因数和倍数
教学目标:
1、借助乘法算式使学生理解因数和倍数的意义及两者之间相互依存的关系,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。?
2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。?
教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。?
教学难点:探索求一个数因数或倍数的方法。
教学准备:课件、学习任务单
学习任务单
1、如果有这样的12颗糖果你可以分给几个人,每人分几颗?请根据不同的分法写出乘、除法算式。
2、根据写出的算式,仔细观察,说一说“我的发现”。
人数
1
2
颗数(颗)
3、每 人 分 4 颗 糖
4、写出你的算式,仔细观察,说一说“我的发现”。
教学过程设计:
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……?(父子(父母、母子、母女)关系)
师:我和你们的关系是……?(师生关系)
师:那我能不能说老师是师生关系呢?(不能)
师:为什么?(老师一个人不能代表师生关系)
师:我自己只能代表一方面,不能代表你们。构不成关系。
师:在我们数学的王国里,数与数之间也存在像这样相互依存的关系,这节课就让我们一起去研究、学习。板书:因数和倍数
二、新知探究
(一)明确研究范围
师:今天的学习就从分糖果开始,先数一数有多少?(1,2……)
师:刚才老师是按什么样的顺序来数的?(预设从上到下、从左到右。)
师:真是个有心的好孩子,有序的思考可以帮助我们发现规律找到答案。那你知道刚才我们数数用到的数字都是什么数吗?(自然数)研究因数和倍数时一般不讨论0、小数还有分数,所以请大家一定牢记我们今天研究的范围哦。
(二)合作探究,理解因数倍数的意义及求一个数因数和倍数的方法。
师:小组内利用学具(学习作务单、12支笔)合作交流。
1、理解因数和倍数的意义
师:(请小组上台汇报分法,看是否将所有分法都写出,如果没有请其他小组补充,然后选取其中一个式子为例)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请自学大屏幕中的知识,看看从中你能不能知道。
师:通过自学,你知道了什么?
师:根据学生的回答,小结:在2×6=12,12÷2=6中,我们可以说2是12的因数。6也是12的因数,反过来,12是2的倍数,12也是6的倍数。
师:通过刚才的自学的我们知道了数与数之间有因数和倍数关系,还知道了根据这样的一个乘法或除法算式就能找到12的两个因数。
师:看来大家都是会自学的好孩子,那我们一起来玩个游戏。(说一说灯笼中的算式2×4=8 24÷3=8这2个算式中的因数倍数关系。指名同学说一说,强化学生对于因数、倍数的理解,同时引出因数倍数不能单独存在,相互依存的关系)
师:说的真好!那你还有什么发现吗?(此时课件中的两个8变红)(都有8)
师:对啊,都有8,可8一会儿是24的因数,一会儿又是2的倍数,一会儿因数,一会儿倍数,怎么回事?
师:8一会儿是24的因数,一会儿又是2的倍数关键是与什么有关?(另一个数。……)
师:也就是说因数和倍数实际上指的是两个数之间的一种(停顿,让学生说出关系),就像我们说的师生关系一样,那能说8是因数吗?8是倍数吗?为什么?(不能,8自己决定不了,它可能是因数,也可能是倍数。)
师:所以,在说因数、倍数时,我们要说清谁是谁的因数,谁是谁的倍数。因数与倍数两者之间是相互依存的一种关系。
2、我发现,我交流,探究一个数因数的求法
师:孩子们你们都有一双善于发现的眼睛,(再请另一小组上台汇报“我的发现”)
预设:我发现:3是12的因数,4是12的因数……
我发现:找一个的因数要一对对的找。而且要从1开始。
我发现:1,2,3,4,6,12都是12的因数。
我发现:一个数因数的个数是有限的。
我发现:一个数最小的因数是1,最大的因数是它本身。
…………
可能孩子们在表达时出现困难,其他小组随时补充,老师及时点拨,全班同学积极思考通力合作。
师:小结:找一个数的因数时要一对对的找,从1开始,找到1就找到了12,找到2就找到了6,依次往下。像这样相乘得12的两个非零自然数都是12的因数。()×()=12
师:我们一起再来说说12的因数,看看老师是怎么写的?(两头写,两数之间用逗号分开,最后写完要加句号)
师:用这种方法找一找24的因数。
师:请大家总结一下一个数因数有什么特点?(一个数因数的个数是有限的。一个数最小的因数是1,最大的因数是它本身。)
3、探究一个数倍数的求法
师:真是又会学又会玩的好孩子,老师得奖励一下。如果每人分4颗糖,1个同学分得几颗?(4颗)你想到了哪个乘法算式?(1×4=4)那么4是4的什么?(4是4的因数,4是4的倍数)4是4的几倍数?(1倍数)2个同学分得几颗?(8颗)你想到了哪个乘法算式?(2×4=8)那么8是4的什么?(8是4的倍数)8是4的几倍数?(2倍数)那3位同学,4位同学,更多的同学呢?在学习任务单中填一填。
师:(请小组上台汇报填表情况,以及我的发现)
预设:我发现:4是4的倍数,8是4的倍数……
我发现:找一个的倍数也要从1开始。
我发现:4,8,12,16,20都是4的倍数。
我发现:一个数倍数的个数是无限的。
我发现:一个数最小的倍数是它本身,没有最大的倍数。
…………
可能孩子们在表达时出现困难,其他小组随时补充,老师及时点拨,全班同学积极思考通力合作。
师:小结:找一个数的倍数时要从1开始,用1去乘4,再用2去乘4依次往下,得到的结果都是4的倍数。()×4=()
师:我们一起再来说说4的倍数,看看老师是怎么写的?(从最小的(也就是它本身)开始写,两数之间用逗号分开,最后写完要加句号)
师:用这种方法说一说20的倍数。
师:请大家总结一下一个数倍数有什么特点?(一个数倍数的个数是无限的。一个数最小的倍数是它本身,没有最大的倍数。)
三、课堂小结????我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
四、课堂检测
(1)选一选
28 20 0.8 2 5 48 0.5 4 1 30
(2)连一连
1 2 3 4
6 12 18 24
30 36 54 72
五、板书设计:
因数与倍数
2×6=12 12÷2=6
2是12的因数,6也是12的因数;?12是2的倍数,12也是6的倍数。
()×()=12 12的因数有:1,2,3,4,6,12。
()×4=() 4的倍数有:4,8,12,16……
课件14张PPT。因数和倍数85hao136245789101112数一数136245789101112明确研究范围研究因数和倍数时一般不讨论0、小数还有分数,只在非零自然数的范围内进行。分一分
1×12=12??????????????????? 2×6=12?????????3×4=12
12×1=12??????????????????? 6×2=12???????? 4×3=12
12÷1=12??????????????????? 12÷2=6?????????12÷3=4
12÷12=1??????????????????? 12÷6=2?????????12÷4=3分法大展示2×6=12 12÷2=6
我们可以说:
2是12的因数。6也是12的因数;
12是2的倍数,12也是6的倍数。自学小提示24÷3=83×8=24点灯笼88在说因数、倍数时,我们要说清谁是谁的因数,谁是谁的倍数。因数与倍数两者之间是相互依存的一种关系。找一个数因数的方法:例:找12的因数,就是
找哪两个非零自然数相乘得12,
那么这两个数就是12的因数。
一般从1开始,有序的将因数一对对找出。
()×()=12一个数因数的特点:1一个数最小的因数是 最大的因数它本身一个数因数的个数是有限的找一个数倍数的方法:例:找4的倍数,就是
从1开始依次用非零自然数去乘4,
得到的结果都是4的倍数。
()×4=()一个数倍数的特点:它本身一个数最小的倍数是 最大的倍数没有一个数倍数的个数是无限的通过本节课的
学习
你有什么收获?选一选4的倍数30的因数 20 0.8 2 5
48 0.5 4 1 30282048425130连一连6的倍数36的因数1234612182430365472