莱布尼茨的“微积分”
教学目标分析:
1、了解莱布尼茨在微积分上的贡献。
2、通过进一步了解微积分思想方法形成的历史过程,学生对数学的本质、数学方法及数学对社会发展的意义和作用有较明晰的认识。www.21-cn-jy.com
3、激发学生的学习热情,激发学生的求知欲,培养积极进取的精神。
重难点分析:
重点:了解莱布尼茨在微积分上的贡献。
难点:理解莱布尼茨在微积分方法。
教学准备:多媒体课件
教学过程:
一、简介:
戈特弗里德·威廉·凡·莱布尼茨,德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一位举世罕见的科学天才,和牛顿(1643年1月4日—1727年3月31日)同为微积分的创建人。21cnjy.com
他的研究成果还遍及力学、逻辑学、化学、地理学、解剖学、动物学、植物学、气体学、航海学、地质学、语言学、法学、哲学、历史、外交等等,“世界上没有两片完全相同的树叶”就是出自他之口,他还是最早研究中国文化和中国哲学的德国人,对丰富人类的科学知识宝库做出了不可磨灭的贡献。然而,由于他创建了微积分,并精心设计了非常巧妙简洁的微积分符号,从而使他以伟大数学家的称号闻名于世。21·cn·jy·com
二、数学成就
1684年,莱布尼茨发表了他的第一篇微分学论文《一种求极大极小和切线的新方法》(简称《新方法》),刊登在《教师学报》上,这也是数学史上第一篇正式发表的微积分文献。该文是莱布尼茨对自己1673年以来微分学研究的概括,其中定义了微分并广泛采用了微分记号。莱布尼茨假设横坐标的微分是任意的量,纵坐标的微分就定义为它与之比等于纵坐标与次切距之比的那个量。若记次切距为,莱布尼茨就是用等式来定义微分。这个定义在逻辑上假定切线已先有定义,而莱布尼茨将切线定义为连接曲线上无限接近的两点的直线。由于缺乏极限概念,这个定义是不能令人满意的。莱布尼茨后来还努力要给出高阶微分的合适定义,但并不成功。2·1·c·n·j·y
1686年,莱布尼茨发表了他的第一篇积分学的论文《深奥的几何与不可分量及无限的分析》。这篇论文初步论述了积分或求积问题与微分或切线问题的互逆关系。正式在这篇论文中,积分号∫第一次出现于印刷出版物上。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。
小结:
微积分的建立是人类头脑最伟大的创造之一,一部微积分发展史,是人类一步一步顽强地认识客观事物的历史,是人类理性思维的结晶。它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。 21世纪教育网版权所有
有了微积分,人类才有能力把握运动和过程。有了微积分,就有了工业革命,有了大工业生产,也就有了现代化的社会。航天飞机、宇宙飞船等现代化交通工具都是微积分的直接后果。在微积分的帮助下,万有引力定律被发现了,牛顿用同一个公式来描述太阳对行星的作用以及地球对它附近物体的作用。从最小的尘埃到最遥远的天体的运动行为,宇宙中没有哪一个角落不在这些定律的所包含范围内。这是人类认识史上的一次空前的飞跃,不仅具有伟大的科学意义,而且具有深远的社会影响。它强有力地证明了宇宙的数学设计,摧毁了笼罩在天体上的神秘主义、迷信和神学。一场空前巨大的、席卷近代世界的科学运动开始了。毫无疑问,微积分的发现是世界近代科学的开端。21教育网