正确.
故选D. 
3.(2017?鄂州)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:
①打电话时,小东和妈妈的距离为1400米;
②小东和妈妈相遇后,妈妈回家速度为50m/min;
③小东打完电话后,经过27min到达学校;
④小东家离学校的距离为2900m.
其中正确的个数是(  )
A.1个 B.2个 C.3个 D.4个
【分析】①由当t=0时y=1400,可得出打电话时,小东和妈妈的距离为1400米,结论①正确;②利用速度=路程÷时间结合小东的速度,可求出小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③由t的最大值为27,可得出小东打完电话后,经过27min到达学校,结论③正确;④根据路程=2400+小东步行的速度×(27﹣22),即可得出小东家离学校的距离为2900m,结论④正确.综上即可得出结论.2·1·c·n·j·y
解:①当t=0时,y=1400,
∴打电话时,小东和妈妈的距离为1400米,结论①正确;
②2400÷(22﹣6)﹣100=50(m/min),
∴小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;
③∵t的最大值为27,
∴小东打完电话后,经过27min到达学校,结论③正确;
④2400+(27﹣22)×100=2900(m),
∴小东家离学校的距离为2900m,结论④正确.
综上所述,正确的结论有:①②③④.
故选D.
 
4.(2017?南充)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为   km.
【分析】根据题意和函数图象可以求得小明从图书馆回家的速度以及对应的时间,从而可以求得他离家50分钟时离家的距离或者根据题意求出相应的函数解析式,求出当x=50时,对应的y的值即可解答本题.
解:方法一:由题意可得,
小明从图书馆回家用的时间是:55﹣(10+30)=15分钟,
则小明回家的速度为:0.9÷15=0.06km/min,
故他离家50分钟时离家的距离为:0.9﹣0.06×[50﹣(10+30)]=0.3km,
故答案为:0.3;
方法二:设小明从图书馆回家对应的函数解析式为y=kx+b,
则该函数过点(40,0.9),(55,0),
,解得,,
即小明从图书馆回家对应的函数解析式为y=﹣0.06x+3.3,
当x=50时,y=﹣0.06×50+3.3=0.3,
故答案为:0.3. 
5.(2017?重庆)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是   米.【来源:21·世纪·教育·网】
【分析】根据题意和函数图象中的数据可以求得甲乙的速度和各段用的时间,从而可以求得乙到达A地时,甲与A地相距的路程.
解:由题意可得,
甲的速度为:(2380﹣2080)÷5=60米/分,
乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,
则乙从B到A地用的时间为:2380÷70=34分钟,
他们相遇的时间为:2080÷(60+70)=16分钟,
∴甲从开始到停止用的时间为:(16+5)×2=42分钟,
∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,
故答案为:180. 
6.(2017?达州)甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为   .(并写出自变量取值范围)
【分析】图中线段DE所表示的函数关系式,实际上表示甲乙两人相遇后的路程之和与时间的关系.
解:∵=36(s),观察图象可知乙的运动时间为45s,
∴乙的速度==2cm/s,
相遇时间==20,
∴图中线段DE所表示的函数关系式:y=(2.5+2)(x﹣20)=4.5x﹣90(20≤x≤36).
故答案为y=4.5x﹣90(20≤x≤36). 
7.(2017?随州)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地.在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是   (填写所有正确结论的序号).21·世纪*教育网
【分析】①观察函数图象可知,当t=2时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2h时,两车相遇,结论③正确;④结合函数图象可知当甲到C地时,乙车离开C地0.5小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.
解:①观察函数图象可知,当t=2时,两函数图象相交,
∵C地位于A、B两地之间,
∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;
②甲车的速度为240÷4=60(km/h),
乙车的速度为200÷(3.5﹣1)=80(km/h),
∵(240+200﹣60﹣170)÷(60+80)=1.5(h),
∴乙车出发1.5h时,两车相距170km,结论②正确;
③∵(240+200﹣60)÷(60+80)=2(h),
∴乙车出发2h时,两车相遇,结论③正确;
④∵80×(4﹣3.5)=40(km),
∴甲车到达C地时,两车相距40km,结论④正确.
综上所述,正确的结论有:②③④.
故答案为:②③④.
 
8.(2017?丽水)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).
(1)当直线AB经过点C时,点O到直线AB的距离是  ;
(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是   .
【分析】(1)把点C的坐标代入函数解析式求得m的值;然后结合一次函数解析式求得A、B的坐标,然后利用等积法求得点O到直线AB的距离是 ;
(2)典型的“一线三等角”,构造相似三角形△PCD∽△APB,对m的取值分析进行讨论,在m<0时,点A在x轴的负半轴,而此时,∠APC>∠OBA=45°,不合题意;故m>0.由相似比求得边的相应关系.www.21-cn-jy.com
解:(1)当直线AB经过点C时,点A与点C重合,
当x=2时,y=﹣2+m=0,即m=2,
所以直线AB的解析式为y=﹣x+2,则B(0,2).
∴OB=OA=2,AB=2.
设点O到直线AB的距离为d,
由S△OAB=OA2=AB?d,得
4=2d,
则d=.
故答案是:.
(2)作OD=OC=2,连接CD.则∠PDC=45°,如图,
由y=﹣x+m可得A(m,0),B(0,m).
所以OA=OB,
则∠OBA=∠OAB=45°.
当m<0时,∠APC>∠OBA=45°,
所以,此时∠CPA>45°,故不合题意.
所以m>0.
因为∠CPA=∠ABO=45°,
所以∠BPA+∠OPC=∠BAP+∠BPA=135°,即∠OPC=∠BAP,则△PCD∽△APB,
所以=,即=,
解得m=12.
故答案是:12.
 
9.(2017?青岛)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:
(1)表示乙离A地的距离与时间关系的图象是   (填l1或l2);
甲的速度是   km/h,乙的速度是   km/h;
(2)甲出发多少小时两人恰好相距5km?
【分析】(1)观察图象即可知道乙的函数图象为l2,根据速度=,利用图中信息即可解决问题;
(2)分相遇前或相遇后两种情形分别列出方程即可解决问题;
解:(1)由题意可知,乙的函数图象是l2,
甲的速度是=30km/h,乙的速度是=20km/h.
故答案为l2,30,20.
(2)设甲出发x小时两人恰好相距5km.
由题意30x+20(x﹣0.5)+5=60或30x+20(x﹣0.5)﹣5=60
解得x=1.3或1.5,
答:甲出发1.3小时或1.5小时两人恰好相距5km.
 
10.(2017?仙桃)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.
(1)直接写出y甲,y乙关于x的函数关系式;
(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?

【分析】(1)利用待定系数法即可求出y甲,y乙关于x的函数关系式;
(2)当0<x<2000时,显然到甲商店购买更省钱;当x≥2000时,分三种情况进行讨论即可.
解:(1)设y甲=kx,把(2000,1600)代入,
得2000k=1600,解得k=0.8,
所以y甲=0.8x;
当0<x<2000时,设y乙=ax,
把(2000,2000)代入,得2000x=2000,解得k=1,
所以y乙=x;
当x≥2000时,设y乙=mx+n,
把(2000,2000),(4000,3400)代入,得,
解得.
所以y乙=;
(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;
当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;
若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;
若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;
故当购买金额按原价小于6000元时,到甲商店购买更省钱;
当购买金额按原价大于6000元时,到乙商店购买更省钱;
当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.
 
11.(2017?衢州)“五?一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
根据以上信息,解答下列问题:
(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算.

【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;
(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.
解:(1)设y1=k1x+80,
把点(1,95)代入,可得
95=k1+80,
解得k1=15,
∴y1=15x+80(x≥0);
设y2=k2x,
把(1,30)代入,可得
30=k2,即k2=30,
∴y2=30x(x≥0);
(2)当y1=y2时,15x+80=30x,
解得x=;
当y1>y2时,15x+80>30x,
解得x<;
当y1<y2时,15x+80<30x,
解得x>;
∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.
 
12.(2017?咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.
(1)第24天的日销售量是   件,日销售利润是   元.
(2)求y与x之间的函数关系式,并写出x的取值范围;
(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?
【分析】(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;
(2)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;
(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.
解:(1)340﹣(24﹣22)×5=330(件),
330×(8﹣6)=660(元).
故答案为:330;660.
(2)设线段OD所表示的y与x之间的函数关系式为y=kx,
将(17,340)代入y=kx中,
340=17k,解得:k=20,
∴线段OD所表示的y与x之间的函数关系式为y=20x.
根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.
联立两线段所表示的函数关系式成方程组,
得,解得:,
∴交点D的坐标为(18,360),
∴y与x之间的函数关系式为y=.
(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,
解得:x≥16;
当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,
解得:x≤26.
∴16≤x≤26.
26﹣16+1=11(天),
∴日销售利润不低于640元的天数共有11天.
∵点D的坐标为(18,360),
∴日最大销售量为360件,
360×2=720(元),
∴试销售期间,日销售最大利润是720元.
 
13.(2017?长沙)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.【出处:21教育名师】
(1)求一件A,B型商品的进价分别为多少元?
(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;
(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.
【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;
(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;
(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,分三种情形讨论即可解决问题.
解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.
由题意:=×2,
解得x=150,
经检验x=150是分式方程的解,
答:一件B型商品的进价为150元,则一件A型商品的进价为160元.
(2)因为客商购进A型商品m件,所以客商购进B型商品(250﹣m)件.
由题意:v=80m+70(250﹣m)=10m+17500,
∵80≤m≤250﹣m,
∴80≤m≤125,
(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,
①当10﹣a>0时,w随m的增大而增大,所以m=125时,最大利润为(18750﹣125a)元.
②当10﹣a=0时,最大利润为17500元.
③当10﹣a<0时,w随m的增大而减小,所以m=80时,最大利润为(18300﹣80a)元.
 
14.(2017?新疆)某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.
(1)活动中心与小宇家相距 22 千米,小宇在活动中心活动时间为   小时,他从活动中心返家时,步行用了  小时;www-2-1-cnjy-com
(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);
(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.
【分析】(1)根据点A、B坐标结合时间=路程÷速度,即可得出结论;
(2)根据离家距离=22﹣速度×时间,即可得出y与x之间的函数关系式;
(3)由小宇步行的时间等于爸爸开车接到小宇的时间结合往返时间相同,即可求出小宇从活动中心返家所用时间,将其与1比较后即可得出结论.
解:(1)∵点A的坐标为(1,22),点B的坐标为(3,22),
∴活动中心与小宇家相距22千米,小宇在活动中心活动时间为3﹣1=2小时.
(22﹣20)÷5=0.4(小时).
故答案为:22;2;0.4.
(2)根据题意得:y=22﹣5(x﹣3)=﹣5x+37.
(3)小宇从活动中心返家所用时间为:0.4+0.4=0.8(小时),
∵0.8<1,
∴小宇12:00前能到家.
 
15.(2017?南京)张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x个甲种文具时,需购买y个乙种文具.
(1)①当减少购买1个甲种文具时,x=   ,y=   ;
②求y与x之间的函数表达式.
(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲、乙两种文具各购买了多少个?
【分析】(1)①由题意可知x=99,y=2.
②由题意y=2(100﹣x)=﹣2x+200.
(2)列出方程组,解方程组即可解决问题.
解:(1)①∵100﹣1=99,
∴x=99,y=2,
故答案为99,2.
②由题意y=2(100﹣x)=﹣2x+200,
∴y与x之间的函数表达式为y=﹣2x+200.
(2)由题意,
解得,
答:甲、乙两种文具各购买了60个和80个.
 
16.(2017?台湾)如图,在坐标平面上,O为原点,另有A(0,3),B(﹣5,0),C(6,0)三点,直线L通过C点且与y轴相交于D点,请回答下列问题:
(1)已知直线L的方程为5x﹣3y=k,求k的值.
(2)承(1),请完整说明△AOB与△COD相似的理由.
【分析】(1)利用函数图象上的点的特点,即可求出k的值;
(2)先求出OA,OB,OC,OD,即可得出,即可得出结论.
解:(1)∵直线L:5x﹣3y=k过点C(6,0),
∴5×6﹣3×0=k,
∴k=30,
(2)由(1)知,直线L:5x﹣3y=30,
∵直线L与y轴的交点为D,
令x=0,
∴﹣3y=30,
∴y=﹣10,
∴D(0,﹣10),
∴OD=10,
∵A(0,3),B(﹣5,0),C(6,0),
∴OA=3,OB=5,OC=6,
∴=,=,
∴,
∵∠AOB=∠COD=90°,
∴△AOB∽△COD.
 
17.(2017?黑龙江)在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.
(1)甲、乙两地相距 480 千米.
(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.
(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?
【分析】(1)根据图1,根据客车、货车离服务区的初始距离可得甲乙两地距离;
(2)根据图象中的数据可以求得3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式;
(3)分两种情况讨论,当邮政车去甲地的途中会有某个时间邮政车与客车和货车的距离相等;当邮政车从甲地返回乙地时,货车与客车相遇时,邮政车与客车和货车的距离相等.
解:(1)360+120=480(千米)
故答案为:480;
(2)设3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式为y2=kx+b,
由图象可得,货车的速度为:120÷3=40千米/时,
则点B的横坐标为:3+360÷40=12,
∴点P的坐标为(12,360),

得,
即3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式为y2=40x﹣120;
(3)v客=360÷6=60千米/时,
v邮=360×2÷8=90千米/时,
设当邮政车去甲地的途中时,经过t小时邮政车与客车和货车的距离相等,
120+(90﹣40)t=360﹣(60+90)t
t=1.2(小时);
设当邮政车从甲地返回乙地时,经过t小时邮政车与客车和货车的距离相等,
90t﹣360﹣(480﹣40t)=60t﹣(90t﹣360)
解得t=7.5,
当客车和货车相遇时,邮政车与客车和货车的距离相等满足条件,
即60t+40t=480,解得t=4.8
综上所述,经过1.2或4.8小时或7.5小时邮政车与客车和货车的距离相等.
 
18.(2017?无锡)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.21·cn·jy·com
(1)点P(a,b)经过T变换后得到的点Q的坐标为 (a+b,b) ;若点M经过T变换后得到点N(6,﹣),则点M的坐标为 (9,﹣2) .
(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.
①求经过点O,点B的直线的函数表达式;
②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.
【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;
(2)①可设A(t,t),利用T变换可求得B点坐标,利用待定系数示可求得直线OB的函数表达式;
②方法1、由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD的长,可求得△OAB的面积与△OAD的面积之比.
方法2、先确定出△BOD比△OAD(B与A横坐标绝对值的比更简单)得出面积关系,即可得出结论.
解:
(1)如图1,连接CQ,过Q作QD⊥PC于点D,
由旋转的性质可得PC=PQ,且∠CPQ=60°,
∴△PCQ为等边三角形,
∵P(a,b),
∴OC=a,PC=b,
∴CD=PC=b,DQ=PQ=b,
∴Q(a+b,b);
设M(x,y),则N点坐标为(x+y,y),
∵N(6,﹣),
∴,解得,
∴M(9,﹣2);
故答案为:(a+b,b);(9,﹣2);
(2)①∵A是函数y=x图象上异于原点O的任意一点,
∴可设A(t,t),
∴t+×t=t,×t=t,
∴B(t,t),
设直线OB的函数表达式为y=kx,则tk=t,解得k=,
∴直线OB的函数表达式为y=x;
②方法1、设直线AB解析式为y=k′x+b,
把A、B坐标代入可得,解得,
∴直线AB解析式为y=﹣x+t,
∴D(0,t),且A(t,t),B(t,t),
∴AB==|t|,AD==|t|,
∴===.
方法2、由(1)知,A(t,t),B(t,t),
∴==,
∵△AOB、△AOD和△BOD的边AB、AD和BD上的高相同,
∴=.
 
19.(2017?黑龙江)如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=
(1)求点B的坐标;
(2)求直线BN的解析式;
(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.【版权所有:21教育】
【分析】(1)由非负数的性质可求得x、y的值,则可求得B点坐标;
(2)过D作EF⊥OA于点E,交CB于点F,由条件可求得D点坐标,且可求得=,结合DE∥ON,利用平行线分线段成比例可求得OM和ON的长,则可求得N点坐标,利用待定系数法可求得直线BN的解析式;
(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方时,可知S即为?BNN′B′的面积,当N′在y轴的负半轴上时,可用t表示出直线B′N′的解析式,设交x轴于点G,可用t表示出G点坐标,由S=S四边形BNN′B′﹣S△OGN′,可分别得到S与t的函数关系式.
解:
(1)∵|x﹣15|+=0,
∴x=15,y=13,
∴OA=BC=15,AB=OC=13,
∴B(15,13);
(2)如图1,过D作EF⊥OA于点E,交CB于点F,
由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,
∵tan∠CBD=,
∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,
∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,
∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,
∴∠ONM=∠CBD,
∴=,
∵DE∥ON,
∴==,且OE=3,
∴=,解得OM=6,
∴ON=8,即N(0,8),
把N、B的坐标代入y=kx+b可得,解得,
∴直线BN的解析式为y=x+8;
(3)设直线BN平移后交y轴于点N′,交AB于点B′,
当点N′在x轴上方,即0<t≤8时,如图2,
由题意可知四边形BNN′B′为平行四边形,且NN′=t,
∴S=NN′?OA=15t;
当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,
∵NN′=t,
∴可设直线B′N′解析式为y=x+8﹣t,
令y=0,可得x=3t﹣24,
∴OG=3t﹣24,
∵ON=8,NN′=t,
∴ON′=t﹣8,
∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96;
综上可知S与t的函数关系式为S=.
 
20.(2017?鞍山)如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.
(1)求直线CE的解析式;
(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.21教育网
【分析】(1)先求出AB=10,进而判断出Rt△BCD≌Rt△BCO,和△ACD∽△ABO,确定出点C(﹣3,0),21*cnjy*com
再判断出△EBD≌△ABO,求出OE=BE﹣OB=4,即可得出点E坐标,最后用待定系数法即可;
(2)设P(﹣m,﹣m+6),∴PN=m,PM=﹣m+6,根据勾股定理得,MN2=(m﹣)2+,即可得出点P横坐标,即可得出结论.
解:(1)根据题意得点B的横坐标为0,点A的纵坐标为0,
∴B(0,6),A(﹣8,0),
∴OA=8,OB=6,
∴AB==10,
∵CB平分∠ABO,CD⊥AB,CO⊥BO,
∴CD=CO,
∵BC=BC,
∴Rt△BCD≌Rt△BCO,
∴BD=BO=6,
∴AD=AB﹣BD=4,
∵∠ADC=∠AOB=90°,
∠CAD=∠BAO,
∴△ACD∽△ABO,
∴,
∴,
∴AC=5,
∴OC=OA﹣AC=3,
∴C(﹣3,0),
∵∠EDB=∠AOB=90°,BD=BO,∠EBD=∠ABO,
∴△EBD≌△ABO,
∴BE=AB=10,
∴OE=BE﹣OB=4,
∴E(0,﹣4),
设直线CE的解析式为y=kx﹣4,
∴﹣3k﹣4=0,
∴k=﹣,
∴直线CE的解析式为y=﹣x﹣4,
(2)解:存在,(﹣,),
如图,
∵点P在直线y=x+6上,
∴设P(﹣m,﹣m+6),∴PN=m,PM=﹣m+6,
根据勾股定理得,MN2=PN2+PM2=m2+(﹣m+6)2=(m﹣)2+,
∴当m=时,MN2有最小值,则MN有最小值,
当m=时,y=﹣x+6=﹣×+6=,
∴P(﹣,).
 
同课章节目录