名称 | 2018届高考数学(文)总复习:板块命题点专练(15份,Word版,含解析) | | |
格式 | zip | ||
文件大小 | 1.4MB | ||
资源类型 | 教案 | ||
版本资源 | 通用版 | ||
科目 | 数学 | ||
更新时间 | 2017-12-01 20:55:56 |
故所求概率P==.
答案:
命题点二 古典概型
命题指数:☆☆☆☆
难度:中
题型:选择题、解答题
1.(2016·全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则 红色和紫色的花不在同一花坛的概率是( )
A. B. C. D.
解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P==,故选C.
2.(2015·全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
A. B. C. D.
解析:选C 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为.
3.(2014·天津高考)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:
一年级
二年级
三年级
男同学
A
B
C
女同学
X
Y
Z
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.
(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.
因此,事件M发生的概率P(M)==.
4.(2015·福建高考)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.
组号
分组
频数
1
4,5)
2
2
5,6)
8
3
6,7)
7
4
7,8]
3
(1)现从融合指数在4,5)和7,8]内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在7,8]内的概率;
(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.
解:(1)融合指数在7,8]内的3家“省级卫视新闻台”记为A1,A2,A3;融合指数在4,5)内的2家“省级卫视新闻台”记为B1,B2.从融合指数在4,5)和7,8]内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:
{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},共10个.
其中,至少有1家融合指数在7,8]内的基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},共9个.
所以所求的概率P=.
(2)这20家“省级卫视新闻台”的融合指数平均数等于
4.5×+5.5×+6.5×+7.5×=6.05.
5.(2014·山东高考)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区
A
B
C
数量
50
150
100
(1)求这6件样品中来自A,B,C各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
解:(1)因为样本容量与总体中的个体数的比是
=,
所以样本中包含三个地区的个体数量分别是:
50×=1,150×=3,100×=2.
所以A,B,C三个地区的商品被选取的件数分别为1,3,2.
(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.
则抽取的这2件商品构成的所有基本事件为:
{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.
每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.
记事件D:“抽取的这2件商品来自相同地区”,
则事件D包含的基本事件有
{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.
所以P(D)=,即这2件商品来自相同地区的概率为.
6.(2016·全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数
0
1
2
3
4
≥5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数
0
1
2
3
4
≥5
频数
60
50
30
30
20
10
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.
(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.
(3)由所给数据得
保费
0.85a
a
1.25a
1.5a
1.75a
2a
频率
0.30
0.25
0.15
0.15
0.10
0.05
调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.
因此,续保人本年度平均保费的估计值为1.192 5a.
7.(2016·山东高考)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;
②若xy≥8,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
解:用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.
因为S中元素的个数是4×4=16,
所以基本事件总数n=16.
(1)记“xy≤3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).
所以P(A)=,即小亮获得玩具的概率为.
(2)记“xy≥8”为事件B,“3<xy<8”为事件C.
则事件B包含的基本事件数共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P(B)==.
事件C包含的基本事件数共5个,
即(1,4),(2,2),(2,3),(3,2),(4,1).
所以P(C)=.因为>,
所以小亮获得水杯的概率大于获得饮料的概率.
第十章
2.(文科)(2017·东北四市联考)为迎接校运动会的到来,某校团委在高一年级招募了12名男志愿者和18名女志愿者(18名女志愿者中有6人喜欢运动).
(1)如果用分层抽样的方法从男、女志愿者中共抽取10人组成服务队,求女志愿者被抽到的人数;
(2)如果从喜欢运动的6名女志愿者中(其中恰有4人懂得医疗救护),任意抽取2名志愿者负责医疗救护工作,则抽出的志愿者中2人都能胜任医疗救护工作的概率是多少?
解:(1)用分层抽样的方法,每个志愿者被抽中的概率是=,
∴女志愿者被抽中的有18×=6(人).
(2)喜欢运动的女志愿者有6人,分别设为A,B,C,D,E,F,其中A,B,C,D懂得医疗救护,
则从这6人中任取2人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种取法,
其中2人都懂得医疗救护的有AB,AC,AD,BC,BD,CD,共6种.
设“抽出的志愿者中2人都能胜任医疗救护工作”为事件K,则P(K)==.
2.(文科)(2016·开封市第一次模拟)甲、乙两人参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,画出茎叶图如图所示,乙的成绩中有一个数的个位数字模糊,在茎叶图中用c表示.(把频率当作概率)
甲
乙
9 8
7
5
8 4 2 1
8
0 0 3 5
5 3
9
0 2 c
(1)假设c=5,现要从甲、乙两人中选派一人参加数学竞赛,从统计学的角度,你认为派哪位学生参加比较合适?
(2)假设数字c的取值是随机的,求乙的平均分高于甲的平均分的概率.
解:(1)若c=5,则派甲参加比较合适,理由如下:
甲=(70×2+80×4+90×2+9+8+8+4+2+1+5+3)
=85,
乙=(70×1+80×4+90×3+5+3+5+2+5)=85,
s=(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,
s=(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.
∵甲=乙,s∴两人的平均成绩相等,但甲的成绩比较稳定,派甲参加比较合适.
(2)若乙>甲,则(75+80×4+90×3+3+5+2+c)>85,
∴c>5,∴c=6,7,8,9,
又c的所有可能取值为0,1,2,3,4,5,6,7,8,9,
∴乙的平均分高于甲的平均分的概率为.
板块命题点专练(十)
命题点一 合情推理与演绎推理
命题指数:☆☆☆
难度:中、低
题型:选择题、填空题
1.(2014·陕西高考)观察分析下表中的数据:
多面体
面数(F)
顶点数(V)
棱数(E)
三棱柱
5
6
9
五棱锥
6
6
10
立方体
6
8
12
猜想一般凸多面体中F,V,E所满足的等式是________.
解析:三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F+V-E=2.
答案:F+V-E=2
2.(2014·全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,
甲说:我去过的城市比乙多,但没去过B城市;
乙说:我没去过C城市;
丙说:我们三人去过同一城市.
由此可判断乙去过的城市为________.
解析:由甲、丙的回答易知甲去过A城市和C城市,乙去过A城市或C城市,结合乙的回答可得乙去过A城市.
答案:A
3.(2015·陕西高考)观察下列等式:
1-=,
1-+-=+,
1-+-+-=++,
…
据此规律,第n个等式可为_________________________________________.
解析:等式的左边的通项为-,前n项和为1-+-+…+-;右边的每个式子的第一项为,共有n项,故为++…+.
答案:1-+-+…+-=++…+
命题点二 直接证明与间接证明
命题指数:☆☆☆☆
难度:高、中
题型:解答题
1.(2014·江西高考)已知数列{an} 的前 n项和 Sn=,n∈N*.
(1)求数列{an} 的通项公式;
(2)证明:对任意的n>1,都存在m∈N* ,使得 a1,an,am成等比数列.
解:(1)由Sn=,得a1=S1=1,
当n≥2时,an=Sn-Sn-1=3n-2,当n=1时也适合.
所以数列{an}的通项公式为:an=3n-2.
(2)证明:要使得a1,an,am成等比数列,
只需要a=a1·am,即(3n-2)2=1·(3m-2),
即m=3n2-4n+2,而此时m∈N*,且m>n.
所以对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.
2.(2015·北京高考节选)已知数列{an}满足:a1∈N*,a1≤36,且an+1=(n=1,2,…).记集合M={an|n∈N*}.
(1)若a1=6,写出集合M的所有元素;
(2)若集合M存在一个元素是3 的倍数,证明:M的所有元素都是3的倍数.
解:(1)6,12,24.
(2)证明:因为集合M存在一个元素是3的倍数,所以不妨设ak是3的倍数.
由an+1=可归纳证明对任意n≥k,an是3的倍数.
如果k=1,则M的所有元素都是3的倍数.
如果k>1,因为ak=2ak-1或ak=2ak-1-36,所以2ak-1是3的倍数,于是ak-1是3的倍数.类似可得,ak-2,…,a1都是3的倍数.
从而对任意n≥1,an是3的倍数,因此M的所有元素都是3的倍数.
综上,若集合M存在一个元素是3的倍数,则M的所有元素都是3的倍数.
命题点三 数学归纳法
命题指数:☆☆
难度:高
题型:解答题
(2015·陕西高考)设fn(x)是等比数列1,x,x2,…,xn的各项和,其中x>0,n∈N,n≥2.
(1)证明:函数Fn(x)=fn(x)-2在内有且仅有一个零点(记为xn),且xn=+x;
(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为gn(x),比较fn(x)和 gn(x)的大小,并加以证明.
解:(1)证明:Fn(x)=fn(x)-2=1+x+x2+…+xn-2,
则Fn(1)=n-1>0,
Fn=1++2+…+n-2
=-2=-<0,
所以Fn(x)在内至少存在一个零点.
又Fn′(x)=1+2x+…+nxn-1>0,
故Fn(x)在内单调递增,所以Fn(x)在内有且仅有一个零点xn.
因为xn是Fn(x)的零点,所以Fn(xn)=0,
即-2=0,故xn=+x.
(2)由题设,fn(x)=1+x+x2+…+xn,
gn(x)=,x>0.
当x=1时,fn(x)=gn(x).
当x≠1时,用数学归纳法可以证明fn(x)<gn(x).
①当n=2时,f2(x)-g2(x)=-(1-x)2<0,
所以f2(x)<g2(x)成立.
②假设n=k(k≥2)时,不等式成立,即fk(x)<gk(x).
那么,当n=k+1时,
fk+1(x)=fk(x)+xk+1<gk(x)+xk+1=+xk+1=.
又gk+1(x)-
=,
令hk(x)=kxk+1-(k+1)xk+1(x>0),
则hk′(x)=k(k+1)xk-k(k+1)xk-1
=k(k+1)xk-1·(x-1).
所以当0<x<1时,hk′(x)<0,hk(x)在(0,1)上递减;
当x>1时,hk′(x)>0,hk(x)在(1,+∞)上递增.
所以hk(x)>hk(1)=0,
从而gk+1(x)>.
故fk+1(x)<gk+1(x),即n=k+1时不等式也成立.
由①和②知,对一切n≥2的整数,都有fn(x)<gn(x).
板块命题点专练(四)
命题点一 导数的运算及几何意义
命题指数:☆☆☆☆☆
难度:中、低
题型:选择题、填空题
1.(2015·全国卷Ⅰ)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________.
解析:∵f′(x)=3ax2+1,
∴f′(1)=3a+1.
又f(1)=a+2,
∴切线方程为y-(a+2)=(3a+1)(x-1).
∵切线过点(2,7),∴7-(a+2)=3a+1,解得a=1.
答案:1
2.(2016·全国丙卷)已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是________.
解析:设x>0,则-x<0,f(-x)=ex-1+x.
∵f(x)为偶函数,∴f(-x)=f(x),
∴f(x)=ex-1+x.
∵当x>0时,f′(x)=ex-1+1,
∴f′(1)=e1-1+1=1+1=2.
∴曲线y=f(x)在点(1,2)处的切线方程为y-2=2(x-1),即2x-y=0.
答案:2x-y=0
3.(2015·全国卷Ⅱ)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.
解析:法一:∵y=x+ln x,∴y′=1+,
y′x=1=2.
∴曲线y=x+ln x在点(1,1)处的切线方程为
y-1=2(x-1),即y=2x-1.
∵y=2x-1与曲线y=ax2+(a+2)x+1相切,
∴a≠0(当a=0时曲线变为y=2x+1与已知直线平行).
由消去y,得ax2+ax+2=0.
由Δ=a2-8a=0,解得a=8.
法二:同法一得切线方程为y=2x-1.
设y=2x-1与曲线y=ax2+(a+2)x+1相切于点(x0,ax+(a+2)x0+1).∵y′=2ax+(a+2),
∴y′x=x0=2ax0+(a+2).
由解得
答案:8
命题点二 导数的应用
命题指数:☆☆☆☆☆
难度:高、中
题型:选择题、填空题、解答题
1.(2014·全国卷Ⅱ)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( )
A.(-∞,-2] B.(-∞,-1]
C.2,+∞) D.1,+∞)
解析:选D 因为f(x)=kx-ln x,所以f′(x)=k-.因为f(x)在区间(1,+∞)上单调递增,所以当x>1时,f′(x)=k-≥0恒成立,即k≥在区间(1,+∞)上恒成立.因为x>1,所以0<<1,所以k≥1.故选D.
2.(2016·全国乙卷)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( )
A.-1,1] B.
C. D.
解析:选C f′(x)=1-cos 2x+acos x=1-(2cos2x-1)+acos x=-cos2x+acos x+,f(x)在R上单调递增,则f′(x)≥0在R上恒成立,令cos x=t,t∈-1,1],则-t2+at+≥0在-1,1]上恒成立,即4t2-3at-5≤0在-1,1]上恒成立,令g(t)=4t2-3at-5,则解得-≤a≤,故选C.
3.(2015·全国卷Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( )
A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞)
C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)
解析:选A 设y=g(x)=(x≠0),
则g′(x)=,
当x>0时,xf′(x)-f(x)<0,∴g′(x)<0,
∴g(x)在(0,+∞)上为减函数,
且g(1)=f(1)=-f(-1)=0.
∵f(x)为奇函数,∴g(x)为偶函数,
∴g(x)的图象的示意图如图所示.
当x>0时,由f(x)>0,得g(x)>0,由图知0
∴使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1),故选A.
4.(2015·全国卷Ⅱ)已知函数f(x)=ln x+a(1-x).
(1)讨论f(x)的单调性;
(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.
解:(1)f(x)的定义域为(0,+∞),f′(x)=-a.
若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.
若a>0,则当x∈时,f′(x)>0;
当x∈时,f′(x)<0.
所以f(x)在上单调递增,在上单调递减.
(2)由(1)知,当a≤0时,f(x)在(0,+∞)上无最大值;
当a>0时,f(x)在x=处取得最大值,最大值为
f=ln+a=-ln a+a-1.
因此f>2a-2等价于ln a+a-1<0.
令g(a)=ln a+a-1,
则g(a)在(0,+∞)上单调递增,g(1)=0.
于是,当01时,g(a)>0.
因此,a的取值范围是(0,1).
5.(2016·全国甲卷)已知函数f(x)=(x+1)ln x-a(x-1).
(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.
解:(1)f(x)的定义域为(0,+∞).
当a=4时,f(x)=(x+1)ln x-4(x-1),
f(1)=0,f′(x)=ln x+-3,f′(1)=-2.
故曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.
(2)当x∈(1,+∞)时,f(x)>0等价于ln x->0.
设g(x)=ln x-,
则g′(x)=-=,g(1)=0.
①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0;
②当a>2时,令g′(x)=0得x1=a-1-,x2=a-1+.
由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)上单调递减,因此g(x)<0.
综上,a的取值范围是(-∞,2].
6.(2016·全国丙卷)设函数f(x)=ln x-x+1.
(1)讨论f(x)的单调性;
(2)证明当x∈(1,+∞)时,1<<x;
(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>cx.
解:(1)由题设,f(x)的定义域为(0,+∞),f′(x)=-1,令f′(x)=0,解得x=1.
当0<x<1时,f′(x)>0,f(x)单调递增;
当x>1时,f′(x)<0,f(x)单调递减.
(2)证明:由(1)知,f(x)在x=1处取得最大值,
最大值为f(1)=0.
所以当x≠1时,ln x<x-1.
故当x∈(1,+∞)时,ln x<x-1,ln <-1,
即1<<x.
(3)证明:由题设c>1,设g(x)=1+(c-1)x-cx,
则g′(x)=c-1-cxln c.
令g′(x)=0,解得x0=.
当x<x0时,g′(x)>0,g(x)单调递增;
当x>x0时,g′(x)<0,g(x)单调递减.
由(2)知1<<c,故0<x0<1.
又g(0)=g(1)=0,故当0<x<1时,g(x)>0.
所以当x∈(0,1)时,1+(c-1)x>cx.
7.(2016·全国乙卷)已知函数f(x)=(x-2)ex+a(x-1)2.
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.
解:(1)f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a).
①设a≥0,则当x∈(-∞,1)时,f′(x)<0;
当x∈(1,+∞)时,f′(x)>0.
所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.
②设a<0,由f′(x)=0得x=1或x=ln(-2a).
若a=-,则f′(x)=(x-1)(ex-e),
所以f(x)在(-∞,+∞)上单调递增.
若a>-,则ln(-2a)<1,
故当x∈(-∞,ln(-2a))∪(1,+∞)时,f′(x)>0;
当x∈(ln(-2a),1)时,f′(x)<0.
所以f(x)在(-∞,ln(-2a)),(1,+∞)上单调递增,
在(ln(-2a),1)上单调递减.
若a<-,则ln(-2a)>1,
故当x∈(-∞,1)∪(ln(-2a),+∞)时,f′(x)>0;
当x∈(1,ln(-2a))时,f′(x)<0.
所以f(x)在(-∞,1),(ln(-2a),+∞)上单调递增,
在(1,ln(-2a))上单调递减.
(2)①设a>0,则由(1)知,f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln ,则f(b)>(b-2)+a(b-1)2=a>0,所以f(x)有两个零点.
②设a=0,则f(x)=(x-2)ex,所以f(x)只有一个零点.
③设a<0,若a≥-,则由(1)知,f(x)在(1,+∞)上单调递增.又当x≤1时,f(x)<0,故f(x)不存在两个零点;若a<-,则由(1)知,f(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递增.又当x≤1时,f(x)<0,故f(x)不存在两个零点.
综上,a的取值范围为(0,+∞).