第二章方程与不等式式第7节 分式方程及应用
■知识点一:分式方程的概念、解法
1.分式方程:只含分式,或分式和整式,并且分母里含有_______的方程叫做分式方程.
2.分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.
注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,解分式方程要验根,其方法是将根代入最简公分母中看分母是不是为__ __.21教育网
3. 增根:使分式方程 的未知数的值即为分式的增根;不是原分式方程的解,分式方程的增根有两个特征:
(1)增根使分母为零;
(2)增根是分式方程化成的整式方程的根.
4.解分式方程的基本解法
(1)去分母,把分式方程转化为__ __方程.
(2)解这个整式方程,求得方程的根.
(3)检验,把解得整式方程的根代入最简公分母,如果最简公分母为0,则它不是原方程的根,而是方程的__ __,必须舍去;如果使最简公分母不为0,则它是原分式方程的根.www-2-1-cnjy-com
5 用换元法解分式方程的一般步骤:
① 设 ,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解 方程,求出辅助未知数的值;③ 把 代入原设中,求出原未知数的值;④ 检验作答.21*cnjy*com
■知识点二:列分式方程解应用题
列分式方程解应用题与列整式方程解应用题的一般步骤基本相同,都分为:审题、设未知数、找等量关系、列方程、解方程、_______、作答.但与整式方程不同的是求得方程的解后,要进行两次检验:一是检验所求的解是否是 ;二是检验所求的解是否__ __.【来源:21cnj*y.co*m】
■考点1.分式方程的概念、解法
◇典例:
1.(2017年湖北省随州市中考数学 )解分式方程: +1=.
【考点】解分式方程.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:3+x2﹣x=x2,
解得:x=3,
经检验x=3是分式方程的解.
(2017年江苏省宿迁市中考数学)若关于x的分式方程=﹣3有增根,则实数m的值是 .21教育名师原创作品
【考点】分式方程的增根.
【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程求出m的值即可.
解:去分母,得:m=x﹣1﹣3(x﹣2),
由分式方程有增根,得到x﹣2=0,即x=2,
把x=2代入整式方程可得:m=1,
故答案为:1.
◆变式训练
(2017年常德市中考数学 )分式方程+1=的解为 .
(2017年毕节地区中考数学 )关于x的分式方程+5=有增根,则m的值为( )
A.1 B.3 C.4 D.5
■考点2. 列分式方程解应用题
◇典例
(2017年临沂市中考数学 )甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是( )21cnjy.com
A.= B.= C.= D.=
【分析】根据甲乙的效率,可设未知数,根据甲乙的工作时间,可列方程.
解:设乙每小时做x个,甲每小时做(x+6)个,
根据甲做90个所用时间与乙做60个所用时间相等,得
=,
故选:B.
(2017年扬州市中考数学 )星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.
【考点】分式方程的应用.
【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.21·cn·jy·com
解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:
﹣=6,
解得:x=50,
经检验x=50是原方程的解,
答:小芳的速度是50米/分钟.
◆变式训练
(2017年营口市中考数学 )某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为 .【来源:21·世纪·教育·网】
(2017年赤峰市中考数学 )为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.【版权所有:21教育】
(1)若两种树苗购买的棵数一样多,求梨树苗的单价;
(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.21*cnjy*com
(2016届杭州市高桥中学中考数学二模)甲队修路150m与乙队修路120m所用天数相同,已知甲队比乙队每天多修10m,设甲队每天修路xm.依题意,下面所列方程正确的是( )
A. = B. = C. = D. =
(2017年杭州市清河中学中考数学模拟)分式方程=1的解是 .
(2016年温州市龙湾区中考数学一模)方程=的解是 .
(2017年湖南省永州市中考)某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x元,根据题意可列方程为 .www.21-cn-jy.com
(2016届杭州市拱墅区、下城区中考数学一模)(1)解方程:﹣2=;
设y=kx,且k≠0,若代数式(x﹣3y)(2x+y)+y(x+5y)化简的结果为2x2,求k的值.
(2017年宁波市慈溪市第七区域中考数学模拟)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.今年文学书和科普书的单价与去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?【出处:21教育名师】
(2017年湖南省娄底市中考)坐火车从上海到娄底,高铁G1329次列车比快车K575次列车要少9小时,已知上海到娄底的铁路长约1260千米,G1329的平均速度是K575的2.5倍.
(1)求K575的平均速度;
(2)高铁G1329从上海到娄底只需几小时?
(2017年贵州省贵阳市中考)“ 张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.21·世纪*教育网
(1)求小张跑步的平均速度;
(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.
(2017年云南省中考数学 )某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.2-1-c-n-j-y
(1)该商店第一次购进水果多少千克?
(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?
注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.
(2017年遵义市中考数学 )为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A.B两种不同款型,请回答下列问题:
问题1:单价
该公司早期在甲街区进行了试点投放,共投放A.B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A.B两型自行车的单价各是多少?
问题2:投放方式
该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.21世纪教育网版权所有
1.(2014?台州)将分式方程1﹣=去分母,得到正确的整式方程是( )
A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=3
2.(2014?宁波)方程=的根x= .
3.(2016?湖州)方程=1的根是x= .
4.(2017?宁波)分式方程=的解是 .
5.(2015?温州)方程的根为 .
6.(2014?义乌市)分式方程=1的解是 .
7. (2017?温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程: .2·1·c·n·j·y
8.(2016?杭州)已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是 .
9.(2017?湖州)解方程:=+1.
10.(2017?金华)解分式方程:=.
11.(2015?嘉兴)小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.
12.(2014?舟山)解方程:=1.
13.(2014?嘉兴)解方程:=0.
14.(2015?宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
15.(2015?湖州)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.
(1)求原计划每天生产的零件个数和规定的天数;
(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
第二章方程与不等式式第7节 分式方程及应用
■知识点一:分式方程的概念、解法
1.分式方程:只含分式,或分式和整式,并且分母里含有__未知数__的方程叫做分式方程.
2.分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.
注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,解分式方程要验根,其方法是将根代入最简公分母中看分母是不是为__零__.21*cnjy*com
3. 增根:使分式方程分母为零的未知数的值即为分式的增根;不是原分式方程的解,分式方程的增根有两个特征:【来源:21cnj*y.co*m】
(1)增根使分母为零;
(2)增根是分式方程化成的整式方程的根.
4.解分式方程的基本解法
(1)去分母,把分式方程转化为__整式__方程.
(2)解这个整式方程,求得方程的根.
(3)检验,把解得整式方程的根代入最简公分母,如果最简公分母为0,则它不是原方程的根,而是方程的__增根__,必须舍去;如果使最简公分母不为0,则它是原分式方程的根.
5 用换元法解分式方程的一般步骤:
① 设辅助未知数 ,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解 方程,求出辅助未知数的值;③ 把辅助未知数代入原设中,求出原未知数的值;④ 检验作答.
■知识点二:列分式方程解应用题
列分式方程解应用题与列整式方程解应用题的一般步骤基本相同,都分为:审题、设未知数、找等量关系、列方程、解方程、__检验__、作答.但与整式方程不同的是求得方程的解后,要进行两次检验:一是检验所求的解是否是所列分式方程的解;二是检验所求的解是否__符合实际意义__.
■考点1.分式方程的概念、解法
◇典例:
1.(2017年湖北省随州市中考数学 )解分式方程: +1=.
【考点】解分式方程.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:3+x2﹣x=x2,
解得:x=3,
经检验x=3是分式方程的解.
(2017年江苏省宿迁市中考数学)若关于x的分式方程=﹣3有增根,则实数m的值是 .
【考点】分式方程的增根.
【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程求出m的值即可.
解:去分母,得:m=x﹣1﹣3(x﹣2),
由分式方程有增根,得到x﹣2=0,即x=2,
把x=2代入整式方程可得:m=1,
故答案为:1.
◆变式训练
(2017年常德市中考数学 )分式方程+1=的解为 .
【考点】 解分式方程.
【分析】先把分式方程转化成整式方程,求出方程的解,再进行检验即可.
解: +1=,
方程两边都乘以x得:2+x=4,
解得:x=2,
检验:当x=2时,x≠0,
即x=2是原方程的解,
故答案为:x=2.
(2017年毕节地区中考数学 )关于x的分式方程+5=有增根,则m的值为( )
A.1 B.3 C.4 D.5
【考点】分式方程的增根.
【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出m的值.
解:方程两边都乘(x﹣1),
得7x+5(x﹣1)=2m﹣1,
∵原方程有增根,
∴最简公分母(x﹣1)=0,
解得x=1,
当x=1时,7=2m﹣1,
解得m=4,
所以m的值为4.
故选C.
■考点2. 列分式方程解应用题
◇典例
(2017年临沂市中考数学 )甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是( )【出处:21教育名师】
A.= B.= C.= D.=
【分析】根据甲乙的效率,可设未知数,根据甲乙的工作时间,可列方程.
解:设乙每小时做x个,甲每小时做(x+6)个,
根据甲做90个所用时间与乙做60个所用时间相等,得
=,
故选:B.
(2017年扬州市中考数学 )星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.
【考点】分式方程的应用.
【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.21教育名师原创作品
解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:
﹣=6,
解得:x=50,
经检验x=50是原方程的解,
答:小芳的速度是50米/分钟.
◆变式训练
(2017年营口市中考数学 )某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为 .21·cn·jy·com
【考点】 由实际问题抽象出分式方程..
【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【来源:21·世纪·教育·网】
解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,
根据题意可得:﹣=8,
故答案为:﹣=8.
(2017年赤峰市中考数学 )为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.
(1)若两种树苗购买的棵数一样多,求梨树苗的单价;
(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.
【考点】分式方程的应用;一元一次不等式的应用.
【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;21*cnjy*com
(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.
解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,
依题意得: =,
解得x=5.
经检验x=5是原方程的解,且符合题意.
答:梨树苗的单价是5元;
(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,
依题意得:(5+2)+5a≤6000,
解得a≥850.
答:梨树苗至少购买850棵.
(2016届杭州市高桥中学中考数学二模)甲队修路150m与乙队修路120m所用天数相同,已知甲队比乙队每天多修10m,设甲队每天修路xm.依题意,下面所列方程正确的是( )
A. = B. = C. = D. =
【考点】由实际问题抽象出分式方程.
【分析】设甲队每天修路xm,则乙队每天修(x﹣10)米,再根据关键语句“甲队修路150m与乙队修路120m所用天数相同”可得方程=.21世纪教育网版权所有
解:设甲队每天修路xm,则乙队每天修(x﹣10)米,由题意得
=.
故选:A.
(2017年杭州市清河中学中考数学模拟)分式方程=1的解是 .
【考点】解分式方程.
【分析】将分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:2x﹣1=3,
解得:x=2,
经检验x=2是分式方程的解.
故答案为:x=2.
(2016年温州市龙湾区中考数学一模)方程=的解是 .
【考点】解分式方程.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:3x﹣6=2x,
解得:x=6,
经检验x=6是分式方程的解.
故答案为:x=6
(2017年湖南省永州市中考)某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x元,根据题意可列方程为 .www-2-1-cnjy-com
【考点】由实际问题抽象出分式方程.
【分析】本题可根据:60元打折前买的斤数比打折后买的斤数少3斤,然后即可列出方程.
解:依题意得:=﹣3,
故答案为:=﹣3.
(2016届杭州市拱墅区、下城区中考数学一模)(1)解方程:﹣2=;
(2)设y=kx,且k≠0,若代数式(x﹣3y)(2x+y)+y(x+5y)化简的结果为2x2,求k的值.
【考点】整式的混合运算;解分式方程.
【分析】(1)直接去分母,进而解分式方程得出答案;
(2)首先利用多项式乘法去括号,进而合并同类项得出答案.
解:(1)去分母得:1﹣2(x﹣3)=﹣3x,
解得:x=﹣7,
检验:当x=﹣7时,x﹣3≠0,故x=﹣7是原方程的解;
(2)∵(x﹣3y)(2x+y)+y(x+5y)
=2x2﹣5xy﹣3y2+xy+5y2
=2x2﹣4xy+2y2
=2(x﹣y)2=2x2,
∴x﹣y=±x,
则x﹣kx=±x,
解得:k=0(不合题意舍去)或k=2.
(2017年宁波市慈溪市第七区域中考数学模拟)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.今年文学书和科普书的单价与去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?
【考点】分式方程的应用.
【分析】先设文学书的单价为每本x元,则科普书的单价为每本(x+4)元,根据用12000元购进的科普书与用8000元购进的文学书本数相等建立方程,解方程求出x的值,再设购进文学书550本后还能购进y本科普书,根据购书总价不超过10000元建立不等式求出其解即可.
解:设文学书的单价为每本x元,则科普书的单价为每本(x+4)元,依题意得:
=,
解得:x=8,
经检验x=8是方程的解,并且符合题意.
∴x+4=12.
即购进的文学书和科普书的单价分别是8元和12元.
设购进文学书550本后还能购进y本科普书.依题意得
550×8+12y≤10000,
解得y≤466,
∵y为整数,
∴y的最大值为466.
答:购进文学书550本后至多还能购进466本科普书
(2017年湖南省娄底市中考)坐火车从上海到娄底,高铁G1329次列车比快车K575次列车要少9小时,已知上海到娄底的铁路长约1260千米,G1329的平均速度是K575的2.5倍.
(1)求K575的平均速度;
(2)高铁G1329从上海到娄底只需几小时?
【考点】分式方程的应用.
【分析】(1)设K575的平均速度为x千米/小时,根据高铁G1329次列车比快车K575次列车少需要9小时列出分式方程,解方程即可;
(2)求出G1329的平均速度,计算即可.
解:(1)设K575的平均速度为x千米/小时,则G1329的平均速度是2.5x千米/小时,
由题意得,=+9,
解得,x=84,
答:K575的平均速度为84千米/小时;
(2)高铁G1329从上海到娄底需要:=6(小时),
答:高铁G1329从上海到娄底只需6小时.
(2017年贵州省贵阳市中考)“ 张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.
(1)求小张跑步的平均速度;
(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.
【考点】.分式方程的应用
【分析】(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;
(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.
解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,
根据题意得:﹣=4,
解得:x=210,
经检验,x=210是原方程组的解.
答:小张跑步的平均速度为210米/分钟.
(2)小张跑步到家所需时间为2520÷210=12(分钟),
小张骑车所用时间为12﹣4=8(分钟),
小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),
∵25>23,
∴小张不能在演唱会开始前赶到奥体中心.
(2017年云南省中考数学 )某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.
(1)该商店第一次购进水果多少千克?
(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?
注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.21·世纪*教育网
【考点】分式方程的应用;一元一次不等式的应用.
【分析】(1)首先根据题意,设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据:( +2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.
(2)首先根据题意,设每千克水果的标价是x元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.
解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,
(+2)×2x=2400
整理,可得:2000+4x=2400
解得x=100
经检验,x=100是原方程的解
答:该商店第一次购进水果100千克.
(2)设每千克水果的标价是x元,
则×x+20×0.5x≥1000+2400+950
整理,可得:290x≥4350
解得x≥15
∴每千克水果的标价至少是15元.
答:每千克水果的标价至少是15元.
(2017年遵义市中考数学 )为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A.B两种不同款型,请回答下列问题:
问题1:单价
该公司早期在甲街区进行了试点投放,共投放A.B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A.B两型自行车的单价各是多少?
问题2:投放方式
该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.
【考点】 分式方程的应用; 二元一次方程组的应用.
【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;
问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.
解:问题1
设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得
50x+50(x+10)=7500,
解得x=70,
∴x+10=80,
答:A.B两型自行车的单价分别是70元和80元;
问题2
由题可得,×1000+×1000=150000,
解得a=15,
经检验:a=15是所列方程的解,
故a的值为15.
1.(2014?台州)将分式方程1﹣=去分母,得到正确的整式方程是( )
A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=3
【分析】分式方程两边乘以最简公分母x﹣1,即可得到结果.
解:分式方程去分母得:x﹣1﹣2x=3,
故选:B.
2.(2014?宁波)方程=的根x= ﹣1 .
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:x=﹣1,
经检验x=﹣1是分式方程的解.
故答案为:﹣1.
3.(2016?湖州)方程=1的根是x= ﹣2 .
【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x﹣3进行检验即可.
解:两边都乘以x﹣3,得:2x﹣1=x﹣3,
解得:x=﹣2,
检验:当x=﹣2时,x﹣3=﹣5≠0,
故方程的解为x=﹣2,
故答案为:﹣2.
4.(2017?宁波)分式方程=的解是 x=1 .
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:4x+2=9﹣3x,
解得:x=1,
经检验x=1是分式方程的解,
故答案为:x=1
5.(2015?温州)方程的根为 x=2 .
【分析】观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
解:去分母得:2(x+1)=3x
即2x+2=3x
解得:x=2
经检验:x=2是原方程的解.
故答案是:x=2
6.(2014?义乌市)分式方程=1的解是 x=2 .
【分析】将分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:2x﹣1=3,
解得:x=2,
经检验x=2是分式方程的解.
故答案为:x=2.
7. (2017?温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程: = .21cnjy.com
【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.2·1·c·n·j·y
解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.
故答案是:=.
8.(2016?杭州)已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是 <m< .
【分析】先解方程组,求得x和y,再根据y>1和0<n<3,求得x的取值范围,最后根据=m,求得m的取值范围.
解:解方程组,得
∵y>1
∴2n﹣1>1,即n>1
又∵0<n<3
∴1<n<3
∵n=x﹣2
∴1<x﹣2<3,即3<x<5
∴<<
∴<<
又∵=m
∴<m<
故答案为:<m<
9.(2017?湖州)解方程:=+1.
【分析】方程两边都乘以x﹣1得出2=1+x﹣1,求出方程的解,再进行检验即可.
解:方程两边都乘以x﹣1得:2=1+x﹣1,
解得:x=2,
检验:∵当x=2时,x﹣1≠0,
∴x=2是原方程的解,
即原方程的解为x=2.
10.(2017?金华)解分式方程:=.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:2(x﹣1)=x+1,
解得:x=3,
经检验x=3是分式方程的解.
11.(2015?嘉兴)小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.2-1-c-n-j-y
【分析】小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步骤⑥少检验,写出正确的解题过程即可.
解:小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步骤⑥少检验;
正确解法为:方程两边乘以x,得:1﹣(x﹣2)=x,
去括号得:1﹣x+2=x,
移项得:﹣x﹣x=﹣1﹣2,
合并同类项得:﹣2x=﹣3,
解得:x=,
经检验x=是分式方程的解,
则方程的解为x=.
12.(2014?舟山)解方程:=1.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:x(x﹣1)﹣4=x2﹣1,
去括号得:x2﹣x﹣4=x2﹣1,
解得:x=﹣3,
经检验x=﹣3是分式方程的解.
13.(2014?嘉兴)解方程:=0.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解:去分母得:x+1﹣3=0,
解得:x=2,
经检验x=2是分式方程的解.
14.(2015?宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵www.21-cn-jy.com
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
【分析】(1)首先设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得等量关系:种植A,B两种花木共6600棵,根据等量关系列出方程,再解即可;
(2)首先设安排a人种植A花木,由题意得等量关系:a人种植A花木所用时间=(26﹣a)人种植B花木所用时间,根据等量关系列出方程,再解即可.21教育网
解:(1)设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得:
x+2x﹣600=6600,
解得:x=2400,
2x﹣600=4200,
答:B花木数量为2400棵,则A花木数量是4200棵;
(2)设安排a人种植A花木,由题意得:
=,
解得:a=14,
经检验:a=14是原分式方程的解,
26﹣a=26﹣14=12,
答:安排14人种植A花木,12人种植B花木.
15.(2015?湖州)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.【版权所有:21教育】
(1)求原计划每天生产的零件个数和规定的天数;
(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
【分析】(1)可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数;
(2)可设原计划安排的工人人数为y人,根据等量关系:恰好提前两天完成2400个零件的生产任务,列出方程求解即可.
解:(1)设原计划每天生产的零件x个,依题意有
=,
解得x=2400,
经检验,x=2400是原方程的根,且符合题意.
∴规定的天数为24000÷2400=10(天).
答:原计划每天生产的零件2400个,规定的天数是10天;
(2)设原计划安排的工人人数为y人,依题意有
[5×20×(1+20%)×+2400]×(10﹣2)=24000,
解得y=480,
经检验,y=480是原方程的根,且符合题意.
答:原计划安排的工人人数为480人.