八年级数学分式培优专题:分式方程及其应用(含答案)

文档属性

名称 八年级数学分式培优专题:分式方程及其应用(含答案)
格式 zip
文件大小 42.0KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2017-12-08 15:26:38

图片预览

文档简介

分式方程及其应用
【知识精读】
1.
解分式方程的基本思想:把分式方程转化为整式方程。
2.
解分式方程的一般步骤:
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程;
(2)解这个整式方程;
(3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
3.
列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
下面我们来学习可化为一元一次方程的分式方程的解法及其应用。
【分类解析】
例1.
解方程:
分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根
解:方程两边都乘以,得
例2.
解方程
分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。
解:原方程变形为:
方程两边通分,得
经检验:原方程的根是
例3.
解方程:
分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。
解:由原方程得:

例4.
解方程:
分析:此题若用一般解法,则计算量较大。当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。
解:原方程变形为:
约分,得
方程两边都乘以
注:分式方程命题中一般渗透不等式,恒等变形,因式分解等知识。因此要学会根据方程结构特点,用特殊方法解分式方程。
5、中考题解:
例1.若解分式方程产生增根,则m的值是(

A.
B.
C.
D.
分析:分式方程产生的增根,是使分母为零的未知数的值。由题意得增根是:化简原方程为:把代入解得,故选择D。
例2.
甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?
分析:利用所用时间相等这一等量关系列出方程。
解:设甲班每小时种x棵树,则乙班每小时种(x+2)棵树,
由题意得:
答:甲班每小时种树20棵,乙班每小时种树22棵。
说明:在解分式方程应用题时一定要检验方程的根。
6、题型展示:
例1.
轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米。求这艘轮船在静水中的速度和水流速度
分析:在航行问题中的等量关系是“船实际速度=水速+静水速度”,有顺水、逆水,取水速正、负值,两次航行提供了两个等量关系。
解:设船在静水中的速度为x千米/小时,水流速度为y千米/小时
由题意,得
答:水流速度为3千米/小时,船在静水中的速度为17千米/小时。
例2.
m为何值时,关于x的方程会产生增根?
解:方程两边都乘以,得
整理,得
说明:分式方程的增根,一定是使最简公分母为零的根
【实战模拟】
1.
甲、乙两地相距S千米,某人从甲地出发,以v千米/小时的速度步行,走了a小时后改乘汽车,又过b小时到达乙地,则汽车的速度(

A.
B.
C.
D.
2.
如果关于x的方程
A.
B.
C.
D.
3
3.
解方程:
4.
求x为何值时,代数式的值等于2?
5.
甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程。已知甲队单独完成工程所需的天数是乙队单独完成所需天数的,求甲、乙两队单独完成各需多少天?
【试题答案】
1.
由已知,此人步行的路程为av千米,所以乘车的路程为千米。
又已知乘车的时间为b小时,故汽车的速度为
2.
把方程两边都乘以
若方程有增根,则
3.
(1)分析:方程左边很特殊,从第二项起各分式的分母为两因式之积,两因式的值都相差1,且相邻两项的分母中都有相同的因式。因此,可利用裂项,即用“互为相反数的和为0”将原方程化简
解:原方程可变为
(2)分析:用因式分解(提公因式法)简化解法
解:
因为其中的
经检验:是原方程的根。
4.
解:由已知得
的值等于2。
5.
设:乙队单独完成所需天数x天,则甲队单独完成需天。
由题意,得
经检验
答:甲、乙两队单独完成分别需4天,6天。