中国古代数学瑰宝 课件 (4)

文档属性

名称 中国古代数学瑰宝 课件 (4)
格式 zip
文件大小 243.3KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2017-12-06 20:51:50

图片预览

文档简介

课件30张PPT。《周髀算经》是我国最早的天文著作,系统地记载了周秦以来适应天文需要而逐步积累的科技成果。该书的主要内容是周代传下来的有关测天量地的理论和方法。
《周髀算经》也是中国最古的算书,成书确切年代没有定论,一般认为在公元前2、3世纪。李约瑟认为:“最妥善的办法是把《周髀算经》看作具有周代的骨架加上汉代的皮肉。” 第三讲 中国古代数学瑰宝《周髀算经》中的勾股定理 周公问商高关于计算的问题,商高答曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为勾广三,股修四,径隅五。”
荣方与陈子的一段对话中,则包含了勾股定理的一般形式。陈子曰:“若求邪至日者,以日下为勾,日高为股。勾、股各自乘,并而开方除之,得邪至日,…” 《周髀算经》还记载了商高的用矩之法:“平矩以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方。” 九章算术 《九章算术》成书于公元前后,是我国最重要、影响最深远的一本数学著作。后世不少人,如刘徽、祖冲之、李淳风等人均对《九章算术》作过注。特别是刘徽的注,加进了不少自己的精辟见解,阐述了重要的数学理论。《九章算术注》是《九章算术》得以流芳百世的重要补充和媒介。 对《九章算术》的评价日本数学家小苍金之助把《九章算术》说成是中国的《几何原本》。吴文俊教授也认为,《九章算术》和刘徽的《九章算术注》,在数学的发展历史中具有崇高的地位,足可与希腊的《几何原本》东西辉映,各具特色。
1968年德国沃格尔(Vogel)把《九章算术》译成德文出版时加的评论认为:“在古代算术中,包含如此丰富的246个算题,现存的埃及和巴比伦算题与之相比,真望尘莫及。以希腊而论,所保存的古算题为我们所熟知者,也属于希腊化时代。” 第一章“方田”讲述有关平面图形(土地田亩)面积的计算方法,包括分数算法,38个问题。
[一]今有田广十五步,从十六步,问为田几何?答曰:一亩。
[二]又有田广十二步,从十四步,问为田几何?答曰:一百六十八步。
方田术曰:广从步数相乘得积步,以亩法二百四十步除之,即亩数,百亩为一倾。 [五]今有十八分之十二,问约之得几何?答曰:三分之二。
[六]又有九十一分之四十九,问约之得几何?答曰:十三分之七。
约分术曰:可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也,以等数约之。 第二章“粟米”讲述有关粮食交换中的比例问题。书中的“今有术”给出比例式中已知三数求第四数的方法,欧洲迟至15世纪才出现。第三章“衰分”讲述配分比例和等差、等比等问题。
第四章“少广”讲述由田亩面积求边长,由球体积求经长的算法,这是世界上最早的多位数开平方、开立方法则的记载。 开方术今有积五万五千二百二十五步,问为方几何?答曰:二百三十五步。
开方术曰:置积为实,借一算步之,超一等。议所得,以一乘所借一算为法,而以除,除已,倍法为定法。其复除,折法而下。复置借算步之如初,以复议一乘之。所得副之,以加定法,以除,以所得副从定法。复除折下如前。 第五章“商功”讲述各种土木工程中的体积计算。我国自远古以来,对筑城、挖沟、修渠等土建工程积累了丰富的经验,创造了许多有关土方体积计算和估算的方法,本章即为经验和方法的理论总结,诸如长方体、台体、圆柱体、锥体等体积的计算公式都与现在一致,只是圆周率取3,误差较大。
第六章“均输”讲述纳税和运输方面的计算问题,实际上是比较复杂的比例计算问题。
第七章“盈不足”讲述算术中盈亏问题的解法。盈不足术实际上是一种线性插值法。该方法通过丝绸之路传入阿拉伯国家,受到特别重视,被称为“契丹算法”。后来传入欧洲,13世纪意大利数学家斐波那契的《算经》一书中专门有一章讲“契丹算法”。 第八章“方程”讲述线性方程组的解法,还论及正负数概念及运算方法。
中算的方程,本意是指多元一次方程组(线性方程组)。刘徽在《九章算术注》中指出:“程,课程也。群物总杂,各列有数,总言其实。令每行为率,二物者再程,三物者三程,皆如物数程之,并列为行,故谓之方程。” 方程术例题今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗;问上、中、下禾实一秉各几何?
正负术李文林在《数学史教程》中指出:“对负数的认识是人类数系扩充的重大步骤。如果说古希腊无理量是演绎思维的发现,那么中算负数则是算法思维的产物。中算家们心安理得地接受并使用了这一概念,并没有引起震撼和迷惑。”
国外首先承认负数的是7世纪印度数学家婆罗门及多,欧洲16世纪时韦达等数学家的著作还回避使用负数。 勾股术第九章“勾股”在《周髀算经》中勾股定理的基础上,形成了应用问题的“勾股术”,从此它成了中算中重要的传统内容之一。
今有池方一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐,问水深、葭长各几何?答曰:水深一丈二尺;葭长一丈三尺。
术曰:半池方自乘,以出水一尺自乘,减之。余,倍出水除之,即得水深。加出水数,得葭长。 刘徽的数学成就 刘徽的《九章算术注》包含了他本人的许多创造,其中最突出的成就是“割圆术”和求积理论。
若设圆面积为 ,内接
正n边形边长为 ,面积为
则OABCD圆周率刘徽用“割圆术”从圆内接正六边形出发,算到圆内接正192=6×25边形,得到 “徽率”3.14。
推测祖冲之可能也是沿用了“割圆术”,计算到圆内接正24576=6×212边形,即可得祖冲之的结果。刘徽的求积理论刘徽的面积、体积理论建立在一条简单而又基本的原理之上,这就是“出入相补原理”。刘徽用这条原理成功地证明了《九章算术》中的许多面积公式。
刘徽在推证《九章算术》中的一些体积公式时,灵活地使用了两种无限小方法:极限方法与不可分量方法。比如,“阳马” 体积公式便是用极限方法推导出来的,而球体积公式的推导则使用了不可分量方法。
为计算球体积,刘徽提出“牟合方盖”。算经十书 出于官方数学教育的需要,唐高宗亲自下令对以前的数学著作进行整理。公元656年由李淳风负责编定了算经十书:《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《张邱建算经》、《夏侯阳算经》、《缉古算经》、《海岛算经》、《五经算术》和《缀术》,后因《缀术》失传,而以《数术记遗》替代。 孙子算经 [鸡兔同笼]今有雉兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?答曰:雉二十三,兔一十二。
术曰:上置头,下置足,半其足,以头除足,以足除头,即得。
[物不知数]今有物,不知其数。三三数之,剩二;五五数之剩三;七七数之,剩二。问物几何?答曰:二十三。 孙子歌 明代数学家程大位的《算法统宗》中所载的“孙子歌”以诗歌形式介绍了物不知数问题的解法:“三人同行七十稀,五树梅花廿一枝,七子团圆整半月,除百零五便得知。”
这一问题的解法后经秦九韶推广到一般情形,被称为“孙子定理”,又称为“中国剩余定理”。 宋元数学 宋元时期(960-1368)的杰出数学家秦九韶、杨辉、李冶、朱世杰被称为“宋元四大家”。
宋元时期的数学代表著作有《数书九章》(秦九韶)、《详解九章算法》(杨辉)、《益古演段》(李冶)和《四元玉鉴》(朱世杰)等 大衍总数术 问题:求满足

的最小自然数N。
◆设 ,
求乘率 使
则总数中国剩余定理秦九韶的算法非常严密,但他并没有对这一算法给出证明。到18、19世纪欧拉(1743)和高斯(1801)分别对一次同余式组进行了详细研究,重新独立地获得了与秦九韶“大衍术”相同的定理,并对模数两两互素的情形给出了严格证明。高斯的成果是最完整的,他还解决了模不是两两互素时的情形。1876年德国人马蒂生首先指出秦九韶的算法与高斯的算法是一致的,因此关于这一算法被称作“中国剩余定理”。 《缀术》 圆周率计算 球体体积公式 古之九数,圆周率三,圆径率一,其术疏舛。自刘歆、张衡、刘徽、王蕃、皮延宗之徒,各设新率,未臻折衷。 宋末,南徐州从事史祖冲之,更开密法,以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。《缀术》 密率,圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。 1913年起称355/113为祖率。 所著之书,名为《缀术》,学官莫能究其深奥,是故废而不理。《缀术》《缀术》 圆内接正
12288边形和24576边形 3.14159261<π<3.14159271《缀术》体积计算谢谢观赏!