平面解析几何的产生 学案 (1)

文档属性

名称 平面解析几何的产生 学案 (1)
格式 zip
文件大小 574.4KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2017-12-06 20:56:38

图片预览

文档简介

第四讲 平面解析几何的产生
一、自学目标:了解平面解析几何的产生背景与发展,了解笛卡儿和费马在解析几何上的贡献。
二、自学内容提炼
(一)导入新知
1、历史背景
解析几何是17世纪最伟大的数学成果之一,它的产生有着深刻的原因.
首先,生产力的发展对数学提出了新的要求,常量数学的局限性越来越明显了.例如,航海业的发展,向数学提出了如何精确测定经纬度的问题;造船业则要求描绘船体各部位的曲线,计算不同形状船体的面积和体积;显微镜与望远镜的发明,提出了研究透镜镜面形状的问题;随着火器的发展,抛射体运动的性质显得越来越重要了,它要求正确描述抛射体运动的轨迹,计算炮弹的射程,特别是开普勒发现行星沿椭圆轨道绕太阳运行,要求用数学方法确定行星位置.所有这些问题都难以在常量数学的范围内解决.实践要求人们研究变动的量.解析几何便是在这样的社会背景下产生的.
其次,解析几何的产生也是数学发展的大势所趋,因为当时的几何与代数都相当完善了.实际上,几何学早就得到比较充分的发展,《几何原本》建立起完整的演绎体系,阿波罗尼奥斯的《圆锥曲线论》则对各种圆锥曲线的性质作了详尽的研究.但几何学仍存在两个弱点,一是缺乏定量研究,二是缺乏证题的一般方法.而当时的代数则是一门注重定量研究、注重计算的学科.到16世纪末,韦达(F.Vieta, 1540—1603)在代数中有系统地使用字母,从而使这门学科具有了一般性.它在提供广泛的方法论方面,显然高出希腊人的几何方法.于是,从代数中寻求解决几何问题的一般方法,进行定量研究,便成为数学发展的趋势.实际上,韦达的《分析术引论》(In artem analyticem isagoge)等著作中的一些代数问题,便是为解几何题而列出的.
第三,形数结合的思想及变量观念是解析几何产生的直接原因.南斯拉夫的盖塔尔迪(M.Ghetaldi,1566—1626)已初步具有形数结合的思想,他于1607年注释阿波罗尼奥斯的著作时,便对几何问题的代数解法作了系统研究.1631年出版的英国哈里奥特(T.Harriot,1560—1621)所著《实用分析技术》(ArtisAnalyticae Praxis),进一步发挥了盖塔尔迪的思想,使几何与代数的结合更加系统化.变量观念则是在数学的应用中产生的.开普勒把数学应用于天文学,伽利略(Galileo Galilei,1564—1642)把数学应用于力学,而在天文学和力学中都离不开物体的运动,于是,数学中的变量观念便应运而生了.在这种情况下,一些杰出数学家们把几何、代数同一般变量结合起来,从而创立了解析几何.费马和笛卡儿几乎是同时独立地创立这一学科的,这个事实充分说明在条件成熟时产生一个新学科的必然性.
2、费马的工作
费马(P.de Fermat, 1601—1665)是一位多才多艺的学者.他上大学时专攻法律,毕业后以当律师为生,并长期担任法国图卢兹(Toulouse,费马出生地)议会的顾问.实际上,他在30岁以后才开始进行数学研究.他不愧是一位数学天才,尽管数学工作仅占据了他的一部分时间,他那丰硕的成果却令人目不暇接.17世纪的数论几乎是费马的天下,费马大定理的魅力至今仍不减当年;在牛顿(I.Newton)和莱布尼茨(G.W.Leib-niz)之前,他为微积分的创立作了大量的准备工作,取得十分出色的成果;他和帕斯卡一起,分享了创立概率论的荣誉;在解析几何上,他也是一位名副其实的发明者.
费马的《 》(Introduction aux Li-eux Planes et Solides)是他在解析几何方面的代表作.这本书是1630年写成的,但一直到1679年才出版,那时费马已经死了14年.费马的著作表明,他的研究工作是以古希腊阿波罗尼奥斯的《圆锥曲线论》为出发点的.他在书的开头写道:“毫无疑问,古人对于轨迹写得非常多…….可是,如果我没有想错的话,他们对于轨迹的研究并非是那么容易的.原因只有一个:他们对轨迹没有给予充分而又一般的表示.”费马认为给轨迹一般表示只能靠代数.他很熟悉韦达的代数工作,又受到前人用代数解决几何问题的启发,所以他着手解决轨迹的一般表示的问题时,就毫不犹豫地求助于代数.他不仅使代数与几何结为伴侣,更重要的是他把变量思想用于数学研究,这正是他比哈里奥特等人高明的地方,也是他创立解析几何的主要思想基础.
费马的一般方法就是 法.坐标概念古已有之,以坐标系为参考来确定点的位置,这是古希腊人已经熟悉的.但费马凭借他的变量观念和形数结合的思想,在这块数学园地里培育出新的成果.他把坐标平面上的点和一对未知数联系起来,然后在点运动成线的思想下,把曲线用方程表示出来.这种以代数方程表示几何曲线的方法,无疑是解析几何的精髓.
费马的研究重点是圆锥曲线,他通过自己的实践揭示了圆锥曲线的方程特征——含有二个未知数的二次方程.
费马在总结自己的工作时说:“直线是简单唯一的;曲线的数目则是无限的,包括圆、抛物线,椭圆等等.”他把二次以内的曲线分为 轨迹和 轨迹两类,说:“每当构成轨迹的未知数的顶端所描出的是直线或圆时,这轨迹就称为平面轨迹;当它描出的是抛物线、双曲线或椭圆时,它就称为立体轨迹.”至于其他曲线,他一律称为线性轨迹.他重点研究了直角坐标系下的曲线方程,说:“若令两个未知量构成一给定的角,通常假定它为直角,并且未知量之一的位置和顶端是确定的,则此方程是很容易想象的.如果这两个未知量的幂都不超过二次,则由后面所述便能明白,其轨迹是平面轨迹或立体轨迹.”他在书中确定了各种轨迹的方程,其基本形式为(以现代记法表示):

(3)圆的方程a2-x2=y2;
(4)椭圆方程a2-x2=ky2;
(5)双曲线方程a2+x2=ky2;
(6)双曲线方程xy=k2;
(7)抛物线方程x2=ay.
费马对高次曲线的研究也是卓有成效的.他提出许多以代数方程定
整数),它们分别被后人称为费马抛物线、费马双曲线和费马螺线.另外,费马还与一位叫阿格内西(M.G.Agnesi,1718—1799)的意大利女数学家在通信中讨论了一种新曲线,即
b3=x2y+b2y.
这种曲线问世后,被称作阿格内西箕舌线.
费马在研究轨迹的过程中,不仅考虑到一维和二维的情形,还进一步探讨了三维空间的轨迹问题.他正确指出:一元方程确定一个点,二元方程确定一条曲线(包括直线),而三元方程则确定一个曲面.这类曲面包括平面、球面、椭球面、抛物面和双曲面.不过,他没有用解析方法对这些曲面进行具体研究.
由于时代的局限,费马在研究轨迹时不考虑负坐标,他的曲线一般只画在第一象限,尽管他知道这些曲线是在其他象限延续的.这就使他的工作缺乏完整性.例如,他认为任何齐二次方程都表示直线,因为x2=y2可化成x=y.另外,从指导思想来看,他并不想打破希腊数学传统,把自己的思想看作希腊数学思想的继续,认为解析几何不过是阿波罗尼奥斯著作的一种新的表现形式.这种认识对于他的解析思想的发挥无疑具有阻碍作用.例如,他虽然在坐标系内讨论了阿波罗尼奥斯的各种圆锥曲线,但从未考虑过两条曲线在同一坐标系内的相交问题,更不知道交点的代数意义.相比之下,笛卡儿的解析思想更为深刻,他创立的解析几何也更为成熟.
3、笛卡儿的工作
(1)笛卡儿传
笛卡儿(R.Descartes,1596—1650)是17世纪的天才.他是杰出的 家和 家,是近代生物学的奠基人之一,在物理学方面也作了许多有价值的研究.

1596年3月31日,笛卡尔出生在 国土伦(Tournine)的一个律师之家,早年丧母,八岁时被父亲送到当地的一所耶酥教会学校.由于他身(R.Descartes1596—1650)体较弱,父亲与校方商定,允许他每天早晨多睡些时间.于是,笛卡儿养成了晚起的习惯.长大以后,他经常在早晨躺在床上思考问题,据说他的大部分成果出自早上那段适宜思考的时间.
笛卡儿成年后的生活,可以1628年为界分成两个阶段.他16岁时离开家乡,去外地求学, 20岁(1616年)时毕业于普瓦捷(Poitiers)大学,在巴黎当了律师.他在那里结识了数学家梅森(M.Mersenne)和迈多治(C.Mydorge),经常和他们一起讨论数学问题.笛卡儿于1617年到荷兰,参加了奥兰治(Orange)公爵的军队,后来又到其他军队服务.他参军的目的主要是弥补学校教育的不足,并无明显的宗教或政治倾向.1621年以后,他先后到德国、丹麦、荷兰、瑞士和意大利旅行.在当兵和旅行的日子里,他的数学研究一直没有中断,他把解决数学问题当作自己的乐趣.在荷兰布雷达(Breda)地方的招贴牌上,笛卡儿发现一个挑战性的问题,很快就解决了,这使他自信有数学才能,从而更认真地研究数学. 1625年回到巴黎后,他为望远镜的威力所激动,开始钻研光学理论,同时参加了德扎格等数学家的讨论,并继续他的哲学探索.1628年,他写成第一部哲学著作《思想的指导法则》(Regulae ad DirectionemIngenii).在这个阶段的生活中,他实际上已为他后来创立唯理论的认识论奠定了基础,为发明解析几何创造了条件.
由于笛卡儿对《圣经》持批评态度,受到国内封建教会的排斥.1628年,笛卡儿移居荷兰,开始了第二阶段的生活.他的主要学术著作,都是在那里的20年中完成的,包括《宇宙论》(LeMonde,1633年写成,1664年出版)、《方法论》(Discours dela Méthode, 1637)、 《形而上学的沉思》(Meditationes dePrima Philosophia,1640)、《哲学原理》(PhincipiaePhilosophiae,1644)、《激情论》(Traité des Passions delame,1649).《方法论》一书有 个附录——《折光》(La Di-optrique)、《气象》(Les Météores)和《 》(La Géo-métrie).其中第 个附录便是笛卡儿创立解析几何的标志.很明显,笛卡儿最关心的是哲学问题.实际上,他的解析几何只是他的哲学思想在数学中的体现,所以著名数学史家克莱因(M.Kline)说,笛卡儿“只偶然地是个数学家.”
1649年,笛卡儿接受瑞典女王克利斯蒂娜(Christina)的邀请,去斯德哥尔摩担任了女王的宫廷教师,不幸在那里染上肺炎,于1650年2月11日病逝.
2.笛卡儿的数学思想
笛卡儿是以哲学家的身分来研究数学的.他认为自己在教会学校里没学到多少可靠的知识,所以从青年起就认真思考这样的问题:人类应该怎样取得知识?他勇敢地批评了当时流行的经院哲学,提倡理性哲学.他说圣经不是科学知识的来源,并且说人们应该只承认他所能了解的东西.尽管笛卡儿从未否认过上帝存在,他的这些话还是惹恼了教会,以至在他的葬礼上不准为他致悼词.
笛卡儿认为逻辑不能提供基本的真理,他说:“谈到逻辑,它的三段论和其他观念的大部分,与其说是用来探索未知的东西,不如说是用来交流已知的东西.”那么,什么地方提供真理呢?这就是客观世界,而数学正是客观存在的事物,所以数学里必然包含许多有待发现的真理.他认识到严格的数学方法是无懈可击的,不能为任何权威所左右,他说数学“是一个知识工具,比任何其他由于人的作用而得来的知识工具更为有力,因而是所有其他知识工具的源泉.”
笛卡儿从他的数学研究中得出一些获得正确知识的原则:不要承认任何事物是真的,除非对它的认识清楚到毫无疑问的程度;要把困难分成一些小的难点;要由简到繁,依次进行;最后,要列举并审查推理步骤,要做得彻底,使无遗漏.对于数学本身,他相信他有清楚的概念,这些数学概念都是客观存在的,并不依赖于人是否想着它们.笛卡儿强调要把科学成果付之应用,要为人类的幸福而掌握自然规律.
笛卡儿数学研究的目标是建立一种把 和 结合起来的科学,吸取 与 的优点,而抛弃它们的缺点.他对逻辑学、欧氏几何及代数都很熟悉,尤其强调代数的价值.他批评希腊人的几何过多地依赖于图形,主张把代数用到几何中去.他认为代数在提供广泛的方法论方面,高出希腊人的几何方法.他强调代数的一般性和程序性,认为代数的这些特点可以减小解题的工作量.他证明了几何问题可以归结为代数问题,因此在求解时可以运用代数的全部方法.由于代数语言比几何语言更有启发性,所以在问题改变形式以后,只要进行一些代数变换,就可以发现许多新的性质.显然,在笛卡儿的数学研究中,代数是居于主导地位的.这种数学思想具有重要意义,因为它终于使代数摆脱了几何思维的束缚,而在文艺复兴之前,这种束缚是长期存在的.例如,x,x2,x3通常被看作长度、面积和体积,方程次数不能高于三次,因为高于三次的方程就难于找到几何解释了.卡尔达诺(G.Cardano)、费拉里(L.Ferrari)等对高次方程的研究,使代数有了独立于几何的倾向,而笛卡儿的工作则使代数完全摆脱了几何的束缚,又反过来用代数方法研究几何问题.他在研究中引入了变量思想,认为曲线是这样生成的:在坐标系内,随着一个坐标的变化,另一个坐标也相应变化,每对坐标决定一个点,这无穷多个点便组成曲线.他用方程表示曲线,把曲线上的每一个点看作方程的一组解,从而把代数与几何在变量观念下统一起来,这是他创立解析几何的基础,我们从他的著作中可以看得很清楚.
3.笛卡儿的《几何》
《几何》分 卷.第一卷的前半部分是解析几何的 知识,通过典型例题说明如何把 用于几何,解决尺、规作图问题;后半部分则包含笛卡儿解析几何的 .第二卷讨论曲线方程的 及 性质,提出按方程次数对曲线进行分类的方法.第三卷讨论如何用圆锥曲线解高次方程,以及高次方程的性质.
笛卡儿指出:“如果我们逐次给线段y以无限多个不同的值,对于线段x也可找到无限个值.这样被表示出来的C点就可以有无限多个,因此可把所求的曲线表示出来.”这就在变量思想指导下,把数与形统一起来了.这是数学史上一项划时代的变革,从此开拓了变量数学的新领域.
笛卡儿以方程次数为标准,对曲线进行了系统的分类.他认为:几何曲线是那些可用一个唯一的含x和y的有限次代数方程来表出的曲线,所以方程次数决定了曲线的种类.他研究了各种圆锥曲线,指出圆锥曲线都是二次的;另一方面,二次方程(指二元二次方程)的曲线也都是圆锥曲线.他把方程次数强调到这种程度,以至认为像x3+y3-3axy=0(图10.14,即笛卡儿叶线)这样复杂的曲线,比曲线y=x4还要简单.笛卡儿坚持曲线与方程相对应,对任何一条曲线,只要可以找到适合于它的方程,他立即当作几何曲线来研究.这就突破了欧氏几何只用圆规、直尺作图的局限,以前一向为几何学家所回避的许多曲线,便有了和常见曲线相同的地位.至于不能用代数方程表示的曲线,如螺线和割圆曲线等,笛卡儿一律称之为机械曲线.
第三卷侧重于代数.笛卡儿在解几何作图题时,首先把问题用代数表示,然后解所得出的代数方程,并按解的要求来作图.他还提出利用圆锥曲线来解三次和四次方程的方法,即用同一坐标系内两条圆锥曲线的交点来表示方程的解.这是数学史上的一项革新,它提供了解方程的一个有力工具.笛卡儿用这种方法求出了形如z3=±pz±q和z4=±pz2±qz±r的方程的实根.
在第三卷中,还有一部分内容是专门讨论方程的,具有独立的代数意义.著名的笛卡儿符号法则就是在这里提出的.
纵观笛卡儿的《几何》,虽然篇幅不过百页,却已奠定了解析几何的基础.笛卡儿把曲线与方程相联系的观点,不仅是曲线理论而且是整个数学思想的重大突破.他还进一步认识到,如果两条曲线以同一个坐标系为参考,则其交点由它们的方程之解来确定.这种思想远远高出了他的同时代人,正如数学史家芬克(Karl Fink)所说:“从来都没有谁作过任何尝试,企图把不同次数的几条曲线同时表示在一个坐标系中……甚至连费马也没有尝试过.笛卡儿所系统完成的恰恰是这件事.”
但是,笛卡儿同费马一样不考虑负坐标,这就不可避免地给他的研究工作带来局限性.另外,他对几何作图题的强调掩盖了解析几何的主要思想——用代数方程表示并研究曲线.许多和他同时代的人认为解析几何主要是为了解决作图问题.当然,笛卡儿本人是清楚这门学科的意义远不止于此的.他在《几何》的引言中说:“我在第二卷中所作的关于曲线性质的讨论,以及考查这些性质的方法,据我看,远远超出了普通几何的论述.”
笛卡儿的《几何》还有一个特点,即很少证明.实际上,笛卡儿不仅熟悉欧氏几何的证明方法,也完全会用代数方法证明几何问题.他有意删去定理的证明,大概是为了使文章简短和利于自学.他在一封信里把自己比做建筑师,说自己的工作是指明应该做什么,而把手工操作留给木工和瓦工.他还说:“我没有做过任何不精心的删节.”他在《几何》中明确表示:他不愿夺去读者们自己进行加工的乐趣.他说之所以删去大多数定理的证明,是因为如果读者系统考查他的题目,则证明就成为显然的了,而且这样学习会更为有益.不过,由于笛卡儿的《几何》过于难懂,还是影响了解析几何的传播速度.后来有人给此书写了许多评注,使它易于理解.
4、解析几何的进一步发展
(1)范·斯柯登、瓦利斯和克拉梅等人的工作
范·斯柯登将笛卡儿的《几何》译成拉丁文,撰写介绍性评论,于1649年出版,并再版了若干次.对宣传、改进解析几何起了积极作用.
约翰·瓦里士在《论圆锥曲线》一书中有意识地引进负的纵、横坐标,使坐标几何中的曲线扩大到整个平面.
克拉梅在《代数曲线的解析引论》一书中第一次正式使用y(纵)轴(1750年).
(2)伯努利等人关于极坐标系的工作
雅各·贝努利1691年在《教师学报》上发表了一篇关于极坐标的文章,是极坐标的发明者.
赫尔曼于 1729年正式宣布极坐标的普遍可用,且自由地应用极坐标去研究曲线,并建立了直角坐标系和极坐标系的互换公式.
欧拉扩充了极坐标的使用范围,并且明确地使用三角函数的记号.
(二)选例讲解:
1、《几何》第一卷,笛卡儿明确指出用代数方法解决几何作图题的实质在于“定出所求线段的长度”.他首先定义了单位线段,在此基础上又定义了线段的加、减、乘、除和开方.例如,假定取AB为单位,笛卡儿说:“我只需要连接点A和C,然后引DE平行于CA,那么BE就等于BD和BC的积”,“如果要求用BD来除BE,我就连接E和D,再引AC平行于DE,那么BC是除的结果.”(图10.9)“如果要求CH的平方根,我沿同一直线加上FC,FC等于单位,然后在K点将FH二等分.我以K为中心画圆FIH,再从C引垂线到I,那么CI就是所要求的根.”(图10.10)虽然对线段的运算古已有之,单位线段却是笛卡儿首次引入的.它的意义在于突破了几何对代数的束缚——齐次原则.根据这一原则,不同量纲的几何量不能相加,方程ax2+bx+c=0是没有几何意义的,因为ax2表体积,bx表面积而c表长度,属于不同的量纲.而笛卡儿引入单位概念之后,使所有几何量都通过单位而变成统一的关于数的表示.于是图形中各种量的关系就转化成数的关系,这是把代数与几何统一起来的关键.
笛卡儿在把代数方法用于几何时,首先是用未知数去表示特定的线段.例如某几何问题归结到求一个未知长度x,而x满足方程x2=ax+
作出x,笛卡儿先作直角三角形NLM(图10.11),其中LM=b,
地,若x满足方程x2=-ax+b2,则x为MP.
解析几何的精髓是用代数方程表示几何曲线,笛卡儿通过帕波斯问题引入了这一崭新的方法.该问题是:设AB,AD,EF和GH是四条给定直线,从某点C引直线CB,CD,CF,CH各与一条给定直线构成已知角CBA, CDA, CFE,CHG,要求满足CB·CF=CD·CH的点的轨迹.
笛卡儿的解法是:首先假定已得到轨迹上的C点,然后以AB和CB为主线,考虑其他直线与主线的关系.笛卡儿记AB为x,BC为y,这相当于设了两个相交的坐标轴,当然与现在直角坐标系中的x轴和y轴还有所区别.这样,线段CB,CD,CF和CH的长度便可由x和y确定了.由于三角形ARB的所有角已给定,所以AB与BR之比一定,设AB∶BR=z∶b,因AB=
 
因为AB, AD,EF是三条给定直线,所以AE长度是确定的,设AE=k,则EB=k+x(或k-x,或-k+x,依E,A,B三点的根对
(2)在《几何》的第二卷中,笛卡儿详细讨论了曲线方程的推导及各种曲线的性质.我们从下面的例子可以领会他的思路.
设直线l1⊥l2于A,G是l1上的定点,射线m(笛卡儿说是直尺)绕端点G旋转,交l2与L,射线n的端点K沿l2滑动,LK为定长.笛卡儿试图导出m与n的交点的轨迹方程.他设C为轨迹上任一点,过C作CB∥BA,交l2于B,过L作LN∥GA,交n于N,他以A为原点建立坐标系,并设BC=y,AB=x,设GA,LK和NL三个已知量为a,b,c(图10.13)
 
  
这显然是双曲线的方程.
(3)第三卷侧重于代数.
则圆与抛物线在轴左边的交点F给出方程的正根,笛卡儿称为“真正的根”;另一边的交点G和H则表示方程的负根,笛卡儿称为“假根”,因为他不承认方程的负根.实际上,笛卡儿是把圆和抛物线放在以A为原点的同一坐标系内来考虑的.若用现代符号表示,则抛物线方程
为 x2=y, (1)
圆的方程为

化简得 x2+y2=qx+(1+p)y. (2)
把方程(1)和(2)联立,所得解的x值即圆与抛物线的交点的横坐标,也就是方程z3=pz+q的解.在这里,笛卡儿把方程的解、方程组的解,以及代表方程的曲线的交点都统一在坐标系内,这种思想是相当出色的.
在第三卷中,还有一部分内容是专门讨论方程的,具有独立的代数意义.著名的笛卡儿符号法则就是在这里提出的.
(三)化解疑难
1、简述笛卡儿坐标系建立的意义。
答:笛卡儿把代数提高到重要地位,其意义远远超出了他对作图问题的洞察和分类。这个关键思想使人们能够认识典型的几何问题,并且能够把几何上互不相关的问题归纳在一起。代数给几何带来最自然的分类原则和最自然的方法层次。因此,体系和结构就从几何转移到代数。
2、比较笛卡儿和费马解析几何的方法。
笛卡儿和费马研究解析几何的方法大相径庭,表达形式也迥然不同:
首先,费马主要是继承了希腊人的思想,尽管他的工作比较全而系统,正确地叙述了解析几何的基本原理,但他研究的重点放在完善阿波罗尼奥斯的工作上。因此古典色彩浓厚。并且沿用了韦达以字母代表数的思想,因此需要读者对韦达的代数知识有充分的了解.而笛卡儿则是从批判古希腊的传统出发,走的是革新古代方法的道路。
笛卡儿的方法更具一般性,适用范围也更加广泛.其次,费马从方程出发研究它的轨迹,笛卡儿则从轨迹开始建立它的方程,这正是解析几何中一个问题的正反两种提法,但各有侧重。前者是从代数到几何。后者是从几何到代数.从历史发展来看,笛卡儿的儿何学更胜一筹。更具突破性.总之,笛卡儿和费马共同分享了创立解析几何的殊荣.