《伽罗瓦与群论》
教学目标:
1、了解伽罗瓦生平和群论的内容。
2、培养自身的创造性思维
3、熟悉群论的起源,关注数学的发展进程,提高创新意识
重难点分析:
重点:了解伽罗瓦生平和群论的内容。
难点:理解群论的实质
教学准备:多媒体课件
教学过程:
在群论、方程根的置换等问题的研究中,伽罗瓦也取得了重要成就.他试图解决这样的问题:虽然高于四次的方程一般不能用根式求解,但有些特殊的方程如阿贝尔方程却可用根式求解,那么哪些方程可用根式求解呢?21世纪教育网版权所有
为了解决这个问题,他利用了拉格朗日关于根的置换、排列的概念.如设x1,x2,x3,x4是一个四次方程的根,则在这四个根的排列中交换xi和xj就是一个置换,这样总共就有4!=24种可能的置换.经过任何两个置换后仍是其中的一个置换,所置换的集合形成一个群,这样伽罗瓦就给出了关于抽象群的一个早期定义.21教育网
这样,方程的群就成了它的可解性的关键.然后再这样进行探讨:给了一个方程,按照某种方法找到方程在系数域中的群G——根的置换群,这些置换使根之间的系数在该域中的全部关系保持不变.找到G后,再找G的最大子群H,然后可以用一套仅含有理运算的手续来找到根的对于G的所有T≠R,它的值发生改变.存在一种方法构造R中的一个.这个方程称为一个部分预解式.经过一系列工作,伽罗瓦给出了找给定方程的群,逐次预解式以及方程关于逐次扩大了的系数域的群——原来群的逐次子群的一系列方法,在这些工作中,群论的基本理论有了一些框架.
然后伽罗瓦引入了正规子群(或称自共轭子群,不变子群)的概念.他证明了当作为约化方程的群的预解或是一个素数次p的二项方程xp-A=0时,则H是G的一个具有指数p的正规子群;反之,如果H是G的一个正规子群,且具有素指数p,则相应的预解式是p次二项方程,或能化简到这样的方程.
伽罗瓦引入了合成序列的概念:在子群序列G,H,K,L,…,E中,每一个都是前一个群中的极大正规子群.H对G的指数,K对H的指数等等,称为合成序列的指数.他得出了如下的重要结论:若一个方程的置换群的逐次子群所成的合成序列的指数都是素数,则这方程就能用根式求解;否则,该方程就不能用根式求解.21cnjy.com
利用这个结论,伽罗瓦证明,对于一般的n次方程,方程的置换群由n个根的全部n!个置换组成,置换群称为n级对称群.它的阶是n!.2·1·c·n·j·y
而n=2时,合成序列的指数是2,n=3时合成序列的指数是2和3,n=4时合成序列的指数是2,3,2,2,因此当n≤4时方程能用根式求解.【来源:21·世纪·教育·网】
小结:
伽罗瓦于1830年彻底解决了方程能用根式求解的问题.他证明一个素数次的不可约方程能用根式求解的充分必要条件是,这个方程的每个根都是其中两个根的带有R中系数的有理系数.满足这种条件的方程称为伽罗瓦方程.最简单的伽罗瓦方程是xp-A=0(p为素数).阿贝尔方程也是一种伽罗瓦方程.
伽罗瓦的工作一部分是关于方程的伽罗瓦理论,另一部分本身就是他所开创的一个新领域——群论.他是在严格的意义上使用“群(Group)”的第一个人,他引进了置换群、不变子群等概念,并且把群和域的扩张对应起来.21·cn·jy·com
群论的产生深刻地改变了代数学的内容,使代数学从主要研究方程开始转向研究各种代数结构,并且使代数学开始向更严密的方向迈进.www.21-cn-jy.com
伽罗瓦理论不仅回答了方程的求解问题,而且解决了古希腊“三大几何问题”中的“三等分任意角”和“倍立方体”问题.他的工作提供了可作图的一个判别法:对于一个作图问题首先要建立一个代数方程,它的解就是所要求的量.可作图的条件是这个量必须属于给定量的域的某个二次扩张域.利用这个判别法就可以解决上述两个问题,判明这两个问题都是不可解的.实际上,1837年旺策尔(P.L.Wantzel,1814—1848)用其它的方法曾独立地证明了这两个问题的不可能性.21·世纪*教育网