笛卡儿坐标系 学案 (1)

文档属性

名称 笛卡儿坐标系 学案 (1)
格式 zip
文件大小 343.7KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2017-12-06 20:49:28

图片预览

文档简介

笛卡儿坐标系
一、自学目标:了解笛卡儿的数学成就和笛卡儿坐标系。
二、自学内容提炼
(一)知识梳理:
1.笛卡儿传
笛卡儿(R.Descartes,1596—1650)是17世纪的天才.他是杰出的 家和 家,是近代生物学的奠基人之一,在物理学方面也作了许多有价值的研究.

1596年3月31日,笛卡尔出生在法国土伦(Tournine)的一个律师之家,早年丧母,八岁时被父亲送到当地的一所耶酥教会学校.由于他身体较弱,父亲与校方商定,允许他每天早晨多睡些时间.于是,笛卡儿养成了晚起的习惯.长大以后,他经常在早晨躺在床上思考问题,据说他的大部分成果出自早上那段适宜思考的时间.
笛卡儿成年后的生活,可以1628年为界分成两个阶段.他16岁时离开家乡,去外地求学, 20岁(1616年)时毕业于普瓦捷(Poitiers)大学,在巴黎当了律师.他在那里结识了数学家梅森(M.Mersenne)和迈多治(C.Mydorge),经常和他们一起讨论数学问题.笛卡儿于1617年到荷兰,参加了奥兰治(Orange)公爵的军队,后来又到其他军队服务.他参军的目的主要是弥补学校教育的不足,并无明显的宗教或政治倾向.1621年以后,他先后到德国、丹麦、荷兰、瑞士和意大利旅行.在当兵和旅行的日子里,他的数学研究一直没有中断,他把解决数学问题当作自己的乐趣.在荷兰布雷达(Breda)地方的招贴牌上,笛卡儿发现一个挑战性的问题,很快就解决了,这使他自信有数学才能,从而更认真地研究数学.
由于笛卡儿对《圣经》持批评态度,受到国内封建教会的排斥.1628年,笛卡儿移居荷兰,开始了第二阶段的生活.他的主要学术著作,都是在那里的20年中完成的,包括《宇宙论》、《 》、 《形而上学的沉思》、《哲学原理》、《激情论》.《方法论》一书有三个附录——《折光》、《气象》)和《 》.其中第 个附录便是笛卡儿创立解析几何的标志.很明显,笛卡儿最关心的是哲学问题.实际上,他的解析几何只是他的哲学思想在数学中的体现,所以著名数学史家克莱因(M.Kline)说,笛卡儿“只偶然地是个数学家.”
1649年,笛卡儿接受瑞典女王克利斯蒂娜(Christina)的邀请,去斯德哥尔摩担任了女王的宫廷教师,不幸在那里染上肺炎,于1650年2月11日病逝.
2.笛卡儿的数学思想
笛卡儿是以哲学家的身分来研究数学的.他认为自己在教会学校里没学到多少可靠的知识,所以从青年起就认真思考这样的问题:人类应该怎样取得知识?他勇敢地批评了当时流行的经院哲学,提倡理性哲学.他说圣经不是科学知识的来源,并且说人们应该只承认他所能了解的东西.尽管笛卡儿从未否认过上帝存在,他的这些话还是惹恼了教会,以至在他的葬礼上不准为他致悼词.
笛卡儿认为逻辑不能提供基本的真理,他说:“谈到逻辑,它的三段论和其他观念的大部分,与其说是用来探索未知的东西,不如说是用来交流已知的东西.”那么,什么地方提供真理呢?这就是客观世界,而数学正是客观存在的事物,所以数学里必然包含许多有待发现的真理.他认识到严格的数学方法是无懈可击的,不能为任何权威所左右,他说数学“是一个知识工具,比任何其他由于人的作用而得来的知识工具更为有力,因而是所有其他知识工具的源泉.”
笛卡儿从他的数学研究中得出一些获得正确知识的原则:不要承认任何事物是真的,除非对它的认识清楚到毫无疑问的程度;要把困难分成一些小的难点;要由简到繁,依次进行;最后,要列举并审查推理步骤,要做得彻底,使无遗漏.对于数学本身,他相信他有清楚的概念,这些数学概念都是客观存在的,并不依赖于人是否想着它们.笛卡儿强调要把科学成果付之应用,要为人类的幸福而掌握自然规律.
笛卡儿数学研究的目标是建立一种把 和 结合起来的科学,吸取 与 的优点,而抛弃它们的缺点.他对逻辑学、欧氏几何及代数都很熟悉,尤其强调代数的价值.他批评希腊人的几何过多地依赖于图形,主张把代数用到几何中去.他认为代数在提供广泛的方法论方面,高出希腊人的几何方法.他强调代数的一般性和程序性,认为代数的这些特点可以减小解题的工作量.他证明了几何问题可以归结为代数问题,因此在求解时可以运用代数的全部方法.由于代数语言比几何语言更有启发性,所以在问题改变形式以后,只要进行一些代数变换,就可以发现许多新的性质.显然,在笛卡儿的数学研究中, 是居于主导地位的.这种数学思想具有重要意义,因为它终于使代数摆脱了几何思维的束缚,而在文艺复兴之前,这种束缚是长期存在的.例如,x,x2,x3通常被看作长度、面积和体积,方程次数不能高于三次,因为高于三次的方程就难于找到几何解释了.卡尔达诺(G.Cardano)、费拉里(L.Ferrari)等对高次方程的研究,使代数有了独立于几何的倾向,而笛卡儿的工作则使代数完全摆脱了几何的束缚,又反过来用代数方法研究几何问题.他在研究中引入了变量思想,认为曲线是这样生成的:在坐标系内,随着一个坐标的变化,另一个坐标也相应变化,每对坐标决定一个点,这无穷多个点便组成曲线.他用方程表示曲线,把曲线上的每一个点看作方程的一组解,从而把代数与几何在变量观念下统一起来,这是他创立解析几何的基础,我们从他的著作中可以看得很清楚.
3.笛卡儿的《几何》
《几何》分 卷.第一卷的前半部分是 的预备知识,通过典型例题说明如何把 用于几何,解决 、 作图问题;后半部分则包含笛卡儿解析几何的基本理论.第二卷讨论 的推导及曲线性质,提出按方程次数对曲线进行分类的方法.第三卷讨论如何用圆锥曲线解高次方程,以及高次方程的性质.
第二卷里笛卡儿指出:“如果我们逐次给线段y以无限多个不同的值,对于线段x也可找到无限个值.这样被表示出来的C点就可以有无限多个,因此可把所求的曲线表示出来.”这就在变量思想指导下,把数与形统一起来了.这是数学史上一项划时代的变革,从此开拓了变量数学的新领域.
第三卷侧重于代数.笛卡儿在解几何作图题时,首先把问题用代数表示,然后解所得出的代数方程,并按解的要求来作图.他还提出利用圆锥曲线来解三次和四次方程的方法,即用同一坐标系内两条圆锥曲线的交点来表示方程的解.这是数学史上的一项革新,它提供了解方程的一个有力工具.笛卡儿用这种方法求出了形如z3=±pz±q和z4=±pz2±qz±r的方程的实根.
(二)典例选讲
《几何》第一卷,笛卡儿明确指出用代数方法解决几何作图题的实质在于“定出所求线段的长度”.他首先定义了单位线段,在此基础上又定义了线段的加、减、乘、除和开方.例如,假定取AB为单位,笛卡儿说:“我只需要连接点A和C,然后引DE平行于CA,那么BE就等于BD和BC的积”,“如果要求用BD来除BE,我就连接E和D,再引AC平行于DE,那么BC是除的结果.”(图10.9)“如果要求CH的平方根,我沿同一直线加上FC,FC等于单位,然后在K点将FH二等分.我以K为中心画圆FIH,再从C引垂线到I,那么CI就是所要求的根.”(图10.10)虽然对线段的运算古已有之,单位线段却是笛卡儿首次引入的.它的意义在于突破了几何对代数的束缚——齐次原则.根据这一原则,不同量纲的几何量不能相加,方程ax2+bx+c=0是没有几何意义的,因为ax2表体积,bx表面积而c表长度,属于不同的量纲.而笛卡儿引入单位概念之后,使所有几何量都通过单位而变成统一的关于数的表示.于是图形中各种量的关系就转化成数的关系,这是把代数与几何统一起来的关键.
笛卡儿在把代数方法用于几何时,首先是用未知数去表示特定的线段.例如某几何问题归结到求一个未知长度x,而x满足方程x2=ax+
作出x,笛卡儿先作直角三角形NLM(图10.11),其中LM=b,
地,若x满足方程x2=-ax+b2,则x为MP.
解析几何的精髓是用代数方程表示几何曲线,笛卡儿通过帕波斯问题引入了这一崭新的方法.该问题是:设AB,AD,EF和GH是四条给定直线,从某点C引直线CB,CD,CF,CH各与一条给定直线构成已知角CBA, CDA, CFE,CHG,要求满足CB·CF=CD·CH的点的轨迹.
笛卡儿的解法是:首先假定已得到轨迹上的C点,然后以AB和CB为主线,考虑其他直线与主线的关系.笛卡儿记AB为x,BC为y,这相当于设了两个相交的坐标轴,当然与现在直角坐标系中的x轴和y轴还有所区别.这样,线段CB,CD,CF和CH的长度便可由x和y确定了.由于三角形ARB的所有角已给定,所以AB与BR之比一定,设AB∶BR=z∶b,因AB=
 
因为AB, AD,EF是三条给定直线,所以AE长度是确定的,设AE=k,则EB=k+x(或k-x,或-k+x,依E,A,B三点的根对
(三)提出疑点和解决
简述笛卡儿在数学方面的成就。
答:从数学思想的先进来说,笛卡儿无疑是优胜者.他以十分鲜明的态度批评了希腊数学的局限,并自觉地突破了这一局限.他用代数方法代替传统的几何方法,认为曲线是任何具有代数方程的轨迹.这种思想不仅扭转了代数对几何的从属地位,而且大大扩展了数学的领域.只要我们把现代数学研究的种类繁多的曲线同希腊人所承认的曲线种类相比较,就知道摆脱尺规作图的束缚是何等重要了.