伽罗瓦与群论 学案 (1)

文档属性

名称 伽罗瓦与群论 学案 (1)
格式 zip
文件大小 370.2KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2017-12-06 21:28:53

图片预览

文档简介

《伽罗瓦与群论》
一、自学目标:通过本专题的学习,了解伽罗瓦生平和群论的内容。
二、自学内容提炼
(一)知识梳理:
1.伽罗瓦群论产生的历史背景
从方程的根式解法发展过程来看,早在 数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根x= +,其中p=ba2,q=a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。【来源:21·世纪·教育·网】
用根式求解四次或四次以下方程的问题在 世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家 转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根(n=1)引进了预解式x1+x2+2x3+…+n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。
1799年, 证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家 开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。21cnjy.com
随后,挪威数学家 开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根Q1(x)与Q2(x)满足Q1Q2(x)=Q2Q1(x),Q1,Q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数Qj(x1),j=1,2,3,…,n,当用另一个根xI代替x1时,其中1〈I≤n ,那么Qj(xI)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xI=Q1(xI),Q2(xI),…,Qn(xI)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性Q1Q2(x)=Q2Q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。21*cnjy*com
阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。
2.伽罗瓦创建群理论的工作
伽罗瓦仔细研究了前人的理论,特别是拉格朗日、鲁菲尼、高斯、阿贝尔等人的著作,开始研究多项式方程的可解性理论,他并不急于寻求解高次方程的方法,而是将重心放在判定已知的方程是否 。如果有,也不去追究该方程的根究竟是怎样的,只需证明有根式解存在即可。www-2-1-cnjy-com
伽罗瓦群论的创建
伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的 入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“ ”这一术语,把具有封闭性的置换的集合称为 ,首次定义了置换群的概念。他认为了解 是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。
对有理系数的n次方程
x+axn-1+a2xn-2+…+an-1x+an=0 (1),
假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。21世纪教育网版权所有
(二)典例选讲
伽罗瓦群论的实质
我们可以从伽罗瓦的工作过程中,逐步领悟伽罗瓦理论的精髓。首先分析一下他是怎样在不知道方程根的情况下,构造伽罗瓦群的。仍然是对方程(1),设它的根x1,x2,…,xn中无重根,他构造了类似于拉格朗日预解式的关于x1,x2,…,xn的一次对称多项式
△1=A1x1+A2x2+…+Anxn,
其中AI(I=1,2,3,…,n)不必是单位根,但它必是一些整数且使得n!个形如△1的一次式△1,△2,…,△n!各不相同,接着又构造了一个方程www.21-cn-jy.com
=0 (2) ,
该方程的系数必定为有理数(可由对称多项式定理证明),并且能够分解为有理数域上的不可约多项式之积。设F(x)=是 的任意一个给定的m次的不可约因子,则方程(1)的伽罗瓦群是指n!个△I中的这m个排列的全体。同时他又由韦达定理2·1·c·n·j·y

知伽罗瓦群也是一个对称群,它完全体现了此方程的根的对称性。但是计算一个已知方程的伽罗瓦群是有一定困难的,因此伽罗瓦的目的并不在于计算伽罗瓦群,而是证明:恒有这样的n次方程存在,其伽罗瓦群是方程根的可能的最大置换群S(n),S(n)是由n!个元素集合构成的,S(n)中的元素乘积实际上是指两个置换之积。现在把S(n)中的元素个数称为阶,S(n)的阶是n!。21·世纪*教育网
伽罗瓦找出方程系数域中的伽罗瓦群G后,开始寻找它的最大子群H1,找到H1后用一套仅含有理运算的手续(即寻找预解式)来找到根的一个函数。的系数属于方程的系数域R,并且在H1的置换下不改变值,但在G的所有别的置换下改变值。再用上述方法,依次寻找H1的最大子群H2,H2的最大子群H3,…于是得到H1,H2,…,Hm,直到Hm里的元素恰好是恒等变换(即Hm为单位群I)。在得到一系列子群与逐次的预解式的同时,系数域R也随之一步步扩大为R1,R2,…,Rm,每个RI对应于群HI。当Hm=I时,Rm就是该方程的根域,其余的R1,R2,…,Rm-1是中间域。一个方程可否根式求解与根域的性质密切相关。例如,四次方程21教育网
x4+px2+q=0 (3) ,
p与q独立,系数域R添加字母或未知数p、q到有理数中而得到的域,先计算出它的伽罗瓦群G,G是S(4)的一个8阶子群,G={E,E1,E2,…E7},其中21·cn·jy·com
E=,E1=,E2=,E3=,E4=,E5=, E6=, E7=。
要把R扩充到R1,需在R中构造一个预解式,则预解式的根,添加到R中得到一个新域R1,于是可证明原方程(3)关于域R1的群是H1,H1={E,E1,E2,E3},并发现预解式的次数等于子群H1在母群G中的指数8÷4=2(即指母群的阶除以子群的阶)。第二步,构造第二个预解式,解出根 ,于是在域R1中添加得到域R2,同样找出方程(3)在R2中的群H2,H2={E,E1},此时,第二个预解式的次数也等于群H2在H1中的指数4÷2=2。第三步,构造第三个预解式,得它的根 ,把添加到R2中得扩域R3,此时方程(3)在R3中的群为H3,H3={E},即H3=I,则R3是方程(3)的根域,且该预解式的次数仍等于群H3在H2中的指数2÷1=2。在这个特殊的四次方程中,系数域到根域的扩域过程中每次添加的都是根式,则方程可用根式解。这种可解理论对于一般的高次方程也同样适用,只要满足系数域到根域的扩域过程中每次都是添加根式,那么一般的高次方程也能用根式求解。
次都是添加根式,那么一般的高次方程也能用根式求解。
现仍以四次方程(3)为例,伽罗瓦从中发现了这些预解式实质上是一个二次的二项方程,既然可解原理对高次方程也适用,那么对于能用根式求解的一般高次方程,它的预解式方程组必定存在,并且所有的预解式都应是一个素数次p的二项方程xp=A。由于高斯早已证明二项方程是可用根式求解的。因此反之,如果任一高次方程所有的逐次预解式都是二项方程,则能用根式求解原方程。于是,伽罗瓦引出了根式求解原理,并且还引入了群论中的一个重要概念“正规子群”。2-1-c-n-j-y
(三)提出疑点和解决
伽罗瓦群论建立的意义有哪些?
答:伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。