第四讲 平面解析几何的产生
教学目标分析:
1、了解平面解析几何的产生背景与发展,了解笛卡儿和费马在解析几何上的贡献。
2、理解解析几何的内涵,并能其灵活运用于数学解题。
3、激发学生的学习热情,激发学生的求知欲,培养积极进取的精神
重难点分析:
重点:了解平面解析几何的产生背景与发展,了解笛卡儿和费马在解析几何上的贡献。
难点:理解解析几何的思想内涵。
教学准备:多媒体课件
教学过程:
一、历史背景
解析几何是17世纪最伟大的数学成果之一,它的产生有着深刻的原因.
首先,生产力的发展对数学提出了新的要求,常量数学的局限性越来越明显了.例如,航海业的发展,向数学提出了如何精确测定经纬度的问题;造船业则要求描绘船体各部位的曲线,计算不同形状船体的面积和体积;显微镜与望远镜的发明,提出了研究透镜镜面形状的问题;随着火器的发展,抛射体运动的性质显得越来越重要了,它要求正确描述抛射体运动的轨迹,计算炮弹的射程,特别是开普勒发现行星沿椭圆轨道绕太阳运行,要求用数学方法确定行星位置.所有这些问题都难以在常量数学的范围内解决.实践要求人们研究变动的量.解析几何便是在这样的社会背景下产生的.
其次,解析几何的产生也是数学发展的大势所趋,因为当时的几何与代数都相当完善了.实际上,几何学早就得到比较充分的发展,《几何原本》建立起完整的演绎体系,阿波罗尼奥斯的《圆锥曲线论》则对各种圆锥曲线的性质作了详尽的研究.但几何学仍存在两个弱点,一是缺乏定量研究,二是缺乏证题的一般方法.而当时的代数则是一门注重定量研究、注重计算的学科.到16世纪末,韦达(F.Vieta, 1540—1603)在代数中有系统地使用字母,从而使这门学科具有了一般性.它在提供广泛的方法论方面,显然高出希腊人的几何方法.于是,从代数中寻求解决几何问题的一般方法,进行定量研究,便成为数学发展的趋势.实际上,韦达的《分析术引论》(In artem analyticem isagoge)等著作中的一些代数问题,便是为解几何题而列出的.
第三,形数结合的思想及变量观念是解析几何产生的直接原因.南斯拉夫的盖塔尔迪(M.Ghetaldi,1566—1626)已初步具有形数结合的思想,他于1607年注释阿波罗尼奥斯的著作时,便对几何问题的代数解法作了系统研究.1631年出版的英国哈里奥特(T.Harriot,1560—1621)所著《实用分析技术》(ArtisAnalyticae Praxis),进一步发挥了盖塔尔迪的思想,使几何与代数的结合更加系统化.变量观念则是在数学的应用中产生的.开普勒把数学应用于天文学,伽利略(Galileo Galilei,1564—1642)把数学应用于力学,而在天文学和力学中都离不开物体的运动,于是,数学中的变量观念便应运而生了.在这种情况下,一些杰出数学家们把几何、代数同一般变量结合起来,从而创立了解析几何.费马和笛卡儿几乎是同时独立地创立这一学科的,这个事实充分说明在条件成熟时产生一个新学科的必然性.
二、费马的工作
费马(P.de Fermat, 1601—1665)是一位多才多艺的学者.他上大学时专攻法律,毕业后以当律师为生,并长期担任法国图卢兹(Toulouse,费马出生地)议会的顾问.实际上,他在30岁以后才开始进行数学研究.他不愧是一位数学天才,尽管数学工作仅占据了他的一部分时间,他那丰硕的成果却令人目不暇接.17世纪的数论几乎是费马的天下,费马大定理的魅力至今仍不减当年;在牛顿(I.Newton)和莱布尼茨(G.W.Leib-niz)之前,他为微积分的创立作了大量的准备工作,取得十分出色的成果;他和帕斯卡一起,分享了创立概率论的荣誉;在解析几何上,他也是一位名副其实的发明者.
费马的《平面与立体轨迹引论》(Introduction aux Li-eux Planes et Solides)是他在解析几何方面的代表作.这本书是1630年写成的,但一直到1679年才出版,那时费马已经死了14年.费马的著作表明,他的研究工作是以古希腊阿波罗尼奥斯的《圆锥曲线论》为出发点的.他在书的开头写道:“毫无疑问,古人对于轨迹写得非常多…….可是,如果我没有想错的话,他们对于轨迹的研究并非是那么容易的.原因只有一个:他们对轨迹没有给予充分而又一般的表示.”费马认为给轨迹一般表示只能靠代数.他很熟悉韦达的代数工作,又受到前人用代数解决几何问题的启发,所以他着手解决轨迹的一般表示的问题时,就毫不犹豫地求助于代数.他不仅使代数与几何结为伴侣,更重要的是他把变量思想用于数学研究,这正是他比哈里奥特等人高明的地方,也是他创立解析几何的主要思想基础.
费马的一般方法就是坐标法.坐标概念古已有之,以坐标系为参考来确定点的位置,这是古希腊人已经熟悉的.但费马凭借他的变量观念和形数结合的思想,在这块数学园地里培育出新的成果.他把坐标平面上的点和一对未知数联系起来,然后在点运动成线的思想下,把曲线用方程表示出来.这种以代数方程表示几何曲线的方法,无疑是解析几何的精髓.
费马的具体做法是:考虑任意曲线和它上面的任意点J(图10.6),J的位置用A,E两字母表出,其中A是从点O沿底线到点Z的距离,E是从Z到J的距离.他所用的坐标就是我们所说的斜坐标,A,E相当于x,y.费马说:“只要在最后的方程里出现两个未知量,我们就得到一个轨迹,这两个量之一的末端描绘出一条直线或曲线.”如图10.6,对于不同位置的E,其末端J,J′,J″…就把线描出.当然,在这里联系A和E的方程是不确定的,图10.6仅仅是一个示意图.费马以这种思想为指导,研究了各种类型的曲线,他实际采用的坐标多是直角坐标.
费马充分注意到方程次数与曲线形状的关系,他说一个联系着A和E的方程如果是一次的,就代表直线轨迹;如果是二次的,就代表圆锥曲线.例如,DA=BE就表示一个一次方程.换成现代记号,相当于ax
坐标的名词,他的坐标轴也没有标明方向.实际上,横、纵坐标的名词是莱布尼茨起的,牛顿首次采用了现代形式的坐标系.
费马的研究重点是圆锥曲线,他通过自己的实践揭示了圆锥曲线的方程特征——含有二个未知数的二次方程.例如,他以椭圆的长轴PP′所在直线为x轴,以椭圆在P点的切线为y轴,并设PP′=d,通径(即正焦弦)为p(图10.8),推得椭圆方程为
另一方面,他还通过坐标轴的平移和旋转来化简方程,从而求得比较复杂的二次方程的曲线.例如,他通过平移坐标轴,把方程
xy+a2=bx+cy
化成 xy=k2
的形式,这显然是双曲线;又通过坐标轴的旋转,化方程
a2-2x2=2xy+y2
为 b2-x2=ky2,
从而证明这是一个椭圆.他还证明了方程
x2+y2+2dx+2ry=b2
是一个圆.在此基础上,费马自豪地宣称,他能用他的新方法重新推出阿波罗尼奥斯《圆锥曲线论》的所有结论.不过,他并没有给出坐标变换的一般法则.
费马在总结自己的工作时说:“直线是简单唯一的;曲线的数目则是无限的,包括圆、抛物线,椭圆等等.”他把二次以内的曲线分为平面轨迹和立体轨迹两类,说:“每当构成轨迹的未知数的顶端所描出的是直线或圆时,这轨迹就称为平面轨迹;当它描出的是抛物线、双曲线或椭圆时,它就称为立体轨迹.”至于其他曲线,他一律称为线性轨迹.他重点研究了直角坐标系下的曲线方程,说:“若令两个未知量构成一给定的角,通常假定它为直角,并且未知量之一的位置和顶端是确定的,则此方程是很容易想象的.如果这两个未知量的幂都不超过二次,则由后面所述便能明白,其轨迹是平面轨迹或立体轨迹.”他在书中确定了各种轨迹的方程,其基本形式为(以现代记法表示):
(3)圆的方程a2-x2=y2;
(4)椭圆方程a2-x2=ky2;
(5)双曲线方程a2+x2=ky2;
(6)双曲线方程xy=k2;
(7)抛物线方程x2=ay.
费马对高次曲线的研究也是卓有成效的.他提出许多以代数方程定
整数),它们分别被后人称为费马抛物线、费马双曲线和费马螺线.另外,费马还与一位叫阿格内西(M.G.Agnesi,1718—1799)的意大利女数学家在通信中讨论了一种新曲线,即
b3=x2y+b2y.
这种曲线问世后,被称作阿格内西箕舌线.
费马在研究轨迹的过程中,不仅考虑到一维和二维的情形,还进一步探讨了三维空间的轨迹问题.他正确指出:一元方程确定一个点,二元方程确定一条曲线(包括直线),而三元方程则确定一个曲面.这类曲面包括平面、球面、椭球面、抛物面和双曲面.不过,他没有用解析方法对这些曲面进行具体研究.
由于时代的局限,费马在研究轨迹时不考虑负坐标,他的曲线一般只画在第一象限,尽管他知道这些曲线是在其他象限延续的.这就使他的工作缺乏完整性.例如,他认为任何齐二次方程都表示直线,因为x2=y2可化成x=y.另外,从指导思想来看,他并不想打破希腊数学传统,把自己的思想看作希腊数学思想的继续,认为解析几何不过是阿波罗尼奥斯著作的一种新的表现形式.这种认识对于他的解析思想的发挥无疑具有阻碍作用.例如,他虽然在坐标系内讨论了阿波罗尼奥斯的各种圆锥曲线,但从未考虑过两条曲线在同一坐标系内的相交问题,更不知道交点的代数意义.相比之下,笛卡儿的解析思想更为深刻,他创立的解析几何也更为成熟.
三、笛卡儿的工作
1.笛卡儿传略
笛卡儿(R.Descartes,1596—1650)是17世纪的天才.他是杰出的哲学家和数学家,是近代生物学的奠基人之一,在物理学方面也作了许多有价值的研究.当然,本书所关心的主要是他在数学方面的贡献
.
1596年3月31日,笛卡尔出生在法国土伦(Tournine)的一个律师之家,早年丧母,八岁时被父亲送到当地的一所耶酥教会学校.由于他身(R.Descartes1596—1650)体较弱,父亲与校方商定,允许他每天早晨多睡些时间.于是,笛卡儿养成了晚起的习惯.长大以后,他经常在早晨躺在床上思考问题,据说他的大部分成果出自早上那段适宜思考的时间.
笛卡儿成年后的生活,可以1628年为界分成两个阶段.他16岁时离开家乡,去外地求学, 20岁(1616年)时毕业于普瓦捷(Poitiers)大学,在巴黎当了律师.他在那里结识了数学家梅森(M.Mersenne)和迈多治(C.Mydorge),经常和他们一起讨论数学问题.笛卡儿于1617年到荷兰,参加了奥兰治(Orange)公爵的军队,后来又到其他军队服务.他参军的目的主要是弥补学校教育的不足,并无明显的宗教或政治倾向.1621年以后,他先后到德国、丹麦、荷兰、瑞士和意大利旅行.在当兵和旅行的日子里,他的数学研究一直没有中断,他把解决数学问题当作自己的乐趣.在荷兰布雷达(Breda)地方的招贴牌上,笛卡儿发现一个挑战性的问题,很快就解决了,这使他自信有数学才能,从而更认真地研究数学. 1625年回到巴黎后,他为望远镜的威力所激动,开始钻研光学理论,同时参加了德扎格等数学家的讨论,并继续他的哲学探索.1628年,他写成第一部哲学著作《思想的指导法则》(Regulae ad DirectionemIngenii).在这个阶段的生活中,他实际上已为他后来创立唯理论的认识论奠定了基础,为发明解析几何创造了条件.
由于笛卡儿对《圣经》持批评态度,受到国内封建教会的排斥.1628年,笛卡儿移居荷兰,开始了第二阶段的生活.他的主要学术著作,都是在那里的20年中完成的,包括《宇宙论》(LeMonde,1633年写成,1664年出版)、《方法论》(Discours dela Méthode, 1637)、 《形而上学的沉思》(Meditationes dePrima Philosophia,1640)、《哲学原理》(PhincipiaePhilosophiae,1644)、《激情论》(Traité des Passions delame,1649).《方法论》一书有三个附录——《折光》(La Di-optrique)、《气象》(Les Météores)和《几何》(La Géo-métrie).其中第三个附录便是笛卡儿创立解析几何的标志.很明显,笛卡儿最关心的是哲学问题.实际上,他的解析几何只是他的哲学思想在数学中的体现,所以著名数学史家克莱因(M.Kline)说,笛卡儿“只偶然地是个数学家.”
1649年,笛卡儿接受瑞典女王克利斯蒂娜(Christina)的邀请,去斯德哥尔摩担任了女王的宫廷教师,不幸在那里染上肺炎,于1650年2月11日病逝.
2.笛卡儿的数学思想
笛卡儿是以哲学家的身分来研究数学的.他认为自己在教会学校里没学到多少可靠的知识,所以从青年起就认真思考这样的问题:人类应该怎样取得知识?他勇敢地批评了当时流行的经院哲学,提倡理性哲学.他说圣经不是科学知识的来源,并且说人们应该只承认他所能了解的东西.尽管笛卡儿从未否认过上帝存在,他的这些话还是惹恼了教会,以至在他的葬礼上不准为他致悼词.
笛卡儿认为逻辑不能提供基本的真理,他说:“谈到逻辑,它的三段论和其他观念的大部分,与其说是用来探索未知的东西,不如说是用来交流已知的东西.”那么,什么地方提供真理呢?这就是客观世界,而数学正是客观存在的事物,所以数学里必然包含许多有待发现的真理.他认识到严格的数学方法是无懈可击的,不能为任何权威所左右,他说数学“是一个知识工具,比任何其他由于人的作用而得来的知识工具更为有力,因而是所有其他知识工具的源泉.”
笛卡儿从他的数学研究中得出一些获得正确知识的原则:不要承认任何事物是真的,除非对它的认识清楚到毫无疑问的程度;要把困难分成一些小的难点;要由简到繁,依次进行;最后,要列举并审查推理步骤,要做得彻底,使无遗漏.对于数学本身,他相信他有清楚的概念,这些数学概念都是客观存在的,并不依赖于人是否想着它们.笛卡儿强调要把科学成果付之应用,要为人类的幸福而掌握自然规律.
笛卡儿数学研究的目标是建立一种把形和数结合起来的科学,吸取代数与几何的优点,而抛弃它们的缺点.他对逻辑学、欧氏几何及代数都很熟悉,尤其强调代数的价值.他批评希腊人的几何过多地依赖于图形,主张把代数用到几何中去.他认为代数在提供广泛的方法论方面,高出希腊人的几何方法.他强调代数的一般性和程序性,认为代数的这些特点可以减小解题的工作量.他证明了几何问题可以归结为代数问题,因此在求解时可以运用代数的全部方法.由于代数语言比几何语言更有启发性,所以在问题改变形式以后,只要进行一些代数变换,就可以发现许多新的性质.显然,在笛卡儿的数学研究中,代数是居于主导地位的.这种数学思想具有重要意义,因为它终于使代数摆脱了几何思维的束缚,而在文艺复兴之前,这种束缚是长期存在的.例如,x,x2,x3通常被看作长度、面积和体积,方程次数不能高于三次,因为高于三次的方程就难于找到几何解释了.卡尔达诺(G.Cardano)、费拉里(L.Ferrari)等对高次方程的研究,使代数有了独立于几何的倾向,而笛卡儿的工作则使代数完全摆脱了几何的束缚,又反过来用代数方法研究几何问题.他在研究中引入了变量思想,认为曲线是这样生成的:在坐标系内,随着一个坐标的变化,另一个坐标也相应变化,每对坐标决定一个点,这无穷多个点便组成曲线.他用方程表示曲线,把曲线上的每一个点看作方程的一组解,从而把代数与几何在变量观念下统一起来,这是他创立解析几何的基础,我们从他的著作中可以看得很清楚.
3.笛卡儿的《几何》
《几何》分三卷.第一卷的前半部分是解析几何的预备知识,通过典型例题说明如何把代数用于几何,解决尺、规作图问题;后半部分则包含笛卡儿解析几何的基本理论.第二卷讨论曲线方程的推导及曲线性质,提出按方程次数对曲线进行分类的方法.第三卷讨论如何用圆锥曲线解高次方程,以及高次方程的性质.
在第一卷,笛卡儿明确指出用代数方法解决几何作图题的实质在于“定出所求线段的长度”.他首先定义了单位线段,在此基础上又定义了线段的加、减、乘、除和开方.例如,假定取AB为单位,笛卡儿说:“我只需要连接点A和C,然后引DE平行于CA,那么BE就等于BD和BC的积”,“如果要求用BD来除BE,我就连接E和D,再引AC平行于DE,那么BC是除的结果.”(图10.9)“如果要求CH的平方根,我沿同一直线加上FC,FC等于单位,然后在K点将FH二等分.我以K为中心画圆FIH,再从C引垂线到I,那么CI就是所要求的根.”(图10.10)虽然对线段的运算古已有之,单位线段却是笛卡儿首次引入的.它的意义在于突破了几何对代数的束缚——齐次原则.根据这一原则,不同量纲的几何量不能相加,方程ax2+bx+c=0是没有几何意义的,因为ax2表体积,bx表面积而c表长度,属于不同的量纲.而笛卡儿引入单位概念之后,使所有几何量都通过单位而变成统一的关于数的表示.于是图形中各种量的关系就转化成数的关系,这是把代数与几何统一起来的关键.
笛卡儿在把代数方法用于几何时,首先是用未知数去表示特定的线段.例如某几何问题归结到求一个未知长度x,而x满足方程x2=ax+
作出x,笛卡儿先作直角三角形NLM(图10.11),其中LM=b,
地,若x满足方程x2=-ax+b2,则x为MP.
解析几何的精髓是用代数方程表示几何曲线,笛卡儿通过帕波斯问题引入了这一崭新的方法.该问题是:设AB,AD,EF和GH是四条给定直线,从某点C引直线CB,CD,CF,CH各与一条给定直线构成已知角CBA, CDA, CFE,CHG,要求满足CB·CF=CD·CH的点的轨迹.
笛卡儿的解法是:首先假定已得到轨迹上的C点,然后以AB和CB为主线,考虑其他直线与主线的关系.笛卡儿记AB为x,BC为y,这相当于设了两个相交的坐标轴,当然与现在直角坐标系中的x轴和y轴还有所区别.这样,线段CB,CD,CF和CH的长度便可由x和y确定了.由于三角形ARB的所有角已给定,所以AB与BR之比一定,设AB∶BR=z∶b,因AB=
因为AB, AD,EF是三条给定直线,所以AE长度是确定的,设AE=k,则EB=k+x(或k-x,或-k+x,依E,A,B三点的根对
这样,CB,CD,CF,CH便都表示成关于x和y的一次式了.把这四个一次式代入CB·CF=CD·CH,可知两边关于x,y的次数都不会高于二次,即满足帕波斯问题的C点的轨迹方程为
y2=Ay+Bxy+Cx+Dx2,
其中A,B,C,D是由已知量组成的代数式.
笛卡儿接着指出:“如果我们逐次给线段y以无限多个不同的值,对于线段x也可找到无限个值.这样被表示出来的C点就可以有无限多个,因此可把所求的曲线表示出来.”这就在变量思想指导下,把数与形统一起来了.这是数学史上一项划时代的变革,从此开拓了变量数学的新领域.
在《几何》的第二卷中,笛卡儿详细讨论了曲线方程的推导及各种曲线的性质.我们从下面的例子可以领会他的思路.
设直线l1⊥l2于A,G是l1上的定点,射线m(笛卡儿说是直尺)绕端点G旋转,交l2与L,射线n的端点K沿l2滑动,LK为定长.笛卡儿试图导出m与n的交点的轨迹方程.他设C为轨迹上任一点,过C作CB∥BA,交l2于B,过L作LN∥GA,交n于N,他以A为原点建立坐标系,并设BC=y,AB=x,设GA,LK和NL三个已知量为a,b,c(图10.13)
这显然是双曲线的方程.
笛卡儿以方程次数为标准,对曲线进行了系统的分类.他认为:几何曲线是那些可用一个唯一的含x和y的有限次代数方程来表出的曲线,所以方程次数决定了曲线的种类.他研究了各种圆锥曲线,指出圆锥曲线都是二次的;另一方面,二次方程(指二元二次方程)的曲线也都是圆锥曲线.他把方程次数强调到这种程度,以至认为像x3+y3-3axy=0(图10.14,即笛卡儿叶线)这样复杂的曲线,比曲线y=x4还要简单.笛卡儿坚持曲线与方程相对应,对任何一条曲线,只要可以找到适合于它的方程,他立即当作几何曲线来研究.这就突破了欧氏几何只用圆规、直尺作图的局限,以前一向为几何学家所回避的许多曲线,便有了和常见曲线相同的地位.至于不能用代数方程表示的曲线,如螺线和割圆曲线等,笛卡儿一律称之为机械曲线.
第三卷侧重于代数.笛卡儿在解几何作图题时,首先把问题用代数表示,然后解所得出的代数方程,并按解的要求来作图.他还提出利用圆锥曲线来解三次和四次方程的方法,即用同一坐标系内两条圆锥曲线的交点来表示方程的解.这是数学史上的一项革新,它提供了解方程的一个有力工具.笛卡儿用这种方法求出了形如z3=±pz±q和z4=±pz2±qz±r的方程的实根.
则圆与抛物线在轴左边的交点F给出方程的正根,笛卡儿称为“真正的根”;另一边的交点G和H则表示方程的负根,笛卡儿称为“假根”,因为他不承认方程的负根.实际上,笛卡儿是把圆和抛物线放在以A为原点的同一坐标系内来考虑的.若用现代符号表示,则抛物线方程
为 x2=y, (1)
圆的方程为
化简得 x2+y2=qx+(1+p)y. (2)
把方程(1)和(2)联立,所得解的x值即圆与抛物线的交点的横坐标,也就是方程z3=pz+q的解.在这里,笛卡儿把方程的解、方程组的解,以及代表方程的曲线的交点都统一在坐标系内,这种思想是相当出色的.
在第三卷中,还有一部分内容是专门讨论方程的,具有独立的代数意义.著名的笛卡儿符号法则就是在这里提出的.
纵观笛卡儿的《几何》,虽然篇幅不过百页,却已奠定了解析几何的基础.笛卡儿把曲线与方程相联系的观点,不仅是曲线理论而且是整个数学思想的重大突破.他还进一步认识到,如果两条曲线以同一个坐标系为参考,则其交点由它们的方程之解来确定.这种思想远远高出了他的同时代人,正如数学史家芬克(Karl Fink)所说:“从来都没有谁作过任何尝试,企图把不同次数的几条曲线同时表示在一个坐标系中……甚至连费马也没有尝试过.笛卡儿所系统完成的恰恰是这件事.”
但是,笛卡儿同费马一样不考虑负坐标,这就不可避免地给他的研究工作带来局限性.另外,他对几何作图题的强调掩盖了解析几何的主要思想——用代数方程表示并研究曲线.许多和他同时代的人认为解析几何主要是为了解决作图问题.当然,笛卡儿本人是清楚这门学科的意义远不止于此的.他在《几何》的引言中说:“我在第二卷中所作的关于曲线性质的讨论,以及考查这些性质的方法,据我看,远远超出了普通几何的论述.”
笛卡儿的《几何》还有一个特点,即很少证明.实际上,笛卡儿不仅熟悉欧氏几何的证明方法,也完全会用代数方法证明几何问题.他有意删去定理的证明,大概是为了使文章简短和利于自学.他在一封信里把自己比做建筑师,说自己的工作是指明应该做什么,而把手工操作留给木工和瓦工.他还说:“我没有做过任何不精心的删节.”他在《几何》中明确表示:他不愿夺去读者们自己进行加工的乐趣.他说之所以删去大多数定理的证明,是因为如果读者系统考查他的题目,则证明就成为显然的了,而且这样学习会更为有益.不过,由于笛卡儿的《几何》过于难懂,还是影响了解析几何的传播速度.后来有人给此书写了许多评注,使它易于理解.
四、解析几何的进一步发展
1. 范·斯柯登、瓦利斯和克拉梅等人的工作
范·斯柯登将笛卡儿的《几何》译成拉丁文,撰写介绍性评论,于1649年出版,并再版了若干次.对宣传、改进解析几何起了积极作用.
约翰·瓦里士在《论圆锥曲线》一书中有意识地引进负的纵、横坐标,使坐标几何中的曲线扩大到整个平面.
克拉梅在《代数曲线的解析引论》一书中第一次正式使用y(纵)轴(1750年).
2.伯努利等人关于极坐标系的工作
雅各·贝努利1691年在《教师学报》上发表了一篇关于极坐标的文章,是极坐标的发明者.
赫尔曼于 1729年正式宣布极坐标的普遍可用,且自由地应用极坐标去研究曲线,并建立了直角坐标系和极坐标系的互换公式.
欧拉扩充了极坐标的使用范围,并且明确地使用三角函数的记号.
小结:
解析几何是人类历史上首次出现的变量数学,它改变了数学的面貌,推动了整个数学的发展.虽然费马和笛卡儿一起分享了发明解析几何的荣誉,他们的观点(坐标观点)和方法(用方程表示曲线)是基本相同的,但从数学思想的先进来说,笛卡儿无疑是优胜者.他不像费马那样,把自己的工作看作阿波罗尼奥斯工作的代数翻板,而是以十分鲜明的态度批评了希腊数学的局限,并自觉地突破了这一局限.他用代数方法代替传统的几何方法,认为曲线是任何具有代数方程的轨迹.这种思想不仅扭转了代数对几何的从属地位,而且大大扩展了数学的领域.只要我们把现代数学研究的种类繁多的曲线同希腊人所承认的曲线种类相比较,就知道摆脱尺规作图的束缚是何等重要了.
解析几何通过形和数的结合,使数学成为一个双面的工具.一方面,几何概念可用代数表示,几何目标可通过代数方法达到;另一方面,又可给代数语言以几何的解释.使代数语言更直观、更形象地表达出来,这对于人们发现新结论具有重要的意义.正如拉格朗日(J.L.Lagrange)所说:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门学科结合成伴侣时,它们就互相吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”近代数学的巨大发展,在很大程度上应该归功于解析几何.由于在解析几何中代数起主导作用,这就大大提高了代数的地位,对于促进代数的进步具有十分重要的意义.
从数学思想上来说,解析几何的最大突破是引入了变量思想,它成为发明微积分的思想基础.正如恩格斯所说:“数学中的转折点是笛卡儿的变数.有了变数,运动进入了数学;有了变数,微分和积分也就立刻成为必要的了.”
解析几何的意义不仅表现在数学本身,而且表现在对整个科学事业及社会经济的促进上,因为它提供了社会迫切需要的数量工具.研究物理世界是离不开几何的.物体具有不同的几何形状,而运动物体的路线则是几何曲线.笛卡儿认为全部物理可归结到几何,但传统几何对于运动的物体是无能为力的.在与变量有关的广阔天地里,解析几何却大有用武之地.无论是航海学,测地学和天文预测,还是抛射体运动及透镜设计、凸轮制造,都需要数量知识.而解析几何恰恰能把物体的形状和运行路线表为代数形式,从而导出数量关系.正因为它的应用广泛,才使得与它几乎同时产生的射影几何相形见绌.直到今天,解析几何仍然是科学研究及工业生产中不可缺少的数学工具.