课件37张PPT。 2006年夏季在德国举行的第十八届世界杯足球赛共有32支队伍参加。他们先分成八个小组进行循环赛,决出16强,这16强按确定的程序进行淘汰赛后,最后决出冠亚军,此外还决出了三、四名。
问:一共安排了多少场比赛?思考? 用一个大写的的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?26+10=36问题 1. 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4 班, 汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析: 从甲地到乙地有3类方法,
第一类方法, 乘火车,有4种方法;
第二类方法, 乘汽车,有2种方法;
第三类方法, 乘轮船, 有3种方法;
所以 从甲地到乙地共有 4 + 2 + 3 = 9 种方法。 一、分类计数原理 完成一件事,有n类办法. 在第1类办法中有m1种不同的方法,在第2类方法中有m2种不同的方法,……,在第n类方法中有mn种不同的方法,则完成这件事共有
2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数.1)各类办法之间相互独立,都能独立的完成这件事,要计算方法种数,只需将各类方法数相加,因此分类计数原理又称加法原理说明N= m1+m2+… + mn 种不同的方法
解:这名同学在A大学中有5种专业选择,在B大学中有4种专业选择。根据分类计数原理:这名同学可能的专业选择共有5+4=9种。 用A,B,C,D,E,F这6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,···,B1,B2,···的方式给教室里的座位编号,总共能编出多少个不同的号码?思考? 分析:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各个不同,因此共有6×9=54个不同的号码。字母 数字 得到的号码
A1
2
3
4
5
6
7
8
9A1
A2
A3
A4
A5
A6
A7
A8
A9树形图问题 2. 如图,由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C村,共有多少种不同的走法?
分析: 从A村经 B村去C村有2步,
第一步, 由A村去B村有3种方法,
第二步, 由B村去C村有3种方法,
所以 从A村经 B村去C村共有 3 ×2 = 6 种不同的方法。二、分步计数原理 完成一件事,需要分成n个步骤。做第1步有m1种不同的方法,做第2步有m2种不同的方法, ……,做第n步有mn种不同的方法,则完成这件事共有
2)首先要根据具体问题的特点确定一个分步的标准,然后对每步方法计数.1)各个步骤相互依存,只有各个步骤都完成了,这件事才算完成,将各个步骤的方法数相乘得到完成这件事的方法总数,又称乘法原理说明N= m1×m2×… ×mn种不同的方法
例2、设某班有男三好学生5名,女三好学生4名。现要从中选出(1)一人代表去参赛,有几种不同选法?(2)男、女生各一名代表班级参加比赛,共有多少种不同的选法?例3、惠州市的部分电话号码是0752210××××,后面每个数字来自0~9这10个数,问可以产生多少个不同的电话号码?变式: 若要求最后4个数字不重复,则又有多少种不同的电话号码?0752210分析:分析:例4、 书架上第1层放有4本不同的计算机书,第 2层放有3本不同的文艺书,第3层放有2本不同的体育杂志.(2)从书架的第1、 2、 3层各取1本书,有多少种 不同取法? N=4+3+2=9 N=4 ×3×2=24(1)从书架上任取1本书,有多少种不同的取法?例5、要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左右两边墙上的指定位置,问共有多少种不同的挂法?课堂练习1、在所有的两位数中,个位数字比十位数字大的两位数有多少个?2、8本不同的书,任选3本分给3个同学,每人1本,有多少种不同的分法?
3、将4封信投入3个不同的邮筒,有多少种不同的投法?
4、已知
则方程 可表示不同的圆的个数有多少?课堂练习5、已知二次函数 若
则可以得到多少个不同的二次函数?其中图象过原点的二次函数有多少个?图象过原点且顶点在第一象限的二次函数又有多少个?联系区别一完成一件事情共有n类
办法,关键词是“分类”完成一件事情,共分n个
步骤,关键词是“分步”
区别二
每类办法都能独立完成
这件事情。每一步得到的只是中间结果,
任何一步都不能能独立完成
这件事情,缺少任何一步也
不能完成这件事情,只有每
个步骤完成了,才能完成这
件事情。
分类计数原理和分步计数原理,回答的都是关于
完成一件事情的不同方法的种数的问题。
区别三各类办法是互斥的、
并列的、独立的各步之间是相关联的分类计数与分步计数原理的区别和联系:如图,从甲地到乙地有2条路,从乙地到丁地有3条路;从甲地到丙地有4条路可以走,从丙地到丁地有2条路。从甲地到丁地共有多少种不同地走法?课堂练习N1=2×3=6N2=4×2=8N= N1+N2 =14 2.如图,该电路,从A到B共有多少条不同的线路可通电?AB解: 从总体上看由A到B的通电线路可分三类,
第一类, m1 = 3 条
第二类, m2 = 1 条
第三类, m3 = 2×2 = 4, 条
所以, 根据分类原理, 从A到B共有
N = 3 + 1 + 4 = 8
条不同的线路可通电。
在解题有时既要分类又要分步。课件32张PPT。回答的都是有关做一件事的不同方法种数的问题完成一件事,共有n类办法,关键词“分类”区别1完成一件事,共分n个步骤,关键词“分步”区别2区别3每类办法都能独立地完成这件事情,它是独立的、一次的、且每次得到的是最后结果,只须一种方法就可完成这件事。每一步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事。各类办法是互相独立的。各步之间是互相关联的。即:类类独立,步步关联。例1. 五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种? 例2.给程序模块命名,需要用3个字符,其中首个字符要求用字母A~G或U~Z,后两个要求用数字1~9,问最多可以给多少个程序命名?分析:要给一个程序模块命名,可以分三个步骤:第一步,选首字符;第二步,先中间字符;第三步,选末位字符。解:首字符共有7+6=13种不同的选法,答:最多可以给1053个程序命名。 中间字符和末位字符各有9种不同的选法 根据分步计数原理,最多可以有13×9×9=1053种不同的选法例3.核糖核酸(RNA)分子是在生物细胞中发现的化学成分,一个RNA分子
是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称
为碱基的化学成分所占据,总共有4个不同的碱基,分别用A,C,G,U表
示,在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位
置上的碱基与其他位置上的碱基无关。假设有一类RNA分子由100个碱基组
成,那么能有多少种不同的RNA分子?分析:用100个位置表示由100个碱基组成的长链,每个位置都可以从A、C、G、U中任选一个来占据。……解:100个碱基组成的长链共有100个位置,在每个位置中,从A、C、G、U中任选一个来填入,每个位置有4种填充方法。根据分步计数原理,共有种不同的RNA分子.例4.电子元件很容易实现电路的通与断、电位的高与底等两种状态,而这也是最容易控制的两种状态。因此计算机内部就采用了每一位只有0或1两种数字的计数法,即二进制,为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成,问
(1)一个字节(8位)最多可以表示多少个不同的字符?
(2)计算机汉字国标码(GB码)包含了6763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?……如00000000,10000000,
11111111.例5.计算机编程人员在编写好程序以后要对程序进行测试。程序员需要知道到底有多少条执行路(即程序从开始到结束的线),以便知道需要提供多少个测试数据。一般的,一个程序模块又许多子模块组
成,它的一个具有许多执行路径的程序模块。问:这个程序模块有多少条执行路径?另外为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方式,
以减少测试次数吗?分析:整个模块的任意一条路径都分两步完成:第1步是从开始执行到A点;第2步是从A点执行到结束。而第步可由子模块1或子模块2或子模块3来完成;第二步可由子模块4或子模块5来完成。因此,分析一条指令在整个模块的执行路径需要用到两个计数原理。再测试各个模块之间的信息交流是否正常,需要测试的次数为:3*2=6。
如果每个子模块都正常工作,并且各个子模块之间的信息交流也正常,那么整个程序模块就正常。这样,测试整个模块的次数就变为
172+6=178(次)2)在实际测试中,程序员总是把每一个子模块看成一个黑箱,即通过只考察是否执行了正确的子模块的方式来测试整个模块。这样,他可以先分别单独测试5个模块,以考察每个子模块的工作是否正常。总共需要的测试次数为:18+45+28+38+43=172。例6.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容。交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现,那么这种办法共能给多少辆汽车上牌照?课堂练习2、某商场有6个门,如果某人从其中的任意一个门进入商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式? 3.如图,该电路,从A到B共有多少条不同的线路可通电?AB课堂练习所以, 根据分类原理, 从A到B共有
N = 3 + 1 + 4 = 8
条不同的线路可通电。在解题有时既要分类又要分步。解: 从总体上看由A到B的通电线路可分三类,第一类, m1 = 3 条第二类, m2 = 1 条第三类, m3 = 2×2 = 4, 条课件19张PPT。一、复习回顾:两个计数原理的内容是什么?
解决两个计数原理问题需要注意什么问题?有哪些技巧?练习:三个比赛项目,六人报名参加。
1)每人参加一项有多少种不同的方法?
2)每项1人,且每人至多参加一项,有多少种不同的方法?
3)每项1人,每人参加的项数不限,有多少种不同的方法?例1 用0,1,2,3,4,5这六个数字,
(1)可以组成多少个各位数字不允许重复的三位的奇数?
(2)可以组成多少个各位数字不重复的小于1000的自然数?
(3)可以组成多少个大于3000,小于5421且各位数字不允许重复的四位数?升华发展一、排数字问题1、将数字1,2,3,4,填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个格子的标号与所填的数字均不同的填法有_____种引申:1号方格里可填2,3,4三个数字,有3种填法。1号方格填好后,再填与1号方格内数字相同的号的方格,又有3种填法,其余两个方格只有1种填法。
所以共有3*3*1=9种不同的方法。二、映射个数问题:例2 设A={a,b,c,d,e,f},B={x,y,z},从A到B共有多少种不同的映射?三、染色问题:例3 有n种不同颜色为下列两块广告牌着色,要求在①②③④四个区域中相邻(有公共边界)区域中不用同一种颜色.
(1)若n=6,为(1)着色时共有多少种方法?
(2)若为(2)着色时共有120种不同方法,求n
① ③ ①
④ ③ ④
② ②
(1) (2)
2、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解: 按地图A、B、C、D四个区域依次分四步完成,
第一步, m1 = 3 种,
第二步, m2 = 2 种,
第三步, m3 = 1 种,
第四步, m4 = 1 种,
所以根据乘法原理, 得到不同的涂色方案种数共有 N = 3 × 2 ×1×1 = 6 种。
2、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种? 若用2色、4色、5色等,结果又怎样呢? 答:它们的涂色方案种数分别是 0、 4×3×2×2 = 48、 5×4×3×3 = 180种等。
思考:分析:如图,A、B、C三个区域两两相邻, A与D不相邻,因此A、B、C三个区域的颜色两两不同,A、D两个区域可以同色,也可以不同色,但D与B、C不同色。由此可见我们需根据A与D同色与不同色分成两大类。解:先分成两类:第一类,D与A不同色,可分成四步完成。 第一步涂A有5种方法,第二步涂B有4种方法;第三步涂C 有3种方法;第四步涂D有2种方法。根据分步计数原理, 共有5×4×3×2=120种方法。 根据分类计数原理,共有120+60=180种方法。 第二类,A、D同色,分三步完成,第一步涂A和D有5种方法,第二步涂B有4种方法;第三步涂C有3种方法。根据分步计数原理,共有5×4×3=60种方法。4、某城市在中心广场建造一个花圃,花圃分为6个部分(如右图)现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有______种.(以数字作答) (1)②与⑤同色,则③⑥也同色或④⑥也同色,所以共有 N1=4×3×2×2×1=48种;所以,共有N=N1+N2+N3=48+48+24=120种. (2)③与⑤同色,则②④或⑥④同色,所以共有 N2=4×3×2×2×1=48种;(3)②与④且③与⑥同色,则共N3=4×3×2×1=24种 解法一:从题意来看6部分种4种颜色的花,又从图形看 知必有2组同颜色的花,从同颜色的花入手分类求6、将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有 种(以数字作答)425、如图,是5个相同的正方形,用红、黄、蓝、白、黑5种颜色涂这些正方形,使每个正方形涂一种颜色,且相邻的正方形涂不同的颜色。如果颜色可反复使用,那么共有多少种涂色方法?四、子集问题例:集合A={a,b,c,d,e},它的子集个数为 ,真子集个数为 ,非空子集个数为 ,非空真子集个数为
。五、综合问题: 例4 若直线方程ax+by=0中的a,b可以从0,1,2,3,4这五个数字中任取两个不同的数字,则方程所表示的不同的直线共有多少条?2、75600有多少个正约数?有多少个奇约数?解:由于 75600=24×33×52×7于是,要确定75600的一个约数,可分四步完成,即i,j,k,l分别在各自的范围内任取一个值,这样i有5种取法,j有4种取法,k有3种取法,l有2种取法,根据分步计数原理得约数的个数为5×4×3×2=120个. 解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,
第一类, m1 = 1×2 = 2 条
第二类, m2 = 1×2 = 2 条
第三类, m3 = 1×2 = 2 条
所以, 根据加法原理, 从顶点A到顶点C1最近路线共有 N = 2 + 2 + 2 = 6 条。
3.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?
4、如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有( )对
A.12 B.24 C.36 D.48B 5.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通, 从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?甲地乙地丙地丁地 解:从总体上看,由甲到丙有两类不同的走法,
第一类, 由甲经乙去丙,又需分两步, 所以 m1 = 2×3 = 6 种不同的走法;
第二类, 由甲经丁去丙,也需分两步, 所以 m2 = 4×2 = 8 种不同的走法;
所以从甲地到丙地共有 N = 6 + 8 = 14 种不同的走法。课件16张PPT。1.2.1排列(一)创设情境,引出排列问题探究
在1.1节的例9中我们看到,用分步乘法计数原理解决这个问题时,因做了一些重复性工作而显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?探究:问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?上面两个问题有什么共同特征?可以用怎样的数学模型来刻画?探究:问题1:从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另名同学参加下午的活动,有多少种不同的选法?分析:把题目转化为从甲、乙、丙3名同学中选2名,按照参加上午的活动在前,参加下午的活动在后的顺序排列,求一共有多少种不同的排法? 第一步:确定参加上午活动的同学即从3名中任 选1名,有3种选法.第二步:确定参加下午活动的同学,有2种方法根据分步计数原理:3×2=6 即共6种方法。把上面问题中被取的对象叫做元素,于是问题1就可以叙述为: 从3个不同的元素a,b,c中任取2个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?ab, ac, ba, bc, ca, cb问题2:从1,2,3,4这4个数中,每次取出3个排成一个三位数,共可得到多少个不同的三位数? 从4个不同的元素a,b,c,d 中任取3个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?abc,abd,acb,acd,adb,adc; bac,bad,bca,bcd,bda,bdc;
cab,cad,cba,cbd,cda,cdb; dab,dac,dba,dbc,dca,dcb.有此可写出所有的三位数:
123,124,132,134,142,143; 213,214,231,234,241,243,
312,314,321,324,341,342; 412,413,421,423,431,432。基本概念1、排列:说明:1、元素不能重复。n个中不能重复,m个中也不能重复。2、“按一定顺序”就是与位置有关,这是判断一个问题是否是排列问题的关键。3、两个排列相同,当且仅当这两个排列中的元素完全相同,而且元素的排列顺序也完全相同。4、m<n时的排列叫选排列,m=n时的排列叫全排列。5、为了使写出的所有排列情况既不重复也不遗漏,最好采用“树形图”。例1、下列问题中哪些是排列问题?(1)10名学生中抽2名学生开会(2)10名学生中选2名做正、副组长(3)从2,3,5,7,11中任取两个数相乘(4)从2,3,5,7,11中任取两个数相除(5)20位同学互通一次电话(6)20位同学互通一封信(7)以圆上的10个点为端点作弦(8)以圆上的10个点中的某一点为起点,作过另一个点的射线(9)有10个车站,共需要多少种车票?(10)有10个车站,共需要多少种不同的票价?2、排列数:“排列”和“排列数”有什么区别和联系?(1)排列数公式(1):当m=n时,n个不同元素的全排列公式:(2)排列数公式(2):说明:1、排列数公式的第一个常用来计算,第二个常用来证明。为了使当m=n时上面的公式也成立,规定:课堂练习2.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地
上进行试验,有 种不同的种植方法?3.从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,
并排定他们的出场顺序,有 种不同的方法? 排列问题,是取出m个元素后,还要按一定的顺序排成一列,取出同样的m个元素,只要排列顺序不同,就视为完成这件事的两种不同的方法(两个不同的排列).小结 由排列的定义可知,排列与元素的顺序有关,也就是说与位置有关的问题才能归结为排列问题.当元素较少时,可以根据排列的意义写出所有的排列. 思考题 三张卡片的正反面分别写着数字2和3,4和5,7和8,若将这三张卡片的正面或反面并列组成一个三位数,可以得到多少个不同的三位数?课件6张PPT。1.2.1排列(三)复习巩固1.对有约束条件的排列问题,应注意如下类型:
⑴某些元素不能在或必须排列在某一位置;⑵某些元素要求连排(即必须相邻);⑶某些元素要求分离(即不能相邻);2.基本的解题方法:
(1)有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优先法); 特殊元素,特殊位置优先安排策略方法总结(2)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;相邻问题捆绑处理的策略(3)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;不相邻问题插空处理的策略例1:一天要排语、数、英、体、班会六节课,要求上午的四节课中,第一节不排体育课,数学排在上午;下午两节中有一节排班会课,问共有多少种不同的排法?例2:有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾? (4)若甲、乙两名女生相邻,且不与第三名女生相邻?(1)7位同学站成一排,甲、乙只能站在两端?(2)7位同学站成一排,甲、乙不能站在两端?(5)甲、乙、丙3名同学必须相邻,而且要求乙、丙分别站
在甲的两边?引申练习1、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有( )
A.2880 B.1152 C.48 D.1442、今有10幅画将要被展出,其中1幅水彩画,4幅油画,5幅国画,现将它们排成一排,要求同一品种的画必须连在一起,并且水彩画不放在两端。则不同的排列方式有 种。3、一排长椅上共有10个座位,现有4人就座,恰有五个连续空位的坐法种数为 。(用数字作答)5760B480变式:若直线Ax+By+C=0的系数A、B可以从0,1,2,3,6,7这六个数字中取不同的数值,则这些方程所表示的直线条数是( )
A.18 B.20 C.12 D.22A课件12张PPT。1.2.1排列(二)复习巩固1、排列的定义:2.排列数的定义:(3)全排列数公式:4.有关公式:(2)排列数公式:课堂练习2.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地
上进行试验,有 种不同的种植方法?3.从参加乒乓球团体比赛的5名运动员中选出3名进行某场比赛,
并排定他们的出场顺序,有 种不同的方法?例1、某年全国足球甲级A组联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?解:14个队中任意两队进行1次主场比赛与1次客场比赛,对应于从14个元素中任取2个元素的一个排列,因此,
比赛的总场次是例2:(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?
(2)有5种不同的书,买3本送给3名同学,每人各1本,共有多少种不同的送法?例3:某信号兵用红,黄,蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?例4:用0到9这10个数字,可以组成多少个没有重复数字的三位数?解法一:对排列方法分步思考。从位置出发解法二:对排列方法分类思考。符合条件的三位数可分为两类:根据加法原理从元素出发分析解法三:间接法.∴ 所求的三位数的个数是逆向思维法例5:由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?有约束条件的排列问题例5:由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?有约束条件的排列问题有约束条件的排列问题例6:6个人站成前后两排照相,要求前排2人,后排4人,那么不同的排法共有( )
A.30种 B. 360种 C. 720种 D. 1440种 C例7:有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:
(1)男甲排在正中间;
(2)男甲不在排头,女乙不在排尾;
(3)三个女生排在一起;
(4)三个女生两两都不相邻;
(5)全体站成一排,甲、乙、丙三人自左向右顺序不变;
(6)若甲必须在乙的右边(可以相邻,也可以不相邻),有多少种站法?对于相邻问题,常用“捆绑法”对于不相邻问题,常用 “插空法”小结:
1.对有约束条件的排列问题,应注意如下类型:
⑴某些元素不能在或必须排列在某一位置;
⑵某些元素要求连排(即必须相邻);
⑶某些元素要求分离(即不能相邻);2.基本的解题方法:
(1)有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优先法);
特殊元素,特殊位置优先安排策略(2)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;相邻问题捆绑处理的策略(3)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;
不相邻问题插空处理的策略课件18张PPT。1.2.2 组合(一)问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种不同的选法?甲、乙;甲、丙;乙、丙 3情境创设有
顺
序无
顺
序 一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合. 排列与组合的概念有什么共同点与不同点? 概念讲解组合定义:组合定义: 一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.排列定义: 一般地,从n个不同元素中取出m (m≤n) 个元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列.共同点: 都要“从n个不同元素中任取m个元素” 不同点: 排列与元素的顺序有关,
而组合则与元素的顺序无关.概念讲解思考一:ab与ba是相同的排列还是相同的组合?为什么?思考二:两个相同的排列有什么特点?两个相同的组合呢?概念理解 构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤.思考三:组合与排列有联系吗?判断下列问题是组合问题还是排列问题? (1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有多少个?(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票? 有多少种不同的火车票价?组合问题排列问题(3)10名同学分成人数相同的数学和英语两个学习小组,共有多少种分法??组合问题(4)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次??组合问题(5)从4个风景点中选出2个游览,有多少种不同的方法?组合问题(6)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?排列问题组合问题组合是选择的结果,排列
是选择后再排序的结果.1.从 a , b , c三个不同的元素中取出两个元素的所有组合分别是:ab , ac , bc 2.已知4个元素a , b , c , d ,写出每次取出两个元素的所有组合. ab , ac , ad , bc , bd , cd(3个)(6个)概念理解如:从 a , b , c三个不同的元素中取出两个元素的所有组合个数是:如:已知4个元素a 、b 、 c 、 d ,写出每次取出两个
元素的所有组合个数是:概念讲解组合数:1.写出从a,b,c,d 四个元素中任取三个元素的所有组合。abc , abd , acd , bcd .练一练组合排列abc bac cab
acb bca cbaabd bad dab
adb bda dbaacd cad dac
adc cda dcabcd cbd dbc
bdc cdb dcb不写出所有组合,怎样才能知道组合的种数?你发现了什么?组合数公式 排列与组合是有区别的,但它们又有联系.根据分步计数原理,得到:因此: 概念讲解组合数公式: 从 n 个不同元中取出m个元素的排列数 概念讲解(2)列出所有冠亚军的可能情况.(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁
乙甲、丙甲、丁甲、丙乙、丁乙、丁丙(1) 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁解:例题分析例3例5.(1)凸五边形有多少条对角线?(2)凸n( n>3)边形有多少条对角线?例4.(1)平面内有10个点,以其中每2个点为端 点的线段共有多少条? (2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?例题分析排列课堂小结课件10张PPT。1.2.2 组合(二)复习巩固:例1:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛。按照足球比赛规则,比赛时一个足球队的上场队员是11人。问:
(1)这位教练从这17名学员中可以形成多少种学员上场方案?
(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?例4:在100件产品中有98件合格品,2件次品。产品检验时,从100件产品中任意抽出3件。
(1)一共有多少种不同的抽法?
(2)抽出的3件中恰好有1件是次品的抽法有多少种?
(3)抽出的3件中至少有1件是次品的抽法有多少种?
(4)抽出的3件中至多有一件是次品的抽法有多少种?说明:“至少”“至多”的问题,通常用分类法或间接法求解。变式练习按下列条件,从12人中选出5人,有多少种不同选法?
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选;
(4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选;
(6)甲、乙、丙三人至少1人当选;例5、某医院有内科医生12名,外科医生8名,现要派5人参加支边医疗队,至少要有1名内科医生和1名外科医生参加,有多少种选法?例6:(1)平面内有9个点,其中4个点在一条直线上,此外没有3个点在一条直线上,过这9个点可确定多少条直线?可以作多少个三角形?
例7、8双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求满足如下条件各有多少种情况:
(1)4只鞋子恰有两双;
(2) 4只鞋子没有成双的;
(3) 4只鞋子只有一双。课堂练习:2、从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则有不同的选法种数为 。1、把6个学生分到一个工厂的三个车间实习,每个车间2人,若甲必须分到一车间,乙和丙不能分到二车间,则不同的分法有 种 。99CD5、在如图7x4的方格纸上(每小方格均为正方形)
(1)其中有多少个矩形?
(2)其中有多少个正方形?课堂练习:课件10张PPT。排列与组合的
综合应用复习引入
1.两个计数原理
2.排列
3.组合例1.将6个同学按下列条件分成3组,各有多少种不同的分法;
(1) 一组1人,一组2人,一组3人;
问题1:我们可以采取什么策略完成这件事?
分步计数原理
举例:
(AB CD EF) (AB EF CD) (CD AB EF)
(CD EF AB) (EF AB CD) (EF CD AB)
按上述算法共有六种分法,按分组要求只有一种分法。(2)每组2人;问题3:为什么会出现这种情况?第(1)题中有这种现象吗?问题4:如何解决这种问题呢?(3)一组4人,另两组各1人;本题中也存在均匀的部分
举例:
(A B CDEF) (B A CDEF)
按上述算法共有2种,但是按照分组要求只有1种理论总结将6个同学按下列条件分成3组
(1) 一组1人,一组2人,一组3人;
(1,2,3) 不均匀分组
(2)每组2人;
(2,2,2) 均匀分组
(3)一组4人,另两组各1人;
(1,1,4) 不完全均匀分组解决方法:先分步取出元素,在将均匀的部分倍缩课堂练习题组训练一
1. 9本不同的书平均分成三组;
2. 9本不同的书分成三组,一组2本,一组3本,一组4本;
3. 9本不同的书分成四组,其中一组3本,另三组各2本;
4. 9本不同的书分成六组,每组至少1本;(4)分给甲、乙、丙3人,一人1本,一人2本,一人3本;
问题6:本题与(1)题有什么差别?如何解决?
解决方法:先分组,再将组分配(5)分给甲、乙、丙3人,一人4本,另两人各1本;1.今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件,
有多少种分法?课堂练习:2.3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有多少种?3.将6本不同的书分给甲、乙、丙、丁四个人,每人至少1本,不同的分配方法共有多少种?课堂小结1.分组问题分类及解决策略
———先分步选再将均匀部分倍缩
2.分配问题分类及解决策略
————先分组再分配
课件15张PPT。1.2.2 组合(三)复习巩固:一个口袋内装有大小相同的7个白球和1个黑球.
⑴ 从口袋内取出3个球,共有多少种取法?
⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少种取法?
⑶ 从口袋内取出3个球,使其中不含黑球,有多少种取法? ⑵ ⑶ 解:(1) 性质2
我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立. 我们发现:为什么呢 注:1? 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与原组合数上标较大的相同的一个组合数.
2? 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.例1 计算:例2 求证:一、等分组与不等分组问题例3、6本不同的书,按下列条件,各有多少种不同的分法;
(1)分给甲、乙、丙三人,每人两本;
(2)分成三份,每份两本;
(3)分成三份,一份1本,一份2本,一份3本;
(4)分给甲、乙、丙3人,一人1本,一人2本,一人3本;
练习:
(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?
(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?解: (1)(2)三、混合问题,先“组”后“排”例5 对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?练习:1、某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法______种.解:采用先组后排方法:2、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有多少种?解法一:先组队后分校(先分堆后分配)解法二:依次确定到第一、第二、第三所学校去的医生和护士.四、分类组合,隔板处理法例6、 从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?分析:问题相当于把个30相同球放入6个不同盒子(盒子不能空的)有几种放法?这类问可用“隔板法”处理.
解:采用“隔板法” 得:课堂练习:2、从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则有不同的选法种数为 。1、把6个学生分到一个工厂的三个车间实习,每个车间2人,若甲必须分到一车间,乙和丙不能分到二车间,则不同的分法有 种 。99CDThank you!课件15张PPT。1.3.1二项式定理(一)( a + b ) 2 =思考:(a+b)4的展开式是什么? ( a + b ) 3 =复 习:次数:各项的次数等于二项式的次数项数:次数+1( a + b ) 2 =( a + b ) 3 =复 习:(a+b)2= (a+b) (a+b) 展开后其项的形式为:a2 , ab , b2这三项的系数为各项在展开式中出现的次数。考虑b恰有1个取b的情况有C21种,则ab前的系数为C21恰有2个取b的情况有C22 种,则b2前的系数为C22每个都不取b的情况有1种,即C20 ,则a2前的系数为C20对(a+b)2展开式的分析(a+b)4= (a+b) (a+b) (a+b) (a+b)=?问题:
1).(a+b)4展开后各项形式分别是什么?2).各项前的系数代表着什么?3).你能分析说明各项前的系数吗?a4 a3b a2b2 ab3 b4各项前的系数 代表着这些项在展开式中出现的次数每个都不取b的情况有1种,即C40 ,则a4前的系数为C40恰有1个取b的情况有C41种,则a3b前的系数为C41恰有2个取b的情况有C42 种,则a2b2前的系数为C42恰有3个取b的情况有C43 种,则ab3前的系数为C43恰有4个取b的情况有C44种,则b4前的系数为C44则 (a+b)4 =
C40 a4 +C41 a3b +C42 a2b2 +C43 ab3 +C44 b43).你能分析说明各项前的系数吗?a4 a3b a2b2 ab3 b4( a + b ) n=(a+b)n的展开式是:二项定理(a+b)n是n个(a+b)相乘, 每个(a+b)在相乘时有两种选择,选a或b. 而且每个(a+b)中的a或b选定后才能得到展开式的一项。对于每一项akbn-k,它是由k个(a+b)选了a,n-k个(a+b)选了b得到的,它出现的次数相当于从n个(a+b)中取k个a的组合数,将它们合并同类项,就得二项展开式,这就是二项式定理。其中每一项都是akbn-k的形式,k=0,1,…,n;定理的证明二项式定理: n ∈ N *注:(1) 上式右边为二项展开式,
各项次数都等于二项式的次数(2) 展开式的项数为 n+1 项;(3) 字母a按降幂排列,次数由n递减到0
字母b按升幂排列,次数由0递增到n(4)二项式系数可写成组合数的形式,
组合数的下标为二项式的次数
组合数的上标由0递增到n(5) 展开式中的第 r + 1 项,
即通项 Tr+1 =__________;二项式定理: n ∈ N *(6) 二项式系数为 ______;项的系数为 二项式系数与数字系数的积在二项式定理中,令a=1,b=x,则有:在上式中,令 x = 1,则有:3、求(x+a)12的展开式中的倒数第4项。4、(1)求(1+2x)7的展开式中第4项的系数。练习
1.求(2a+3b)6的展开式的第3项.
?
?2.求(3b+2a)6的展开式的第3项.
?
3.写出 的展开式的第r+1项.
?
4.用二项式定理展开:
(1) ;
(2) .
5.化简:
(1) ;
?
(2) Thank you!课件7张PPT。1.3.1二项式定理(二)温故而知新1.(a+b)n的二项展开式 是_________.2.通项公式是 _______________. 例1、计算:
(1)
(2)例6、已知(1-2x)7=a0+ a1x + a2x2 + …+ a7x7 ,则
(1)a1+a2+a3+…+a7=_______
(2)a1+a3+a5+a7 =_________
(3)a0+a2+a4+a6 =_________赋值法练习:
(4)若已知
(1+2x)200= a0+ a1(x-1) + a2(x-1)2 + …+ a200(x-1)200
求a1+a3+a5+a7+…+a199 的值。例7、若 展开式中前三项系数成等差
数列,求(1)展开式中含x的一次幂的项;
(2)展开式中所有x 的有理项;2、在(1-x3)(1+x)10的展开式中x5的系数是( )
A.-297 B.-252 C. 297 D. 2073、(x+y+z)9中含x4y2z3的项的系数是__________课堂练习4.已知(1+ )n展开式中含x-2的项的系数为12,求n.
5.已知(10+xlgx)5的展开式中第4项为106,求x的值.课件16张PPT。1.3.2“杨辉三角”与二项式系数的性质一、新课引入二项展开式中的二项式系数指的是那些?共有多少个? 下面我们来研究二项式系数有些什么性质?我们先通过杨辉三角观察n为特殊值时,二项式系数有什么特点?1.“杨辉三角”的来历及规律 杨辉三角1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 …… …… ……二项式系数的性质二项式系数的性质2.二项式系数的性质 (1)对称性 与首末两端“等距离”的两个二项式系数相等.图象的对称轴:二项式系数的性质(2)增减性与最大值 由于:二项式系数的性质(2)增减性与最大值 由: 二项式系数是逐渐增大的,由对称性可知它的后半部分是逐渐减小的,且中间项取得最大值。 二项式系数的性质(2)增减性与最大值 (3)各二项式系数的和 二项式系数的性质这是组合总数公式. 一般地, 展开式的二项式系数
有如下性质: (1) (2) (3)当 时, (4) 当 时,课堂练习:
1)已知 ,那么 = ;
2) 的展开式中,二项式系数的最大值是 ;
3)若 的展开式中的第十项和第十一项的二项式系数最大,则n= ; 例3: 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项。例4、若 展开式中前三项系数成等差
数列,求(1)展开式中含x的一次幂的项;
(2)展开式中所有x 的有理项;
(3)展开式中系数最大的项。2、在(1-x3)(1+x)10的展开式中x5的系数是( )
A.-297 B.-252 C. 297 D. 2073、(x+y+z)9中含x4y2z3的项的系数是__________课堂练习4.已知(1+ )n展开式中含x-2的项的系数为12,求n.
5.已知(10+xlgx)5的展开式中第4项为106,求x的值. 二项展开式中的二项式系数都是一些特殊的组合数,它有三条性质,要理解和掌握好,同时要注意“系数”与“二项式系数”的区别,不能混淆,只有二项式系数最大的才是中间项,而系数最大的不一定是中间项,尤其要理解和掌握“取特值”法,它是解决有关二项展开式系数的问题的重要手段。小结课件10张PPT。二项式定理
习题课课堂练习:1. 等于 ( )
A. B. C. D. 2.在 的展开式中x的系数为( )
A.160 B.240 C.360 D.8003.求的展开式中 项的系数.4.已知
那么 的展开式中含 项的系数是 . 5.求值:11.证明(Cn0)2+(Cn1)2+(Cn2)2+…+(Cnn)2= 如何产生[a,b]区间上均匀随机数呢?练习、根据1.1.2例3中的程序框图,编写
计算机程序来计算1+2+…+100的值程序:i=1s=0WHILE i<=100s=s+ii=i+1WENDPRINT sEND思考:用UNTIL语句编写计算机程序,来计算
1+2+…+100的值.结束程序框图:程序:i=1s=0DOs=s+ii=i+1LOOP UNTIL i>100PRINT sEND课件8张PPT。1.3.2“杨辉三角”与二项式系数的性质(二) 一般地, 展开式的二项式系数
有如下性质: (1) (2) (4)(对称性)B 余数是1,所以是星期六变式引申:填空
1) 除以7的余数是 ;
2) 除以8的余数是 。课堂练习:1. 等于 ( )
A. B. C. D. 2.在 的展开式中x的系数为( )
A.160 B.240 C.360 D.8003.求的展开式中 项的系数.4.已知
那么 的展开式中含 项的系数是 . 5.求值: