(浙江专用)2018年高考数学总复习全册学案(打包64套)

文档属性

名称 (浙江专用)2018年高考数学总复习全册学案(打包64套)
格式 zip
文件大小 10.5MB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2017-12-11 09:33:20

文档简介

第1讲 集合
最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.
知 识 梳 理
1.元素与集合
(1)集合中元素的三个特性:确定性、互异性、无序性.
(2)元素与集合的关系是属于或不属于,表示符号分别为∈和?.
(3)集合的三种表示方法:列举法、描述法、图示法.
2.集合间的基本关系
(1)子集:若对任意x∈A,都有x∈B,则A?B或B?A.
(2)真子集:若A?B,且集合B中至少有一个元素不属于集合A,则A?B或B?A.
(3)相等:若A?B,且B?A,则A=B.
(4)空集的性质:?是任何集合的子集,是任何非空集合的真子集.
3.集合的基本运算
集合的并集
集合的交集
集合的补集
符号表示
A∪B
A∩B
若全集为U,则集合A的补集为?UA
图形表示
集合表示
{x|x∈A,或x∈B}
{x|x∈A,且x∈B}
{x|x∈U,且x?A}
4.集合关系与运算的常用结论
(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.
(2)子集的传递性:A?B,B?C?A?C.
(3)A?B?A∩B=A?A∪B=B.
(4)?U(A∩B)=(?UA)∪(?UB),?U(A∪B)=(?UA)∩(?UB).
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)任何集合都有两个子集.(  )
(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.(  )
(3)若{x2,1}={0,1},则x=0,1.(  )
(4)若A∩B=A∩C,则B=C.(  )
解析 (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.
(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C不相等.
(3)错误.当x=1,不满足互异性.
(4)错误.当A=?时,B,C可为任意集合.
答案 (1)× (2)× (3)× (4)×
2.(必修1P7练习2改编)若集合A={x∈N|x≤},a=2,则下列结论正确的是(  )
A.{a}?A B.a?A
C.{a}∈A D.a?A
解析 由题意知A={0,1,2,3},由a=2,知a? A.
答案 D
3.(2016·全国Ⅰ卷)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=(  )
A.{1,3} B.{3,5}
C.{5,7} D.{1,7}
解析 因为A={1,3,5,7},而3,5∈A且3,5∈B,所以A∩B={3,5}.
答案 B
4.(2017·杭州模拟)设全集U={x|x∈N*,x<6},集合A={1,3},B={3,5},则?U(A∪B)等于(  )21世纪教育网版权所有
A.{1,4} B.{1,5} C.{2,5} D.{2,4}
解析 由题意得A∪B={1,3}∪{3,5}={1,3,5}.又U={1,2,3,4,5},∴?U(A∪B)={2,4}.2·1·c·n·j·y
答案 D
5.(2017·绍兴调研)已知全集U=R,集合A={x|x≥2},B={x|0≤x<5},则A∪B=________,(?UA)∩B=________.www-2-1-cnjy-com
解析 ∵A={x|x≥2},B={x|0≤x<5},∴A∪B={x|x≥0},(?UA)∩B={x|0≤x<2}.
答案 {x|x≥0} {x|0≤x<2}
6.已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y=x},则A∩B的元素个数为________.www.21-cn-jy.com
解析 集合A表示圆心在原点的单位圆,集合B表示直线y=x,易知直线y=x和圆x2+y2=1相交,且有2个交点,故A∩B中有2个元素.2-1-c-n-j-y
答案 2
考点一 集合的基本概念
【例1】 (1)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是(  )
A.1 B.3 C.5 D.9
(2)若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=(  )
A. B. C.0 D.0或
解析 (1)当x=0,y=0,1,2时,x-y=0,-1,-2;
当x=1,y=0,1,2时,x-y=1,0,-1;
当x=2,y=0,1,2时,x-y=2,1,0.
根据集合中元素的互异性可知,B的元素为-2,-1,0,1,2,共5个.
(2)若集合A中只有一个元素,则方程ax2-3x+2=0只有一个实根或有两个相等实根.
当a=0时,x=,符合题意;
当a≠0时,由Δ=(-3)2-8a=0,得a=,
所以a的取值为0或.
答案 (1)C (2)D
规律方法 (1)第(1)题易忽视集合中元素的互异性误选D.第(2)题集合A中只有一个元素,要分a=0与a≠0两种情况进行讨论,此题易忽视a=0的情形.21*cnjy*com
(2)用描述法表示集合,先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.21*cnjy*com
【训练1】 (1)设a,b∈R,集合{1,a+b,a}=,则b-a=________.
(2)已知集合A={x∈R|ax2+3x-2=0},若A=?,则实数a的取值范围为________.
解析 (1)因为{1,a+b,a}=,a≠0,
所以a+b=0,且b=1,
所以a=-1,b=1,所以b-a=2.
(2)由A=?知方程ax2+3x-2=0无实根,
当a=0时,x=不合题意,舍去;
当a≠0时,Δ=9+8a<0,∴a<-.
答案 (1)2 (2)
考点二 集合间的基本关系
【例2】 (1)已知集合A={x|y=,x∈R},B={x|x=m2,m∈A},则(  )
A.A?B B.B?A C.A?B D.B=A
(2)已知集合A={x|-2≤x≤7},B={x|m+1解析 (1)易知A={x|-1≤x≤1},
所以B={x|x=m2,m∈A}={x|0≤x≤1}.
因此B?A.
(2)当B=?时,有m+1≥2m-1,则m≤2.
当B≠?时,若B?A,如图.
则解得2综上,m的取值范围为(-∞,4].
答案 (1)B (2)(-∞,4]
规律方法 (1)若B?A,应分B=?和B≠?两种情况讨论.
(2)已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn图,化抽象为直观进行求解.【版权所有:21教育】
【训练2】 (1)(2017·镇海中学质检)若集合A={x|x>0},且B?A,则集合B可能是(  )
A.{1,2} B.{x|x≤1}
C.{-1,0,1} D.R
(2)(2016·郑州调研)已知集合A={x|=,x∈R},B={1,m},若A?B,则m的值为(  )21教育名师原创作品
A.2 B.-1
C.-1或2 D.或2
解析 (1)因为A={x|x>0},且B?A,再根据选项A,B,C,D可知选项A正确.
(2)由=,得x=2,则A={2}.
因为B={1,m}且A?B,
所以m=2.
答案 (1)A (2)A
考点三 集合的基本运算
【例3】 (1)(2015·全国Ⅰ卷)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为(  )
A.5 B.4 C.3 D.2
(2)(2016·浙江卷)设集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(?RQ)=(  )
A.[2,3] B.(-2,3]
C.[1,2) D.(-∞,-2)∪[1,+∞)
解析 (1)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.共2个元素.21cnjy.com
(2)易知Q={x|x≥2或x≤-2}.
∴?RQ={x|-2又P={x|1≤x≤3},故P∪(?RQ)={x|-2答案 (1)D (2)B
规律方法 (1)在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.
(2)一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.21教育网
【训练3】 (1)(2017·石家庄模拟)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是(  )【来源:21·世纪·教育·网】
A.N?M B.N∩M=?
C.M?N D.M∩N=R
(2)(2016·山东卷)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则?U(A∪B)=(  )21·世纪*教育网
A.{2,6} B.{3,6}
C.{1,3,4,5} D.{1,2,4,6}
解析 (1)易知N=(-2,3),且M={-1,1},∴M?N.
(2)∵A={1,3,5},B={3,4,5},∴A∪B={1,3,4,5},
又全集U={1,2,3,4,5,6},因此?U(A∪B)={2,6}.
答案 (1)C (2)A
[思想方法]
1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.【来源:21cnj*y.co*m】
2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.【出处:21教育名师】
3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.
[易错防范]
1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.
2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.
3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.
4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.
第2讲 命题及其关系、充分条件与必要条件
最新考纲 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解必要条件、充分条件与充要条件的意义,能判断并证明命题成立的充分条件、必要条件、充要条件.
知 识 梳 理
1.命题
用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.
2.四种命题及其相互关系
(1)四种命题间的相互关系
(2)四种命题的真假关系
①两个命题互为逆否命题,它们具有相同的真假性.
②两个命题为互逆命题或互否命题时,它们的真假性没有关系.
3.充分条件、必要条件与充要条件的概念
若p?q,则p是q的充分条件,q是p的必要条件
p是q的充分不必要条件
p?q且qp
p是q的必要不充分条件
pq且q?p
p是q的充要条件
p?q
p是q的既不充分也不必要条件
pq且qp
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)“x2+2x-3<0”是命题.(  )
(2)命题“若p,则q”的否命题是“若p,则綈q”.(  )
(3)当q是p的必要条件时,p是q的充分条件.(  )
(4)“若p不成立,则q不成立”等价于“若q成立,则p成立”.(  )
解析 (1)错误.该语句不能判断真假,故该说法是错误的.
(2)错误.否命题既否定条件,又否定结论.
答案 (1)× (2)× (3)√ (4)√
2.(选修2-1P6练习改编)命题“若α=,则tan α=1”的逆否命题是(  )
A.若α≠,则tan α≠1 B.若α=,则tan α≠1
C.若tan α≠1,则α≠ D.若tan α≠1,则α=
解析 命题“若p,则q”的逆否命题是“若綈q,则綈p”,显然綈q:tan α≠1,綈p:α≠,所以该命题的逆否命题是“若tan α≠1,则α≠”.
答案 C
3.(2016·天津卷)设x>0,y∈R,则“x>y”是“x>|y|”的(  )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
解析 x>yx>|y|(如x=1,y=-2).
但x>|y|时,能有x>y.
∴“x>y”是“x>|y|”的必要不充分条件.
答案 C
4.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中假命题的个数为(  )
A.1 B.2 C.3 D.4
解析 原命题正确,从而其逆否命题也正确;其逆命题为“若a>-6,则a>-3”是假命题,从而其否命题也是假命题.因此四个命题中有2个假命题.
答案 B
5.(2017·舟山双基检测)已知函数f(x)的定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“?x0∈R,f(x0)=f(-x0)”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 若f(x)为偶函数,则有f(x)=f(-x),所以p?q;若f(x)=x,当x=0时,f(0)=f(-0),而f(x)=x为奇函数,所以qp.
∴“命题p”是“命题q”的充分不必要条件.
答案 A
6.(2017·温州调研)已知命题p:“若a2=b2,则a=b”,则命题p的否命题为________,该否命题是一个________命题(填“真”,“假”).
解析 由否命题的定义可知命题p的否命题为“若a2≠b2,则a≠b”.由于命题p的逆命题“若a=b,则a2=b2”是一个真命题,∴否命题是一个真命题.
答案 “若a2≠b2,则a≠b” 真
考点一 四种命题的关系及其真假判断
【例1】 (1)命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为(  )
A.“若x=4,则x2-3x-4=0”为真命题
B.“若x≠4,则x2-3x-4≠0”为真命题
C.“若x≠4,则x2-3x-4≠0”为假命题
D.“若x=4,则x2-3x-4=0”为假命题
(2)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是(  )
A.真、假、真 B.假、假、真
C.真、真、假 D.假、假、假
解析 (1)根据逆否命题的定义可以排除A,D;由x2-3x-4=0,得x=4或-1,所以原命题为假命题,所以其逆否命题也是假命题.
(2)由共轭复数的性质,|z1|=|z2|,∴原命题为真,因此其逆否命题为真;取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,∴其逆命题为假,故其否命题也为假.
答案 (1)C (2)B
规律方法 (1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p,则q”的形式,应先改写成“若p,则q”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.
(2)判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例.
(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.
【训练1】 已知:命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是(  )
A.否命题是“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1”,是真命题
B.逆命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”,是假命题
C.逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”,是真命题
D.逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”,是真命题
解析 由f(x)=ex-mx在(0,+∞)上是增函数,则f′(x)=ex-m≥0恒成立,∴m≤1.
因此原命题是真命题,所以其逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”是真命题.
答案 D
考点二 充分条件与必要条件的判定
【例2】 (1)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则(  )
A.p是q的充分必要条件
B.p是q的充分条件,但不是q的必要条件
C.p是q的必要条件,但不是q的充分条件
D.p既不是q的充分要件,也不是q的必要条件
(2)(2017·衡阳一模)“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的(  )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
解析 (1)由极值的定义,q?p,但q.例如f(x)=x3,在x=0处f′(0)=0,f(x)=x3是增函数,x=0不是函数f(x)=x3的极值点.
因此p是q的必要不充分条件.
(2)直线ax+y+1=0与直线(a+2)x-3y-2=0垂直的充要条件为a(a+2)+1×(-3)=0,解得a=1或-3,故“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的充分不必要条件.
答案 (1)C (2)B
规律方法 充要条件的三种判断方法
(1)定义法:根据p?q,q?p进行判断.
(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.
(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的何种条件,即可转化为判断“x=1且y=1”是“xy=1”的何种条件.
【训练2】 (2016·山东卷)已知直线a,b分别在两个不同的平面α ,β内,则“直线a和直线b相交”是“平面α和平面β相交”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 由题意知a?α,b?β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.
因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.
答案 A
考点三 充分条件、必要条件的应用(典例迁移)
【例3】 (经典母题)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围.
解 由x2-8x-20≤0,得-2≤x≤10,
∴P={x|-2≤x≤10}.
∵x∈P是x∈S的必要条件,
则S?P.
∴解得m≤3.
又∵S为非空集合,
∴1-m≤1+m,解得m≥0,
综上,可知0≤m≤3时,x∈P是x∈S的必要条件.
【迁移探究1】 本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件?
解 由例题知P={x|-2≤x≤10}.
若x∈P是x∈S的充要条件,则P=S,
∴∴
这样的m不存在.
【迁移探究2】 本例条件不变,若綈P是綈S的必要不充分条件,求实数m的取值范围.
解 由例题知P={x|-2≤x≤10}.
∵綈P是綈S的必要不充分条件,∴P是S的充分不必要条件,
∴P?S且SP.
∴[-2,10]?[1-m,1+m].
∴或
∴m≥9,则m的取值范围是[9,+∞).
规律方法 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:
(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解;
(2)要注意区间端点值的检验.
【训练3】 ax2+2x+1=0只有负实根的充要条件是________.
解析 当a=0时,原方程为一元一次方程2x+1=0,有一个负实根x=-.
当a≠0时,原方程为一元二次方程,
又ax2+2x+1=0只有负实根,
所以有即0<a≤1.
综上,方程只有负根的充要条件是0≤a≤1.
答案 0≤a≤1
[思想方法]
1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.
2.充要条件的几种判断方法
(1)定义法:直接判断若p则q、若q则p的真假.
(2)等价法:即利用A?B与綈B?綈A;B?A与綈A?綈B;A?B与綈B?綈A的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.
(3)利用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)};若A?B,则p是q的充分条件或q是p的必要条件;若A?B,则p是q的充分不必要条件,若A=B,则p是q的充要条件.
[易错防范]
1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.
2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p,则q”的形式.
3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.
专题探究课三 高考中数列不等式问题的热点题型
高考导航 考查内容主要集中在两个方面:一是以选择题和填空题的形式考查等差、等比数列的运算和性质,题目多为常规试题;二是等差、等比数列的通项与求和问题;三是结合函数、不等式(放缩法)等进行综合考查,难度较大,涉及内容较为全面,试题思维量较大.
热点一 等差数列、等比数列的综合问题
解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n项和公式解决问题,求解这类问题要重视方程思想的应用.
【例1】 已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)设Tn=Sn-(n∈N*),求数列{Tn}的最大项的值与最小项的值.
解 (1)设等比数列{an}的公比为q,
因为S3+a3,S5+a5,S4+a4成等差数列,
所以S5+a5-S3-a3=S4+a4-S5-a5,即4a5=a3,
于是q2==.
又{an}不是递减数列且a1=,所以q=-.
故等比数列{an}的通项公式为an=×
=(-1)n-1·.
(2)由(1)得Sn=1-=
当n为奇数时,Sn随n的增大而减小,
所以1故0当n为偶数时,Sn随n的增大而增大,
所以=S2≤Sn<1,
故0>Sn-≥S2-=-=-.
综上,对于n∈N*,总有-≤Sn-≤.
所以数列{Tn}最大项的值为,最小项的值为-.
探究提高 解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.
【训练1】 (2017·乐清模拟)已知数列{an}是公差不为零的等差数列,其前n项和为Sn,满足S5-2a2=25,且a1,a4,a13恰为等比数列{bn}的前三项.
(1)求数列{an},{bn}的通项公式;
(2)设Tn是数列的前n项和,是否存在k∈N*,使得等式1-2Tk=成立?若存在,求出k的值;若不存在,请说明理由.
解 (1)设等差数列{an}的公差为d(d≠0),

解得a1=3,d=2,∴an=2n+1.
∵b1=a1=3,b2=a4=9,
∴等比数列{bn}的公比q=3,∴bn=3n.
(2)不存在.理由如下:
∵==,
∴Tn=
=,
∴1-2Tk=+(k∈N*),
易知数列为单调递减数列,
∴<1-2Tk≤,又=∈,
∴不存在k∈N*,使得等式1-2Tk=成立.
热点二 数列的通项与求和(规范解答)
数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.
【例2】 (满分12分)(2015·湖北卷)设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式;
(2)当d>1时,记cn=,求数列{cn}的前n项和Tn.
满分解答 (1)解 由题意有
即2分
解得或4分
故或6分
(2)解 由d>1,知an=2n-1,bn=2n-1,
故cn=,7分
于是Tn=1+++++…+,①
Tn=+++++…+.②8分
①-②可得
Tn=2+++…+-10分
=3-,11分
故Tn=6-.12分
 
?由题意列出方程组得2分;
?解得a1与d得2分,漏解得1分;
?正确导出an,bn得2分,漏解得1分;
?写出cn得1分;
?把错位相减的两个式子,按照上下对应好,再相减,就能正确地得到结果,本题就得满分,否则就容易出错,丢掉一些分数.
用错位相减法解决数列求和的模板
第一步:(判断结构)
若数列{an·bn}是由等差数列{an}与等比数列{bn}(公比q)的对应项之积构成的,则可用此法求和.
第二步:(乘公比)
设{an·bn}的前n项和为Tn,然后两边同乘以q.
第三步:(错位相减)
乘以公比q后,向后错开一位,使含有qk(k∈N*)的项对应,然后两边同时作差.
第四步:(求和)
将作差后的结果求和,从而表示出Tn.
【训练2】 已知数列{an},an=(-1)n-1,求数列{an}的前n项和Tn.
解 an=(-1)n-1,
当n为偶数时,Tn=-+…+-=1-=.
当n为奇数时,Tn=-+…-+=1+=.
所以Tn=(或Tn=).
热点三 数列的综合应用
热点3.1 数列的实际应用
数列在实际问题中的应用,要充分利用题中限制条件确定数列的特征,如通项公式、前n项和公式或递推关系式,建立数列模型.
【例3-1】 某企业的资金每一年都比上一年分红后的资金增加一倍,并且每年年底固定给股东们分红500万元,该企业2010年年底分红后的资金为1 000万元.
(1)求该企业2014年年底分红后的资金;
(2)求该企业从哪一年开始年底分红后的资金超过32 500万元.
解 设an为(2010+n)年年底分红后的资金,其中n∈N*,
则a1=2×1 000-500=1 500,
a2=2×1 500-500=2 500,…,
an=2an-1-500(n≥2).
∴an-500=2(an-1-500)(n≥2),
即数列{an-500}是以a1-500=1 000为首项,2为公比的等比数列,
∴an-500=1 000×2n-1,
∴an=1 000×2n-1+500.
(1)∵a4=1 000×24-1+500=8 500,
∴该企业2014年年底分红后的资金为8 500万元.
(2)由an>32 500,即2n-1>32,得n>6,∴该企业从2017年开始年底分红后的资金超过32 500万元.
热点3.2 数列与函数的综合问题
数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.
【例3-2】 已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n(n∈N*).
(1)求f(x)的解析式;
(2)若数列{an}满足=f′,且a1=4,求数列{an}的通项公式;
(3)对于(2)中的数列{an},求证:
①ak<5;②≤ <2.
(1)解 由f′(x)=2ax+b,f′(0)=2n,
得b=2n,又f(x)的图象过点(-4n,0),∴16n2a-4nb=0,解得a=.∴f(x)=x2+2nx(n∈N*).
(2)解 由(1)知f′(x)=x+2n(n∈N*),∴=+2n,即-=2n,
∴-=2(n-1),-=2(n-2),…,-=2,
∴-=n2-n,∴an=,
即an=(n∈N*).
(3)证明 ①ak=<=-(k≥2).
当n=1时,ak<5显然成立;
当n≥2时,ak<4+
=5-<5.
②∵==-,
∴ =++…+=2-.
∵n∈N*,∴2n+1≥3,
∴≤2-<2.
综上,原不等式得证.
热点3.3 数列与不等式的综合问题
数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法.
【例3-3】 (2016·浙江卷)设数列{an}满足|an-|≤1,n∈N*.
(1)证明:|an|≥2n-1(|an|-2),n∈N*;
(2)若|an|≤,n∈N*,证明:|an|≤2,n∈N*.
证明 (1)由≤1得|an|-|an+1|≤1,
故-≤,n∈N*,
所以-=++…+≤++…+<1,
因此|an|≥2n-1(|a1|-2).
(2)任取n∈N*,由(1)知,对于任意m>n,
-=++…+≤++…+<,
故|an|<·2n≤·2n=2+·2n.
从而对于任意m>n,均有|an|<2+·2n.
由m的任意性得|an|≤2.①
否则,存在n0∈N*,有|an0|>2,
取正整数m0>log且m0>n0,
综上,对于任意n∈N*,均有|an|≤2.
第1讲 数列的概念及简单表示法
最新考纲 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类特殊函数.
知 识 梳 理
1.数列的概念
(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.
(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N*(或它的有限子集)为定义域的函数an=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.
(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法.
2.数列的分类
分类原则
类型
满足条件
按项数分类
有穷数列
项数有限
无穷数列
项数无限
按项与项间
的大小关系
分类
递增数列
an+1>an
其中
n∈N*
递减数列
an+1<an
常数列
an+1=an
按其他标准分类
有界数列
存在正数M,使|an|≤M
摆动数列
从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列
3.数列的两种常用的表示方法
(1)通项公式:如果数列{an}的第n项an与序号n之间的关系可以用一个式子an=f(n)来表示,那么这个公式叫做这个数列的通项公式.
(2)递推公式:如果已知数列{an}的第1项(或前几项),且从第二项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.
4.已知数列{an}的前n项和Sn,则an=
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)相同的一组数按不同顺序排列时都表示同一个数列.(  )
(2)一个数列中的数是不可以重复的.(  )
(3)所有数列的第n项都能使用公式表达.(  )
(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.(  )
解析 (1)数列:1,2,3和数列:3,2,1是不同的数列.
(2)数列中的数是可以重复的.
(3)不是所有的数列都有通项公式.
答案 (1)× (2)× (3)× (4)√
2.(2017·浙江五校联考)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是(  )
A.an=(-1)n-1+1 B.an=
C.an=2sin D.an=cos(n-1)π+1
解析 对n=1,2,3,4进行验证,an=2sin不合题意,故选C.
答案 C
3.设数列{an}的前n项和Sn=n2,则a8的值为(  )
A.15 B.16 C.49 D.64
解析 当n=8时,a8=S8-S7=82-72=15.
答案 A
4.已知an=n2+λn,且对于任意的n∈N*,数列{an}是递增数列,则实数λ的取值范围是________.
解析 因为{an}是递增数列,所以对任意的n∈N*,都有an+1>an,即(n+1)2+λ(n+1)>n2+λn,整理,
得2n+1+λ>0,即λ>-(2n+1).(*)
因为n≥1,所以-(2n+1)≤-3,要使不等式(*)恒成立,只需λ>-3.
答案 (-3,+∞)
5.(必修5P33A5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式an=________.
答案 5n-4
6.(2017·金华调考)在数列{xn}中,x1=10,xn=log2(xn-1-2),则数列{xn}的第2项是________,所有项和T=________.
解析 ∵x1=10,xn=log2(xn-1-2),
∴x2=log2(x1-2)=log28=3,x3=log2(x2-2)=log21=0.
数列{xn}所有项的和为10+3+0=13.
答案 3 13
考点一 由数列的前几项求数列的通项
【例1】 根据下面各数列前几项的值,写出数列的一个通项公式:
(1)-1,7,-13,19,…;
(2),,,,,…;
(3),2,,8,,…;
(4)5,55,555,5 555,….
解 (1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为an=(-1)n(6n-5).
(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积,分子依次为2,4,6,…,相邻的偶数,故所求数列的一个通项公式为an=.
(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即,,,,,…,分子为项数的平方,从而可得数列的一个通项公式为an=.
(4)将原数列改写为×9,×99,×999,…,易知数列9,99,999,…的通项为10n-1,故所求的数列的一个通项公式为an=(10n-1).
规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征:
(1)分式中分子、分母的各自特征;
(2)相邻项的联系特征;
(3)拆项后的各部分特征;
(4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.
【训练1】 (1)数列0,,,,…的一个通项公式为(  )
A.an=(n∈N*) B.an=(n∈N*)
C.an=(n∈N*) D.an=(n∈N*)
(2)数列-,,-,,…的一个通项公式an=________.
解析 (1)注意到分子0,2,4,6都是偶数,对照选项排除即可.
(2)这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为an=(-1)n.
答案 (1)C (2)(-1)n
考点二 由Sn与an的关系求an(易错警示)
【例2】 (1)若数列{an}的前n项和Sn=3n2-2n+1,则数列{an}的通项公式an=________.
(2)若数列{an}的前n项和Sn=an+,则{an}的通项公式an=________.
解析 (1)当n=1时,a1=S1=3×12-2×1+1=2;
当n≥2时,
an=Sn-Sn-1=3n2-2n+1-[3(n-1)2-2(n-1)+1]=6n-5,显然当n=1时,不满足上式.
故数列的通项公式为an=
(2)由Sn=an+,得当n≥2时,Sn-1=an-1+,
两式相减,得an=an-an-1,
∴当n≥2时,an=-2an-1,即=-2.
又n=1时,S1=a1=a1+,a1=1,
∴an=(-2)n-1.
答案 (1) (2)(-2)n-1
规律方法 数列的通项an与前n项和Sn的关系是an=①当n=1时,a1若适合Sn-Sn-1,则n=1的情况可并入n≥2时的通项an;②当n=1时,a1若不适合Sn-Sn-1,则用分段函数的形式表示.
易错警示 在利用数列的前n项和求通项时,往往容易忽略先求出a1,而是直接把数列的通项公式写成an=Sn-Sn-1的形式,但它只适用于n≥2的情形.
【训练2】 (1)(2017·温州市十校联考)在数列{an}中,Sn是其前n项和,且Sn=2an+1,则数列的通项公式an=________.
(2)已知数列{an}的前n项和Sn=3n+1,则数列的通项公式an=________.
解析 (1)依题意得Sn+1=2an+1+1,Sn=2an+1,两式相减得Sn+1-Sn=2an+1-2an,即an+1=2an,又S1=2a1+1=a1,因此a1=-1,所以数列{an}是以a1=-1为首项、2为公比的等比数列,an=-2n-1.
(2)当n=1时,a1=S1=3+1=4,
当n≥2时,an=Sn-Sn-1=3n+1-3n-1-1=2·3n-1.
显然当n=1时,不满足上式.
∴an=
答案 (1)-2n-1 (2)
考点三 由数列的递推关系求通项公式
【例3】 在数列{an}中,
(1)若a1=2,an+1=an+n+1,则通项公式an=________.
(2)若a1=1,an=an-1(n≥2),则通项公式an=________.
(3)若a1=1,an+1=2an+3,则通项公式an=________.
解析 (1)由题意得,当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+(2+3+…+n)=2+=+1.又a1=2=+1,符合上式,因此an=+1.
(2)法一 因为an=an-1(n≥2),所以an-1=·an-2,…,a2=a1,以上(n-1)个式子的等号两端分别相乘得an=a1···…·==.
法二 因为an=···…···a1=···…·1=.
(3)设递推公式an+1=2an+3可以转化为an+1+t=2(an+t),即an+1=2an+t,解得t=3.
故an+1+3=2(an+3).
令bn=an+3,则b1=a1+3=4,且==2.
所以{bn}是以4为首项,2为公比的等比数列.
∴bn=4·2n-1=2n+1,∴an=2n+1-3.
答案 (1)+1 (2) (3)2n+1-3
规律方法 (1)形如an+1=an+f(n)的递推关系式利用累加法求和,特别注意能消去多少项,保留多少项.
(2)形如an+1=an·f(n)的递推关系式可化为=f(n)的形式,可用累乘法,也可用an=··…··a1代入求出通项.
(3)形如an+1=pan+q的递推关系式可以化为(an+1+x)=p(an+x)的形式,构成新的等比数列,求出通项公式,求变量x是关键.
【训练3】 (1)已知数列{an}满足a1=1,a2=4,an+2+2an=3an+1(n∈N*),则数列{an}的通项公式an=________.
(2)在数列{an}中,a1=3,an+1=an+,则通项公式an=________.
解析 (1)由an+2+2an-3an+1=0,
得an+2-an+1=2(an+1-an),
∴数列{an+1-an}是以a2-a1=3为首项,2为公比的等比数列,∴an+1-an=3×2n-1,
∴n≥2时,an-an-1=3×2n-2,…,a3-a2=3×2,a2-a1=3,
将以上各式累加得
an-a1=3×2n-2+…+3×2+3=3(2n-1-1),
∴an=3×2n-1-2(当n=1时,也满足).
(2)原递推公式可化为an+1=an+-,
则a2=a1+-,a3=a2+-,
a4=a3+-,…,an-1=an-2+-,
an=an-1+-,
逐项相加得,an=a1+1-,故an=4-.
答案 (1)3×2n-1-2 (2)4-
[思想方法]
1.由数列的前几项求数列通项,通常用观察法(对于交错数列一般有(-1)n或(-1)n+1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.
2.强调an与Sn的关系:an=
3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路:
(1)算出前几项,再归纳、猜想;
(2)利用累加或累乘法求数列的通项公式.
[易错防范]
1.数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列an=f(n)和函数y=f(x)的单调性是不同的.
2.数列的通项公式不一定唯一.
第2讲 等差数列及其前n项和
最新考纲 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系.
知 识 梳 理
1.等差数列的概念
(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.
数学语言表达式:an+1-an=d(n∈N*,d为常数),或an-an-1=d(n≥2,d为常数).
(2)若a,A,b成等差数列,则A叫做a,b的等差中项,且A=.
2.等差数列的通项公式与前n项和公式
(1)若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.
通项公式的推广:an=am+(n-m)d(m,n∈N*).
(2)等差数列的前n项和公式
Sn==na1+d(其中n∈N*,a1为首项,d为公差,an为第n项).
3.等差数列的有关性质
已知数列{an}是等差数列,Sn是{an}的前n项和.
(1)若m+n=p+q(m,n,p,q∈N*),则有am+an=ap+aq.
(2)等差数列{an}的单调性:当d>0时,{an}是递增数列;当d<0时,{an}是递减数列;当d=0时,{an}是常数列.
(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.
(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.
4.等差数列的前n项和公式与函数的关系
Sn=n2+n.
数列{an}是等差数列?Sn=An2+Bn(A,B为常数).
5.等差数列的前n项和的最值
在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an+an+2.(  )
(2)等差数列{an}的单调性是由公差d决定的.(  )
(3)已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等差数列.(  )
(4)数列{an}为等差数列的充要条件是其通项公式为n的一次函数.(  )
(5)等差数列的前n项和公式是常数项为0的二次函数.(  )
解析 (4)若公差d=0,则通项公式不是n的一次函数.
(5)若公差d=0,则前n项和不是二次函数.
答案 (1)√ (2)√ (3)√ (4)× (5)×
2.(2015·重庆卷)在等差数列{an}中,若a2=4,a4=2,则a6等于(  )
A.-1 B.0
C.1 D.6
解析 由等差数列的性质,得a6=2a4-a2=2×2-4=0,选B.
答案 B
3.(2017·长沙模拟)设等差数列{an}的前n项和为Sn,若S3=2a3,S5=15,则a2 016=________.
解析 在等差数列{an}中,由S3=2a3知,3a2=2a3,而S5=15,则a3=3,于是a2=2,从而其公差为1,首项为1,因此an=n,故a2 016=2 016.
答案 2 016
4.在等差数列{an}中,a1=7,公差为d,前n项和为Sn,当且仅当n=8时Sn取得最大值,则d的取值范围为______.
解析 由题意知d<0且即
解得-1<d<-.
答案 
5.(必修5P68A8改编)在等差数列{an}中,若a3+a4+a5+a6+a7=450,则a2+a8=________.
解析 由等差数列的性质,得a3+a4+a5+a6+a7=5a5=450,∴a5=90,∴a2+a8=2a5=180.
答案 180
6.(2017·金华四校联考)设等差数列{an}的前n项和Sn=n2+bn+c(b,c为常数,n∈N*),若a2+a3=4,则c=________,b=________.
解析 ∵数列{an}是等差数列,且前n项和Sn=n2+bn+c,∴c=0,则Sn=n2+bn,又a2+a3=S3-S1=9+3b-1-b=4,∴b=-2.
答案 0 -2
考点一 等差数列基本量的运算
【例1】 (1)(2016·全国Ⅰ卷)已知等差数列{an}前9项的和为27,a10=8,则a100=(  )
A.100 B.99 C.98 D.97
(2)(2016·唐山模拟)设等差数列{an}的前n项和为Sn,S3=6,S4=12,则S6=________.
解析 (1)设等差数列{an}的公差为d,由已知,得所以所以a100=a1+99d=-1+99=98.
(2)法一 设数列{an}的首项为a1,公差为d,由S3=6,
S4=12,可得解得
即S6=6a1+15d=30.
法二 由{an}为等差数列,故可设前n项和Sn=An2+Bn,
由S3=6,S4=12可得
解得即Sn=n2-n,则S6=36-6=30.
答案 (1)C (2)30
规律方法 (1)等差数列的通项公式及前n项和公式共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想来解决问题.
(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.
【训练1】 (1)(2015·全国Ⅰ卷)已知{an}是公差为1的等差数列,Sn为{an}的前n项和.若S8=4S4,则a10等于(  )
A. B.
C.10 D.12
(2)(2015·浙江卷)已知{an}是等差数列,公差d不为零.若a2,a3,a7成等比数列,且2a1+a2=1,则a1=________,d=________.
解析 (1)由S8=4S4,得8a1+×1=4×,解得a1=,∴a10=a1+9d=,故选B.
(2)因为a2,a3,a7成等比数列,所以a=a2a7,即(a1+2d)2=(a1+d)(a1+6d),由于d≠0,∴a1=-d,∵2a1+a2=1,∴2a1+a1+d=1,即3a1+d=1,∴a1=,d=-1.
答案 (1)B (2) -1
考点二 等差数列的判定与证明(典例迁移)
【例2】 (经典母题)若数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=.
(1)求证:成等差数列;
(2)求数列{an}的通项公式.
(1)证明 当n≥2时,由an+2SnSn-1=0,
得Sn-Sn-1=-2SnSn-1,所以-=2,
又==2,故是首项为2,公差为2的等差数列.
(2)解 由(1)可得=2n,∴Sn=.
当n≥2时,
an=Sn-Sn-1=-==-.
当n=1时,a1=不适合上式.
故an=
【迁移探究1】 将本例条件“an+2SnSn-1=0(n≥2),a1=”改为“Sn(Sn-an)+2an=0(n≥2),a1=2”,问题不变,试求解.
(1)证明 当n≥2时,an=Sn-Sn-1且Sn(Sn-an)+2an=0.
∴Sn[Sn-(Sn-Sn-1)]+2(Sn-Sn-1)=0,
即SnSn-1+2(Sn-Sn-1)=0.
即-=.又==.
故数列是以首项为,公差为的等差数列.
(2)解 由(1)知=,∴Sn=,当n≥2时,
an=Sn-Sn-1=-
当n=1时,a1=2不适合上式,
故an=
【迁移探究2】 已知数列{an}满足2an-1-anan-1=1(n≥2),a1=2,证明数列是等差数列,并求数列{an}的通项公式.
解 当n≥2时,an=2-,
∴-=-=-=-==1(常数).
又=1.
∴数列是以首项为1,公差为1的等差数列.
∴=1+(n-1)×1,
∴an=.
规律方法 等差数列的四种判断方法:
(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数.
(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N*)都成立.
(3)通项公式法:验证an=pn+q.
(4)前n项和公式法:验证Sn=An2+Bn.后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列,主要适合在选择题中简单判断.
考点三 等差数列的性质及应用
【例3】 (1)(2015·全国Ⅱ卷)设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=(  )
A.5 B.7 C.9 D.11
(2)设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9等于(  )
A.63 B.45 C.36 D.27
(3)已知Sn是等差数列{an}的前n项和,若a1=-2 014,-=6,则S2 017=________.
解析 (1)∵{an}为等差数列,∴a1+a5=2a3,得3a3=3,则a3=1,∴S5==5a3=5,故选A.
(2)由{an}是等差数列,得S3,S6-S3,S9-S6为等差数列.
即2(S6-S3)=S3+(S9-S6),
得到S9-S6=2S6-3S3=45,故选B.
(3)由等差数列的性质可得也为等差数列.
设其公差为d.则-=6d=6,∴d=1.
故=+2 016d=-2 014+2 016=2,
∴S2 017=2×2 017=4 034.
答案 (1)A (2)B (3)4 034
规律方法 等差数列的性质是解题的重要工具.
(1)在等差数列{an}中,数列 Sm,S2m-Sm,S3m-S2m也成等差数列.
(2)在等差数列{an}中,数列也成等差数列.
【训练2】 (1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为(  )
A.13 B.12 C.11 D.10
(2)(2015·广东卷)在等差数列{an}中,若a3+a4+a5+a6+a7=25,则a2+a8=________.
解析 (1)因为a1+a2+a3=34,an-2+an-1+an=146,
a1+a2+a3+an-2+an-1+an=34+146=180,
又因为a1+an=a2+an-1=a3+an-2,
所以3(a1+an)=180,从而a1+an=60,
所以Sn===390,即n=13.
(2)因为{an}是等差数列,所以a3+a7=a4+a6=a2+a8=2a5,a3+a4+a5+a6+a7=5a5=25,即a5=5,a2+a8=2a5=10.
答案 (1)A (2)10
考点四 等差数列前n项和及其最值
【例4】 (1)(2017·台州月考)等差数列{an}的前n项和为Sn,已知a1=13,S3=S11,当Sn最大时,n的值是(  )
A.5 B.6 C.7 D.8
(2)设数列{an}的通项公式为an=2n-10(n∈N*),则|a1|+|a2|+…+|a15|=________.
解析 (1)法一 由S3=S11,得a4+a5+…+a11=0,根据等差数列的性质,可得a7+a8=0.根据首项等于13可推知这个数列递减,从而得到a7>0,a8<0,故n=7时Sn最大.
法二 由S3=S11,可得3a1+3d=11a1+55d,把a1=13代入,得d=-2,故Sn=13n-n(n-1)=-n2+14n.根据二次函数的性质,知当n=7时Sn最大.
法三 根据a1=13,S3=S11,知这个数列的公差不等于零,且这个数列的和是先递增后递减.根据公差不为零的等差数列的前n项和是关于n的二次函数,以及二次函数图象的对称性,可得只有当n==7时,Sn取得最大值.
(2)由an=2n-10(n∈N*)知{an}是以-8为首项,2为公差的等差数列,又由an=2n-10≥0得n≥5,∴n≤5时,an≤0,当n>5时,an>0,∴|a1|+|a2|+…+|a15|=-(a1+a2+a3+a4)+(a5+a6+…+a15)=20+100=130.
答案 (1)C (2)130
规律方法 求等差数列前n项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;
(2)利用性质求出其正负转折项,便可求得和的最值;
(3)将等差数列的前n项和Sn=An2+Bn(A,B为常数)看作二次函数,根据二次函数的性质求最值.
【训练3】 设等差数列{an}的前n项和为Sn,a1>0且=,则当Sn取最大值时,n的值为(  )
A.9 B.10 C.11 D.12
解析 由=,得S11=S9,即a10+a11=0,根据首项a1>0可推知这个数列递减,从而a10>0,a11<0,故n=10时,Sn最大.
答案 B
[思想方法]
1.在解有关等差数列的基本量问题时,可通过列关于a1,d的方程组进行求解.
2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n项和公式法判定一个数列是否为等差数列.
3.等差数列性质灵活使用,可以大大减少运算量.
[易错防范]
1.用定义法证明等差数列应注意“从第2项起”,如证明了an+1-an=d(n≥2)时,应注意验证a2-a1是否等于d,若a2-a1≠d,则数列{an}不为等差数列.
2.利用二次函数性质求等差数列前n项和最值时,一定要注意自变量n是正整数.
第3讲 等比数列及其前n项和
最新考纲 1.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系.
知 识 梳 理
1.等比数列的概念
(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q≠0)表示.
数学语言表达式:=q(n≥2,q为非零常数),或=q(n∈N*,q为非零常数).
(2)如果三个数a,G,b成等比数列,那么G叫做a与b的等比中项,其中G=±.
2. 等比数列的通项公式及前n项和公式
(1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=a1qn-1;
通项公式的推广:an=amqn-m.
(2)等比数列的前n项和公式:当q=1时,Sn=na1;当q≠1时,Sn==.
3.等比数列的性质
已知{an}是等比数列,Sn是数列{an}的前n项和.
(1)若k+l=m+n(k,l,m,n∈N*),则有ak·al=am·an.
(2)等比数列{an}的单调性:
当q>1,a1>0或0<q<1,a1<0时,数列{an}是递增数列;
当q>1,a1<0或0<q<1,a1>0时,数列{an}是递减数列;
当q=1时,数列{an}是常数列.
(3)相隔等距离的项组成的数列仍是等比数列,即ak,ak+m,ak+2m,…仍是等比数列,公比为qm.
(4)当q≠-1,或q=-1且n为奇数时,Sn,S2n-Sn,S3n-S2n仍成等比数列,其公比为qn.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)与等差数列类似,等比数列的各项可以是任意一个实数.(  )
(2)公比q是任意一个常数,它可以是任意实数.(  )
(3)三个数a,b,c成等比数列的充要条件是b2=ac.(  )
(4)数列{an}的通项公式是an=an,则其前n项和为Sn=.(  )
(5)数列{an}为等比数列,则S4,S8-S4,S12-S8成等比数列.(  )
解析 (1)在等比数列中,an≠0.
(2)在等比数列中,q≠0.
(3)若a=0,b=0,c=0满足b2=ac,但a,b,c不成等比数列.
(4)当a=1时,Sn=na.
(5)若a1=1,q=-1,则S4=0,S8-S4=0,S12-S8=0,不成等比数列.
答案 (1)× (2)× (3)× (4)× (5)×
2.(2017·太原模拟)在单调递减的等比数列{an}中,若a3=1,a2+a4=,则a1=(  )
A.2 B.4 C. D.2
解析 在等比数列{an}中,a2a4=a=1,又a2+a4=,数列{an}为递减数列,所以a2=2,a4=,所以q2==,所以q=,a1==4.
答案 B
3.(2017·湖北省七市考试)公比不为1的等比数列{an}满足a5a6+a4a7=18,若a1am=9,则m的值为(  )
A.8 B.9 C.10 D.11
解析 由题意得,2a5a6=18,a5a6=9,∴a1am=a5a6=9,
∴m=10,故选C.
答案 C
4.(2015·全国Ⅰ卷)在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n=________.
解析 由an+1=2an,知数列{an}是以a1=2为首项,公比q=2的等比数列,由Sn==126,解得n=6.
答案 6
5.(2015·广东卷)若a,b,c三个正数成等比数列,其中a=5+2,c=5-2,则b的值为________.
解析 ∵a,b,c成等比数列,∴b2=ac.
即b2=(5+2)(5-2)=1,又b>0,∴b=1.
答案 1
6.(2016·浙江卷)设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则a1=________,S5=________.
解析 由解得a1=1,a2=3,
当n≥2时,由已知可得:
an+1=2Sn+1,①
an=2Sn-1+1,②
①-②得an+1-an=2an,∴an+1=3an,又a2=3a1,
∴{an}是以a1=1为首项,公比q=3的等比数列.
∴S5==121.
答案 1 121
考点一 等比数列基本量的运算
【例1】 (1)设{an}是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5等于(  )
A. B. C. D.
(2)(2016·全国Ⅰ卷)设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为________.
解析 (1)显然公比q≠1,由题意得
解得或(舍去),
∴S5===.
(2)设等比数列{an}的公比为q,∴
?解得
∴a1a2…an=aq1+2+…+(n-1)
=2-+.
记t=-+=-(n2-7n),
结合n∈N*,可知n=3或4时,t有最大值6.
又y=2t为增函数.
所以a1a2…an的最大值为64.
答案 (1)B (2)64
规律方法 等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)便可迎刃而解.
【训练1】 (1)设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为________.
(2)(2016·合肥模拟)设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,则an=________.
解析 (1)由已知条件,得2Sn=Sn+1+Sn+2,
即2Sn=2Sn+2an+1+an+2,即=-2.
(2)由已知得:
解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=,a3=2q.又S3=7,可知+2+2q=7,即2q2-5q+2=0,解得q1=2,q2=.由题意得q>1,所以q=2,所以a1=1.
故数列{an}的通项为an=2n-1.
答案 (1)-2 (2)2n-1
考点二 等比数列的性质及应用
【例2】 (1)(2015·全国Ⅱ卷)已知等比数列{an}满足a1=,a3a5=4(a4-1),则a2等于(  )
A.2 B.1 C. D.
(2)设等比数列{an}的前n项和为Sn,若=3,则=(  )
A.2 B. C. D.3
解析 (1)由{an}为等比数列,得a3a5=a,所以a=4(a4-1),解得a4=2,设等比数列{an}的公比为q,则a4=a1q3,得2=q3,解得q=2,所以a2=a1q=.选C.
(2)法一 由等比数列的性质及题意,得S3,S6-S3,S9-S6仍成等比数列,由已知得S6=3S3,∴=,即S9-S6=4S3,S9=7S3,∴=.
法二 因为{an}为等比数列,由=3,设S6=3a,S3=a,所以S3,S6-S3,S9-S6为等比数列,即a,2a,S9-S6成等比数列,所以S9-S6=4a,解得S9=7a,所以==.
答案 (1)C (2)B
规律方法 (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则am·an=ap·aq”,可以减少运算量,提高解题速度.
(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.
【训练2】 (1)(2017·丽水调研)在各项均为正数的等比数列{an}中,a3=-1,a5=+1,则a+2a2a6+a3a7=________.
(2)已知x,y,z∈R,若-1,x,y,z,-3成等比数列,则xyz的值为________.
解析 (1)由等比数列性质,得a3a7=a,a2a6=a3a5,所以a+2a2a6+a3a7=a+2a3a5+a=(a3+a5)2=(-1++1)2=(2)2=8.
(2)∵-1,x,y,z,-3成等比数列,
∴y2=xz=(-1)×(-3)=3,且x2=-y>0,即y<0,
∴y=-,xz=3,
∴xyz=-3.
答案 (1)8 (2)-3
考点三 等比数列的判定与证明
【例3】 已知数列{an}的前n项和为Sn,在数列{bn}中,b1=a1,bn=an-an-1(n≥2),且an+Sn=n.
(1)设cn=an-1,求证:{cn}是等比数列;
(2)求数列{bn}的通项公式.
(1)证明 ∵an+Sn=n,①
∴an+1+Sn+1=n+1.②
②-①得an+1-an+an+1=1,
∴2an+1=an+1,∴2(an+1-1)=an-1,
∴=,∴{an-1}是等比数列.
又a1+a1=1,∴a1=,
又cn=an-1,首项c1=a1-1,∴c1=-,公比q=.
∴{cn}是以-为首项,以为公比的等比数列.
(2)解 由(1)可知cn=·=-,
∴an=cn+1=1-.
∴当n≥2时,bn=an-an-1=1--
=-=.
又b1=a1=代入上式也符合,∴bn=.
规律方法 证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.
【训练3】 (2016·全国Ⅲ卷)已知数列{an}的前n项和Sn=1+λan,其中λ≠0.
(1)证明{an}是等比数列,并求其通项公式;
(2)若S5=,求λ.
(1)证明 由题意得a1=S1=1+λa1,
故λ≠1,a1=,a1≠0.
由Sn=1+λan,Sn+1=1+λan+1,得an+1=λan+1-λan,即an+1(λ-1)=λan,
由a1≠0,λ≠0且λ≠1得an≠0,
所以=.
因此{an}是首项为,公比为的等比数列,
于是an=.
(2)解 由(1)得Sn=1-.
由S5=得1-=,
即=.解得λ=-1.
[思想方法]
1.等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)求关键量a1和q.
2.已知等比数列{an}
(1)数列{c·an}(c≠0),{|an|},{a},也是等比数列.
(2)a1an=a2an-1=…=aman-m+1.
[易错防范]
1.由an+1=qan,q≠0,并不能立即断言{an}为等比数列,还要验证a1≠0.
2.在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.
第4讲 数列求和
最新考纲 1.熟练掌握等差、等比数列的前n项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法.
知 识 梳 理
1.求数列的前n项和的方法
(1)公式法
①等差数列的前n项和公式
Sn==na1+d.
②等比数列的前n项和公式
(ⅰ)当q=1时,Sn=na1;
(ⅱ)当q≠1时,Sn==.
(2)分组转化法
把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(3)裂项相消法
把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.
(4)倒序相加法
把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.
(5)错位相减法
主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.
(6)并项求和法
一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.
例如,Sn=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.
2.常见的裂项公式
(1)=-.
(2)=.
(3)=-.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn=.(  )
(2)当n≥2时,=(-).(  )
(3)求Sn=a+2a2+3a3+…+nan时只要把上式等号两边同时乘以a即可根据错位相减法求得.(  )
(4)若数列a1,a2-a1,…,an-an-1是首项为1,公比为3的等比数列,则数列{an}的通项公式是an=.(  )
 解析 (3)要分a=0或a=1或a≠0且a≠1讨论求解.
答案 (1)√ (2)√ (3)× (4)√
2.(必修5P38A改编)等差数列{an}中,已知公差d=,且a1+a3+…+a99=50,则a2+a4+…+a100=(  )
A.50 B.75 C.100 D.125
解析 a2+a4+…+a100=(a1+d)+(a3+d)+…+(a99+d)=(a1+a3+…+a99)+50d=50+50×=75.
答案 B
3.若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和为(  )
A.2n+n2-1 B.2n+1+n2-1
C.2n+1+n2-2 D.2n+n-2
解析 Sn=+=2n+1-2+n2.
答案 C
4.(必修5P38T8改编)一个球从100 m高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是(  )
A.100+200(1-2-9) B.100+100(1-2-9)
C.200(1-2-9) D.100(1-2-9)
解析 第10次着地时,经过的路程为100+2(50+25+…+100×2-9)=100+2×100×(2-1+2-2+…+2-9)=100+200×=100+200(1-2-9).
答案 A
5.(必修5P61A4(3)改编)1+2x+3x2+…+nxn-1=________(x≠0且x≠1).
解析 设Sn=1+2x+3x2+…+nxn-1,①
则xSn=x+2x2+3x3+…+nxn,②
①-②得:(1-x)Sn=1+x+x2+…+xn-1-nxn
=-nxn,
∴Sn=-.
答案 -
6.(2017·嵊州模拟)“斐波那契数列”是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)则a7=________;若a2 018=m,则数列{an}的前2 016项和是________(用m表示).
解析 ①∵a1=1,a2=1,an+2=an+1+an(n∈N*),∴a3=1+1=2,同理可得:a4=3,a5=5,a6=8,则a7=13.
②∵a1=1,a2=1,an+an+1=an+2(n∈N*),
∴a1+a2=a3,
a2+a3=a4,
a3+a4=a5,
…,
a2 015+a2 016=a2 017
a2 016+a2 017=a2 018.
以上累加得,
a1+2a2+2a3+2a4+…+2a2 016+a2 017=a3+a4+…+a2 018,
∴a1+a2+a3+a4+…+a2 016=a2 018-a2=m-1.
答案 13 m-1
考点一 分组转化法求和
【例1】 (2016·天津卷)已知{an}是等比数列,前n项和为Sn(n∈N*),且-=,S6=63.
(1)求{an}的通项公式;
(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(-1)nb}的前2n项和.
解 (1)设数列{an}的公比为q.
由已知,有-=,
解得q=2或q=-1.
又由S6=a1·=63,知q≠-1,
所以a1·=63,得a1=1.所以an=2n-1.
(2)由题意,得bn=(log2an+log2an+1)=(log22n-1+log22n)=n-,
即{bn}是首项为,公差为1的等差数列.
设数列{(-1)nb}的前n项和为Tn,则
T2n=(-b+b)+(-b+b)+…+(-b+b)
=b1+b2+b3+b4+…+b2n-1+b2n==2n2.
规律方法 (1)若数列{cn}的通项公式为cn=an±bn,且{an},{bn}为等差或等比数列,可采用分组求和法求数列{cn}的前n项和.
(2)若数列{cn}的通项公式为cn=其中数列{an},{bn}是等比数列或等差数列,可采用分组求和法求{an}的前n项和.
【训练1】 (1)数列1,3,5,7,…,(2n-1)+,…的前n项和Sn的值等于(  )
A.n2+1- B.2n2-n+1-
C.n2+1- D.n2-n+1-
(2)(2017·杭州七校联考)数列{an}的通项公式an=ncos,其前n项和为Sn,则S2 016等于(  )
A.1 008 B.2 016 C.504 D.0
解析 (1)该数列的通项公式为an=(2n-1)+,
则Sn=[1+3+5+…+(2n-1)]+=n2+1-.
(2)a1=cos =0,a2=2 cos π=-2,a3=0,a4=4,….
所以数列{an}的所有奇数项为0,前2 016项的所有偶数项(共1 008项)依次为-2,4,-6,8,…,-2 014,2 016.
故S2 016=0+(-2+4)+(-6+8)+…+(-2 014+2 016)=1 008.
答案 (1)A (2)A
考点二 裂项相消法求和
【例2】 (2015·全国Ⅰ卷)Sn为数列{an}的前n项和.已知an>0,a+2an=4Sn+3.
(1)求{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和.
解 (1)由a+2an=4Sn+3,
可知a+2an+1=4Sn+1+3.
可得a-a+2(an+1-an)=4an+1,
即2(an+1+an)=a-a=(an+1+an)(an+1-an).
由于an>0,可得an+1-an=2.
又a+2a1=4a1+3,解得a1=-1(舍去)或a1=3.
所以{an}是首项为3,公差为2的等差数列,通项公式为an=2n+1.
(2)由an=2n+1可知
bn===.
设数列{bn}的前n项和为Tn,则
Tn=b1+b2+…+bn

=.
规律方法 (1)利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.
(2)将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.
【训练2】 设Sn为等差数列{an}的前n项和,已知S3=a7,a8-2a3=3.
(1)求an;
(2)设bn=,求数列{bn}的前n项和为Tn.
解 (1)设数列{an}的公差为d,
由题意得
解得a1=3,d=2,
∴an=a1+(n-1)d=2n+1.
(2)由(1)得Sn=na1+d=n(n+2),
∴bn==.
∴Tn=b1+b2+…+bn-1+bn


=-.
考点三 错位相减法求和
【例3】 (2016·山东卷)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.
(1)求数列{bn}的通项公式;
(2)令cn=.求数列{cn}的前n项和Tn.
解 (1)由题意知,当n≥2时,an=Sn-Sn-1=6n+5.
当n=1时,a1=S1=11,符合上式.
所以an=6n+5.
设数列{bn}的公差为d,
由即
可解得b1=4,d=3.所以bn=3n+1.
(2)由(1)知,cn==3(n+1)·2n+1..
又Tn=c1+c2+…+cn.
得Tn=3×[2×22+3×23+…+(n+1)×2n+1].
2Tn=3×[2×23+3×24+…+(n+1)×2n+2].
两式作差,得
-Tn=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]
=3×=-3n·2n+2.
所以Tn=3n·2n+2.
规律方法 (1)一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解;
(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式.
【训练3】 已知{an}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.
(1)求{an}的通项公式;
(2)求数列的前n项和.
解 (1)方程x2-5x+6=0的两根为2,3,
由题意得a2=2,a4=3.
设数列{an}的公差为d,则a4-a2=2d,故d=,
从而a1=.
所以{an}的通项公式为an=n+1.
(2)设的前n项和为Sn,由(1)知=,
则Sn=++…++,
Sn=++…++.
两式相减得Sn=+-=
+-.所以Sn=2-.
[思想方法]
非等差、等比数列的一般数列求和,主要有两种思想
1.转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;
2.不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.
[易错防范]
1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.
2.在应用错位相减法时,要注意观察未合并项的正负号.
3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.
第5讲 直接证明与间接证明
最新考纲 1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点;2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.
知 识 梳 理
1.直接证明
内容
综合法
分析法
定义
利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立
从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止
实质
由因导果
执果索因
框图表示
→→…→
→→…→
文字语言
因为……所以……
或由……得……
要证……只需证……
即证……
2.间接证明
间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.
(1)反证法的定义:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.
(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.(  )
(2)用反证法证明结论“a>b”时,应假设“a(3)反证法是指将结论和条件同时否定,推出矛盾.(  )
(4)在解决问题时,常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.(  )
解析 (1)分析法是从要证明的结论出发,逐步寻找使结论成立的充分条件.
(2)应假设“a≤b”.
(3)反证法只否定结论.
答案 (1)× (2)× (3)× (4)√
2.要证a2+b2-1-a2b2≤0,只要证明(  )
A.2ab-1-a2b2≤0
B.a2+b2-1-≤0
C.-1-a2b2≤0
D.(a2-1)(b2-1)≥0
解析 a2+b2-1-a2b2≤0?(a2-1)(b2-1)≥0.
答案 D
3.若a,b,c为实数,且aA.ac2ab>b2
C.< D.>
解析 a2-ab=a(a-b),∵a0,∴a2>ab.①
又ab-b2=b(a-b)>0,∴ab>b2,②
由①②得a2>ab>b2.
答案 B
4.用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是(  )
A.方程x3+ax+b=0没有实根
B.方程x3+ax+b=0至多有一个实根
C.方程x3+ax+b=0至多有两个实根
D.方程x3+ax+b=0恰好有两个实根
解析 因为“方程x3+ax+b=0至少有一个实根”等价于“方程x3+ax+b=0的实根的个数大于或等于1”,所以要做的假设是“方程x3+ax+b=0没有实根”.
答案 A
5.在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,a,b,c成等比数列,则△ABC的形状为________.
解析 由题意2B=A+C,又A+B+C=π,∴B=,又b2=ac,由余弦定理得b2=a2+c2-2accos B=a2+c2-ac,
∴a2+c2-2ac=0,即(a-c)2=0,∴a=c,
∴A=C,∴A=B=C=,∴△ABC为等边三角形.
答案 等边三角形
6.(2017·绍兴检测)完成反证法证题的全过程.设a1,a2,…,a7是1,2,…,7的一个排列,求证:乘积p=(a1-1)·(a2-2)·…·(a7-7)为偶数.
证明:假设p为奇数,则a1-1,a2-2,…,a7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=____________=____________=0.但0≠奇数,这一矛盾说明p为偶数.
解析 ∵a1-1,a2-2,…,a7-7均为奇数,∴(a1-1)+(a2-2)+…+(a7-7)也为奇数,即(a1+a2+…+a7)-(1+2+…+7)为奇数.又∵a1,a2,…,a7是1,2,…,7的一个排列,∴a1+a2+…+a7=1+2+…+7,故上式为0,∴奇数=(a1-1)+(a2-2)+…+(a7-7)=(a1+a2+…+a7)-(1+2+…+7)=0.
答案 (a1-1)+(a2-2)+…+(a7-7) (a1+a2+…+a7)-(1+2+…+7)
考点一 综合法的应用
【例1】 (2017·东北三省三校模拟)已知a,b,c>0,a+b+c=1.求证:
(1)++≤;
(2)++≥.
证明 (1)∵(++)2=(a+b+c)+2+2+2≤(a+b+c)+(a+b)+(b+c)+(c+a)=3,
∴++≤.
(2)∵a>0,∴3a+1>0,
∴+(3a+1)≥2=4,
∴≥3-3a,同理得≥3-3b,≥3-3c,
以上三式相加得
4≥9-3(a+b+c)=6,
∴++≥.
规律方法 用综合法证题是从已知条件出发,逐步推向结论,综合法的适用范围:
(1)定义明确的问题,如证明函数的单调性、奇偶性、求证无条件的等式或不等式;
(2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.在使用综合法证明时,易出现的错误是因果关系不明确,逻辑表达混乱.
【训练1】 设a,b,c均为正数,且a+b+c=1,证明:
(1)ab+bc+ac≤;
(2)++≥1.
证明 (1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac得
a2+b2+c2≥ab+bc+ca.由题设知(a+b+c)2=1,
即a2+b2+c2+2ab+2bc+2ca=1.
所以3(ab+bc+ca)≤1,即ab+bc+ca≤.
(2)因为a>0,b>0,c>0,
所以+b≥2a,+c≥2b,+a≥2c,
故+++(a+b+c)≥2(a+b+c),
即++≥a+b+c.所以++≥1.
考点二 分析法的应用
【例2】 已知a>0,证明:-≥a+-2.
证明 要证-≥a+-2,
只需证≥-(2-).
因为a>0,所以-(2-)>0,
所以只需证≥,
即2(2-)≥8-4,只需证a+≥2.
因为a>0,a+≥2显然成立,所以要证的不等式成立.
规律方法 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.
(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.
【训练2】 △ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.
求证:+=.
证明 要证+=,
即证+=3也就是+=1,
只需证c(b+c)+a(a+b)=(a+b)(b+c),
需证c2+a2=ac+b2,
又△ABC三内角A,B,C成等差数列,故B=60°,
由余弦定理,得b2=c2+a2-2acos 60°,即b2=c2+a2-ac,
故c2+a2=ac+b2成立.
于是原等式成立.
考点三 反证法的应用
【例3】 等差数列{an}的前n项和为Sn,a1=1+,S3=9+3.
(1)求数列{an}的通项an与前n项和Sn;
(2)设bn=(n∈N*),求证:数列{bn}中任意不同的三项都不可能成为等比数列.
(1)解 由已知得解得d=2,
故an=2n-1+,Sn=n(n+).
(2)证明 由(1)得bn==n+.假设数列{bn}中存在三项bp,bq,br(p,q,r∈N*,且互不相等)成等比数列,则b=bpbr.即(q+)2=(p+)(r+).
∴(q2-pr)+(2q-p-r)=0.
∵p,q,r∈N*,∴
∴=pr,(p-r)2=0.∴p=r,与p≠r矛盾.
∴数列{bn}中任意不同的三项都不可能成为等比数列.
规律方法 (1)当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,可用反证法来证,反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.
(2)用反证法证明不等式要把握三点:①必须否定结论;②必须从否定结论进行推理;③推导出的矛盾必须是明显的.
【训练3】 (2017·郑州一中月考)已知a1+a2+a3+a4>100,求证:a1,a2,a3,a4中至少有一个数大于25.
证明 假设a1,a2,a3,a4均不大于25,即a1≤25,a2≤25,a3≤25,a4≤25,则a1+a2+a3+a4≤25+25+25+25=100,
这与已知a1+a2+a3+a4>100矛盾,故假设错误.
所以a1,a2,a3,a4中至少有一个数大于25.
[思想方法]
分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.
[易错防范]
1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直到一个明显成立的结论.
2.在使用反证法证明数学命题时,反设必须恰当,如“都是”的否定是“不都是”“至少一个”的否定是“不存在”等.
第6讲 数学归纳法
最新考纲 1.了解数学归纳法的原理;2.能用数学归纳法证明一些简单的数学命题.
知 识 梳 理
1.数学归纳法
证明一个与正整数n有关的命题,可按下列步骤进行:
(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;
(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.
2.数学归纳法的框图表示
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)用数学归纳法证明等式“1+2+22+…+2n+2=2n+3-1”,验证n=1时,左边式子应为1+2+22+23.(  )
(2)所有与正整数有关的数学命题都必须用数学归纳法证明.(  )
(3)用数学归纳法证明问题时,归纳假设可以不用.(  )
(4)不论是等式还是不等式,用数学归纳法证明时,由n=k到n=k+1时,项数都增加了一项.(  )
解析 对于(2),有些命题也可以直接证明;对于(3),数学归纳法必须用归纳假设;对于(4),由n=k到n=k+1,有可能增加不止一项.
答案 (1)√ (2)× (3)× (4)×
2.(选修2-2P99B1改编)在应用数学归纳法证明凸n边形的对角线为n(n-3)条时,第一步检验n等于(  )
A.1 B.2 C.3 D.4
解析 三角形是边数最少的凸多边形,故第一步应检验n=3.
答案 C
3.已知f(n)=+++…+,则(  )
A.f(n)中共有n项,当n=2时,f(2)=+
B.f(n)中共有n+1项,当n=2时,f(2)=++
C.f(n)中共有n2-n项,当n=2时,f(2)=+
D.f(n)中共有n2-n+1项,当n=2时,f(2)=++
解析 f(n)共有n2-n+1项,当n=2时,=,=,故f(2)=++.
答案 D
4.用数学归纳法证明1+++…+1),第一步要证的不等式是________.
解析 当n=2时,式子为1++<2.
答案 1++<2
5.用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,当第二步假设n=2k-1(k∈N*)命题为真时,进而需证n=________时,命题亦真.
解析 由于步长为2,所以2k-1后一个奇数应为2k+1.
答案 2k+1
6.(2017·宁波调研)用数学归纳法证明“当n为正偶数时,xn-yn能被x+y整除”第一步应验证n=________时,命题成立;第二步归纳假设成立应写成________.
解析 因为n为正偶数,故第一个值n=2,第二步假设n取第k个正偶数成立,即n=2k,故应假设成x2k-y2k能被x+y整除.
答案 2 x2k-y2k能被x+y整除
考点一 用数学归纳法证明等式
【例1】 用数学归纳法证明:
+++…+=(n∈N*).
证明 (1)当n=1时,
左边==,
右边==,
左边=右边,所以等式成立.
(2)假设n=k(k∈N*)时等式成立,即有
+++…+=,
则当n=k+1时,+++…++
=+=
===.
所以当n=k+1时,等式也成立,
由(1)(2)可知,对于一切n∈N*等式都成立.
规律方法 (1)用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n0是多少.
(2)由n=k时等式成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.
【训练1】 求证:(n+1)(n+2)·…·(n+n)=2n·1·3·5·…·(2n-1)(n∈N*).
证明 (1)当n=1时,等式左边=2,右边=2,故等式成立;
(2)假设当n=k(k∈N*)时等式成立,
即(k+1)(k+2)·…·(k+k)=2k·1·3·5·…·(2k-1),
那么当n=k+1时,
左边=(k+1+1)(k+1+2)·…·(k+1+k+1)
=(k+2)(k+3)·…·(k+k)(2k+1)(2k+2)
=2k·1·3·5·…·(2k-1)(2k+1)·2
=2k+1·1·3·5·…·(2k-1)(2k+1),
所以当n=k+1时等式也成立.
由(1)(2)可知,对所有n∈N*等式成立.
考点二 用数学归纳法证明不等式
【例2】 (2017·浙江五校联考)等比数列{an}的前n项和为Sn.已知对任意的n∈N*,点(n,Sn)均在函数y=bx+r(b>0,且b≠1,b,r均为常数)的图象上.
(1)求r的值;
(2)当b=2时,记bn=2(log2an+1)(n∈N*).
证明:对任意的n∈N*,不等式··…·>成立.
(1)解 由题意,Sn=bn+r,
当n≥2时,Sn-1=bn-1+r,
所以an=Sn-Sn-1=bn-1(b-1),
由于b>0,且b≠1,所以n≥2时,{an}是以b为公比的等比数列,又a1=b+r,a2=b(b-1),=b,即=b,解得r=-1.
(2)证明 由(1)知an=2n-1,因此bn=2n(n∈N*),所证不等式为··…·>.
①当n=1时,左式=,右式=,
左式>右式,所以结论成立.
②假设n=k时结论成立,即··…·>,
则当n=k+1时,··…··>·=,
要证当n=k+1时结论成立,
只需证≥,
即证≥,
由基本不等式可得
=≥成立,
故≥成立,所以当n=k+1时,结论成立.
由①②可知,n∈N*时,
不等式··…·>成立.
规律方法 应用数学归纳法证明不等式应注意的问题
(1)当遇到与正整数n有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.
(2)用数学归纳法证明不等式的关键是由n=k成立,推证n=k+1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法、构造函数法等证明方法.
【训练2】 求证:++…+证明 ①当n=1时,②假设当n=k(k≥1,k∈N*)时结论成立,即++…+那么,当n=k+1时,
++…++下面证明ln(k+1)+令f(x)=ln(1+x)-(x>0),
则f′(x)=>0,∴f(x)在(0,+∞)上递增,
∴f(x)>f(0)=0,∵>0,
∴f>0,即ln->0,
即ln->0,
∴ln(k+2)-ln(k+1)->0,即ln(k+1)+∴当n=k+1时,不等式也成立.
综上由①②,++…+考点三 归纳——猜想——证明
【例3】 已知数列{an}的前n项和Sn满足:Sn=+-1,且an>0,n∈N*.
(1)求a1,a2,a3,并猜想{an}的通项公式;
(2)证明(1)中的猜想.
(1)解 当n=1时,由已知得a1=+-1,即a+2a1-2=0.
∴a1=-1(a1>0).
当n=2时,由已知得a1+a2=+-1,
将a1=-1代入并整理得a+2a2-2=0.
∴a2=-(a2>0).同理可得a3=-.
猜想an=-(n∈N*).
(2)证明 ①由(1)知,当n=1,2,3时,通项公式成立.
②假设当n=k(k≥3,k∈N*)时,通项公式成立,
即ak=-.
由于ak+1=Sk+1-Sk=+--,
将ak=-代入上式,整理得
a+2ak+1-2=0,
∴ak+1=-,
即n=k+1时通项公式成立.
由①②可知对所有n∈N*,an=-都成立.
规律方法 (1)利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理论证结论的正确性.
(2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”.高中阶段与数列结合的问题是最常见的问题.
【训练3】 设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.
(1)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N*,求gn(x)的表达式;
(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;
(3)设n∈N*,猜想g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.
解 由题设得,g(x)=(x≥0).
(1)由已知,g1(x)=,g2(x)=g(g1(x))==,g3(x)=,…,可猜想gn(x)=.
下面用数学归纳法证明.
①当n=1时,g1(x)=,结论成立.
②假设n=k时结论成立,即gk(x)=.
那么,当n=k+1时,gk+1(x)=g(gk(x))
===,即结论成立.
由①②可知,结论对n∈N*成立.
(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.
设φ(x)=ln(1+x)-(x≥0),
则φ′(x)=-=,
当a≤1时,φ′(x)≥0(仅当x=0,a=1时等号成立),
∴φ(x)在[0,+∞)上单调递增.
又φ(0)=0,
∴φ(x)≥0在[0,+∞)上恒成立,
∴a≤1时,ln(1+x)≥恒成立(仅当x=0时等号成立).
当a>1时,对x∈(0,a-1]有φ′(x)≤0,
∴(x)在(0,a-1]上单调递减,
∴φ(a-1)<φ(0)=0.
即a>1时,存在x>0,使φ(x)<0,
∴ln(1+x)≥不恒成立,
综上可知,实数a的取值范围是(-∞,1].
(3)由题设知g(1)+g(2)+…+g(n)=++…+,n-f(n)=n-ln(n+1),
猜想结果为g(1)+g(2)+…+g(n)>n-ln(n+1).
证明如下:上述不等式等价于++…+可得ln(1+x)>,x>0.
令x=,n∈N*,则下面用数学归纳法证明.
①当n=1时,②假设当n=k时结论成立,即++…+那么,当n=k+1时,++…++由①②可知,结论对n∈N*成立.
[思想方法]
1.数学归纳法证明中的两个步骤体现了递推思想,第一步是递推的基础,第二步是递推的依据,两个步骤缺一不可,否则就会导致错误.有一无二,是不完全归纳法,结论不一定可靠;有二无一,第二步就失去了递推的基础.
2.归纳假设的作用
在用数学归纳法证明问题时,对于归纳假设要注意以下两点:
(1)归纳假设就是已知条件;(2)在推证n=k+1时,必须用上归纳假设.
3.利用归纳假设的技巧
在推证n=k+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n=k与n=k+1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用.
[易错防范]
1.数学归纳法证题时初始值n0不一定是1.
2.推证n=k+1时一定要用上n=k时的假设,否则不是数学归纳法.
3.解“归纳——猜想——证明”题的关键是准确计算出前若干具体项,这是归纳、猜想的基础,否则将会做大量无用功.
专题研究课一 高考中函数与导数问题的热点题型
高考导航 函数与导数作为高中数学的核心内容,常常与其他知识结合起来,形成层次丰富的各类题型,常涉及的问题:研究函数的性质(如求单调区间、求极值、最值),研究函数的零点(或方程的根、曲线的交点),研究不等式.
热点一 利用导数研究函数的性质
利用导数研究函数的单调性、极值、最值问题,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围.
【例1】 (2015·全国Ⅱ卷)已知函数f(x)=ln x+a(1-x).
(1)讨论f(x)的单调性;
(2)当f(x)有最大值,且最大值大于2a-2时,求实数a的取值范围.
解 (1)f(x)的定义域为(0,+∞),f′(x)=-a.
若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.
若a>0,则当x∈时,f′(x)>0;
当x∈时,f′(x)<0,
所以f(x)在上单调递增,在上单调递减.
综上,知当a≤0时,f(x)在(0,+∞)上单调递增;
当a>0时,f(x)在上单调递增,在上单调递减.
(2)由(1)知,当a≤0时,f(x)在(0,+∞)上无最大值;
当a>0时,f(x)在x=处取得最大值,最大值为f=ln +a=-ln a+a-1.
因此f>2a-2等价于ln a+a-1<0.
令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,
g(1)=0.
于是,当0<a<1时,g(a)<0;
当a>1时,g(a)>0.
因此,实数a的取值范围是(0,1).
探究提高 (1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.
(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a+a-1<0,则需要构造函数来解.
【训练1】 已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).
(1)当a=2时,求函数f(x)的单调递增区间;
(2)若函数f(x)在(-1,1)上单调递增,求实数a的取值范围.
解 (1)当a=2时,f(x)=(-x2+2x)ex,
所以f′(x)=(-2x+2)ex+(-x2+2x)ex
=(-x2+2)ex.
令f′(x)>0,即(-x2+2)ex>0,因为ex>0,
所以-x2+2>0,解得-所以函数f(x)的单调递增区间是(-,).
(2)因为函数f(x)在(-1,1)上单调递增,
所以f′(x)≥0对x∈(-1,1)都成立,
因为f′(x)=(-2x+a)ex+(-x2+ax)ex
=[-x2+(a-2)x+a]ex,
所以[-x2+(a-2)x+a]ex≥0对x∈(-1,1)都成立.
因为ex>0,所以-x2+(a-2)x+a≥0对x∈(-1,1)都成立,
即a≥=
=(x+1)-对x∈(-1,1)都成立.
令y=(x+1)-,则y′=1+>0.
所以y=(x+1)-在(-1,1)上单调递增,
所以y<(1+1)-=.即a≥.
因此实数a的取值范围是.
热点二 利用导数研究函数零点或曲线交点问题
函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根求参数的取值范围.
【例2】 (2017·杭州调研)已知函数f(x)=axsin x-(a>0),且在上的最大值为.
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.
解 (1)由已知,得f′(x)=a(sin x+xcos x),且a>0.
当x∈时,有sin x+xcos x>0,
从而f′(x)>0,f(x)在上是增函数,
又f(x)在上的图象是连续不断的,
故f(x)在上的最大值为f,
即a-=,解得a=1.
综上所述得f(x)=xsin x-.
(2)f(x)在(0,π)内有且只有两个零点.证明如下:
由(1)知,f(x)=xsin x-,
从而f(0)=-<0,f=>0.
又f(x)在上的图象是连续不断的,
所以f(x)在内至少存在一个零点.
又由(1)知f(x)在上单调递增,
故f(x)在内有且只有一个零点.
当x∈时,令g(x)=f′(x)=sin x+xcos x.
由g=1>0,g(π)=-π<0,且g(x)在上的图象是连续不断的,故存在m∈,使得g(m)=0.
由g′(x)=2cos x-xsin x,知x∈时,有g′(x)<0,
从而g(x)在内单调递减.
①当x∈时,g(x)>g(m)=0,
即f′(x)>0,从而f(x)在内单调递增,
故当x∈时,f(x)≥f=>0,
故f(x)在上无零点;
②当x∈(m,π)时,有g(x)<g(m)=0,
即f′(x)<0,从而f(x)在(m,π)内单调递减.
又f(m)>0,f(π)<0,且f(x)的图象在[m,π]上连续不间断,从而f(x)在区间(m,π)内有且仅有一个零点.
综上所述,f(x)在(0,π)内有且只有两个零点.
探究提高 利用导数研究函数的零点常用两种方法:
(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;
(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.
【训练2】 设函数f(x)=ln x+,m∈R.
(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;
(2)讨论函数g(x)=f′(x)-零点的个数.
解 (1)由题设,当m=e时,f(x)=ln x+,
定义域为(0,+∞),则f′(x)=,由f′(x)=0,得x=e.
∴当x∈(0,e),f′(x)<0,f(x)在(0,e)上单调递减,
当x∈(e,+∞),f′(x)>0,f(x)在(e,+∞)上单调递增,
∴当x=e时,f(x)取得极小值f(e)=ln e+=2,
∴f(x)的极小值为2.
(2)由题设g(x)=f′(x)-=--(x>0),
令g(x)=0,得m=-x3+x(x>0).
设φ(x)=-x3+x(x>0),
则φ′(x)=-x2+1=-(x-1)(x+1),
当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;
当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.
∴x=1是φ(x)的唯一极值点,且是极大值点,
因此x=1也是φ(x)的最大值点.
∴φ(x)的最大值为φ(1)=.
又φ(0)=0,结合y=φ(x)的图象(如图),
可知①当m>时,函数g(x)无零点;
②当m=时,函数g(x)有且只有一个零点;
③当0<m<时,函数g(x)有两个零点;
④当m≤0时,函数g(x)有且只有一个零点.
综上所述,当m>时,函数g(x)无零点;
当m=或m≤0时,函数g(x)有且只有一个零点;
当0<m<时,函数g(x)有两个零点.
热点三 利用导数研究不等式问题(规范解答)
导数在不等式中的应用是高考的热点,常以解答题的形式考查,以中高档题为主,突出转化思想、函数思想的考查,常见的命题角度:(1)证明简单的不等式;(2)由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题.
【例3】 (满分12分)设函数f(x)=e2x-aln x.
(1)讨论f(x)的导函数f′(x)零点的个数;
(2)证明:当a>0时,f(x)≥2a+aln.
满分解答 (1)解 f(x)的定义域为(0,+∞),f′(x)=2e2x-(x>0).
当a≤0时,f′(x)>0,f′(x)没有零点.2分
当a>0时,设u(x)=e2x,v(x)=-,
因为u(x)=e2x在(0,+∞)上单调递增,v(x)=-在(0,+∞)上单调递增,所以f′(x)在(0,+∞)上单调递增.4分
又f′(a)>0,当b满足0<b<且b<时,f′(b)<0(讨论a≥1或a<1来检验),
故当a>0时,f′(x)存在唯一零点.6分
(2)证明 由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;
当x∈(x0,+∞)时,f′(x)>0.
故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
所以当x=x0时,f(x)取得最小值,最小值为f(x0)9分
由于2e2x0-=0,
所以f(x0)=+2ax0+aln≥2a+aln.
故当a>0时,f(x)≥2a+aln.12分
 
?得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求f(x)的最小值和基本不等式的应用.
?得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f(x)的定义域,f′(x)在(0,+∞)上单调性的判断;第(2)问,f(x)在x=x0处最值的判定.
?得计算分:解题过程中计算准确是得满分的根本保证.
如第(1)问中,求导f′(x)准确,否则全盘皆输,求解使f′(b)<0的b满足的约束条件0<b<,且b<.如第(2)问中x0满足条件的计算,若计算错误不得分,另外还应注意规范的文字、符号语言的表述.

1.讨论零点个数的答题模板
第一步:求函数的定义域;
第二步:分类讨论函数的单调性、极值;
第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.
2.证明不等式的答题模板
第一步:根据不等式合理构造函数;
第二步:求函数的最值;
第三步:根据最值证明不等式.
【训练3】 已知函数f(x)=ax+ln x(a∈R).
(1)若a=2,求曲线y=f(x)在x=1处的切线方程;
(2)求f(x)的单调区间;
(3)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1]使得f(x1)解 (1)由已知得f′(x)=2+(x>0),所以f′(1)=2+1=3,所以斜率k=3.又切点为(1,2),所以切线方程为y-2=3(x-1),即3x-y-1=0,
故曲线y=f(x)在x=1处的切线方程为3x-y-1=0.
(2)f′(x)=a+=(x>0),
①当a≥0时,由于x>0,故ax+1>0,f′(x)>0,
所以f(x)的单调增区间为(0,+∞).
②当a<0时,由f′(x)=0,得x=-.
在区间上,f′(x)>0,在区间上,f′(x)<0,所以函数f(x)的单调递增区间为,单调递减区间为.
(3)由已知得所求可转化为f(x)maxg(x)=(x-1)2+1,x∈[0,1],所以g(x)max=2,
由(2)知,当a≥0时,f(x)在(0,+∞)上单调递增,
值域为R,故不符合题意.
当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,是f=-1+ln=-1-ln(-a),所以2>-1-ln(-a),解得a<-.即a的取值范围是.
第1讲 导数的概念与导数的计算
最新考纲 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y=c(c为常数),y=x,y=,y=x2,y=x3,y=的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y=f(ax+b)的复合函数)的导数.
知 识 梳 理
1.函数y=f(x)在x=x0处的导数
(1)定义:称函数y=f(x)在x=x0处的瞬时变化率 = 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)==.
(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).
2.函数y=f(x)的导函数
如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数.记作f′(x)或y′.
3.基本初等函数的导数公式
基本初等函数
导函数
f(x)=c(c为常数)
f′(x)=0
f(x)=xα(α∈Q*)
f′(x)=αxα-1
f(x)=sin x
f′(x)=cos__x
f(x)=cos x
f′(x)=-sin__x
f(x)=ex
f′(x)=ex
f(x)=ax(a>0)
f′(x)=axln__a
f(x)=ln x
f′(x)=
f(x)=logax (a>0,a≠1)
f′(x)=
4.导数的运算法则
若f′(x),g′(x)存在,则有:
(1)[f(x)±g(x)]′=f′(x)±g′(x);
(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
(3)′=(g(x)≠0).
5.复合函数的导数
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′,即y对x的导数等于y对u的导数与u对x的导数的乘积.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)f′(x0)与(f(x0))′表示的意义相同.(  )
(2)曲线的切线与曲线不一定只有一个公共点.(  )
(3)(2x)′=x·2x-1.(  )
(4)若f(x)=e2x,则f′(x)=e2x.(  )
解析 (1)f′(x0)是函数f(x)在x0处的导数,(f(x0))′是常数f(x0)的导数即(f(x0))′=0;(3)(2x)′=2xln 2;
(4)(e2x)′=2e2x.
答案 (1)× (2)√ (3)× (4)×
2.函数y=xcos x-sin x的导数为(  )
A.xsin x B.-xsin x
C.xcos x D.-xcos x
解析 y′=(xcos x)′-(sin x)′=cos x-xsin x-cos x=-xsin x.
答案 B
3.(选修2-2P18AT7改编)曲线y=在x=处的切线方程为(  )
A.y=0 B.y=
C.y=-x+ D.y=x
解析 ∵y′=,∴y′|x==-,当x=时,y=,∴切线方程为y-=-,即y=-x+.
答案 C
4.(2017·西安月考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________.
解析 y′=a-,由题意得y′|x=0=2,即a-1=2,
所以a=3.
答案 3
5.(2017·丽水调研)如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f′(5)=________;f(5)=________.
解析 f′(5)=-1,f(5)=-5+8=3.
答案 -1 3
6.(2017·舟山调研)定义在R上的函数f(x)满足f(x)=f′(1)e2x-2+x2-2f(0)x,则f(0)=________;f(x)=________.
解析 ∵f(x)=f′(1)e2x-2+x2-2f(0)x,
∴f′(x)=f′(1)e2x-2+2x-2f(0),
∴f′(1)=f′(1)+2-2f(0),∴f(0)=1,
即1=f′(1)e-2,∴f(x)=e2x+x2-2x.
答案 1 e2x+x2-2x
考点一 导数的运算
【例1】 分别求下列函数的导数:
(1)y=exln x;(2)y=x;
(3)y=x-sincos;(4)y=ln.
解 (1)y′=(ex)′ln x+ex(ln x)′=exln x+ex·
=ex.
(2)∵y=x3+1+,∴y′=3x2-.
(3)∵y=x-sin x,∴y′=1-cos x.
(4)∵y=ln=ln(1+2x),
∴y′=··(1+2x)′=.
规律方法 求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有:
(1)连乘积形式:先展开化为多项式的形式,再求导;
(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导;
(3)对数形式:先化为和、差的形式,再求导;
(4)根式形式:先化为分数指数幂的形式,再求导;
(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导;
(6)复合函数:由外向内,层层求导.
【训练1】 求下列函数的导数:
(1)y=x2sin x;
(2)y=;
(3)y=xsincos;
(4)y=ln(2x-5).
解 (1)y′=(x2)′sin x+x2(sin x)′=2xsin x+x2cos x.
(2)y′=′=
=-.
(3)∵y=xsincos
=xsin(4x+π)=-xsin 4x.
∴y′=-sin 4x-x·4cos 4x
=-sin 4x-2xcos 4x.
(4)令u=2x-5,y=ln u.
则y′=(ln u)′u′=·2=,
即y′=.
考点二 导数的几何意义(多维探究)
命题角度一 求切线的方程
【例2-1】 (1)函数f(x)=的图象在点(1,-2)处的切线方程为(  )
A.2x-y-4=0 B.2x+y=0
C.x-y-3=0 D.x+y+1=0
(2)已知曲线y=x3上一点P,则过点P的切线方程为________.
解析 (1)f′(x)=,则f′(1)=1,
故函数f(x)的图象在点(1,-2)处的切线方程为y-(-2)=x-1,即x-y-3=0.
(2)设切点坐标为,由y′=′=x2,得
y′|x=x0=x,
即过点P的切线的斜率为x,
又切线过点P,若x0≠2,则x=,解得x0=-1,此时切线的斜率为1;若x0=2,则切线的斜率为4.
故所求的切线方程是y-=x-2或y-=4(x-2),
即3x-3y+2=0或12x-3y-16=0.
答案 (1)C (2)3x-3y+2=0或12x-3y-16=0
命题角度二 求参数的值
【例2-2】 (1)已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为(  )
A.1 B.2 C.-1 D.-2
(2)(2017·温州调研)若函数f(x)=x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.
解析 (1)设切点为(x0,y0),y′=,所以有解得
(2)∵f(x)=x2-ax+ln x,∴f′(x)=x-a+.
∵f(x)存在垂直于y轴的切线,
∴f′(x)存在零点,∴x+-a=0有解,
∴a=x+≥2(x>0).
答案 (1)B (2)[2,+∞)
命题角度三 公切线问题
【例2-3】 (2015·全国Ⅱ卷)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.
解析 法一 ∵y=x+ln x,
∴y′=1+,y′|x=1=2.
∴曲线y=x+ln x在点(1,1)处的切线方程为
y-1=2(x-1),即y=2x-1.
∵y=2x-1与曲线y=ax2+(a+2)x+1相切,
∴a≠0(当a=0时曲线变为y=2x+1与已知直线平行).
由消去y,得ax2+ax+2=0.
由Δ=a2-8a=0,解得a=8.
法二 同法一得切线方程为y=2x-1.
设y=2x-1与曲线y=ax2+(a+2)x+1相切于点(x0,ax+(a+2)x0+1).
∵y′=2ax+(a+2),∴y′|x=x0=2ax0+(a+2).

解得
答案 8
规律方法 (1)求切线方程的方法:
①求曲线在点P处的切线,则表明P点是切点,只需求出函数在点P处的导数,然后利用点斜式写出切线方程;
②求曲线过点P的切线,则P点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.
(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.
【训练2】 若存在过点(1,0)的直线与曲线y=x3和y=ax2+x-9(a≠0)都相切,则a的值为(  )
A.-1或- B.-1或
C.-或- D.-或7
解析 由y=x3得y′=3x2,设曲线y=x3上任意一点(x0,x)处的切线方程为y-x=3x(x-x0),将(1,0)代入得x0=0或x0=.
①当x0=0时,切线方程为y=0,由得ax2+x-9=0,
Δ=+4·a·9=0得a=-.
②当x0=时,切线方程为y=x-,由得ax2-3x-=0,
Δ=32+4·a·=0得a=-1.
综上①②知,a=-1或a=-.
答案 A
[思想方法]
1.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.对于复合函数求导,关键在于分清复合关系,适当选取中间变量,然后“由外及内”逐层求导.
2.求曲线的切线方程要注意分清已知点是否是切点.若已知点是切点,则可通过点斜式直接写方程,若已知点不是切点,则需设出切点.
3.处理与切线有关的参数问题时,一般利用曲线、切线、切点的三个关系列方程求解.
[易错防范]
1.求导常见易错点:①公式(xn)′=nxn-1与(ax)′=axln a相互混淆;②公式中“+”“-”号记混,如出现如下错误:′=,(cos x)′=sin x;③复合函数求导分不清内、外层函数.
2.求切线方程时,把“过点切线”问题误认为“在点切线”问题.
第2讲 导数与函数的单调性
最新考纲 了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).
知 识 梳 理
1.函数的单调性与导数的关系
已知函数f(x)在某个区间内可导,
(1)如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;
(2)如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.
2.利用导数求函数单调区间的基本步骤是:
(1)确定函数f(x)的定义域;
(2)求导数f′(x);
(3)由f′(x)>0(或<0)解出相应的x的取值范围.当f′(x)>0时,f(x)在相应的区间内是单调递增函数;当f′(x)<0时,f(x)在相应的区间内是单调递减函数.
一般需要通过列表,写出函数的单调区间.
3.已知单调性求解参数范围的步骤为:
(1)对含参数的函数f(x)求导,得到f′(x);
(2)若函数f(x)在[a,b]上单调递增,则f′(x)≥0恒成立;若函数f(x)在[a,b]上单调递减,则f′(x)≤0恒成立,得到关于参数的不等式,解出参数范围;
(3)验证参数范围中取等号时,是否恒有f′(x)=0.若f′(x)=0恒成立,则函数f(x)在(a,b)上为常数函数,舍去此参数值.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.(  )
(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(  )
(3)f′(x)>0是f(x)为增函数的充要条件.(  )
解析 (1)f(x)在(a,b)内单调递增,则有f′(x)≥0.
(2)f′(x)>0是f(x)为增函数的充分不必要条件.
答案 (1)× (2)√ (3)×
2.函数f(x)=ex-x的单调递增区间是(  )
A.(-∞,1] B.[1,+∞)
C.(-∞,0] D.(0,+∞)
解析 令f′(x)=ex-1>0得x>0,所以f(x)的递增区间为(0,+∞).
答案 D
3.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是(  )
解析 由y=f′(x)的图象易知当x<0或x>2时,f′(x)>0,故函数y=f(x)在区间(-∞,0)和(2,+∞)上单调递增;当0<x<2时,f′(x)<0,故函数y=f(x)在区间(0,2)上单调递减.
答案 C
4.(2014·全国Ⅱ卷)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是(  )
A.(-∞,-2] B.(-∞,-1]
C.[2,+∞) D.[1,+∞)
解析 依题意得f′(x)=k-≥0在(1,+∞)上恒成立,
即k≥在(1,+∞)上恒成立,
∵x>1,∴0<<1,∴k≥1,故选D.
答案 D
5.若f(x)=,0<a<b<e,则f(a)与f(b)的大小关系为________.
解析 f′(x)=,当0<x<e时,1-ln x>0,
即f′(x)>0,∴f(x)在(0,e)上单调递增,
∴f(a)<f(b).
答案 f(a)<f(b)
考点一 求不含参数的函数的单调性
【例1】 已知函数f(x)=ax3+x2(a∈R)在x=-处取得极值.
(1)确定a的值;
(2)若g(x)=f(x)ex,讨论g(x)的单调性.
解 (1)对f(x)求导得f′(x)=3ax2+2x,
因为f(x)在x=-处取得极值,所以f′=0,
所以3a·+2·=-=0,解得a=.
(2)由(1)得g(x)=ex,
故g′(x)=ex+ex
=ex
=x(x+1)(x+4)ex.
令g′(x)=0,
解得x=0,x=-1或x=-4.
当x<-4时,g′(x)<0,故g(x)为减函数;
当-40,故g(x)为增函数;
当-1当x>0时,g′(x)>0,故g(x)为增函数.
综上知,g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.
规律方法 确定函数单调区间的步骤:
(1)确定函数f(x)的定义域;
(2)求f′(x);
(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;
(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.
【训练1】 函数y=x2-ln x的单调递减区间为(  )
A.(-1,1] B.(0,1]
C.[1,+∞) D.(0,+∞)
解析 y=x2-ln x,y′=x-==(x>0).令y′≤0,得0答案 B
考点二 求含参函数的单调性
【例2】 (2017·湖州调研)设函数f(x)=aln x+,其中a为常数.
(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.
解 (1)由题意知a=0时,f(x)=,x∈(0,+∞).
此时f′(x)=.可得f′(1)=,又f(1)=0,所以曲线y=f(x)在(1,f(1))处的切线方程为x-2y-1=0.
(2)函数f(x)的定义域为(0,+∞).
f′(x)=+=.
当a≥0时,f′(x)>0,函数f(x)在(0,+∞)上单调递增.
当a<0时,令g(x)=ax2+(2a+2)x+a,
由于Δ=(2a+2)2-4a2=4(2a+1).
①当a=-时,Δ=0,f′(x)=≤0,函数f(x)在(0,+∞)上单调递减.
②当a<-时,Δ<0,g(x)<0,
f′(x)<0,函数f(x)在(0,+∞)上单调递减.
③当-<a<0时,Δ>0.
设x1,x2(x1<x2)是函数g(x)的两个零点,
则x1=,x2=.
由x1==>0,
所以
x∈(0,x1)时,g(x)<0,f′(x)<0,函数f(x)单调递减;
x∈(x1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;
x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.
综上可得:
当a≥0时,函数f(x)在(0,+∞)上单调递增;
当a≤-时,函数f(x)在(0,+∞)上单调递减;
当-<a<0时,f(x)在,
上单调递减,
在上单调递增.
规律方法 利用导数研究函数的单调性的关键在于准确判定导数的符号,当f(x)含参数时,需依据参数取值对不等式解集的影响进行分类讨论.分类讨论时,要做到不重不漏.
【训练2】 已知函数f(x)=ln x-ax+-1(a∈R).
(1)当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)当a≤时,讨论f(x)的单调性.
解 (1)当a=-1时,
f(x)=ln x+x+-1,x∈(0,+∞),
所以f′(x)=,
因此,f′(2)=1,即曲线y=f(x)在点(2,f(2))处的切线斜率为1,
又f(2)=ln 2+2,
所以曲线y=f(x)在点(2,f(2))处的切线方程为
y-(ln 2+2)=x-2,即x-y+ln 2=0.
(2)因为f(x)=ln x-ax+-1,
所以f′(x)=-a+
=-,x∈(0,+∞).
令g(x)=ax2-x+1-a,x∈(0,+∞).
(ⅰ)当a=0时,g(x)=-x+1,x∈(0,+∞),
所以当x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;
当x∈(1,+∞)时,g(x)<0,
此时f′(x)>0,函数f(x)单调递增;
(ⅱ)当a≠0时,由g(x)=0,
即ax2-x+1-a=0,
解得x1=1,x2=-1.
①当a=时,x1=x2,g(x)≥0恒成立,此时f′(x)≤0,等号只在x=1时取得,所以函数f(x)在(0,+∞)上单调递减;
②当01>0,
x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;
x∈时,g(x)<0,
此时f′(x)>0,函数f(x)单调递增;
x∈时,g(x)>0,
此时f′(x)<0,函数f(x)单调递减.
③当a<0时,由于-1<0,
当x∈(0,1)时,g(x)>0,
此时f′(x)<0,f(x)单调递减;
x∈(1,+∞)时,g(x)<0,此时f′(x)>0,函数f(x)单调递增.
综上所述:
当a≤0时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;
当a=时,函数f(x)在(0,+∞)上单调递减;
当0考点三 利用函数的单调性求参数(易错警示)
【例3】 (2017·成都诊断)已知函数f(x)=ln x,g(x)=ax2+2x(a≠0).
(1)若函数h(x)=f(x)-g(x)存在单调递减区间,求实数a的取值范围;
(2)若函数h(x)=f(x)-g(x)在[1,4]上单调递减,求实数a的取值范围.
解 (1)h(x)=ln x-ax2-2x,x∈(0,+∞),①
所以h′(x)=-ax-2,由h(x)在(0,+∞)上存在单调递减区间,所以当x∈(0,+∞)时,
-ax-2<0有解,②
即a>-有解.
设G(x)=-,所以只要a>G(x)min即可.
而G(x)=-1,所以G(x)min=-1.
所以a>-1.
(2)由h(x)在[1,4]上单调递减得,
当x∈[1,4]时,h′(x)=-ax-2≤0恒成立,③
即a≥-恒成立.设G(x)=-,
所以a≥G(x)max,而G(x)=-1,
因为x∈[1,4],所以∈,
所以G(x)max=-(此时x=4),所以a≥-.
规律方法 利用单调性求参数的两类热点问题的处理方法
(1)函数f(x)在区间D上存在递增(减)区间.
方法一:转化为“f′(x)>0(<0)在区间D上有解”;
方法二:转化为“存在区间D的一个子区间使f′(x)>0(<0)成立”.
(2)函数f(x)在区间D上递增(减).
方法一:转化为“f′(x)≥0(≤0)在区间D上恒成立”问题;
方法二:转化为“区间D是函数f(x)的单调递增(减)区间的子集”.
易错警示 对于①:处理函数单调性问题时,应先求函数的定义域;
对于②:h(x)在(0,+∞)上存在递减区间,应等价于h′(x)<0在(0,+∞)上有解,易误认为“等价于h′(x)≤0在(0,+∞)上有解”,多带一个“=”之所以不正确,是因为“h′(x)≤0在(0,+∞)上有解即为h′(x)<0在(0,+∞)上有解,或h′(x)=0在(0,+∞)上有解”,后者显然不正确;
对于③:h(x)在[1,4]上单调递减,应等价于h′(x)≤0在[1,4]上恒成立,易误认为“等价于h′(x)<0在[1,4]上恒成立”.
【训练3】 (1)函数f(x)=x3-x2+2x+1的递减区间为(-2,-1),则实数a的值为________.
(2)(2017·舟山模拟)若f(x)=-x2+bln(x+2)在[-1,+∞)上是减函数,则实数b的取值范围是________.
解析 (1)f′(x)=x2-ax+2,由已知得-2,-1是f′(x)的两个零点,
所以有解得a=-3.
(2)由已知得f′(x)=-x+≤0在[-1,+∞)上恒成立,
∴b≤(x+1)2-1在[-1,+∞)上恒成立,∴b≤-1.
答案 (1)-3 (2)(-∞,-1]
[思想方法]
1.分类讨论思想.解含有参数的单调性问题时,应注意合理分类讨论,分类要做到不重不漏.
2.转化思想.求函数单调性问题转化为解导函数的不等式问题;函数存在单调区间问题转化为导函数的不等式有解问题,即能成立问题;函数在区间上单调问题转化为导函数的不等式在区间上恒成立问题.
[易错防范]
1.解函数单调性有关问题时务必先求定义域,不能忽视定义域.
2.讨论含参数函数的单调性时易漏某些分类,如本节训练2中,易漏a=0,a=的情况.
3.函数f(x)在区间D上递增(减)?f′(x)≥0(≤0)在区间D上恒成立,此处易漏“=”.
4.函数f(x)在区间D上存在递增(减)区间?f′(x)>0(<0)在D上有解,此处易误多加“=”.
第3讲 导数与函数的极值、最值
最新考纲 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).
知 识 梳 理
1.函数的极值与导数
(1)判断f(x0)是极值的方法
一般地,当函数f(x)在点x0处连续且f′(x0)=0,
①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;
②如果在x0附近的左侧f′(x)≤0,右侧f′(x)≥0,那么f(x0)是极小值.
(2)求可导函数极值的步骤
①求f′(x);
②求方程f′(x)=0的根;
③检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.
2.函数的最值与导数
(1)函数f(x)在[a,b]上有最值的条件
如果在区间[a,b]上函数y=f(x)的图象是连续不断的曲线,那么它必有最大值和最小值.
(2)设函数f(x)在[a,b]上连续且在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:
①求f(x)在(a,b)内的极值;
②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)函数在某区间上或定义域内极大值是唯一的.(  )
(2)函数的极大值不一定比极小值大.(  )
(3)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(  )
(4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(  )
解析 (1)函数在某区间上或定义域内的极大值不唯一.(3)x0为f(x)的极值点的充要条件是f′(x0)=0,且x0两侧导数符号异号.
答案 (1)× (2)√ (3)× (4)√
2.函数f(x)=-x3+3x+1有(  )
A.极小值-1,极大值1 B.极小值-2,极大值3
C.极小值-2,极大值2 D.极小值-1,极大值3
解析 因为f(x)=-x3+3x+1,故有y′=-3x2+3,令y′=-3x2+3=0,解得x=±1,
于是,当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,-1)
-1
(-1,1)
1
(1,+∞)
f′(x)

0

0

f(x)
?
极大值
?
极小值
?
所以f(x)的极小值为f(-1)=-1,f(x)的极大值为f(1)=3.
答案 D
3.(选修2-2P32A4改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为(  )
A.1 B.2 C.3 D.4
解析 由题意知在x=-1处f′(-1)=0,且其左右两侧导数符号为左负右正.
答案 A
4.(2017·武汉模拟)函数y=2x3-2x2在区间[-1,2]上的最大值是________.
解析 y′=6x2-4x,令y′=0,得x=0或x=.
∵f(-1)=-4,f(0)=0,f=-,f(2)=8, 所以最大值为8.
答案 8
5.函数f(x)=ln x-ax在x=1处有极值,则常数a=________.
解析 ∵f′(x)=-a,∴f′(1)=1-a=0,∴a=1,经检验符合题意.
答案 1
6.(2017·杭州调研)函数y=x+2cos x在区间上的最大值为________;最小值为________.
解析 ∵y=x+2cos x,x∈,∴y′=1-2sin x,x∈,令y′=0,得x=,当x∈时,y′>0,当x∈时,y′<0,故x=时,∴y最大=y极大=+,又x=0时,y=2;x=时,y=,∴y最小=.
答案 + 
考点一 用导数解决函数的极值问题
【例1】 求下列函数的极值:
(1)f(x)=x2-2x-4ln x;
(2)f(x)=ax3-3x2+1-(a∈R且a≠0).
解 (1)f(x)的定义域为(0,+∞),
f′(x)=2x-2-=,
令f′(x)=0得x=2或-1(舍).
随着x的变化,f′(x)与f(x)的变化情况如下表:
x
(0,2)
2
(2,+∞)
f′(x)

0

f(x)
?
极小值
?
∴f(x)有极小值f(2)=-4ln 2,无极大值.
(2)由题设知a≠0,f′(x)=3ax2-6x=3ax.
令f′(x)=0得x=0或.
当a>0时,随着x的变化,f′(x)与f(x)的变化情况如下表:
x
(-∞,0)
0
f′(x)

0

0

f(x)
?
极大值
?
极小值
?
∴f(x)极大值=f(0)=1-,
f(x)极小值=f=--+1.
当a<0时,随着x的变化,f′(x)与f(x)的变化情况如下表:
x
0
(0,+∞)
f′(x)

0

0

f(x)
?
极小值
?
极大值
?
∴f(x)极大值=f(0)=1-,
f(x)极小值=f=--+1.
综上,f(x)极大值=f(0)=1-,
f(x)极小值=f=--+1.
规律方法 函数极值的两类热点问题
(1)求函数f(x)极值这类问题的一般解题步骤为:
①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值.
(2)由函数极值求参数的值或范围.
讨论极值点有无(个数)问题,转化为讨论f′(x)=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号.
【训练1】 (1)设函数f(x)=ax3-2x2+x+c.若f(x)在R上无极值点,则实数a的取值范围为________.
(2)设a∈R,若函数y=eax+3x,x∈R有大于零的极值点,则(  )
A.a>-3 B.a<-3
C.a>- D.a<-
解析 (1)由题得f′(x)=3ax2-4x+1.
若f(x)在R上无极值点,则f(x)在R上是单调函数,即f′(x)≥0或f′(x)≤0恒成立.
①当a=0时,f′(x)=-4x+1,显然不满足条件;
②当a≠0时,f′(x)≥0或f′(x)≤0恒成立的充要条件是Δ=(-4)2-4×3a×1≤0,即16-12a≤0,解得a≥.
综上,实数a的取值范围为.
(2)y′=f′(x)=aeax+3,
当a≥0时,f′(x)>0在R上恒成立,∴f(x)无极值点;
当a<0时,令f′(x)=0得x=ln,
∴ln>0得a<-3,故选B.
答案 (1) (2)B
考点二 用导数解决函数的最值问题
【例2】 (2017·郑州质检)已知函数f(x)=(4x2+4ax+a2),其中a<0.
(1)当a=-4时,求f(x)的单调递增区间;
(2)若f(x)在区间[1,4]上的最小值为8,求a的值.
解 (1)当a=-4时,由f′(x)==0得x=或x=2,由f′(x)>0得x∈或x∈(2,+∞),
故函数f(x)的单调递增区间为和(2,+∞).
(2)因为f′(x)=,a<0,由f′(x)=0得x=-或x=-.
当x∈时,f(x)单调递增.
当x∈时,f(x)单调递减;
当x∈时,f(x)单调递增.
易知f(x)=(2x+a)2≥0,且f=0.
①当-≤1时,
即-2≤a<0时,f(x)在[1,4]上的最小值为f(1),由f(1)=4+4a+a2=8,得a=±2-2,均不符合题意.
②当1<-≤4时,即-8≤a<-2时,f(x)在[1,4]上的最小值为f=0,不符合题意.
③当->4时,即a<-8时,f(x)在[1,4]上的最小值可能在x=1或x=4处取得,而f(1)≠8,
由f(4)=2(64+16a+a2)=8得a=-10或a=-6(舍去),
当a=-10时,f(x)在(1,4)上单调递减,f(x)在[1,4]上的最小值为f(4)=8,符合题意.
综上有,a=-10.
规律方法 (1)求函数f(x)在[a,b]上的最大值和最小值的步骤:①求函数在(a,b)内的极值;②求函数在区间端点的函数值f(a),f(b);③将函数f(x)的极值与 f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.
(2)含参数的函数的最值一般不通过比值求解,而是先讨论函数的单调性,再根据单调性求出最值.含参函数在区间上的最值通常有两类:一是动极值点定区间,二是定极值点动区间,这两类问题一般根据区间与极值点的位置关系来分类讨论.
【训练2】 已知函数f(x)=(ax-2)ex在x=1处取得极值.
(1)求a的值;
(2)求函数在区间[m,m+1]上的最小值.
解 (1)f′(x)=(ax+a-2)ex,
由已知得f′(1)=(a+a-2)e=0,
解得a=1,经检验a=1符合题意,所以a的值为1.
(2)由(1)得f(x)=(x-2)ex,f′(x)=(x-1)ex.
令f′(x)>0得x>1,令f′(x)<0得x<1.
所以函数f(x)在(-∞,1)上递减,在(1,+∞)上递增.
当m≥1时,f(x)在[m,m+1]上递增,f(x)min=f(m)=(m-2)em,
当0当m≤0时,m+1≤1,f(x)在[m,m+1]上单调递减,
f(x)min=f(m+1)=(m-1)em+1.
综上,f(x)在[m,m+1]上的最小值为
f(x)min=
[思想方法]
1.利用导数研究函数的单调性、极值、最值可列表观察函数的变化情况,直观而且条理,减少失分.
2.求极值、最值时,要求步骤规范、表格齐全;含参数时,要讨论参数的大小.
3.可导函数y=f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧与右侧f′(x)的符号不同.
4.若函数y=f(x)在区间(a,b)内有极值,那么y=f(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.
[易错防范]
1.求函数单调区间与函数极值时要养成列表的习惯,可使问题直观且有条理,减少失分的可能.
2.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.
专题探究课五 高考中解析几何问题的热点题型
高考导航 圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.
热点一 圆锥曲线的标准方程与几何性质
圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线的渐近线是常考题型.
【例1】 (1)(2015·天津卷)已知双曲线-=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为(  )
A.-=1 B.-=1
C.-y2=1 D.x2-=1
(2)若点M(2,1),点C是椭圆+=1的右焦点,点A是椭圆的动点,则|AM|+|AC|的最小值为________.
(3)已知椭圆+=1(a>b>0)与抛物线y2=2px(p>0)有相同的焦点F,P,Q是椭圆与抛物线的交点,若直线PQ经过焦点F,则椭圆+=1(a>b>0)的离心率为________.
解析 (1)双曲线-=1的一个焦点为F(2,0),
则a2+b2=4,①
双曲线的渐近线方程为y=±x,
由题意得=,②
联立①②解得b=,a=1,
所求双曲线的方程为x2-=1,选D.
(2)设点B为椭圆的左焦点,点M(2,1)在椭圆内,那么|BM|+|AM|+|AC|≥|AB|+|AC|=2a,所以|AM|+|AC|≥2a-|BM|,而a=4,|BM|==,所以(|AM|+|AC|)最小=8-.
(3)因为抛物线y2=2px(p>0)的焦点F为,设椭圆另一焦点为E.如图所示,将x=代入抛物线方程得y=±p,又因为PQ经过焦点F,所以P且PF⊥OF.
所以|PE|==p,
|PF|=p,|EF|=p.
故2a=p+p,2c=p,e==-1.
答案 (1)D (2)8- (3)-1
探究提高 (1)在椭圆和双曲线中,椭圆和双曲线的定义把曲线上的点到两个焦点的距离联系在一起,可以把曲线上的点到一个焦点的距离转化为到另一个焦点的距离,也可以结合三角形的知识,求出曲线上的点到两个焦点的距离.在抛物线中,利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数形结合的思想去解决有关的最值问题.
(2)求解与圆锥曲线的几何性质有关的问题关键是建立圆锥曲线方程中各个系数之间的关系,或者求出圆锥曲线方程中的各个系数,再根据圆锥曲线的几何性质通过代数方法进行计算得出结果.
【训练1】 (2017·衡水金卷)已知椭圆+=1的左、右焦点分别为F1,F2,过F1且倾斜角为45°的直线l交椭圆于A,B两点,以下结论:①△ABF2的周长为8;②原点到l的距离为1;③|AB|=.其中正确结论的个数为(  )
A.3 B.2 C.1 D.0
解析 ①由椭圆的定义,得|AF1|+|AF2|=4,|BF1|+|BF2|=4,又|AF1|+|BF1|=|AB|,所以△ABF2的周长为|AB|+|AF2|+|BF2|=8,故①正确;②由条件,得F1(-,0),因为过F1且倾斜角为45°的直线l的斜率为1,所以直线l的方程为y=x+,则原点到l的距离d==1,故②正确;③设A(x1,y1),B(x2,y2),由得3x2+4x=0,解得x1=0,x2=-,所以|AB|=·|x1-x2|=,故③正确.故选A.
答案 A
热点二 圆锥曲线中的定点、定值问题(规范解答)
定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.
【例2】 (满分12分)(2015·全国Ⅱ卷)已知椭圆C:+=1(a>b>0)的离心率为,点(2,)在C上.
(1)求C的方程;
(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值.
满分解答 (1)解 由题意有=,+=1,
2分
解得a2=8,b2=4.4分
所以C的方程为+=1.5分
(2)证明 设直线l:y=kx+b(k≠0,b≠0),
A(x1,y1),B(x2,y2),M(xM,yM).
将y=kx+b代入+=1得
(2k2+1)x2+4kbx+2b2-8=0.7分
故xM==,yM=k·xM+b=.
10分
于是直线OM的斜率kOM==-,
即kOM·k=-.
所以直线OM的斜率与直线l的斜率的乘积为定值.
12分
 
?列出方程组,解出a2,b2得4分.
?设出直线l的方程后与椭圆方程联立消去y得到关于x的方程准确者得4分.
?求出点M的坐标得1分,再得到直线OM的斜率与直线l的斜率的乘积为定值得2分.
?结论得1分.
解答圆锥曲线中的定点、定值问题的一般步骤
第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点、定值.
第二步:探究一般情况.探究一般情形下的目标结论.
第三步:下结论,综合上面两种情况定结论.
【训练2】 已知抛物线C:y2=2px(p>0)的焦点F(1,0),O为坐标原点,A,B是抛物线C上异于O的两点.
(1)求抛物线C的方程;
(2)若直线OA,OB的斜率之积为-,求证:直线AB过x轴上一定点.
(1)解 因为抛物线y2=2px(p>0)的焦点坐标为(1,0),所以=1,所以p=2.所以抛物线C的方程为y2=4x.
(2)证明 ①当直线AB的斜率不存在时,设A,B.因为直线OA,OB的斜率之积为-,
所以·=-,化简得t2=32.
所以A(8,t),B(8,-t),此时直线AB的方程为x=8.
②当直线AB的斜率存在时,设其方程为y=kx+b,A(xA,yA),B(xB,yB),联立得化简得ky2-4y+4b=0.
根据根与系数的关系得yAyB=,因为直线OA,OB的斜率之积为-,所以·=-,即xAxB+2yAyB=0.即·+2yAyB=0,解得yAyB=0(舍去)或yAyB=-32.
所以yAyB==-32,即b=-8k,所以y=kx-8k,
即y=k(x-8).
综上所述,直线AB过定点(8,0).
热点三 圆锥曲线中的最值、范围问题
圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.
【例3】 (2016·山东卷)平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.
(1)求椭圆C的方程;
(2)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D.直线OD与过P且垂直于x轴的直线交于点M.
①求证:点M在定直线上;
②直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.
解 (1)由题意知=,可得a2=4b2,
因为抛物线E的焦点F,所以b=,a=1,
所以椭圆C的方程为x2+4y2=1.
(2)①证明 设P(m>0),由x2=2y,可得y′=x,所以直线l的斜率为m,因此直线l的方程为y-=m(x-m).
即y=mx-.
设A(x1,y1),B(x2,y2),D(x0,y0).
联立方程
得(4m2+1)x2-4m3x+m4-1=0.
由Δ>0,得0且x1+x2=,因此x0=,将其代入y=mx-,得y0=,因为=-.
所以直线OD方程为y=-x,
联立方程得点M的纵坐标yM=-,
所以点M在定直线y=-上.
②由①知直线l的方程为y=mx-,
令x=0,得y=-,所以G,
又P,F,D,
所以S1=·|GF|·m=,
S2=·|PM|·|m-x0|=××=.所以=.
设t=2m2+1,则===-++2,当=,
即t=2时,取到最大值,
此时m=,满足(*)式,所以P点坐标为.
因此的最大值为,此时点P的坐标为.
探究提高 圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法、或利用判别式构造不等关系、利用隐含或已知的不等关系建立不等式等方法求最值、范围;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.
【训练3】 (2016·浙江卷)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.
(1)求p的值;
(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.
解 (1)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=-1的距离,
由抛物线的定义得=1,即p=2.
(2)由(1)得,抛物线方程为y2=4x,F(1,0),
可设A(t2,2t),t≠0,t≠±1.
因为AF不垂直于y轴,可设直线AF:x=sy+1(s≠0),由消去x得y2-4sy-4=0.
故y1y2=-4,所以B.
又直线AB的斜率为,
故直线FN的斜率为-,
从而得直线FN:y=-(x-1),直线BN:y=-.
所以N.
设M(m,0),由A,M,N三点共线得=,
于是m=,所以m<0或m>2.
经检验,m<0或m>2满足题意.
综上,点M的横坐标的取值范围是(-∞,0)∪(2,+∞).
热点四 圆锥曲线中的探索性问题
圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.
【例4】 (2015·全国Ⅱ卷)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.
(1)证明 设直线l:y=kx+b(k≠0,b≠0),
A(x1,y1),B(x2,y2),M(xM,yM).
将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故xM==,yM=kxM+b=.
于是直线OM的斜率kOM==-,即kOM·k=-9.
所以直线OM的斜率与l的斜率的乘积为定值.
(2)解 四边形OAPB能为平行四边形.
因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.
由(1)得OM的方程为y=-x.
设点P的横坐标为xP,
由得x=,即xP=.
将点的坐标代入l的方程得b=,因此xM=.
四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP=2xM.
于是=2×,
解得k1=4-,k2=4+.
因为ki>0,ki≠3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.
探究提高 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.
【训练4】 (2017·衡水高三联考)在平面直角坐标系xOy中,过点C(2,0)的直线与抛物线y2=4x相交于A,B两点,设A(x1,y1),B(x2,y2).
(1)求证:y1y2为定值;
(2)是否存在平行于y轴的定直线被以AC为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长;如果不存在,说明理由.
(1)证明 法一 当直线AB垂直于x轴时,
y1=2,y2=-2.
因此y1y2=-8(定值).
当直线AB不垂直于x轴时,
设直线AB的方程为y=k(x-2),
由得ky2-4y-8k=0.
∴y1y2=-8.
因此有y1y2=-8为定值.
法二 设直线AB的方程为my=x-2,
由得y2-4my-8=0.
∴y1y2=-8.
因此有y1y2=-8为定值.
(2)解 设存在直线l:x=a满足条件,
则AC的中点E,
|AC|=.
因此以AC为直径的圆的半径
r=|AC|==,
又点E到直线x=a的距离d=
故所截弦长为
2=2

=.
当1-a=0,即a=1时,弦长为定值2,这时直线方程为x=1.
第1讲 直线的方程
最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
知 识 梳 理
1.直线的倾斜角与斜率
(1)直线的倾斜角
①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角;②规定:当直线l与x轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是[0,π).
(2)直线的斜率
①定义:当直线l的倾斜角α≠时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k表示,即k=tan__α;②斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=.
2.直线方程的五种形式
名称
几何条件
方程
适用条件
斜截式
纵截距、斜率
y=kx+b
与x轴不垂直的直线
点斜式
过一点、斜率
y-y0=k(x-x0)
两点式
过两点

与两坐标轴均不垂直的直线
截距式
纵、横截距
+=1
不过原点且与两坐标轴均不垂直的直线
一般式
Ax+By+C=0
(A2+B2≠0)
所有直线
3.线段的中点坐标公式
若点P1,P2的坐标分别为(x1,y1),(x2,y2),线段P1P2的中点M的坐标为(x,y),则此公式为线段P1P2的中点坐标公式.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)直线的倾斜角越大,其斜率就越大.(  )
(2)直线的斜率为tan α,则其倾斜角为α.(  )
(3)斜率相等的两直线的倾斜角不一定相等.(  )
(4)经过点P(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示.(  )
(5)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.(  )
解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k1=-1,k2=1,k1<k2.
(2)当直线斜率为tan(-45°)时,其倾斜角为135°.
(3)两直线的斜率相等,则其倾斜角一定相等.
(4)当直线的斜率不存在时,不可以用方程y-y0=k(x-x0)表示.
答案 (1)× (2)× (3)× (4)× (5)√
2.(2017·衡水金卷)直线x-y+1=0的倾斜角为(  )
A.30° B.45°
C.120° D.150°
解析 由题得,直线y=x+1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°故α=45°,故选B.
答案 B
3.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析 由已知得直线Ax+By+C=0在x轴上的截距->0,在y轴上的截距->0,故直线经过第一、二、四象限,不经过第三象限.
答案 C
4.已知A(3,5),B(4,7),C(-1,x)三点共线,则x=________.
解析 ∵A,B,C三点共线,∴kAB=kAC,∴=,∴x=-3.
答案 -3
5.(必修2P100A9改编)过点P(2,3)且在两轴上截距相等的直线方程为________.
解析 当纵、横截距为0时,直线方程为3x-2y=0;
当截距不为0时,设直线方程为+=1,则+=1,解得a=5.所以直线方程为x+y-5=0.
答案 3x-2y=0或x+y-5=0
6.(2017·金华市调研)直线kx-y-2k+4=0过定点P的坐标为________;若幂函数y=f(x)也过点P,则f(x)的解析式为________.
解析 直线kx-y-2k+4=0可化为y-4=k(x-2),∴直线过定点P(2,4),设幂函数y=f(x)为y=xα,把P(2,4)代入,得4=2α,∴α=2,即y=f(x)=x2.
答案 (2,4) f(x)=x2
考点一 直线的倾斜角与斜率
【例1】 (1)直线2xcos α-y-3=0的倾斜角的取值范围是(  )
A. B.
C. D.
(2)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为________.
解析 (1)直线2xcos α-y-3=0的斜率k=2cos α,
因为α∈,所以≤cos α≤,
因此k=2·cos α∈[1,].
设直线的倾斜角为θ,
则有tan θ∈[1,].
又θ∈[0,π),所以θ∈,
即倾斜角的取值范围是.
(2)如图,∵kAP==1,
kBP==-,
∴直线l的斜率k∈(-∞,-]∪[1,+∞).
答案 (1)B (2)(-∞,-]∪[1,+∞)
规律方法 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分与两种情况讨论.由正切函数图象可以看出,当α∈时,斜率k∈[0,+∞);当α=时,斜率不存在;当α∈时,斜率k∈(-∞,0).
【训练1】 (2017·杭州一调)直线xsin α+y+2=0的倾斜角的取值范围是(  )
A.[0,π) B.∪
C. D.∪
解析 设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以-1≤tan θ≤1,又θ∈[0,π),所以0≤θ≤或≤θ<π,故选B.
答案 B
考点二 直线方程的求法
【例2】 根据所给条件求直线的方程:
(1)直线过点(-4,0),倾斜角的正弦值为;
(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;
(3)直线过点(5,10),且到原点的距离为5.
解 (1)由题设知,该直线的斜率存在,故可采用点斜式.
设倾斜角为α,则sin α=(0≤α<π),
从而cos α=±,则k=tan α=±.
故所求直线方程为y=±(x+4).
即x+3y+4=0或x-3y+4=0.
(2)由题设知纵横截距不为0,设直线方程为+=1,
又直线过点(-3,4),
从而+=1,解得a=-4或a=9.
故所求直线方程为4x-y+16=0或x+3y-9=0.
(3)当斜率不存在时,所求直线方程为x-5=0满足题意;
当斜率存在时,设其为k,
则所求直线方程为y-10=k(x-5),
即kx-y+10-5k=0.
由点线距离公式,得=5,解得k=.
故所求直线方程为3x-4y+25=0.
综上知,所求直线方程为x-5=0或3x-4y+25=0.
规律方法 根据各种形式的方程,采用待定系数的方法求出其中的系数,在求直线方程时凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性.
【训练2】 求适合下列条件的直线方程:
(1)经过点P(4,1),且在两坐标轴上的截距相等;
(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍;
(3)经过点B(3,4),且与两坐标轴围成一个等腰直角三角形.
解 (1)设直线l在x,y轴上的截距均为a,
若a=0,即l过点(0,0)和(4,1),
∴l的方程为y=x,即x-4y=0.
若a≠0,则设l的方程为+=1,
∵l过点(4,1),∴+=1,
∴a=5,∴l的方程为x+y-5=0.
综上可知,直线l的方程为x-4y=0或x+y-5=0.
(2)由已知:设直线y=3x的倾斜角为α ,则所求直线的倾斜角为2α.
∵tan α=3,∴tan 2α==-.
又直线经过点A(-1,-3),
因此所求直线方程为y+3=-(x+1),
即3x+4y+15=0.
(3)由题意可知,所求直线的斜率为±1.
又过点(3,4),由点斜式得y-4=±(x-3).
所求直线的方程为x-y+1=0或x+y-7=0.
考点三 直线方程的综合应用
【例3】 已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2)若直线不经过第四象限,求k的取值范围;
(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程.
(1)证明 直线l的方程可化为k(x+2)+(1-y)=0,
令解得
∴无论k取何值,直线总经过定点(-2,1).
(2)解 由方程知,当k≠0时直线在x轴上的截距为-,在y轴上的截距为1+2k,要使直线不经过第四象限,则必须有解得k>0;
当k=0时,直线为y=1,符合题意,故k的取值范围是[0,+∞).
(3)解 由题意可知k≠0,再由l的方程,
得A,B(0,1+2k).
依题意得
解得k>0.
∵S=·|OA|·|OB|=··|1+2k|
=·=
≥×(2×2+4)=4,
“=”成立的条件是k>0且4k=,即k=,
∴Smin=4,此时直线l的方程为x-2y+4=0.
规律方法 在求直线方程的过程中,若有以直线为载体的求面积、距离的最值问题,则可先设出直线方程,建立目标函数,再利用基本不等式求解最值.
【训练3】 已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,求△ABO的面积的最小值及此时直线l的方程.
解 法一 设直线方程为+=1(a>0,b>0),
点P(3,2)代入得+=1≥2,得ab≥24,
从而S△ABO=ab≥12,
当且仅当=时等号成立,这时k=-=-,
从而所求直线方程为2x+3y-12=0.
法二 依题意知,直线l的斜率k存在且k<0.
则直线l的方程为y-2=k(x-3)(k<0),
且有A,B(0,2-3k),
∴S△ABO=(2-3k)
=≥
=×(12+12)=12.
当且仅当-9k=,即k=-时,等号成立,
即△ABO的面积的最小值为12.
故所求直线的方程为2x+3y-12=0.
[思想方法]
1.直线的倾斜角和斜率的关系:
(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率.
(2)直线的倾斜角α和斜率k之间的对应关系:
α

0°<α<90°
90°
90°<α<180°
k
0
k>0
不存在
k<0
2.在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.
[易错防范]
1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.
2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.
3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.
第2讲 两直线的位置关系
最新考纲 1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
知 识 梳 理
1.两条直线平行与垂直的判定
(1)两条直线平行
对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2?k1=k2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.
(2)两条直线垂直
如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2?k1·k2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.
2.两直线相交
直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的公共点的坐标与方程组的解一一对应.
相交?方程组有唯一解,交点坐标就是方程组的解;
平行?方程组无解;
重合?方程组有无数个解.
3.距离公式
(1)两点间的距离公式
平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=.
特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=.
(2)点到直线的距离公式
平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=.
(3)两条平行线间的距离公式
一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)当直线l1和l2的斜率都存在时,一定有k1=k2?l1∥l2.(  )
(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.(  )
(3)若两直线的方程组成的方程组有唯一解,则两直线相交.(  )
(4)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.(  )
(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(  )
解析 (1)两直线l1,l2有可能重合.
(2)如果l1⊥l2,若l1的斜率k1=0,则l2的斜率不存在.
答案 (1)× (2)× (3)√ (4)√ (5)√
2.(2016·北京卷)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为(  )
A.1 B.2
C. D.2
解析 圆(x+1)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y+3=0,则圆心到直线的距离d==.
答案 C
3.(2017·金华四校联考)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=(  )
A.2 B.-3
C.2或-3 D.-2或-3
解析 直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则有=≠,故m=2或-3.故选C.
答案 C
4.直线2x+2y+1=0,x+y+2=0之间的距离是________.
解析 先将2x+2y+1=0化为x+y+=0,
则两平行线间的距离为d==.
答案 
5.(必修2P89练习2改编)已知P(-2,m),Q(m,4),且直线PQ垂直于直线x+y+1=0,则m=________.
解析 由题意知 =1,所以m-4=-2-m,所以m=1.
答案 1
6.(2017·浙江五校联考)已知动点P的坐标为(x,1-x),x∈R,则动点P的轨迹方程为________,它到原点距离的最小值为________.
解析 设点P的坐标为(x,y),则y=1-x,即动点P的轨迹方程为x+y-1=0;原点到直线x+y-1=0的距离为d==,即为所求原点到动点P的轨迹的最小值.
答案 x+y-1=0 
考点一 两直线的平行与垂直
【例1】 (1)已知两条直线l1:(a-1)x+2y+1=0,l2:x+ay+3=0平行,则a等于(  )
A.-1 B.2
C.0或-2 D.-1或2
(2)已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=________.
解析 (1)若a=0,两直线方程分别为-x+2y+1=0和x=-3,此时两直线相交,不平行,所以a≠0;当a≠0时,两直线平行,则有=≠,解得a=-1或2.
(2)因为l1⊥l2,所以k1k2=-1.
即(-1)·=-1,解得a=-2.
答案 (1)D (2)-2
规律方法 (1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x,y的系数不能同时为零这一隐含条件.
(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.
【训练1】 (1)(2017·重庆一中检测)若直线l1:(a-1)x+y-1=0和直线l2:3x+ay+2=0垂直,则实数a的值为(  )
A. B. C. D.
(2)(2017·诸暨模拟)已知a,b为正数,且直线ax+by-6=0与直线2x+(b-3)y+5=0平行,则2a+3b的最小值为________.
解析 (1)由已知得3(a-1)+a=0,解得a=.
(2)由两直线平行可得,a(b-3)=2b,即2b+3a=ab,+=1.又a,b为正数,所以2a+3b=(2a+3b)·=13++≥13+2=25,当且仅当a=b=5时取等号,故2a+3b的最小值为25.
答案 (1)D (2)25
考点二 两直线的交点与距离问题
【例2】 (1)已知直线y=kx+2k+1与直线y=-x+2的交点位于第一象限,则实数k的取值范围是________.
(2)直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为________.
解析 (1)法一 由方程组
解得(若2k+1=0,即k=-,则两直线平行)
∴交点坐标为.
又∵交点位于第一象限,
∴解得-<k<.
法二 如图,已知直线y=-x+2与x轴、y轴分别交于点A(4,0),B(0,2).
而直线方程y=kx+2k+1可变形为y-1=k(x+2),表示这是一条过定点P(-2,1),斜率为k的动直线.
∵两直线的交点在第一象限,
∴两直线的交点必在线段AB上(不包括端点),
∴动直线的斜率k需满足kPA<k<kPB.
∵kPA=-,kPB=.∴-<k<.
(2)法一 当直线l的斜率存在时,设直线l的方程为y-2=k(x+1),即kx-y+k+2=0.
由题意知=,
即|3k-1|=|-3k-3|,∴k=-.
∴直线l的方程为y-2=-(x+1),即x+3y-5=0.
当直线l的斜率不存在时,直线l的方程为x=-1,也符合题意.
法二 当AB∥l时,有k=kAB=-,直线l的方程为y-2=-(x+1),即x+3y-5=0.
当l过AB中点时,AB的中点为(-1,4).
∴直线l的方程为x=-1.
故所求直线l的方程为x+3y-5=0或x=-1.
答案 (1) (2)x+3y-5=0或x=-1
规律方法 (1)求过两直线交点的直线方程的方法
求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.
(2)利用距离公式应注意:①点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|;②两平行线间的距离公式要把两直线方程中x,y的系数分别化为对应相等.
【训练2】 (1)曲线y=2x-x3在横坐标为-1的点处的切线为l,则点P(3,2)到直线l的距离为(  )
A. B. C. D.
(2)(2017·衢州模拟)若直线l1:x+ay+6=0与l2:(a-2)x+3y+2a=0平行,则l1与l2间的距离为(  )
A. B. C. D.
解析 (1)曲线y=2x-x3上横坐标为-1的点的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k=y′|x=-1=2-3×(-1)2=-1,故切线l的方程为y-(-1)=-1×[x-(-1)],整理得x+y+2=0.由点到直线的距离公式,得点P(3,2)到直线l的距离为=.
(2)因为l1∥l2,所以=≠,所以
解得a=-1,所以l1:x-y+6=0,l2:x-y+=0,所以l1与l2之间的距离d==,故选B.
答案 (1)A (2)B
考点三 对称问题
【例3】 已知直线l:2x-3y+1=0,点A(-1,-2).求:
(1)点A关于直线l的对称点A′的坐标;
(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;
(3)直线l关于点A(-1,-2)对称的直线l′的方程.
解 (1)设A′(x,y),再由已知
解得∴A′.
(2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点必在m′上.
设对称点为M′(a,b),
则解得M′.
设m与l的交点为N,则由得N(4,3).
又∵m′经过点N(4,3),
∴由两点式得直线方程为9x-46y+102=0.
(3)法一 在l:2x-3y+1=0上任取两点,
如M(1,1),N(4,3),
则M,N关于点A的对称点M′,N′均在直线l′上.
易知M′(-3,-5),N′(-6,-7),由两点式可得l′的方程为2x-3y-9=0.
法二 设P(x,y)为l′上任意一点,
则P(x,y)关于点A(-1,-2)的对称点为
P′(-2-x,-4-y),
∵P′在直线l上,∴2(-2-x)-3(-4-y)+1=0,
即2x-3y-9=0.
规律方法 (1)解决点关于直线对称问题要把握两点,点M与点N关于直线l对称,则线段MN的中点在直线l上,直线l与直线MN垂直.
(2)如果直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题.
(3)若直线l1,l2关于直线l对称,则有如下性质:①若直线l1与l2相交,则交点在直线l上;②若点B在直线l1上,则其关于直线l的对称点B′在直线l2上.
【训练3】 光线沿直线l1:x-2y+5=0射入,遇直线l:3x-2y+7=0后反射,求反射光线所在的直线方程.
解 法一 由

∴反射点M的坐标为(-1,2).
又取直线x-2y+5=0上一点P(-5,0),设P关于直线l的对称点P′(x0,y0),
由PP′⊥l可知,kPP′=-=.
而PP′的中点Q的坐标为,又Q点在l上,
∴3·-2·+7=0.
由得
根据直线的两点式方程可得所求反射光线所在直线的方程为29x-2y+33=0.
法二 设直线x-2y+5=0上任意一点P(x0,y0)关于直线l的对称点为P′(x,y),
则=-,
又PP′的中点Q在l上,∴3×
-2×+7=0,由
可得P点的横、纵坐标分别为
x0=,y0=,
代入方程x-2y+5=0中,化简得29x-2y+33=0,
∴所求反射光线所在的直线方程为29x-2y+33=0.
[思想方法]
1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l1,l2,l1∥l2?k1=k2;l1⊥l2?k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.
2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法解决问题.
[易错防范]
1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.
2.在运用两平行直线间的距离公式d=时,一定要注意将两方程中x,y的系数分别化为相同的形式.
第3讲 圆的方程
最新考纲 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
知 识 梳 理
1.圆的定义和圆的方程
定义
平面内到定点的距离等于定长的点的轨迹叫做圆


标准
(x-a)2+(y-b)2=r2(r>0)
圆心C(a,b)
半径为r
一般
x2+y2+Dx+Ey+F=0
(D2+E2-4F>0)
充要条件:D2+E2-4F>0
圆心坐标:
半径r=
2.点与圆的位置关系
平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:
(1)d>r?M在圆外,即(x0-a)2+(y0-b)2>r2?M在圆外;
(2)d=r?M在圆上,即(x0-a)2+(y0-b)2=r2?M在圆上;
(3)d<r?M在圆内,即(x0-a)2+(y0-b)2<r2?M在圆内.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)确定圆的几何要素是圆心与半径.(  )
(2)方程x2+y2=a2表示半径为a的圆.(  )
(3)方程x2+y2+4mx-2y+5m=0表示圆.(  )
(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.(  )
解析 (2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.
(3)当(4m)2+(-2)2-4×5m>0,即m<或m>1时才表示圆.
答案 (1)√ (2)× (3)× (4)√
2.(2015·北京卷)圆心为(1,1)且过原点的圆的方程是(  )
A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1
C.(x+1)2+(y+1)2=2 D.(x-1)2+(y-1)2=2
解析 由题意得圆的半径为,故该圆的方程为(x-1)2+(y-1)2=2,故选D.
答案 D
3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是(  )
A.(-1,1) B.(0,1)
C.(-∞,-1)∪(1,+∞) D.a=±1
解析 因为点(1,1)在圆的内部,
所以(1-a)2+(1+a)2<4,所以-1答案 A
4.(2016·浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.
解析 由已知方程表示圆,则a2=a+2,
解得a=2或a=-1.
当a=2时,方程不满足表示圆的条件,故舍去.
当a=-1时,原方程为x2+y2+4x+8y-5=0,
化为标准方程为(x+2)2+(y+4)2=25,
表示以(-2,-4)为圆心,半径为5的圆.
答案 (-2,-4) 5
5.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.
解析 设圆心坐标为C(a,0),
∵点A(-1,1)和B(1,3)在圆C上,
∴|CA|=|CB|,
即=,
解得a=2,所以圆心为C(2,0),
半径|CA|==,
∴圆C的方程为(x-2)2+y2=10.
答案 (x-2)2+y2=10
6.(2017·湖州调研)若圆C与圆x2+y2+2x=0关于直线x+y-1=0对称,则圆心C的坐标为________;圆C的一般方程是________.
解析 已知圆x2+y2+2x=0的圆心坐标是(-1,0)、半径是1,设圆C的圆心(a,b),则有由此解得a=1,b=2,即圆心C的坐标为(1,2),因此圆C的方程是(x-1)2+(y-2)2=1,即x2+y2-2x-4y+4=0.
答案 (1,2) x2+y2-2x-4y+4=0
考点一 圆的方程
【例1】 (1)(2017·金华调研)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________.
(2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为________.
解析 (1)法一 由已知kAB=0,所以AB的中垂线方程为x=3.①
过B点且垂直于直线x-y-1=0的直线方程为y-1=-(x-2),即x+y-3=0,②
联立①②,解得所以圆心坐标为(3,0),半径r==,
所以圆C的方程为(x-3)2+y2=2.
法二 设圆的方程为(x-a)2+(y-b)2=r2(r>0),
∵点A(4,1),B(2,1)在圆上,故
又∵=-1,解得a=3,b=0,r=,
故所求圆的方程为(x-3)2+y2=2.
(2)设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
将P,Q两点的坐标分别代入得
又令y=0,得x2+Dx+F=0.③
设x1,x2是方程③的两根,
由|x1-x2|=6,得D2-4F=36,④
由①,②,④解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.
故所求圆的方程为
x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.
答案 (1)(x-3)2+y2=2 (2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0
规律方法 求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:
(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;
(2)代数法,即设出圆的方程,用待定系数法求解.
【训练1】 (1)(2016·天津卷)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________.
(2)(2017·武汉模拟)以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________.
解析 (1)因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d==,解得a=2,所以圆C的半径r=|CM|==3,所以圆C的方程为(x-2)2+y2=9.
(2)抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.
答案 (1)(x-2)2+y2=9 (2)(x-1)2+y2=4
考点二 与圆有关的最值问题
【例2】 已知实数x,y满足方程x2+y2-4x+1=0.
(1)求的最大值和最小值;
(2)求y-x的最大值和最小值;
(3)求x2+y2的最大值和最小值.
解 原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,为半径的圆.
(1)的几何意义是圆上一点与原点连线的斜率,
所以设=k,即y=kx.
当直线y=kx与圆相切时,斜率k取最大值或最小值,此时=,解得k=±(如图1).
所以的最大值为,最小值为-.
(2)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时=,解得b=-2±(如图2).
所以y-x的最大值为-2+,最小值为-2-.
(3)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3).
又圆心到原点的距离为=2,
所以x2+y2的最大值是(2+)2=7+4,x2+y2的最小值是(2-)2=7-4.
规律方法 把有关式子进行转化或利用所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化极为常见:
(1)形如m=的最值问题,可转化为动直线斜率的最值问题;
(2)形如t=ax+by的最值问题,可转化为动直线截距的最值问题;
(3)形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间距离的平方的最值问题.
【训练2】 (1)(2017·义乌市诊断)圆心在曲线y=(x>0)上,与直线2x+y+1=0相切,且面积最小的圆的方程为(  )
A.(x-2)2+(y-1)2=25 B.(x-2)2+(y-1)2=5
C.(x-1)2+(y-2)2=25 D.(x-1)2+(y-2)2=5
(2)(2014·全国Ⅱ卷)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是________.
解析 (1)设圆心坐标为C(a>0),则半径r=≥=,当且仅当2a=,即a=1时取等号.
所以当a=1时圆的半径最小,此时r=,C(1,2),所以面积最小的圆的方程为(x-1)2+(y-2)2=5.
(2)如图所示,过点O作OP⊥MN交MN于点P.
在Rt△OMP中,|OP|=|OM|·sin 45°,
又|OP|≤1,得|OM|≤=.
∴|OM|=≤,∴x≤1.
因此-1≤x0≤1.
答案 (1)D (2)[-1,1]
考点三 与圆有关的轨迹问题
【例3】 设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,求点P的轨迹.
解 如图所示,设P(x,y),N(x0,y0),则线段OP的中点坐标为,线段MN的中点坐标为.由于平行四边形的对角线互相平分,
故=,=.从而
又N(x+3,y-4)在圆上,
故(x+3)2+(y-4)2=4.
因此所求轨迹为圆:(x+3)2+(y-4)2=4,但应除去两点和(点P在直线OM上时的情况).
规律方法 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:
(1)直接法,直接根据题目提供的条件列出方程;
(2)定义法,根据圆、直线等定义列方程;
(3)几何法,利用圆的几何性质列方程;
(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.
【训练3】 (2014·全国Ⅰ卷)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
解 (1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4.
设M(x,y),则=(x,y-4),=(2-x,2-y).
由题设知·=0,故x(2-x)+(y-4)(2-y)=0,
即(x-1)2+(y-3)2=2.
由于点P在圆C的内部,所以M的轨迹方程是(x-1)2+(y-3)2=2.
(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.
因为ON的斜率为3,所以l的斜率为-,
故l的方程为x+3y-8=0.
又|OM|=|OP|=2,O到l的距离为,
所以|PM|=,S△POM=××=,
故△POM的面积为.
[思想方法]
1.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法,是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.
2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.
[易错防范]
1.求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.
2.求轨迹方程和求轨迹是有区别的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨迹表示什么曲线.
第4讲 直线与圆、圆与圆的位置关系
最新考纲 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.
知 识 梳 理
1.直线与圆的位置关系
设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0,圆心C(a,b)到直线l的距离为d,由
消去y(或x),得到关于x(或y)的一元二次方程,其判别式为Δ.
方法
位置关系
几何法
代数法
相交
dΔ>0
相切
d=r
Δ=0
相离
d>r
Δ<0
2.圆与圆的位置关系
设两个圆的半径分别为R,r,R>r,圆心距为d,则两圆的位置关系可用下表来表示:
位置关系
相离
外切
相交
内切
内含
几何特征
d>R+r
d=R+r
R-r<d<R+r
d=R-r
d<R-r
代数特征
无实数解
一组实
数解
两组实
数解
一组实
数解
无实
数解
公切线条数
4
3
2
1
0
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.(  )
(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(  )
(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(  )
(4)从两相交圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.(  )
(5)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.(  )
解析 (1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分不必要条件.
(2)除外切外,还有可能内切.
(3)两圆还可能内切或内含.
答案 (1)× (2)× (3)× (4)√ (5)√
2.(2015·安徽卷)直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是(  )
A.-2或12 B.2或-12
C.-2或-12 D.2或12
解析 圆的标准方程为(x-1)2+(y-1)2=1,圆心(1,1)到直线3x+4y=b的距离为=1,解得b=2或b=12,故选D.
答案 D
3.(2017·西安调研)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是(  )
A.[-3,-1] B.[-1,3]
C.[-3,1] D.(-∞,-3]∪[1,+∞)
解析 由题意可得,圆的圆心为(a,0),半径为,
∴≤,即|a+1|≤2,解得-3≤a≤1.
答案 C
4.(2015·湖南卷)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=________.
解析 如图,过O点作OD⊥AB于D点,在Rt△DOB中,∠DOB=60°,∴∠DBO=30°,
又|OD|==1,
∴r=2|OD|=2.
答案 2
5.(必修2P133A9改编)圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦所在直线的方程为________;公共弦长为________.
解析 由
得x-y+2=0,即为两圆公共弦所在的直线方程.
又圆x2+y2=4的圆心到直线x-y+2=0的距离为=.
由勾股定理得弦长的一半为=,
所以,所求弦长为2.
答案 x-y+2=0 2
6.(2017·东阳调研)在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)的距离为2的直线共有________条.
解析 分别以A,B为圆心,以1,2为半径作圆,两圆的公切线有两条.
答案 2
考点一 直线与圆的位置关系
【例1】 (1)“a=3”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
(2)直线y=-x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m的取值范围是(  )
A.(,2) B.(,3)
C. D.
解析 (1)若直线y=x+4与圆(x-a)2+(y-3)2=8相切,则有=2,即|a+1|=4,所以a=3或-5.但当a=3时,直线y=x+4与圆(x-a)2+(y-3)2=8一定相切,故“a=3”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的充分不必要条件.
(2)当直线经过点(0,1)时,直线与圆有两个不同的交点,此时m=1;当直线与圆相切时有圆心到直线的距离d==1,解得m=(切点在第一象限),所以要使直线与圆在第一象限内有两个不同的交点,则1<m<.
答案 (1)A (2)D
规律方法 判断直线与圆的位置关系的常见方法
(1)几何法:利用d与r的关系.
(2)代数法:联立方程之后利用Δ判断.
(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.
上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.
【训练1】 (1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是(  )
A.相切 B.相交
C.相离 D.不确定
(2)(2017·杭州双基测试)圆x2+y2=1与直线y=kx+2没有公共点的充要条件是________.
解析 (1)因为M(a,b)在圆O:x2+y2=1外,所以a2+b2>1,而圆心O到直线ax+by=1的距离d==<1,故直线与圆O相交.
(2)法一 将直线方程代入圆方程,得(k2+1)x2+4kx+3=0,直线与圆没有公共点的充要条件是Δ=16k2-12(k2+1)<0,解得-<k<.
法二 圆心(0,0)到直线y=kx+2的距离d=,直线与圆没有公共点的充要条件是d>1,
即>1,解得-<k<.
答案 (1)B (2)-<k<
考点二 圆的切线、弦长问题
【例2】 (1)(2016·全国Ⅰ卷)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为________.
(2)过原点O作圆x2+y2-6x-8y+20=0的两条切线,设切点分别为P,Q,则线段PQ的长为________.
解析 (1)圆C:x2+y2-2ay-2=0,即C:x2+(y-a)2=a2+2,圆心为C(0,a),半径r=,C到直线y=x+2a的距离为d==.又由|AB|=2,得+=a2+2,解得a2=2,所以圆的面积为π(a2+2)=4π.
(2)将圆的方程化为标准方程为(x-3)2+(y-4)2=5,则圆心为(3,4),半径长为.
由题意可设切线的方程为y=kx,则圆心(3,4)到直线y=kx的距离等于半径长,即=,解得k=或k=,则切线的方程为y=x或y=x.联立切线方程与圆的方程,解得两切点坐标分别为(4,2),,此即为P,Q的坐标,由两点间的距离公式得|PQ|=4.
答案 (1)4π (2)4
规律方法 (1)弦长的两种求法
①代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.
②几何方法:若弦心距为d,圆的半径长为r,则弦长l=2.
(2)圆的切线方程的两种求法
①代数法:设切线方程为y-y0=k(x-x0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k.
②几何法:设切线方程为y-y0=k(x-x0),利用点到直线的距离公式表示出圆心到切线的距离d,然后令d=r,进而求出k.
【训练2】 (1)过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为________.
(2)过点P(2,4)引圆(x-1)2+(y-1)2=1的切线,则切线方程为________.
解析 (1)设P(3,1),圆心C(2,2),则|PC|=,半径r=2,由题意知最短的弦过P(3,1)且与PC垂直,所以最短弦长为2=2.
(2)当直线的斜率不存在时,直线方程为x=2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y-4=k(x-2),即kx-y+4-2k=0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d===1,
解得k=,
∴所求切线方程为x-y+4-2×=0,
即4x-3y+4=0.
综上,切线方程为x=2或4x-3y+4=0.
答案 (1)2 (2)x=2或4x-3y+4=0
考点三 圆与圆的位置关系
【例3】 (2017·浙江五校联考)已知两圆x2+y2-2x-6y-1=0,x2+y2-10x-12y+m=0.
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.
解 因为两圆的标准方程分别为(x-1)2+(y-3)2=11,
(x-5)2+(y-6)2=61-m,
所以两圆的圆心分别为(1,3),(5,6),半径分别为,,
(1)当两圆外切时,由=+,得m=25+10.
(2)当两圆内切时,因为定圆半径小于两圆圆心之间的距离5,所以-=5,解得m=25-10.
(3)由(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,得两圆的公共弦所在直线的方程为4x+3y-23=0.
故两圆的公共弦的长为2=2.
规律方法 (1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.
【训练3】 (1)(2016·山东卷)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是(  )
A.内切 B.相交 C.外切 D.相离
(2)(2017·台州市调研)已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1 相外切,则ab的最大值为(  )
A. B. C. D.2
解析 (1)∵圆M:x2+(y-a)2=a2,∴圆心坐标为M(0,a),半径r1为a,
圆心M到直线x+y=0的距离d=,由几何知识得+()2=a2,解得a=2.∴M(0,2),r1=2.
又圆N的圆心坐标N(1,1),半径r2=1,
∴|MN|==,r1+r2=3,r1-r2=1.
∴r1-r2<|MN|<r1+r2,∴两圆相交,故选B.
(2)由圆C1与圆C2相外切,可得=2+1=3,即(a+b)2=9,
根据基本不等式可知ab≤=,
当且仅当a=b时等号成立.
答案 (1)B (2)C
[思想方法]
1.解决有关弦长问题的两种方法:
(1)几何法,直线被圆截得的半弦长,弦心距d和圆的半径r构成直角三角形,即r2=+d2;
(2)代数法,联立直线方程和圆的方程,消元转化为关于x的一元二次方程,由根与系数的关系即可求得弦长|AB|=|x1-x2|=或|AB|=|y1-y2|=.
2.求过一点的圆的切线方程时,首先要判断此点是否在圆上,然后设出切线方程.注意:斜率不存在的情形.
[易错防范]
1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.
2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.
第5讲 椭圆
最新考纲 掌握椭圆的定义、几何图形、标准方程及简单几何性质.
知 识 梳 理
1.椭圆的定义
在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:
(1)若a>c,则集合P为椭圆;
(2)若a=c,则集合P为线段;
(3)若a<c,则集合P为空集.
2.椭圆的标准方程和几何性质
标准方程
+=1
(a>b>0)
+=1
(a>b>0)
图形
性质
范围
-a≤x≤a
-b≤y≤b
-b≤x≤b
-a≤y≤a
对称性
对称轴:坐标轴;对称中心:原点
顶点
A1(-a,0),A2(a,0),
B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a),
B1(-b,0),B2(b,0)

长轴A1A2的长为2a;短轴B1B2的长为2b
焦距
|F1F2|=2c
离心率
e=∈(0,1)
a,b,c的关系
c2=a2-b2
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.(  )
(2)椭圆的离心率e越大,椭圆就越圆.(  )
(3)椭圆既是轴对称图形,又是中心对称图形.(  )
(4)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.(  )
(5)+=1(a>b>0)与+=1(a>b>0)的焦距相同.(  )
解析 (1)由椭圆的定义知,当该常数大于|F1F2|时,其轨迹才是椭圆,而常数等于|F1F2|时,其轨迹为线段F1F2,常数小于|F1F2|时,不存在这样的图形.
(2)因为e===,所以e越大,则越小,椭圆就越扁.
答案 (1)× (2)× (3)√ (4)√ (5)√
2.(2015·广东卷)已知椭圆+=1(m>0)的左焦点为F1(-4,0),则m=(  )
A.2 B.3 C.4 D.9
解析 依题意有25-m2=16,∵m>0,∴m=3.选B.
答案 B
3.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,过F2的直线l交C于A,B两点.若△AF1B的周长为4,则C的方程为(  )
A.+=1 B.+y2=1
C.+=1 D.+=1
解析 由椭圆的定义可知△AF1B的周长为4a,所以4a=4,故a=,又由e==,得c=1,所以b2=a2-c2=2,则C的方程为+=1,故选A.
答案 A
4.(2016·全国Ⅰ卷)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为(  )
A. B. C. D.
解析 不妨设直线l经过椭圆的一个顶点B(0,b)和一个焦点F(c,0),则直线l的方程为+=1,即bx+cy-bc=0.
由题意知=×2b,解得=,即e=,故选B.
答案 B
5.(选修2-1P49A6改编)已知点P是椭圆+=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为________.
解析 设P(x,y),由题意知c2=a2-b2=5-4=1,
所以c=1,则F1(-1,0),F2(1,0),由题意可得点P到x轴的距离为1,所以y=±1,把y=±1代入+=1,得x=±,又x>0,所以x=,∴P点坐标为或.
答案 或
6.(2017·金丽衢十二校联考)若直线l与直线x+y-1=0垂直,其纵轴截距b=-,椭圆C的两个焦点F1(-1,0),F2(1,0),且与直线l相切,则直线l的方程为________,椭圆C的标准方程为________.
解析 因为直线l与直线x+y-1=0垂直,其纵轴截距b=-,所以直线l的方程为y=x-.设椭圆C的标准方程为+=1(a>b>0),与直线l的方程联立,消去y得(a2+b2)x2-2a2x+3a2-a2b2=0,则Δ=(-2a2)2-4(a2+b2)(3a2-a2b2)=0,化简得a2+b2=3 ①,又因为椭圆的两个焦点的坐标为F1(-1,0),F2(1,0),所以a2-b2=1 ②,联立①②解得a2=2,b2=1,所以椭圆的标准方程为+y2=1.
答案 y=x- +y2=1
考点一 椭圆的定义及其应用
【例1】 (1)如图,圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点,线段AP的垂直平分线l和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是(  )
A.椭圆 B.双曲线
C.抛物线 D.圆
(2)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为椭圆C上的一点,且∠F1PF2=60°,S△PF1F2=3,则b=________.
解析 (1)连接QA.
由已知得|QA|=|QP|.
所以|QO|+|QA|=|QO|+|QP|=|OP|=r.
又因为点A在圆内,所以|OA|<|OP|,根据椭圆的定义,点Q的轨迹是以O,A为焦点,r为长轴长的椭圆.故选A.
(2)由题意得|PF1|+|PF2|=2a,
又∠F1PF2=60°,
所以|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=|F1F2|2,
所以(|PF1|+|PF2|)2-3|PF1||PF2|=4c2,
所以3|PF1||PF2|=4a2-4c2=4b2,
所以|PF1||PF2|=b2,
所以S△PF1F2=|PF1||PF2|sin 60°=×b2×=
b2=3,所以b=3.
答案 (1)A (2)3
规律方法 (1)椭圆定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积、弦长、最值和离心率等.
(2)椭圆的定义式必须满足2a>|F1F2|.
【训练1】 (1)已知椭圆+=1的两个焦点是F1,F2,点P在该椭圆上,若|PF1|-|PF2|=2,则△PF1F2的面积是(  )
A. B.2 C.2 D.
(2)(2017·保定一模)与圆C1:(x+3)2+y2=1外切,且与圆C2:(x-3)2+y2=81内切的动圆圆心P的轨迹方程为________.
解析 (1)由椭圆的方程可知a=2,c=,且|PF1|+|PF2|=2a=4,又|PF1|-|PF2|=2,所以|PF1|=3,|PF2|=1.又|F1F2|=2c=2,所以有|PF1|2=|PF2|2+|F1F2|2,即△PF1F2为直角三角形,且∠PF2F为直角,
所以S△PF1F2=|F1F2||PF2|=×2×1=.
(2)设动圆的半径为r,圆心为P(x,y),则有|PC1|=r+1,|PC2|=9-r.
所以|PC1|+|PC2|=10>|C1C2|,
即P在以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆上,
得点P的轨迹方程为+=1.
答案 (1)A (2)+=1
考点二 椭圆的标准方程
【例2】 (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,(,),则椭圆方程为________.
(2)过点(,-),且与椭圆+=1有相同焦点的椭圆标准方程为________.
解析 (1)设椭圆方程为mx2+ny2=1(m,n>0,m≠n).
由解得m=,n=.
∴椭圆方程为+=1.
(2)法一 椭圆+=1的焦点为(0,-4),(0,4),即c=4.
由椭圆的定义知,2a=+
,解得a=2.
由c2=a2-b2可得b2=4.
所以所求椭圆的标准方程为+=1.
法二 设所求椭圆方程为+=1(k<9),将点(,-)的坐标代入可得+=1,解得k=5(k=21舍去),所以所求椭圆的标准方程为+=1.
答案 (1)+=1 (2)+=1
规律方法 求椭圆方程的基本方法是待定系数法,先定形,再定量,即首先确定焦点所在位置,然后根据条件建立关于a,b的方程组,如果焦点位置不确定,可设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),求出m,n的值即可.
【训练2】 (1)(2017·湖州市调研)已知椭圆的中心在原点,离心率e=,且它的一个焦点与抛物线y2=-4x的焦点重合,则此椭圆方程为(  )
A.+=1 B.+=1
C.+y2=1 D.+y2=1
(2)已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|=3,则C的方程为________.
解析 (1)依题意,可设椭圆的标准方程为+=1(a>b>0),由已知可得抛物线的焦点为(-1,0),所以c=1,又离心率e==,解得a=2,b2=a2-c2=3,所以椭圆方程为+=1,故选A.
(2)依题意,设椭圆C:+=1(a>b>0).
过点F2(1,0)且垂直于x轴的直线被曲线C截得弦长|AB|=3,
∴点A必在椭圆上,
∴+=1.①
又由c=1,得1+b2=a2.②
由①②联立,得b2=3,a2=4.
故所求椭圆C的方程为+=1.
答案 (1)A (2)+=1
考点三 椭圆的几何性质
【例3】 (1)(2016·全国Ⅲ卷)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左、右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(  )
A. B. C. D.
(2)(2015·福建卷)已知椭圆E:+=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是(  )
A. B. C. D.
解析 (1)设M(-c,m),则E,OE的中点为D,
则D,又B,D,M三点共线,
所以=,所以a=3c,所以e=.
(2)设左焦点为F0,连接F0A,F0B,则四边形AFBF0为平行四边形.
∵|AF|+|BF|=4,
∴|AF|+|AF0|=4,∴a=2.
设M(0,b),则≥,∴1≤b<2.
离心率e====∈.
答案 (1)A (2)A
规律方法 (1)求椭圆离心率的方法
①直接求出a,c的值,利用离心率公式直接求解.
②列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e的方程(或不等式)求解.
(2)利用椭圆几何性质求值或范围的思路
求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.
【训练3】 (1)(2016·德阳模拟)已知椭圆:+=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为5,则b的值是________.
(2)已知椭圆+=1(a>b>c>0,a2=b2+c2)的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且|PT|的最小值不小于(a-c),则椭圆的离心率e的取值范围是________.
解析 (1)由椭圆的方程可知a=2,由椭圆的定义可知,|AF2|+|BF2|+|AB|=4a=8,所以|AB|=8-(|AF2|+|BF2|)≥3,由椭圆的性质可知过椭圆焦点的弦中,通径最短,则=3.所以b2=3,即b=.
(2)因为|PT|=(b>c),
而|PF2|的最小值为a-c,所以|PT|的最小值为.依题意,有≥(a-c),所以(a-c)2≥4(b-c)2,所以a-c≥2(b-c),所以a+c≥2b,所以(a+c)2≥4(a2-c2),所以5c2+2ac-3a2≥0,所以5e2+2e-3≥0.①
又b>c,所以b2>c2,所以a2-c2>c2,所以2e2<1.②
联立①②,得≤e<.
答案 (1) (2)
考点四 直线与椭圆的位置关系
【例4】 (2016·全国Ⅰ卷)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;
(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
(1)证明 因为|AD|=|AC|,EB∥AC,
故∠EBD=∠ACD=∠ADC,所以|EB|=|ED|,
故|EA|+|EB|=|EA|+|ED|=|AD|.
又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,
所以|EA|+|EB|=4.
由题设得A(-1,0),B(1,0),|AB|=2,
由椭圆定义可得点E的轨迹方程为:+=1(y≠0).
(2)解 当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2).
由得(4k2+3)x2-8k2x+4k2-12=0.
则x1+x2=,x1x2=,
所以|MN|=|x1-x2|=.
过点B(1,0)且与l垂直的直线m:y=-(x-1),A到m的距离为,
所以|PQ|=2=4.
故四边形MPNQ的面积
S=|MN||PQ|=12.
可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).
当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,故四边形MPNQ的面积为12.
综上,四边形MPNQ面积的取值范围为[12,8).
规律方法 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.
(2)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),
则|AB|=
= (k为直线斜率).
提醒 利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.
【训练4】 (2017·瑞安质检)已知椭圆C:+=1(a>b>0),e=,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A,B,线段AB的中点横坐标为,且=λ(其中λ>1).
(1)求椭圆C的标准方程;
(2)求实数λ的值.
解 (1)由条件可知,c=1,a=2,故b2=a2-c2=3,
∴椭圆C的标准方程是+=1.
(2)由=λ,可知A,B,F三点共线,设点A(x1,y1),点B(x2,y2).
若直线AB⊥x轴,则x1=x2=1,不符合题意.
当AB所在直线l的斜率k存在时,
设方程为y=k(x-1).由消去y得
(3+4k2)x2-8k2x+4k2-12=0.①
由①的判别式Δ=64k4-4(4k2+3)(4k2-12)=144(k2+1)>0.
∵∴x1+x2==,∴k2=.
将k2=代入方程①,得4x2-2x-11=0,
解得x=.
又=(1-x1,-y1),=(x2-1,y2),=λ,
λ=,又λ>1,
∴λ=.
[思想方法]
1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F1F2|,避免了动点轨迹是线段或不存在的情况.
2.求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法).先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是根据已知条件,通过解方程(组)等手段,确定a2,b2的值,代入所设的方程,即可求出椭圆的标准方程.若不能确定焦点的位置,这时的标准方程常可设为mx2+ny2=1(m>0,n>0且m≠n)
[易错防范]
1.判断两种标准方程的方法为比较标准形式中x2与y2的分母大小.
2.在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.
3.椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1等,在求椭圆相关量的范围时,要注意应用这些不等关系.
第6讲 双曲线
最新考纲 了解双曲线的定义、几何图形和标准方程及简单的几何性质(范围、对称性、顶点、离心率、渐近线).
知 识 梳 理
1.双曲线的定义
平面内与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|且大于零),则点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:
(1)若a(2)若a=c时,则集合P为两条射线;
(3)若a>c时,则集合P为空集.
2.双曲线的标准方程和几何性质
标准方程
-=1
(a>0,b>0)
-=1
(a>0,b>0)
图 形
性 质
范围
x≥a或x≤-a,y∈R
x∈R,y≤-a或y≥a
对称性
对称轴:坐标轴;对称中心:原点
顶点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
渐近线
y=±x
y=±x
离心率
e=,e∈(1,+∞)
实虚轴
线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
a,b,c的关系
c2=a2+b2
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.(  )
(2)平面内到点F1(0,4),F2(0,-4)距离之差等于6的点的轨迹是双曲线.(  )
(3)方程-=1(mn>0)表示焦点在x轴上的双曲线.(  )
(4)双曲线方程-=λ(m>0,n>0,λ≠0)的渐近线方程是-=0,即±=0.(  )
(5)等轴双曲线的渐近线互相垂直,离心率等于.(  )
解析 (1)因为||MF1|-|MF2||=8=|F1F2|,表示的轨迹为两条射线.
(2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部.
(3)当m>0,n>0时表示焦点在x轴上的双曲线,而m<0,n<0时则表示焦点在y轴上的双曲线.
答案 (1)× (2)× (3)× (4)√ (5)√
2.(2016·全国Ⅰ卷)已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(  )
A.(-1,3) B.(-1,)
C.(0,3) D.(0,)
解析 ∵方程-=1表示双曲线,∴(m2+n)·(3m2-n)>0,解得-m2答案 A
3.(2015·湖南卷)若双曲线-=1(a>0,b>0)的一条渐近线经过点(3,-4),则此双曲线的离心率为(  )
A. B. C. D.
解析 双曲线-=1的两条渐近线方程为y=±x,则点(3,-4)在直线y=-x上,即-4=-,所以4a=3b,即=,所以e==.故选D.
答案 D
4.(2015·全国Ⅱ卷)已知双曲线过点(4,),且渐近线方程为y=±x,则该双曲线的标准方程为________.
解析 根据渐近线方程为x±2y=0,可设双曲线方程为x2-4y2=λ(λ≠0).因为双曲线过点(4,),所以42-4×()2=λ,即λ=4.故双曲线的标准方程为-y2=1.
答案 -y2=1
5.(选修2-1P62A6改编)经过点A(3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________.
解析 设双曲线的方程为:x2-y2=λ(λ≠0),把点A(3,-1)代入,得λ=8,故所求方程为-=1.
答案 -=1
6.(2017·乐清调研)以椭圆+y2=1的焦点为顶点,长轴顶点为焦点的双曲线的渐近线方程是________,离心率为________.
解析 由题意可知所求双曲线方程可设为-=1(a>0,b>0),则a==,c=2,∴b2=c2-a2=4-3=1,故双曲线方程为-y2=1,其渐近线方程为y=±x,离心率为e=.
答案 y=±x 
考点一 双曲线的定义及其应用
【例1】 (1)(2017·杭州模拟)设双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB是以B为直角顶点的等腰直角三角形,则e2=(  )
A.1+2 B.4-2
C.5-2 D.3+2
(2)(2015·全国Ⅰ卷)已知F是双曲线C:x2-=1的右焦点,P是C左支上一点,A(0,6),当△APF周长最小时,该三角形的面积为________.
解析 (1)如图所示,因为|AF1|-|AF2|=2a,|BF1|-|BF2|=2a,|BF1|=|AF2|+|BF2|,所以|AF2|=2a,|AF1|=4a.
所以|BF1|=2a,所以|BF2|=2a-2a.
因为|F1F2|2=|BF1|2+|BF2|2,
所以(2c)2=(2a)2+(2a-2a)2,
所以e2=5-2.
(2)设左焦点为F1,|PF|-|PF1|=2a=2,
∴|PF|=2+|PF1|,△APF的周长为|AF|+|AP|+|PF|=|AF|+|AP|+2+|PF1|,△APF周长最小即为|AP|+|PF1|最小,当A,P,F1在一条直线时最小,过AF1的直线方程为+=1.与x2-=1联立,解得P点坐标为(-2,2),此时S=S△AF1F-S△F1PF=12.
答案 (1)C (2)12
规律方法 “焦点三角形”中常用到的知识点及技巧
(1)常用知识点:在“焦点三角形”中,正弦定理、余弦定理、双曲线的定义经常使用.
(2)技巧:经常结合||PF1|-|PF2||=2a,运用平方的方法,建立它与|PF1||PF2|的联系.
提醒 利用双曲线的定义解决问题,要注意三点
①距离之差的绝对值.②2a<|F1F2|.③焦点所在坐标轴的位置.
【训练1】 (1)如果双曲线-=1上一点P到它的右焦点的距离是8,那么点P到它的左焦点的距离是(  )
A.4 B.12
C.4或12 D.不确定
(2)(2016·九江模拟)已知点P为双曲线-=1右支上一点,点F1,F2分别为双曲线的左、右焦点,M为△PF1F2的内心,若S△PMF1=S△PMF2+8,则△MF1F2的面积为(  )
A.2 B.10 C.8 D.6
解析 (1)由双曲线方程,得a=2,c=4.设F1,F2分别为双曲线的左、右焦点,根据双曲线的定义|PF1|-|PF2|=±2a,
∴|PF1|=|PF2|±2a=8±4,∴|PF1|=12或|PF1|=4.
(2)设内切圆的半径为R,a=4,b=3,c=5,
因为S△PMF1=S△PMF2+8,
所以(|PF1|-|PF2|)R=8,
即aR=8,所以R=2,
所以S△MF1F2=·2c·R=10.
答案 (1)C (2)B
考点二 双曲线的标准方程及性质(多维探究)
命题角度一 与双曲线有关的范围问题
【例2-1】 (2015·全国Ⅰ卷)已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点,若·<0,则y0的取值范围是(  )
A. B.
C. D.
解析 因为F1(-,0),F2(,0),-y=1,
所以·=(--x0,-y0)·(-x0,-y0)=x+y-3<0,即3y-1<0,解得-<y0<.
答案 A
命题角度二 与双曲线的离心率、渐近线相关的问题
【例2-2】 (1)(2016·全国Ⅱ卷)已知F1,F2是双曲线E:-=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为(  )
A. B. C. D.2
(2)(2016·天津卷)已知双曲线-=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为(  )
A.-y2=1 B.x2-=1
C.-=1 D.-=1
解析 (1)设F1(-c,0),将x=-c代入双曲线方程,
得-=1,所以=-1=,
所以y=±.因为sin∠MF2F1=,所以
tan ∠MF2F1=====-=-=,所以e2-e-1=0,所以e=,故选A.
(2)由题意得c=,=,则a=2,b=1,所以双曲线的方程为-y2=1.
答案 (1)A (2)A
规律方法 与双曲线有关的范围问题的解题思路
(1)若条件中存在不等关系,则借助此关系直接变换转化求解.
(2)若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中不等关系来解决.
【训练2】 (1)(2017·慈溪调研)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1,B1和A2,B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是(  )
A. B.
C. D.
(2)(2017·武汉模拟)已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为________.
解析 (1)因为有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,所以直线A1B1和A2B2关于x轴对称,并且直线A1B1和A2B2与x轴的夹角为30°,双曲线的渐近线与x轴的夹角大于30°且小于等于60°,否则不满足题意.可得>tan 30°,即>,>,所以e>.同样的,当≤tan 60°,即≤3时,≤3,即4a2≥c2,∴e2≤4,∵e>1,所以1<e≤2.
所以双曲线的离心率的范围是.
(2)由题可知A1(-1,0),F2(2,0).设P(x,y)(x≥1),
则=(-1-x,-y),=(2-x,-y),·=(-1-x)(2-x)+y2=x2-x-2+y2=x2-x-2+3(x2-1)=4x2-x-5.
因为x≥1,函数f(x)=4x2-x-5的图象的对称轴为x=,所以当x=1时,·取得最小值-2.
答案 (1)A (2)-2
考点三 双曲线的综合问题
【例3】 (1)已知椭圆+=1(a>0)与双曲线-=1有相同的焦点,则a的值为(  )
A. B. C.4 D.
(2)(2015·江苏卷)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为________.
解析 (1)因为椭圆+=1(a>0)与双曲线-=1有相同的焦点(±,0),则有a2-9=7,所以a=4.
(2)设P(x,y)(x≥1),因为直线x-y+1=0平行于渐近线x-y=0,所以c的最大值为直线x-y+1=0与渐近线x-y=0之间的距离,由两平行线间的距离公式知,该距离为=.
答案 (1)C (2)
规律方法 解决与双曲线有关综合问题的方法
(1)解决双曲线与椭圆、圆、抛物线的综合问题时,要充分利用椭圆、圆、抛物线的几何性质得出变量间的关系,再结合双曲线的几何性质求解.
(2)解决直线与双曲线的综合问题,通常是联立直线方程与双曲线方程,消元求解一元二次方程即可,但一定要注意数形结合,结合图形注意取舍.
【训练3】 (2016·天津卷)已知双曲线-=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为(  )
A.-=1 B.-=1
C.-=1 D.-=1
解析 由双曲线-=1(b>0)知其渐近线方程为y=±x,
又圆的方程为x2+y2=4,①
不妨设渐近线与圆在第一象限的交点为B,将y=x代入方程①式,
可得点B.
由双曲线和圆的对称性得四边形ABCD为矩形,其相邻两边长为,,故=2b,得b2=12.
故双曲线的方程为-=1.
答案 D
[思想方法]
1.与双曲线-=1 (a>0,b>0)有公共渐近线的双曲线的方程可设为-=t (t≠0).
2.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程-=0就是双曲线-=1 (a>0,b>0)的两条渐近线方程.
[易错防范]
1.双曲线方程中c2=a2+b2,说明双曲线方程中c最大,解决双曲线问题时不要忽视了这个结论,不要与椭圆中的知识相混淆.
2.求双曲线离心率及其范围时,不要忽略了双曲线的离心率的取值范围是(1,+∞)这个前提条件,否则很容易产生增解或扩大所求离心率的取值范围致错.
3.双曲线-=1 (a>0,b>0)的渐近线方程是y=±x,-=1 (a>0,b>0)的渐近线方程是y=±x.
4.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.
第7讲 抛物线
最新考纲 掌握抛物线的定义、几何图形、标准方程及简单几何性质.
知 识 梳 理
1.抛物线的定义
(1)平面内与一个定点F和一条定直线l(F?l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).
2.抛物线的标准方程与几何性质
图形
标准方程
y2=2px
(p>0)
y2=-2px
(p>0)
x2=2py
(p>0)
x2=-2py
(p>0)
p的几何意义:焦点F到准线l的距离
性质
顶点
O(0,0)
对称轴
y=0
x=0
焦点
F
F
F
F
离心率
e=1
准线
方程
x=-
x=
y=-
y=
范围
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
开口
方向
向右
向左
向上
向下
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.(  )
(2)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是,准线方程是x=-.(  )
(3)抛物线既是中心对称图形,又是轴对称图形.(  )
(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x2=-2ay(a>0)的通径长为2a.(  )
解析 (1)当定点在定直线上时,轨迹为过定点F与定直线l垂直的一条直线,而非抛物线.
(2)方程y=ax2(a≠0)可化为x2=y,是焦点在y轴上的抛物线,且其焦点坐标是,准线方程是y=-.
(3)抛物线是只有一条对称轴的轴对称图形.
答案 (1)× (2)× (3)× (4)√
2.(2016·四川卷)抛物线y2=4x的焦点坐标是(  )
A.(0,2) B.(0,1)
C.(2,0) D.(1,0)
解析 抛物线y2=ax的焦点坐标为,故y2=4x,则焦点坐标为(1,0).
答案 D
3.(2014·全国Ⅰ卷)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=(  )
A.4 B.2
C.1 D.8
解析 由y2=x,得2p=1,即p=,因此焦点F,准线方程为l:x=-.设A点到准线的距离为d,由抛物线的定义可知d=|AF|,从而x0+=x0,解得x0=1,故选C.
答案 C
4.(2017·杭州七校联考)抛物线C:y=ax2的准线方程为y=-,则其焦点坐标为________,实数a的值为________.
解析 化抛物线C的方程为x2=y,由题意得-=-,∴a=1,即C:x2=y,其焦点坐标为.
答案  1
5.(选修2-1P73A4(2)改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为________.
解析 很明显点P在第三象限,所以抛物线的焦点可能在x轴负半轴上或y轴负半轴上.
当焦点在x轴负半轴上时,设方程为y2=-2px(p>0),把点P(-2,-4)的坐标代入得(-4)2=-2p×(-2),
解得p=4,此时抛物线的标准方程为y2=-8x;
当焦点在y轴负半轴上时,设方程为x2=-2py(p>0),把点P(-2,-4)的坐标代入得(-2)2=-2p×(-4),解得p=,此时抛物线的标准方程为x2=-y.
综上可知,抛物线的标准方程为y2=-8x或x2=-y.
答案 y2=-8x或x2=-y
6.已知抛物线方程为y2=8x,若过点Q(-2,0)的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.
解析 设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,当k=0时,显然满足题意;当k≠0时,Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k<0或0<k≤1,因此k的取值范围是[-1,1].
答案 [-1,1]
考点一 抛物线的定义及应用
【例1】 (1)(2016·浙江卷)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是________.
(2)若抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),则|PA|+|PF|取最小值时点P的坐标为________.
解析 (1)抛物线y2=4x的焦点F(1,0).准线为x=-1,由M到焦点的距离为10,可知M到准线x=-1的距离也为10,故M的横坐标满足xM+1=10,解得xM=9,所以点M到y轴的距离为9.
(2)将x=3代入抛物线方程
y2=2x,得y=±.
∵>2,∴A在抛物线内部,如图.
设抛物线上点P到准线l:x=-的距离为d,由定义知|PA|+|PF|=|PA|+d,当PA⊥l时,|PA|+d最小,最小值为,此时P点纵坐标为2,代入y2=2x,得x=2,∴点P的坐标为(2,2).
答案 (1)9 (2)(2,2)
规律方法 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.
【训练1】 (1)过抛物线y2=8x的焦点F的直线交抛物线于A,B两点,交抛物线的准线于点C,若|AF|=6,=λ(λ>0),则λ的值为(  )
A. B. C. D.3
(2)(2015·浙江卷)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是(  )
A.        B.
C. D.
解析 (1)设A(x1,y1),B(x2,y2),C(-2,-x3),
则x1+2=6,解得x1=4,y1=±4,点A(4,4),
则直线AB的方程为y=2(x-2),
令x=-2,得C(-2,-8),
联立方程组解得B(1,-2),
所以|BF|=1+2=3,|BC|=9,所以λ=3.
(2)由图形可知,△BCF与△ACF有公共的顶点F,且A,B,C三点共线,易知△BCF与△ACF的面积之比就等于.由抛物线方程知焦点F(1,0),作准线l,则l的方程为x=-1.∵点A,B在抛物线上,过A,B分别作AK,BH与准线垂直,垂足分别为点K,H,且与y轴分别交于点N,M.由抛物线定义,得|BM|=|BF|-1,|AN|=|AF|-1.在△CAN中,BM∥AN,∴==.
答案 (1)D (2)A
考点二 抛物线的标准方程及其性质
【例2】 (1)已知双曲线C1:-=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为(  )
A.x2=y B.x2=y
C.x2=8y D.x2=16y
(2)(2016·全国Ⅰ卷)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为(  )
A.2 B.4 C.6 D.8
解析 (1)∵-=1(a>0,b>0)的离心率为2,
∴=2,即==4,∴=.
x2=2py(p>0)的焦点坐标为,-=1(a>0,b>0)的渐近线方程为y=±x,即y=±x.由题意得=2,解得p=8.故C2的方程为x2=16y.
(2)不妨设抛物线C:y2=2px(p>0),圆的方程为x2+y2=r2(r>0),∵|AB|=4,|DE|=2,
抛物线的准线方程为x=-,
∴不妨设A,D,
∵点A,D在圆x2+y2=r2上,
∴∴+8=+5,解得p=4(负值舍去),
∴C的焦点到准线的距离为4.
答案 (1)D (2)B
规律方法 (1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.
(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.
【训练2】 (1)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为(  )
A.y2=9x      B.y2=6x
C.y2=3x      D.y2=x
(2)(2016·西安模拟)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为________.
解析 (1)设A,B在准线上的射影分别为A1,B1,
由于|BC|=2|BF|=2|BB1|,则直线l的斜率为,
故|AC|=2|AA1|=6,从而|BF|=1,|AB|=4,
故==,即p=,从而抛物线的方程为y2=3x,故选C.
(2)如图,由题意知,抛物线的焦点F的坐标为(1,0),又|AF|=3,由抛物线定义知,点A到准线x=-1的距离为3,所以点A的横坐标为2,将x=2代入y2=4x得y2=8,由图知点A的纵坐标为y=2,所以A(2,2),所以直线AF的方程为y=2(x-1),
联立直线与抛物线的方程
解得或由图知B,
所以S△AOB=×1×|yA-yB|=.
答案 (1)C (2)
考点三 直线与抛物线的位置关系(多维探究)
命题角度一 直线与抛物线的公共点(交点)问题
【例3-1】 (2016·全国Ⅰ卷)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.
(1)求;
(2)除H以外,直线MH与C是否有其它公共点?说明理由.
解 (1)由已知得M(0,t),P,
又N为M关于点P的对称点,故N,
故ON的方程为y=x,
将其代入y2=2px整理得px2-2t2x=0,解得x1=0,x2=,因此H.所以N为OH的中点,即=2.
(2)直线MH与C除H以外没有其它公共点,理由如下:
直线MH的方程为y-t=x,即x=(y-t).
代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,
即直线MH与C只有一个公共点,
所以除H以外直线MH与C没有其它公共点.
规律方法 (1)①本题求解的关键是求点N,H的坐标.②第(2)问将直线MH的方程与曲线C联立,根据方程组的解的个数进行判断.
(2)①判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程的判别式来确定,需注意利用判别式的前提是二次项系数不为0.②解题时注意应用根与系数的关系及设而不求、整体代换的技巧.
命题角度二 与抛物线弦长(中点)有关的问题
【例3-2】 (2017·泰安模拟)已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C与直线l1:y=-x的一个交点的横坐标为8.
(1)求抛物线C的方程;
(2)不过原点的直线l2与l1垂直,且与抛物线交于不同的两点A,B,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.
解 (1)易知直线与抛物线的交点坐标为(8,-8),
∴(-8)2=2p×8,∴2p=8,∴抛物线方程为y2=8x.
(2)直线l2与l1垂直,故可设直线l2:x=y+m,A(x1,y1),B(x2,y2),且直线l2与x轴的交点为M.
由得y2-8y-8m=0,
Δ=64+32m>0,∴m>-2.y1+y2=8,y1y2=-8m,
∴x1x2==m2.
由题意可知OA⊥OB,即x1x2+y1y2=m2-8m=0,
∴m=8或m=0(舍),∴直线l2:x=y+8,M(8,0).
故S△FAB=S△FMB+S△FMA=·|FM|·|y1-y2|
=3=24.
规律方法 (1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.
(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.
(3)涉及弦的中点、斜率时,一般用“点差法”求解.
【训练3】 已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.
(1)求抛物线E的方程;
(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.
(1)解 由抛物线的定义得|AF|=2+.
因为|AF|=3,
即2+=3,解得p=2,
所以抛物线E的方程为y2=4x.
(2)证明 因为点A(2,m)在抛物线E:y2=4x上,
所以m=±2.
由抛物线的对称性,不妨设A(2,2).
由A(2,2),F(1,0)可得直线AF的方程为
y=2(x-1).由得2x2-5x+2=0,
解得x=2或x=,从而B.
又G(-1,0),
所以kGA==,kGB==-,
所以kGA+kGB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.
[思想方法]
1.抛物线定义的实质可归结为“一动三定”:一个动点M,一个定点F(抛物线的焦点),一条定直线l(抛物线的准线),一个定值1(抛物线的离心率).
2.抛物线的焦点弦:设过抛物线y2=2px (p>0)的焦点的直线与抛物线交于A(x1,y1),B(x2,y2),则:
(1)y1y2=-p2,x1x2=;
(2)若直线AB的倾斜角为θ,则|AB|=;|AB|=x1+x2+p;
(3)若F为抛物线焦点,则有+=.
[易错防范]
1.认真区分四种形式的标准方程
(1)区分y=ax2(a≠0)与y2=2px(p>0),前者不是抛物线的标准方程.
(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mx或x2=my(m≠0).
2.直线与抛物线结合的问题,不要忘记验证判别式.
第8讲 曲线与方程
最新考纲 1.了解方程的曲线与曲线的方程的对应关系;2.了解解析几何的基本思想和利用坐标法研究曲线的简单性质;3.能够根据所给条件选择适当的方法求曲线的轨迹方程.
知 识 梳 理
1.曲线与方程
一般地,在平面直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上点的坐标与一个二元方程f(x,y)=0的实数解满足如下关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.
2.求动点的轨迹方程的一般步骤
(1)建系——建立适当的坐标系.
(2)设点——设轨迹上的任一点P(x,y).
(3)列式——列出动点P所满足的关系式.
(4)代换——依条件式的特点,将其转化为x,y的方程式,并化简.
(5)证明——证明所求方程即为符合条件的动点轨迹方程.
3.两曲线的交点
设曲线C1的方程为F1(x,y)=0,曲线C2的方程为F2(x,y)=0,则C1,C2的交点坐标即为方程组的实数解.
若此方程组无解,则两曲线无交点.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.(  )
(2)方程x2+xy=x的曲线是一个点和一条直线.(  )
(3)动点的轨迹方程和动点的轨迹是一样的.(  )
(4)方程y=与x=y2表示同一曲线.(  )
解析 对于(2),由方程得x(x+y-1)=0,即x=0或x+y-1=0,所以方程表示两条直线,错误;对于(3),前者表示方程,后者表示曲线,错误;对于(4),曲线y=是曲线x=y2的一部分,错误.
答案 (1)√ (2)× (3)× (4)×
2.已知命题“曲线C上的点的坐标是方程f(x,y)=0的解”是正确的,则下列命题中正确的是(  )
A.满足方程f(x,y)=0的点都在曲线C上
B.方程f(x,y)=0是曲线C的方程
C.方程f(x,y)=0所表示的曲线不一定是曲线C
D.以上说法都正确
解析 曲线C可能只是方程f(x,y)=0所表示的曲线的一部分,因此答案C正确.
答案 C
3.已知M(-1,0),N(1,0),|PM|-|PN|=2,则动点P的轨迹是(  )
A.双曲线 B.双曲线左支
C.一条射线 D.双曲线右支
解析 由于|PM|-|PN|=|MN|,所以D不正确,应为以N为端点,沿x轴正向的一条射线.
答案 C
4.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是________.
解析 连接OP,则|OP|=2,∴P点轨迹是去掉M,N两点的圆,∴方程为x2+y2=4(x≠±2).
答案 x2+y2=4(x≠±2)
5.(选修2-1P35例1改编)曲线C:xy=2上任一点到两坐标轴的距离之积为________.
解析 曲线xy=2上任取一点(x0,y0),则x0y0=2,该点到两坐标轴的距离之积为|x0||y0|=|x0y0|=2.
答案 2
6.(2017·宁波月考)设定点F1(0,-3),F2(0,3),动点P满足条件|PF1|+|PF2|=a+(a>0),
(1)当a=3时,点P的轨迹是________;
(2)当a≠3时,点P的轨迹是________.
解析 ∵a+≥2=6(a>0).
(1)当a=3时,a+=6,此时|PF1|+|PF2|=|F1F2|,P点的轨迹为线段F1F2,
(2)当a≠3,a>0时,|PF1|+|PF2|>|F1F2|.
由椭圆定义知P点的轨迹为椭圆.
答案 (1)线段F1F2 (2)椭圆
考点一 直接法求轨迹方程
【例1】 (2017·义乌模拟)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.
(1)求动圆圆心的轨迹C的方程;
(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明:直线l过定点.
(1)解 如图,设动圆圆心为O1(x,y),
由题意,|O1A|=|O1M|,
当O1不在y轴上时,过O1作O1H⊥MN交MN于H,则H是MN的中点.
∴|O1M|=,
又|O1A|=,
∴=,化简得y2=8x(x≠0).
当O1在y轴上时,O1与O重合,点O1的坐标(0,0)也满足方程y2=8x,
∴动圆圆心的轨迹C的方程为y2=8x.
(2)证明 由题意,设直线l的方程为y=kx+b(k≠0),
P(x1,y1),Q(x2,y2),
将y=kx+b代入y2=8x中,
得k2x2+(2bk-8)x+b2=0.
其中Δ=-32kb+64>0.
由根与系数的关系得,x1+x2=,①
x1x2=,②
因为x轴是∠PBQ的角平分线,所以=-,
即y1(x2+1)+y2(x1+1)=0,
(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,
2kx1x2+(b+k)(x1+x2)+2b=0③
将①,②代入③得2kb2+(k+b)(8-2bk)+2k2b=0,
∴k=-b,此时Δ>0,
∴直线l的方程为y=k(x-1),即直线l过定点(1,0).
规律方法 利用直接法求轨迹方程
(1)利用直接法求解轨迹方程的关键是根据条件准确列出方程,然后进行化简.
(2)运用直接法应注意的问题
①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.
②若方程的化简过程是恒等变形,则最后的验证可以省略.
【训练1】 在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于-,则动点P的轨迹方程为________.
解析 因为点B与点A(-1,1)关于原点O对称,所以点B的坐标为(1,-1).设点P的坐标为(x,y),由题意得·=-,化简得x2+3y2=4(x≠±1).故动点P的轨迹方程为x2+3y2=4(x≠±1).
答案 x2+3y2=4(x≠±1)
考点二 定义法求轨迹方程
【例2】 已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.求C的方程.
解 由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.
因为圆P与圆M外切并且与圆N内切,
所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4>|MN|=2.
由椭圆的定义可知,曲线C是以M,N为左,右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为+=1(x≠-2).
规律方法 (1)求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.
(2)理解解析几何中有关曲线的定义是解题关键.
(3)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x或y进行限制.
【训练2】 已知两个定圆O1和O2,它们的半径分别是1和2,且|O1O2|=4,动圆M与圆O1内切,又与圆O2外切,建立适当的坐标系,求动圆圆心M的轨迹方程,并说明轨迹是何种曲线.
解 如图所示,以O1O2的中点O为原点,O1O2所在直线为x轴建立平面直角坐标系.
由|O1O2|=4,得O1(-2,0),O2(2,0).
设动圆M的半径为r,
则由动圆M与圆O1内切,
有|MO1|=r-1;
由动圆M与圆O2外切,有|MO2|=r+2.
∴|MO2|-|MO1|=3.
∴点M的轨迹是以O1,O2为焦点,
实轴长为3的双曲线的左支.
∴a=,c=2,
∴b2=c2-a2=.
∴点M的轨迹方程为-=1.
考点三 相关点法(代入法)求轨迹方程
【例3】 如图,动圆C1:x2+y2=t2,1<t<3,与椭圆C2:+y2=1相交于A,B,C,D四点.点A1,A2分别为C2的左,右顶点.求直线AA1与直线A2B交点M的轨迹方程.
解 由椭圆C2:+y2=1,知A1(-3,0),A2(3,0).
设点A的坐标为(x0,y0);由曲线的对称性,
得B(x0,-y0),
设点M的坐标为(x,y),
直线AA1的方程为y=(x+3).①
直线A2B的方程为y=(x-3).②
由①②相乘得y2=(x2-9).③
又点A(x0,y0)在椭圆C上,故y=1-.④
将④代入③得-y2=1(x<-3,y<0).
因此点M的轨迹方程为-y2=1(x<-3,y<0).
规律方法 “相关点法”的基本步骤:
(1)设点:设被动点坐标为(x,y),主动点坐标为(x0,y0);
(2)求关系式:求出两个动点坐标之间的关系式
(3)代换:将上述关系式代入主动点满足的曲线方程,便可得到所求被动点的轨迹方程.
【训练3】 已知F1,F2分别为椭圆C:+=1的左、右焦点,点P为椭圆C上的动点,则△PF1F2的重心G的轨迹方程为(  )
A.+=1(y≠0) B.+y2=1(y≠0)
C.+3y2=1(y≠0) D.x2+=1(y≠0)
解析 依题意知F1(-1,0),F2(1,0),设P(x0,y0),
G(x,y),则由三角形重心坐标关系可得
即代入+=1,
得重心G的轨迹方程为+3y2=1(y≠0).
答案 C
[思想方法]
求轨迹方程的常用方法
1.直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简,即把这种关系“翻译”成含x,y的等式就得到曲线的轨迹方程.
2.定义法:若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程.
3.相关点法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程.
[易错防范]
1.求轨迹方程时,要注意曲线上的点与方程的解是一一对应关系.检验可从以下两个方面进行:一是方程的化简是否是同解变形;二是是否符合题目的实际意义.
2.求点的轨迹与轨迹方程是不同的要求,求轨迹时,应先求轨迹方程,然后根据方程说明轨迹的形状、位置、大小等.
第9讲 圆锥曲线的综合问题
最新考纲 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.
知 识 梳 理
1.直线与圆锥曲线的位置关系
判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程,
即消去y,得ax2+bx+c=0.
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0?直线与圆锥曲线C相交;
Δ=0?直线与圆锥曲线C相切;
Δ<0?直线与圆锥曲线C相离.
(2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.
2.圆锥曲线的弦长
设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=|x1-x2|
=·
=·|y1-y2|=·.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.(  )
(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.(  )
(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C只有一个公共点.(  )
(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=|y1-y2|.(  )
(5)若抛物线C上存在关于直线l对称的两点,则需满足直线l与抛物线C的方程联立消元后得到的一元二次方程的判别式Δ>0.(  )
解析 (2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.
(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.
(5)应是以l为垂直平分线的线段AB所在的直线l′与抛物线方程联立,消元后所得一元二次方程的判别式Δ>0.
答案 (1)√ (2)× (3)× (4)√ (5)×
2.直线y=kx-k+1与椭圆+=1的位置关系为(  )
A.相交 B.相切 C.相离 D.不确定
解析 直线y=kx-k+1=k(x-1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.
答案 A
3.若直线y=kx与双曲线-=1相交,则k的取值范围是(  )
A. B.
C. D.∪
解析 双曲线-=1的渐近线方程为y=±x,若直线与双曲线相交,数形结合,得k∈.
答案 C
4.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(  )
A.1条 B.2条 C.3条 D.4条
解析 过(0,1)与抛物线y2=4x相切的直线有2条,过(0,1)与对称轴平行的直线有一条,这三条直线与抛物线都只有一个公共点.
答案 C
5.已知F1,F2是椭圆16x2+25y2=1 600的两个焦点,P是椭圆上一点,且PF1⊥PF2,则△F1PF2的面积为________.
解析 由题意可得|PF1|+|PF2|=2a=20,
|PF1|2+|PF2|2=|F1F2|2=4c2=144=(|PF1|+|PF2|)2-2|PF1|·|PF2|=202-2|PF1|·|PF2|,
解得|PF1|·|PF2|=128,
所以△F1PF2的面积为|PF1|·|PF2|=×128=64.
答案 64
6.(2017·嘉兴七校联考)椭圆+=1的左焦点为F,直线x=m与椭圆相交于点A,B,当m=________时,△FAB的周长最大,此时△FAB的面积是________.
解析 设椭圆+=1的右焦点为F′,则F(-1,0),F′(1,0).由椭圆的定义和性质易知,当直线x=m过F′(1,0)时△FAB的周长最大,此时m=1,把x=1代入+=1得y2=,y=±,S△FAB=|F1F2||AB|=×2×3=3.
答案 1 3
第1课时 直线与圆锥曲线
考点一 直线与圆锥曲线的位置关系
【例1】 在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
解 (1)椭圆C1的左焦点为F1(-1,0),∴c=1,
又点P(0,1)在曲线C1上,
∴+=1,得b=1,则a2=b2+c2=2,
所以椭圆C1的方程为+y2=1.
(2)由题意可知,直线l的斜率显然存在且不等于0,设直线l的方程为y=kx+m,
由消去y,得(1+2k2)x2+4kmx+2m2-2=0.
因为直线l与椭圆C1相切,
所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0.
整理得2k2-m2+1=0.①
由消去y,得k2x2+(2km-4)x+m2=0.
因为直线l与抛物线C2相切,
所以Δ2=(2km-4)2-4k2m2=0,整理得km=1.②
综合①②,解得或
所以直线l的方程为y=x+或y=-x-.
规律方法 研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数,消元后,应注意讨论含x2项的系数是否为零的情况,以及判别式的应用.但对于选择、填空题要充分利用几何条件,用数形结合的方法求解.
【训练1】 在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.
(1)求轨迹C的方程;
(2)设斜率为k的直线l过定点P(-2,1),若直线l与轨迹C恰好有一个公共点,求实数k的取值范围.
解 (1)设点M(x,y),依题意|MF|=|x|+1,
∴=|x|+1,化简得y2=2(|x|+x),
故轨迹C的方程为y2=
(2)在点M的轨迹C中,记C1:y2=4x(x≥0);C2:y=0(x<0).
依题意,可设直线l的方程为y-1=k(x+2).
由方程组
可得ky2-4y+4(2k+1)=0.①
①当k=0时,此时y=1.把y=1代入轨迹C的方程,得x=.
故此时直线l:y=1与轨迹C恰好有一个公共点.
②当k≠0时,方程①的Δ=-16(2k2+k-1)=-16(2k-1)(k+1),②
设直线l与x轴的交点为(x0,0),则
由y-1=k(x+2),令y=0,得x0=-.③
(ⅰ)若由②③解得k<-1,或k>.
所以当k<-1或k>时,直线l与曲线C1没有公共点,与曲线C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.
(ⅱ)若即解集为?.
综上可知,当k<-1或k>或k=0时,直线l与轨迹C恰好有一个公共点.
考点二 弦长问题
【例2】 (2016·四川卷)已知椭圆E:+=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.
(1)求椭圆E的方程及点T的坐标;
(2)设O是坐标原点,直线l′平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.
(1)解 由已知,a=b,则椭圆E的方程为+=1.
由方程组得3x2-12x+(18-2b2)=0.①
方程①的判别式为Δ=24(b2-3),由Δ=0,得b2=3,
此时方程①的解为x=2,所以椭圆E的方程为+=1.点T的坐标为(2,1).
(2)证明 由已知可设直线l′的方程为y=x+m(m≠0),
由方程组可得
所以P点坐标为.|PT|2=m2.
设点A,B的坐标分别为A(x1,y1),B(x2,y2).
由方程组可得3x2+4mx+(4m2-12)=0.②
方程②的判别式为Δ=16(9-2m2),
由Δ>0,解得-由②得x1+x2=-,x1x2=.
所以|PA|=
=,同理|PB|=.
所以|PA|·|PB|=


=m2.
故存在常数λ=,使得|PT|2=λ|PA|·|PB|.
规律方法 有关圆锥曲线弦长问题的求解方法:
涉及弦长的问题中,应熟练的利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.
【训练2】 已知椭圆+=1(a>b>0)经过点(0,),离心率为,左、右焦点分别为F1(-c,0),F2(c,0).
(1)求椭圆的方程;
(2)若直线l:y=-x+m与椭圆交于A,B两点,与以F1F2为直径的圆交于C,D两点,且满足=,求直线l的方程.
解 (1)由题设知解得a=2,b=,c=1,
∴椭圆的方程为+=1.
(2)由(1)知,以F1F2为直径的圆的方程为x2+y2=1,
∴圆心到直线l的距离d=,由d<1,得|m|<.(*)
∴|CD|=2=2=.
设A(x1,y1),B(x2,y2),
由得x2-mx+m2-3=0,
由根与系数关系可得x1+x2=m,x1x2=m2-3.
∴|AB|=
=.
由=,得=1,解得m=±,满足(*).
∴直线l的方程为y=-x+或y=-x-.
考点三 中点弦问题
【例3】 (1)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为(  )
A.+=1 B.+=1
C.+=1 D.+=1
(2)已知双曲线x2-=1上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=18x上,则实数m的值为________.
解析 (1)因为直线AB过点F(3,0)和点(1,-1),所以直线AB的方程为y=(x-3),代入椭圆方程+=1消去y,得x2-a2x+a2-a2b2=0,所以AB的中点的横坐标为=1,即a2=2b2,又a2=b2+c2,所以b=c=3,a=3,选D.
(2)设M(x1,y1),N(x2,y2),MN的中点P(x0,y0),

由②-①得(x2-x1)(x2+x1)=(y2-y1)(y2+y1),
显然x1≠x2.∴·=3,即kMN·=3,
∵M,N关于直线y=x+m对称,∴kMN=-1,
∴y0=-3x0.
又∵y0=x0+m,∴P,
代入抛物线方程得m2=18·,
解得m=0或-8,经检验都符合.
答案 (1)D (2)0或-8
规律方法 处理中点弦问题常用的求解方法
(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x1+x2,y1+y2,三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.
(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.
【训练3】 设抛物线过定点A(-1,0),且以直线x=1为准线.
(1)求抛物线顶点的轨迹C的方程;
(2)若直线l与轨迹C交于不同的两点M,N,且线段MN恰被直线x=-平分,设弦MN的垂直平分线的方程为y=kx+m,试求m的取值范围.
解 (1)设抛物线顶点为P(x,y),则焦点F(2x-1,y).
再根据抛物线的定义得|AF|=2,即(2x)2+y2=4,
所以轨迹C的方程为x2+=1.
(2)设弦MN的中点为P,M(xM,yM),N(xN,yN),则由点M,N为椭圆C上的点,可知
两式相减,得
4(xM-xN)(xM+xN)+(yM-yN)(yM+yN)=0,
将xM+xN=2×=-1,yM+yN=2y0,
=-代入上式得k=-.
又点P在弦MN的垂直平分线上,
所以y0=-k+m.
所以m=y0+k=y0.
由点P在线段BB′上(B′,B为直线x=-与椭圆的交点,如图所示),所以yB′<y0<yB,也即-<y0<.
所以-<m<,且m≠0.
[思想方法]
1.有关弦的三个问题
(1)涉及弦长的问题,应熟练地利用根与系数的关系,设而不求计算弦长;(2)涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;(3)涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解.
2.求解与弦有关问题的两种方法
(1)方程组法:联立直线方程和圆锥曲线方程,消元(x或y)成为二次方程之后,结合根与系数的关系,建立等式关系或不等式关系.
(2)点差法:在求解圆锥曲线且题目中已有直线与圆锥曲线相交和被截线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ是否为正数.
[易错防范]
 判断直线与圆锥曲线位置关系时的注意点
(1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.
(2)直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行或重合时也相交于一点.
第2课时 定点、定值、范围、最值问题
考点一 定点问题
【例1】 (2017·枣庄模拟)已知椭圆+=1(a>0,b>0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l与x轴正半轴和y轴分别交于Q,P,与椭圆分别交于点M,N,各点均不重合且满足=λ1,=λ2.
(1)求椭圆的标准方程;
(2)若λ1+λ2=-3,试证明:直线l过定点并求此定点.
解 (1)设椭圆的焦距为2c,由题意知b=1,且(2a)2+(2b)2=2(2c)2,又a2=b2+c2,所以a2=3.
所以椭圆的方程为+y2=1.
(2)由题意设P(0,m),Q(x0,0),M(x1,y1),N(x2,y2),
设l方程为x=t(y-m),
由=λ1知(x1,y1-m)=λ1(x0-x1,-y1),
∴y1-m=-y1λ1,由题意y1≠0,∴λ1=-1.
同理由=λ2知λ2=-1.
∵λ1+λ2=-3,∴y1y2+m(y1+y2)=0,①
联立得(t2+3)y2-2mt2y+t2m2-3=0,
∴由题意知Δ=4m2t4-4(t2+3)(t2m2-3)>0,②
且有y1+y2=,y1y2=,③
将③代入①得t2m2-3+2m2t2=0,
∴(mt)2=1.
由题意mt<0,∴mt=-1,满足②,
得l方程为x=ty+1,过定点(1,0),即Q为定点.
规律方法 圆锥曲线中定点问题的两种解法
(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.
(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.
【训练1】 (2017·杭州七校联考)已知椭圆C:+=1(a>b>0)的两焦点在x轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形.
(1)求椭圆的方程;
(2)过点S的动直线l交椭圆C于A,B两点,试问:在坐标平面上是否存在一个定点Q,使得以线段AB为直径的圆恒过点Q?若存在,求出点Q的坐标;若不存在,请说明理由.
解 (1)∵椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b=c.又斜边长为2,即2c=2,故c=b=1,a=,椭圆方程为+y2=1.
(2)当l与x轴平行时,以线段AB为直径的圆的方程为x2+=;
当l与y轴平行时,以线段AB为直径的圆的方程为x2+y2=1.
由得
故若存在定点Q,则Q的坐标只可能为Q(0,1).
下面证明Q(0,1)为所求:
若直线l的斜率不存在,上述已经证明.
若直线l的斜率存在,设直线l:y=kx-,
A(x1,y1),B(x2,y2),
由得(9+18k2)x2-12kx-16=0,
Δ=144k2+64(9+18k2)>0,
x1+x2=,x1x2=,
=(x1,y1-1),=(x2,y2-1),
·=x1x2+(y1-1)(y2-1)
=(1+k2)x1x2-(x1+x2)+
=(1+k2)·-·+=0,
∴⊥,即以线段AB为直径的圆恒过点Q(0,1).
考点二 定值问题
【例2】 (2016·山东卷)已知椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.
(1)求椭圆C的方程;
(2)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.
①设直线PM,QM的斜率分别为k,k′,证明为定值.
②求直线AB的斜率的最小值.
(1)解 设椭圆的半焦距为c.
由题意知2a=4,2c=2.所以a=2,b==.
所以椭圆C的方程为+=1.
(2)①证明 设P(x0,y0)(x0>0,y0>0).
由M(0,m),可得P(x0,2m),Q(x0,-2m).
所以直线PM的斜率k==.
直线QM的斜率k′==-.
此时=-3.所以为定值-3.
②解 设A(x1,y1),B(x2,y2).
由①知直线PA的方程为y=kx+m.
则直线QB的方程为y=-3kx+m.联立
整理得(2k2+1)x2+4mkx+2m2-4=0,
由x0x1=,可得x1=,
所以y1=kx1+m=+m.
同理x2=,y2=+m.
所以x2-x1=-
=,
y2-y1=+m--m
=,
所以kAB===,
由m>0,x0>0,可知k>0,
所以6k+≥2,当且仅当k=时取“=”.
故此时=,即m=,符合题意.
所以直线AB的斜率的最小值为.
规律方法 圆锥曲线中的定值问题的常见类型及解题策略
(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;
(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;
(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.
【训练2】 (2016·北京卷)已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.
(1)求椭圆C的方程;
(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|·|BM|为定值.
(1)解 由已知=,ab=1.
又a2=b2+c2,解得a=2,b=1,c=.
所以椭圆方程为+y2=1.
(2)证明 由(1)知,A(2,0),B(0,1).
设椭圆上一点P(x0,y0),则+y=1.
当x0≠0时,直线PA方程为y=(x-2),
令x=0得yM=.
从而|BM|=|1-yM|=.
直线PB方程为y=x+1.
令y=0得xN=.∴|AN|=|2-xN|=.
∴|AN|·|BM|=·
=·

==4.
当x0=0时,y0=-1,|BM|=2,|AN|=2,
所以|AN|·|BM|=4.故|AN|·|BM|为定值.
考点三 范围问题
【例3】 (2016·天津卷)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.
解 (1)设F(c,0),由+=,
即+=,可得a2-c2=3c2.
又a2-c2=b2=3,所以c2=1,因此a2=4.
所以椭圆的方程为+=1.
(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).
设B(xB,yB),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2或x=.
由题意得xB=,从而yB=.
由(1)知F(1,0),设H(0,yH),
有=(-1,yH),=.
由BF⊥HF,得·=0,
所以+=0,解得yH=.
因为直线MH的方程为y=-x+.
设M(xM,yM),由方程组消去y,
解得xM=.
在△MAO中,∠MOA≤∠MAO?|MA|≤|MO|,
即(xM-2)2+y≤x+y,化简得xM≥1,即≥1,
解得k≤-或k≥.
所以直线l的斜率的取值范围为或.
规律方法 解决圆锥曲线中的取值范围问题应考虑的五个方面
(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;
(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;
(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;
(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;
(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.
【训练3】 (2017·威海模拟)已知圆x2+y2=1过椭圆+=1(a>b>0)的两焦点,与椭圆有且仅有两个公共点,直线l:y=kx+m与圆x2+y2=1相切,与椭圆+=1相交于A,B两点.记λ=·,且≤λ≤.
(1)求椭圆的方程;
(2)求k的取值范围;
(3)求△OAB的面积S的取值范围.
解 (1)由题意知2c=2,所以c=1.
因为圆与椭圆有且只有两个公共点,
从而b=1,故a=,所以所求椭圆方程为+y2=1.
(2)因为直线l:y=kx+m与圆x2+y2=1相切,
所以原点O到直线l的距离为=1,
即m2=k2+1.由
得(1+2k2)x2+4kmx+2m2-2=0.
设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.
λ=·=x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2=,由≤λ≤,得≤k2≤1,
即k的取值范围是∪.
(3)|AB|2=(x1-x2)2+(y1-y2)2=(1+k2)[(x1+x2)2-4x1x2]=2-,
由≤k2≤1,得≤|AB|≤.
设△OAB的AB边上的高为d,
则S=|AB|d=|AB|,所以≤S≤.
即△OAB的面积S的取值范围是.
考点四 最值问题
【例4】 (2015·浙江卷)已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.
(1)求实数m的取值范围;
(2)求△AOB面积的最大值(O为坐标原点).
解 (1)由题意知m≠0,可设直线AB的方程为
y=-x+b.
由消去y,得x2-x+b2-1=0.
因为直线y=-x+b与椭圆+y2=1有两个不同的交点,所以Δ=-2b2+2+>0,①
将AB中点M代入直线方程y=mx+解得b=-②
由①②得m<-或m>.
(2)令t=∈∪,则
|AB|=·.
且O到直线AB的距离为d=.
设△AOB的面积为S(t),
所以S(t)=|AB|·d= ≤.
当且仅当t2=时,等号成立.
故△AOB面积的最大值为.
规律方法 处理圆锥曲线最值问题的求解方法
圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.
【训练4】 已知椭圆C:x2+2y2=4.
(1)求椭圆C的离心率;
(2)设O为原点.若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.
解 (1)由题意,椭圆C的标准方程为+=1.
所以a2=4,b2=2,
从而c2=a2-b2=2.
因此a=2,c=.故椭圆C的离心率e==.
(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x0≠0.
因为OA⊥OB,所以·=0,
即tx0+2y0=0,
解得t=-.又x+2y=4,
所以|AB|2=(x0-t)2+(y0-2)2
=(x0+)2+(y0-2)2=x+y++4
=x+++4=++4(0<x≤4).
因为+≥4(0<x≤4),
当且仅当x=4时等号成立,
所以|AB|2≥8.
故线段AB长度的最小值为2.
[思想方法]
1.求定值问题常见的方法有两种:
(1)从特殊入手,求出定值,再证明这个值与变量无关.
(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
2.定点的探索与证明问题
(1)探索直线过定点时,可设出直线方程为y=kx+b,然后利用条件建立b、k等量关系进行消元,借助于直线系的思想找出定点.
(2)从特殊情况入手,先探求定点,再证明与变量无关.
3.求解范围问题的方法
求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围,要特别注意变量的取值范围.
4.圆锥曲线中常见最值的解题方法
(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;
(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.
[易错防范]
1.求范围问题要注意变量自身的范围.
2.利用几何意义求最值时,要注意“相切”与“公共点唯一”的不等价关系.注意特殊关系,特殊位置的应用.
3.在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.
4.解决定值、定点问题,不要忘记特值法.
第1讲 函数及其表示
最新考纲 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).
知 识 梳 理
1.函数与映射的概念
函数
映射
两个集合
A,B
设A,B是两个
非空数集
设A,B是两个
非空集合
对应关系
f:A→B
如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应
如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应
名称
称f:A→B为从集合A到集合B的一个函数
称f:A→B为从集合A到集合B的一个映射
记法
函数y=f(x),x∈A
映射:f:A→B
2.函数的定义域、值域
(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.
(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.
3.函数的表示法
表示函数的常用方法有解析法、图象法和列表法.
4.分段函数
(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.
(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)函数y=1与y=x0是同一个函数.(  )
(2)与x轴垂直的直线和一个函数的图象至多有一个交点.(  )
(3)函数y=-1的值域是{y|y≥1}.(  )
(4)若两个函数的定义域与值域相同,则这两个函数相等.(  )
解析 (1)函数y=1的定义域为R,而y=x0的定义域为{x|x≠0},其定义域不同,故不是同一函数.
(3)由于x2+1≥1,故y=-1≥0,故函数y=-1的值域是{y|y≥0}.
(4)若两个函数的定义域、对应法则均对应相同时,才是相等函数.
答案 (1)× (2)√ (3)× (4)×
2.(必修1P25B2改编)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是(  )
解析 A中函数定义域不是[-2,2],C中图象不表示函数,D中函数值域不是[0,2].
答案 B
3.(2017·舟山一模)函数y=的定义域为(  )
A.(-∞,1] B.[-1,1]
C.[1,2)∪(2,+∞) D.∪
解析 由题意,得
解之得-1≤x≤1且x≠-.
答案 D
4.(2015·陕西卷)设f(x)=则f(f(-2))等于(  )
A.-1 B. C. D.
解析 因为-2<0,所以f(-2)=2-2=>0,所以f(f(-2))=f=1-=1-=,故选C.
答案 C
5.(2015·全国Ⅱ卷)已知函数f(x)=ax3-2x的图象过点(-1,4),则a=________.
解析 由题意知点(-1,4)在函数f(x)=ax3-2x的图象上,所以4=-a+2,则a=-2.
答案 -2
6.(2017·丽水调研)设函数f(x)=设函数f(f(4))=________.若f(a)=-1,则a=________.
解析 ∵f(x)=∴f(4)=-2×42+1=-31,f(f(4))=f(-31)=log232=5;当a≥1时,由f(a)=-2a2+1=-1,得a=1(a=-1舍去);当a<1时,由f(a)=log2(1-a)=-1,得1-a=,即a=.
答案 5 1或
考点一 求函数的定义域
【例1】 (1)(2017·杭州调研)函数f(x)=ln +x的定义域为(  )
A.(0,+∞) B.(1,+∞)
C.(0,1) D.(0,1)∪(1,+∞)
(2)若函数y=f(x)的定义域是[1,2 017],则函数g(x)=的定义域是____________.
解析 (1)要使函数f(x)有意义,应满足解得x>1,故函数f(x)=ln+x的定义域为(1,+∞).
(2)∵y=f(x)的定义域为[1,2 017],
∴g(x)有意义,应满足
∴0≤x≤2 016,且x≠1.
因此g(x)的定义域为{x|0≤x≤2 016,且x≠1}.
答案 (1)B (2){x|0≤x≤2 016,且x≠1}
规律方法 求函数定义域的类型及求法
(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.
(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.
(3)若已知f(x)的定义域为[a,b],则f(g(x))的定义域可由a≤g(x)≤b求出;若已知f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.
【训练1】 (1)(2015·湖北卷)函数f(x)=+lg的定义域为(  )
A.(2,3) B.(2,4]
C.(2,3)∪(3,4] D.(-1,3)∪(3,6]
(2)若函数f(x)=的定义域为R,则a的取值范围为________.
解析 (1)要使函数f(x)有意义,应满足
∴则2所以f(x)的定义域为(2,3)∪(3,4].
(2)因为函数f(x)的定义域为R,所以2x2+2ax-a-1≥0对x∈R恒成立,则x2+2ax-a≥0恒成立.因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.
答案 (1)C (2)[-1,0]
考点二 求函数的解析式
【例2】 (1)已知f =lg x,则f(x)=________;
(2)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,则f(x)=________;
(3)已知函数f(x)的定义域为(0,+∞),且f(x)=2f ·-1,则f(x)=________.
解析 (1)令t=+1(t>1),则x=,
∴f(t)=lg,即f(x)=lg(x>1).
(2)设f(x)=ax2+bx+c(a≠0),
由f(0)=2,得c=2,
f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=x-1,
则2ax+a+b=x-1,
∴即
∴f(x)=x2-x+2.
(3)在f(x)=2f ·-1中,
将x换成,则换成x,
得f =2f(x)·-1,

解得f(x)=+.
答案 (1)lg(x>1) (2)x2-x+2 (3)+
规律方法 求函数解析式的常用方法
(1)待定系数法:若已知函数的类型,可用待定系数法.
(2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.
(3)构造法:已知关于f(x)与f或f(-x)的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f(x).
(4)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式.
【训练2】 (1)已知f(+1)=x+2,则f(x)=________.
(2)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.
(3)定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),则f(x)=__________.
解析 (1)令+1=t,则x=(t-1)2(t≥1),代入原式得
f(t)=(t-1)2+2(t-1)=t2-1,
所以f(x)=x2-1(x≥1).
(2)当-1≤x≤0时,0≤x+1≤1,
由已知f(x)=f(x+1)=-x(x+1).
(3)当x∈(-1,1)时,
有2f(x)-f(-x)=lg(x+1).①
将x换成-x,则-x换成x,
得2f(-x)-f(x)=lg(-x+1).②
由①②消去f(-x)得,
f(x)=lg(x+1)+lg(1-x),x∈(-1,1).
答案 (1)x2-1(x≥1) (2)-x(x+1)
(3)lg(x+1)+lg(1-x)(-1考点三 分段函数(多维探究)
命题角度一 求分段函数的函数值
【例3-1】 (2015·全国Ⅱ卷)设函数f(x)=
则f(-2)+f(log212)=(  )
A.3 B.6 C.9 D.12
解析 根据分段函数的意义,f(-2)=1+log2(2+2)=1+2=3.又log212>1
∴f(log212)=2(log212-1)=2log26=6,
因此f(-2)+f(log212)=3+6=9.
答案 C
命题角度二 求参数的值或取值范围
【例3-2】 (1)(2015·山东卷)设函数f(x)=若f=4,则b=(  )
A.1 B. C. D.
(2)(2014·全国Ⅰ卷)设函数f(x)=则使得f(x)≤2成立的x的取值范围是________.
解析 (1)f=3×-b=-b,
若-b<1,即b>时,
则f=f=3-b=4,
解之得b=,不合题意舍去.
若-b≥1,即b≤,则2-b=4,解得b=.
(2)当x<1时,ex-1≤2,解得x≤1+ln 2,
所以x<1.
当x≥1时,x≤2,解得x≤8,所以1≤x≤8.
综上可知x的取值范围是(-∞,8].
答案 (1)D (2)(-∞,8]
规律方法 (1)根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.
(2)已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.
提醒 当分段函数的自变量范围不确定时,应分类讨论.
【训练3】 (1)(2015·全国Ⅰ卷)已知函数f(x)=且f(a)=-3,则f(6-a)=(  )
A.- B.- C.- D.-
(2)(2017南京、盐城模拟)已知函数f(x)=
则不等式f(x)≥-1的解集是________.
解析 (1)当a≤1时,f(a)=2a-1-2=-3,
即2a-1=-1,不成立,舍去;
当a>1时,f(a)=-log2(a+1)=-3,
即log2(a+1)=3,
解得a=7,
此时f(6-a)=f(-1)=2-2-2=-.故选A.
(2)当x≤0时,由题意得+1≥-1,
解之得-4≤x≤0.
当x>0时,由题意得-(x-1)2≥-1,解之得0综上f(x)≥-1的解集为{x|-4≤x≤2}.
答案 (1)A (2){x|-4≤x≤2}
[思想方法]
1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.
2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.
3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法.
4.分段函数问题要用分类讨论思想分段求解.
[易错防范]
1.复合函数f[g(x)]的定义域也是解析式中x的范围,不要和f(x)的定义域相混.
2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A,B若不是数集,则这个映射便不是函数.
3.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.
第2讲 函数的单调性与最值
最新考纲 1.理解函数的单调性、最大(小)值及其几何意义;2.会运用基本初等函数的图象分析函数的性质.
知 识 梳 理
1.函数的单调性
(1)单调函数的定义
增函数
减函数
定义
一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2
当x1当x1f(x2),那么就说函数f(x)在区间D上是减函数
图象
描述
自左向右看图象是上升的
自左向右看图象是下降的
(2)单调区间的定义
如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.
2.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
条件
(1)对于任意x∈I,都有f(x)≤M;
(2)存在x0∈I,使得f(x0)=M
(3)对于任意x∈I,都有f(x)≥M;
(4)存在x0∈I,使得f(x0)=M
结论
M为最大值
M为最小值
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在区间D上是增函数.(  )
(2)函数y=的单调递减区间是(-∞,0)∪(0,+∞).(  )
(3)对于函数y=f(x),若f(1)(4)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(  ) 解析 (2)此单调区间不能用并集符号连接,取x1=-1,x2=1,则f(-1)<f(1),故应说成单调递减区间为(-∞,0)和(0,+∞).
(3)应对任意的x1<x2,f(x1)<f(x2)成立才可以.
(4)若f(x)=x,f(x)在[1,+∞)上为增函数,但y=f(x)的单调递增区间可以是R.
答案 (1)√ (2)× (3)× (4)×
2.(2017·丽水调研)下列函数中,在区间(0,+∞)内单调递减的是(  )
A.y=-x B.y=x2-x
C.y=ln x-x D.y=ex-x
解析 对于A,y1=在(0,+∞)内是减函数,y2=x在(0,+∞)内是增函数,则y=-x在(0,+∞)内是减函数;B,C选项中的函数在(0,+∞)上均不单调;选项D中,y′=ex-1,而当x∈(0,+∞)时,y′>0,所以函数y=ex-x在(0,+∞)上是增函数.
答案 A
3.如果二次函数f(x)=3x2+2(a-1)x+b在区间(-∞,1)上是减函数,那么(  )
A.a=-2 B.a=2
C.a≤-2 D.a≥2
解析 二次函数的对称轴方程为x=-,
由题意知-≥1,即a≤-2.
答案 C
4.函数f(x)=lg x2的单调递减区间是________.
解析 f(x)的定义域为(-∞,0)∪(0,+∞),y=lg u在(0,+∞)上为增函数,u=x2在(-∞,0)上递减,在(0,+∞)上递增,故f(x)在(-∞,0)上单调递减.
答案 (-∞,0)
5.(2016·北京卷)函数f(x)=(x≥2)的最大值为________.
解析 易得f(x)==1+,
当x≥2时,x-1>0,易知f(x)在[2,+∞)是减函数,
∴f(x)max=f(2)=1+=2.
答案 2
6.(2017·金华模拟)已知函数f(x)=则f(f(2))=________,值域为________.
解析 ∵f(x)=∴f(2)=f(2-1)=f(1)=3-1=2,f(f(2))=f(2)=2.
当x≤1时,f(x)=3x-1在(-∞,1]上递增,∴f(x)∈(-1,2];
当x>1时,记x=[x]+(x-[x]),其中[x]为不大于x的最大整数,则x-[x]∈[0,1),由f(x-1)=f(x)得f(x)=f(x-[x])=3x-[x]-1∈[0,2),故f(x)的值域为(-1,2]∪[0,2)=(-1,2].
答案 2 (-1,2]
考点一 确定函数的单调性(区间)
【例1】 (1)函数f(x)=log(x2-4)的单调递增区间为(  )
A.(0,+∞) B.(-∞,0)
C.(2,+∞) D.(-∞,-2)
(2)试讨论函数f(x)=(a≠0)在(-1,1)上的单调性.
(1)解析 由x2-4>0,得x>2或x<-2.
∴f(x)的定义域为(-∞,-2)∪(2,+∞).
令t=x2-4,则y=logt(t>0).
∵t=x2-4在(-∞,-2)上是减函数,且y=logt在(0,+∞)上是减函数,∴函数f(x)在(-∞,-2)上是增函数,即f(x)单调递增区间为(-∞,-2).
答案 D
(2)解 法一 设-1f(x)=a=a,
f(x1)-f(x2)=a-a=
,由于-1所以x2-x1>0,x1-1<0,x2-1<0,
故当a>0时,f(x1)-f(x2)>0,即f(x1)>f(x2),函数f(x)在(-1,1)上递减;
当a<0时,f(x1)-f(x2)<0,
即f(x1)法二 f′(x)=
==-.
当a>0时,f′(x)<0,函数f(x)在(-1,1)上递减;
当a<0时,f′(x)>0,函数f(x)在(-1,1)上递增.
规律方法 (1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1).
(2)函数单调性的判断方法有:①定义法;②图象法;③利用已知函数的单调性;④导数法.
(3)函数y=f(g(x))的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.
【训练1】 判断函数f(x)=x+(a>0)在(0,+∞)上的单调性,并给出证明.
解 f(x)在(0,]上是减函数,在[,+∞)上是增函数.
证明如下:
法一 设x1,x2是任意两个正数,且0则f(x1)-f(x2)=-=(x1x2-a).
当0所以f(x1)-f(x2)>0,即f(x1)>f(x2),
所以函数f(x)在(0,]上是减函数.
当≤x1a,又x1-x2<0,
所以f(x1)-f(x2)<0,即f(x1)所以函数f(x)在[,+∞)上是增函数.
综上可知,函数f(x)=x+(a>0)在(0,]上是减函数,在[,+∞)上为增函数.
法二 f′(x)=1-,令f′(x)>0,则1->0,
解得x>或x<-(舍).
令f′(x)<0,则1-<0,解得-∵x>0,∴0∴f(x)在(0,]上为减函数,在[,+∞)上为增函数.
考点二 确定函数的最值
【例2】 (1)(2017·丽水一模)已知函数f(x)=则f(f(3))=________,函数f(x)的最大值是________.
(2)已知函数f(x)=,x∈[1,+∞)且a≤1.
①当a=时,求函数f(x)的最小值;
②若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.
(1)解析 ①由于f(x)=
所以f(3)=log3=-1,则f(f(3))=f(-1)=-3,
②当x>1时,f(x)=logx是减函数,得f(x)<0.
当x≤1时,f(x)=-x2+2x=-(x-1)2+1在(-∞,1]上单调递增,则f(x)≤1,综上可知,f(x)的最大值为1.
答案 -3 1
(2)解 ①当a=时,f(x)=x++2,设1≤x1<x2,
则f(x2)-f(x1)=(x2-x1),
∵1≤x1<x2,∴x2-x1>0,2x1x2>2,
∴0<<,1->0,
∴f(x2)-f(x1)>0,f(x1)<f(x2).
∴f(x)在区间[1,+∞)上为增函数,
∴f(x)在区间[1,+∞)上的最小值为f(1)=.
②当x∈[1,+∞)时,>0恒成立.
则x2+2x+a>0对x∈[1,+∞)上恒成立.
即a>-(x2+2x)在x∈[1,+∞)上恒成立.
令g(x)=-(x2+2x)=-(x+1)2+1,x∈[1,+∞),
∴g(x)在[1,+∞)上是减函数,g(x)max=g(1)=-3.
又a≤1,
∴当-30在x∈[1,+∞)上恒成立.
故实数a的取值范围是(-3,1].
规律方法 (1)求函数最值的常用方法:①单调性法;②基本不等式法;③配方法;④图象法;⑤导数法.
(2)利用单调性求最值,应先确定函数的单调性,然后根据性质求解.若函数f(x)在闭区间[a,b]上是增函数,则f(x)在[a,b]上的最大值为f(b),最小值为f(a).若函数f(x)在闭区间[a,b]上是减函数,则f(x)在[a,b]上的最大值为f(a),最小值为f(b).
【训练2】 如果函数f(x)对任意的实数x,都有f(1+x)=f(-x),且当x≥时,f(x)=log2(3x-1),那么函数f(x)在[-2,0]上的最大值与最小值之和为(  )
A.2 B.3 C.4 D.-1
解析 根据f(1+x)=f(-x),可知函数f(x)的图象关于直线x=对称.又函数f(x)在上单调递增,故f(x)在上单调递减,则函数f(x)在[-2,0]上的最大值与最小值之和为f(-2)+f(0)=f(1+2)+f(1+0)=f(3)+f(1)=log28+log22=4.
答案 C
考点三 函数单调性的应用(典例迁移)
【例3】 (1)如果函数f(x)=满足对任意x1≠x2,都有>0成立,那么a的取值范围是________.
(2)(2017·宁波模拟)定义在R上的奇函数y=f(x)在(0,+∞)上递增,且f=0,则不等式f(logx)>0的解集为________.
解析 (1)对任意x1≠x2,都有>0.
所以y=f(x)在(-∞,+∞)上是增函数.
所以解得≤a<2.
故实数a的取值范围是.
(2)∵y=f(x)是定义在R上的奇函数,且y=f(x)在(0,+∞)上递增.
∴y=f(x)在(-∞,0)上也是增函数,
又f=0,知f=-f=0.
故原不等式f(logx)>0可化为
f(logx)>f或f(logx)>f,
∴logx>或-解得0所以原不等式的解集为.
答案 (1) (2)
【迁移探究1】 在例题第(1)题中,条件不变,若设m=f(-),n=f(a),t=f(2),试比较m,n,t的大小.
解 由例题知f(x)在(-∞,+∞)上是增函数,
且≤a<2,又-∴f【迁移探究2】 在例题第(2)题中,若条件改为:“定义在R上的偶函数y=f(x)在[0,+∞)上单调递减”,且f=0,则不等式f(logx)>0的解集是________.
解析 因为f(x)在R上为偶函数,且f=0,
所以f>0等价于f>f,
又f(x)在[0,+∞)上为减函数,所以<,
即-<logx<,解得<x<3.
答案 
规律方法 (1)利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.
(2)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解,此时应特别注意函数的定义域.
【训练3】 (2016·天津卷)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-),则a的取值范围是________.
解析 ∵f(x)在R上是偶函数,且在区间(-∞,0)上单调递增,
∴f(x)在(0,+∞)上是减函数,
则f(2|a-1|)>f(-)=f(),
因此2|a-1|<=2,又y=2x是增函数,
∴|a-1|<,解得答案 
[思想方法]
1.利用定义证明或判断函数单调性的步骤:
(1)取值 ;(2)作差;(3)定号;(4)判断.
2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.
3.求函数最值的常用求法:单调性法、图象法、换元法、利用基本不等式.闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时,最值一定在端点处取到.
[易错防范]
1.区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.
2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连接,不要用“∪”.例如,函数f(x)在区间(-1,0)上是减函数,在(0 ,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f(x)=.
第3讲 函数的奇偶性与周期性
最新考纲 1.结合具体函数,了解函数奇偶性的含义;2.会运用函数的图象理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.
知 识 梳 理
1.函数的奇偶性
奇偶性
定义
图象特点
偶函数
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数
关于y轴对称
奇函数
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数
关于原点对称
2.函数的周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)函数y=x2在x∈(0,+∞)时是偶函数.(  )
(2)若函数f(x)为奇函数,则一定有f(0)=0.(  )
(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.(  )
(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.(  ) 解析 (1)由于偶函数的定义域关于原点对称,故y=x2在(0,+∞)上不是偶函数,(1)错.
(2)由奇函数定义可知,若f(x)为奇函数,其在x=0处有意义时才满足f(0)=0,(2)错.
答案 (1)× (2)× (3)√ (4)√
2.(2017·西安铁中月考)下列函数为奇函数的是(  )
A.y= B.y=ex
C.y=cos x D.y=ex-e-x
解析 A,B中显然为非奇非偶函数;C中y=cos x为偶函数.
D中函数定义域为R,又f(-x)=e-x-ex=-(ex-e-x)=-f(x),∴y=ex-e-x为奇函数.
答案 D
3.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是(  )
A.- B. C. D.-
解析 依题意b=0,且2a=-(a-1),∴a=,则a+b=.
答案 B
4.设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=则f=________.
解析 ∵f(x)的周期为2,∴f=f,
又∵当-1≤x<0时,f(x)=-4x2+2,
∴f=f=-4×+2=1.
答案 1
5.(2014·全国Ⅱ卷)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=________.
解析 ∵f(x)为偶函数,∴f(-1)=f(1).
又f(x)的图象关于直线x=2对称,
∴f(1)=f(3).∴f(-1)=3.
答案 3
6.(2017·湖州调研)设a>0且a≠1,函数f(x)=为奇函数,则a=________,g(f(2))=________.
解析 ∵f(x)是R上的奇函数,∴f(0)=0,即a0+1-2=0,∴a=2;当x>0时,-x<0,f(x)=-f(-x)=-(2-x+1-2)=2-2-x+1,即g(x)=2-2-x+1,∴f(x)=f(2)=2-2-2+1=2-=>0,
∴g(f(2))=g=2-2-+1=2-2-=2-.
答案 2 2-
考点一 函数奇偶性的判断
【例1】 判断下列函数的奇偶性:
(1)f(x)=+;
(2)f(x)=;
(3)f(x)=
解 (1)由得x2=3,解得x=±,
即函数f(x)的定义域为{-,},
从而f(x)=+=0.
因此f(-x)=-f(x)且f(-x)=f(x),
∴函数f(x)既是奇函数又是偶函数.
(2)由得定义域为(-1,0)∪(0,1),关于原点对称.
∴x-2<0,∴|x-2|-2=-x,∴f(x)=.
又∵f(-x)==-=-f(x),
∴函数f(x)为奇函数.
(3)显然函数f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称.
∵当x<0时,-x>0,
则f(-x)=-(-x)2-x=-x2-x=-f(x);
当x>0时,-x<0,
则f(-x)=(-x)2-x=x2-x=-f(x);
综上可知:对于定义域内的任意x,总有f(-x)=-f(x)成立,∴函数f(x)为奇函数.
规律方法 判断函数的奇偶性,其中包括两个必备条件:
(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;
(2)判断f(x)与f(-x)是否具有等量关系.
在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数)是否成立.
【训练1】 (1)(2017·杭州质检)下列函数中,既不是奇函数,也不是偶函数的是(  )
A.y=x+sin 2x B.y=x2-cos x
C.y=2x+ D.y=x2+sin x
(2)(2014·全国Ⅰ卷)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是(  )
A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数
C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数
解析 (1)对于A,定义域为R,f(-x)=-x+sin 2(-x)=-(x+sin 2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+=2x+=f(x),为偶函数;y=x2+sin x既不是偶函数也不是奇函数,故选D.
(2)依题意得对任意x∈R,都有f(-x)=-f(x),g(-x)=g(x),因此,f(-x)g(-x)=-f(x)g(x)=-[f(x)·g(x)],f(x)g(x)是奇函数,A错;|f(-x)|·g(-x)=|-f(x)|·g(x)=|f(x)|g(x),|f(x)|g(x)是偶函数,B错;f(-x)|g(-x)|=-f(x)|g(x)|=-[f(x)|g(x)|],f(x)|g(x)|是奇函数,C正确;
|f(-x)·g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,|f(x)g(x)|是偶函数,D错.
答案 (1)D (2)C
考点二 函数奇偶性的应用
【例2】 (1)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)等于(  )
A.-3 B.-1 C.1 D.3
(2)(2015·全国Ⅰ卷)若函数f(x)=xln(x+)为偶函数,则a=________.
解析 (1)因为f(x)是偶函数,g(x)是奇函数,所以f(1)+g(1)=f(-1)-g(-1)=(-1)3+(-1)2+1=1.
(2)f(x)为偶函数,则ln(x+)为奇函数,
所以ln(x+)+ln(-x+)=0,
则ln(a+x2-x2)=0,∴a=1.
答案 (1)C (2)1
规律方法 (1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据f(x)±f(x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.
(2)已知函数的奇偶性求函数值或解析式,首先抓住在已知区间上的解析式,将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式或函数值.
【训练2】 (1)(2015·山东卷)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为(  )
A.(-∞,-1) B.(-1,0)
C.(0,1) D.(1,+∞)
(2)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-4x,则f(x)=________.
解析 (1)易知f(-x)==,
由f(-x)=-f(x),得=-,
即1-a2x=-2x+a,化简得a(1+2x)=1+2x,所以a=1,
f(x)=,由f(x)>3,得0(2)∵f(x)是定义在R上的奇函数,∴f(0)=0.
又当x<0时,-x>0,∴f(-x)=x2+4x.
又f(x)为奇函数,∴f(-x)=-f(x),
则f(x)=-x2-4x(x<0),
∴f(x)=
答案 (1)C (2)
考点三 函数的周期性及其应用
【例3】 (2016·四川卷)若函数f(x)是定义在R上的周期为2的奇函数,当0解析 ∵f(x)是定义在R上的奇函数,
∴f(0)=0,
又f(x)在R上的周期为2,
∴f(2)=f(0)=0.
又f=f=-f=-4=-2,
∴f+f(2)=-2.
答案 -2
规律方法 (1)根据函数的周期性和奇偶性求给定区间上的函数值或解析式时,应根据周期性或奇偶性,由待求区间转化到已知区间.
(2)若f(x+a)=-f(x)(a是常数,且a≠0),则2a为函数f(x)的一个周期.
【训练3】 已知f(x)是定义在R上的偶函数,且f(x+2)=-,当2≤x≤3时,f(x)=x,则f(105.5)=______.
解析 f(x+4)=f[(x+2)+2]=-=f(x).
故函数的周期为4.
∴f(105.5)=f(4×27-2.5)=f(-2.5)=f(2.5).
∵2≤2.5≤3,由题意,得f(2.5)=2.5.
∴f(105.5)=2.5.
答案 2.5
考点四 函数性质的综合运用
【例4】 (1)(2016·山东卷)已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>时,f=f.则f(6)=(  )
A.-2 B.-1 C.0 D.2
(2)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log2a)+f(loga)≤2f(1),则a的取值范围是(  )
A.[1,2] B.
C. D.(0,2]
解析 (1)当x>时,由f(x+)=f(x-),
得f(x)=f(x+1),∴f(6)=f(1),
又由题意知f(1)=-f(-1),且f(-1)=(-1)3-1=-2.
因此f(6)=-f(-1)=2.
(2)由y=f(x)为偶函数,且f(log2a)+f(loga)≤2f(1).
∴f(log2a)+f(-log2a)≤2f(1)?f(log2a)≤f(1),
又f(log2a)=f(|log2a|)且f(x)在[0,+∞)上递增,
∴|log2a|≤1?-1≤log2a≤1.解得≤a≤2.
答案 (1)D (2)C
规律方法 (1)函数单调性与奇偶性的综合.注意函数单调性及奇偶性的定义以及奇、偶函数图象的对称性.
(2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.
(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.
【训练4】 (1)已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)=f(x-1),则f(2 017)+f(2 019)的值为(  )
A.-1 B.1 C.0 D.2
(2)设函数f(x)=的最大值为M,最小值为m.
则M+m=________.
解析 (1)由题意,得g(-x)=f(-x-1),
又∵f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,∴g(-x)=-g(x),f(-x)=f(x),
∴f(x-1)=-f(x+1),即f(x-1)+f(x+1)=0.
∴f(2 017)+f(2 019)=f(2 018-1)+f(2 018+1)=0.
(2)f(x)==1+,
令g(x)=,则g(-x)=-g(x),
∴g(x)为奇函数,
由奇函数图象的对称性知g(x)max+g(x)min=0,
故M+m=2.
答案 (1)C (2)2
[思想方法]
1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.
2.利用函数奇偶性可以解决以下问题:
(1)求函数值;(2)求解析式;(3)求函数解析式中参数的值;(4)画函数图象,确定函数单调性.
3.在解决具体问题时,要注意结论“若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期”的应用.
[易错防范]
1.f(0)=0既不是f(x)是奇函数的充分条件,也不是必要条件.
2.函数f(x)满足的关系f(a+x)=f(b-x)表明的是函数图象的对称性,函数f(x)满足的关系f(a+x)=f(b+x)(a≠b)表明的是函数的周期性,在使用这两个关系时不要混淆.
第4讲 幂函数与二次函数
最新考纲 1.了解幂函数的概念;掌握幂函数y=x,y=x2,y=x3,y=x,y=的图象和性质;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.
知 识 梳 理
1.幂函数
(1)幂函数的定义
一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.
(2)常见的5种幂函数的图象
(3)常见的5种幂函数的性质
函数
特征
性质
y=x
y=x2
y=x3
y=x
y=x-1
定义域
R
R
R
[0,+∞)
{x|x∈R,
且x≠0}
值域
R
[0,+∞)
R
[0,+ ∞)
{y|y∈R,
且y≠0}
奇偶性



非奇非偶

2.二次函数
(1)二次函数解析式的三种形式:
一般式:f(x)=ax2+bx+c(a≠0).
顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).
零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.
(2)二次函数的图象和性质
解析式
f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a<0)
图象
定义域
(-∞,+∞)
(-∞,+∞)
值域
单调性
在上单调递减;
在上单调递增
在上单调递增;
在上单调递减
对称性
函数的图象关于x=-对称
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)函数y=2x是幂函数.(  )
(2)当n>0时,幂函数y=xn在(0,+∞)上是增函数.(  )
(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数.(  )
(4)二次函数y=ax2+bx+c(x∈[a,b])的最值一定是.(  ) 
解析 (1)由于幂函数的解析式为f(x)=xα,故y=2x不是幂函数,(1)错.
(3)由于当b=0时,y=ax2+bx+c=ax2+c为偶函数,故(3)错.
(4)对称轴x=-,当-小于a或大于b时,最值不是,故(4)错.
答案 (1)× (2)√ (3)× (4)×
2.(2016·全国Ⅲ卷)已知a=2,b=3,c=25,则(  )
A.bC.b解析 因为a=2=4,b=3,c=5又y=x在(0,+∞)上是增函数,所以c>a>b.
答案 A
3.已知f(x)=x2+px+q满足f(1)=f(2)=0,则f(-1)的值是(  )
A.5 B.-5 C.6 D.-6
解析 由f(1)=f(2)=0知方程x2+px+q=0的两根分别为1,2,则p=-3,q=2,∴f(x)=x2-3x+2,∴f(-1)=6.
答案 C
4.(2017·杭州测试)若函数f(x)是幂函数,则f(1)=________,若满足f(4)=8f(2),则f=________.
解析 由题意可设f(x)=xα,则f(1)=1,由f(4)=8f(2)得4α=8×2α,解得α=3,所以f(x)=x3,故f==.
答案 1 
5.若幂函数y=(m2-3m+3)xm2-m-2的图象不经过原点,则实数m的值为________.
解析 由解得m=1或2.
经检验m=1或2都适合.
答案 1或2
6.若函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上是减函数,则实数a的取值范围是________.
解析 二次函数f(x)图象的对称轴是x=1-a,由题意知1-a≥3,∴a≤-2.
答案 (-∞,-2]
考点一 幂函数的图象和性质
【例1】 (1)(2017·济南诊断测试)已知幂函数f(x)=k·xα的图象过点,则k+α等于(  )
A. B.1 C. D.2
(2)若(2m+1)>(m2+m-1),则实数m的取值范围是(  )
A. B.
C.(-1,2) D.
解析 (1)由幂函数的定义知k=1.又f=,
所以=,解得α=,从而k+α=.
(2)因为函数y=x的定义域为[0,+∞),
且在定义域内为增函数,
所以不等式等价于
解得
即≤m<2.
答案 (1)C (2)D
规律方法 (1)可以借助幂函数的图象理解函数的对称性、单调性;
(2)α的正负:当α>0时,图象过原点和(1,1),在第一象限的图象上升;当α<0时,图象不过原点,过(1,1),在第一象限的图象下降.
(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.
【训练1】 (1)幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是(  )
(2)已知幂函数f(x)=(n2+2n-2)xn2-3n(n∈Z)的图象关于y轴对称,且在(0,+∞)上是减函数,则n的值为(  )
A.-3 B.1 C.2 D.1或2
解析 (1)设f(x)=xα(α∈R),则4α=2,
∴α=,因此f(x)=x,根据图象的特征,C正确.
(2)∵幂函数f(x)=(n2+2n-2)xn2-3n在(0,+∞)上是减函数,
∴∴n=1,
又n=1时,f(x)=x-2的图象关于y轴对称,故n=1.
答案 (1)C (2)B
考点二 二次函数的图象与性质
【例2】 (2017·湖州调研)已知函数f(x)=x2+2ax+3,x∈[-4,6].
(1)当a=-2时,求f(x)的最值;
(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;
(3)当a=-1时,求f(|x|)的单调区间.
解 (1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],
∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,
∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,
故f(x)的最大值是35.
(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4,
故a的取值范围是(-∞,-6]∪[4,+∞).
(3)当a=-1时,f(|x|)=x2-2|x|+3=
其图象如图所示,
又∵x∈[-4,6],∴f(|x|)在区间[-4,-1)和[0,1)上为减函数,在区间[-1,0)和[1,6]上为增函数.
规律方法 解决二次函数图象与性质问题时要注意:
(1)抛物线的开口、对称轴位置、定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论;
(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解),事半功倍.
【训练2】 (1)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是(  )
(2)(2017·武汉模拟)若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.
解析 (1)由A,C,D知,f(0)=c<0,
从而由abc>0,所以ab<0,所以对称轴x=->0,知A,C错误,D满足要求;由B知f(0)=c>0,
所以ab>0,所以x=-<0,B错误.
(2)由f(x)是偶函数知f(x)图象关于y轴对称,
∴b=-2,∴f(x)=-2x2+2a2,
又f(x)的值域为(-∞,4],
∴2a2=4,
故f(x)=-2x2+4.
答案 (1)D (2)-2x2+4
考点三 二次函数的应用(多维探究)
命题角度一 二次函数的恒成立问题
【例3-1】 已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R.
(1)若函数f(x)的最小值为f(-1)=0,求f(x)的解析式,并写出单调区间;
(2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的取值范围.
解 (1)由题意知
解得
所以f(x)=x2+2x+1,
由f(x)=(x+1)2知,函数f(x)的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].
(2)由题意知,x2+2x+1>x+k在区间[-3,-1]上恒成立,即k令g(x)=x2+x+1,x∈[-3,-1],
由g(x)=+知g(x)在区间[-3,-1]上是减函数,则g(x)min=g(-1)=1,所以k<1,
故k的取值范围是(-∞,1).
规律方法 (1)对于函数y=ax2+bx+c,若是二次函数,就隐含着a≠0,当题目未说明是二次函数时,就要分a=0和a≠0两种情况讨论.
(2)由不等式恒成立求参数的取值范围,常用分离参数法,转化为求函数最值问题,其依据是a≥f(x)?a≥f(x)max,a≤f(x)?a≤f(x)min.
【训练3】 (2016·九江模拟)已知f(x)=x2+2(a-2)x+4,如果对x∈[-3,1],f(x)>0恒成立,则实数a的取值范围为________.
解析 因为f(x)=x2+2(a-2)x+4,
对称轴x=-(a-2),
对x∈[-3,1],f(x)>0恒成立,
所以讨论对称轴与区间[-3,1]的位置关系得:
或或
解得a∈?或1≤a<4或-<a<1,
所以a的取值范围为.
答案 
命题角度二 二次函数的零点问题
【例3-2】 (2016·全国Ⅱ卷)已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则xi=(  )
A.0 B.m C.2m D.4m
解析 由f(x)=f(2-x)知函数f(x)的图象关于直线x=1对称.又y=|x2-2x-3|=|(x-1)2-4|的图象也关于直线x=1对称,所以这两函数的交点也关于直线x=1对称.
不妨设x1答案 B
规律方法 (1)解本题的关键是抓住两函数的图象关于直线x=1对称,利用中点公式求解,考查分类讨论、数形结合思想.
(2)涉及二次函数的零点常与判别式有关,常借助函数的图象的直观性实施数形转化.
【训练4】 (2017·丽水一模)已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x,如果函数g(x)=f(x)-m(m∈R)恰有4个零点,则m的取值范围是________.
解析 函数g(x)=f(x)-m(m∈R)恰有4个零点可化为函数y=f(x)的图象与直线y=m恰有4个交点,作函数y=f(x)与y=m的图象如图所示,
故m的取值范围是(-1,0).
答案 (-1,0)
[思想方法]
1.幂函数y=xα(α∈R)图象的特征
α>0时,图象过原点和(1,1)点,在第一象限的部分“上升”;α<0时,图象不过原点,经过(1,1)点在第一象限的部分“下降”,反之也成立.
2.求二次函数的解析式就是确定函数式f(x)=ax2+bx+c(a≠0)中a,b,c的值.应根据题设条件选用适当的表达形式,用待定系数法确定相应字母的值.
3.二次函数与一元二次不等式密切相关,借助二次函数的图象和性质,可直观地解决与不等式有关的问题.
4.二次函数的单调性与对称轴紧密相连,二次函数的最值问题要根据其图象以及所给区间与对称轴的关系确定.
[易错防范]
1.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.
2.对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.
第5讲 指数与指数函数
最新考纲 1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.了解指数函数的概念,掌握指数函数的图象、性质及应用.
知 识 梳 理
1.根式
(1)概念:式子叫做根式,其中n叫做根指数,a叫做被开方数.
(2)性质:()n=a(a使有意义);当n为奇数时,=a,当n为偶数时,=|a|=
2.分数指数幂
(1)规定:正数的正分数指数幂的意义是a=(a>0,m,n∈N*,且n>1);正数的负分数指数幂的意义是a-=(a>0,m,n∈N*,且n>1);0的正分数指数幂等于0;0的负分数指数幂没有意义.
(2)有理指数幂的运算性质:aras=ar+s;(ar)s=ars;(ab)r=arbr,其中a>0,b>0,r,s∈Q.
3.指数函数及其性质
(1)概念;函数y=ax(a>0且a≠1)叫做指数函数,其中指数x是变量,函数的定义域是R,a是底数.
(2)指数函数的图象与性质
a>1
0图象
定义域
R
值域
(0,+∞)
性质
过定点(0,1),即x=0时,y=1
当x>0时,y>1;
当x<0时,0当x<0时,y>1;
当x>0时,0在(-∞,+∞)上是增函数
在(-∞,+∞)上是减函数
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)=-4.(  )
(2)(-1)=(-1)=.(  )
(3)函数y=2x-1是指数函数.(  )
(4)函数y=ax2+1(a>1)的值域是(0,+∞).(  )
解析 (1)由于==4,故(1)错.
(2)(-1)==1,故(2)错.
(3)由于指数函数解析式为y=ax(a>0,且a≠1),故y=2x-1不是指数函数,故(3)错.
(4)由于x2+1≥1,又a>1,∴ax2+1≥a.故y=ax2+1(a>1)的值域是[a,+∞),(4)错.
答案 (1)× (2)× (3)× (4)×
2.(必修1P52例5改编)化简[(-2)6]-(-1)0的结果为(  )
A.-9 B.7
C.-10 D.9
解析 原式=(26)-1=8-1=7.
答案 B
3.函数y=ax-a-1(a>0,且a≠1)的图象可能是(  )
解析 函数y=ax-是由函数y=ax的图象向下平移个单位长度得到,A项显然错误;当a>1时,0<<1,平移距离小于1,所以B项错误;当01,平移距离大于1,所以C项错误,故选D.
答案 D
4.(2015·山东卷)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是(  )
A.aC.b解析 根据指数函数y=0.6x在R上单调递减可得0.61.5<0.60.6<0.60=1,而c=1.50.6>1,∴b答案 C
5.指数函数y=(2-a)x在定义域内是减函数,则a的取值范围是________.
解析 由题意知0<2-a<1,解得1答案 (1,2)
6.(2017·金华模拟)设α,β是方程5x2+10x+1=0的两个根,则2α·2β=________,(2α)β=________.
解析 由一元二次方程根与系数的关系,得α+β=-2,αβ=,则2α·2β=2α+β=2-2=,(2α)β=2αβ=2.
答案  2
考点一 指数幂的运算
【例1】 化简:(1)(a>0,b>0);
(2)+(0.002)--10(-2)-1+(-)0.
解 (1)原式==a+-1+b1+-2-=ab-1.
(2)原式=+-+1
=+500-10(+2)+1
=+10-10-20+1=-.
规律方法 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序.
(2)当底数是负数时,先确定符号,再把底数化为正数.
(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.
【训练1】 化简求值:
(1)+2-2·-(0.01)0.5;
(2).
解 (1)原式=1+×-
=1+×-=1+-=.
(2)原式==a---·b+-=.
考点二 指数函数的图象及应用
【例2】 (1)函数f(x)=1-e|x|的图象大致是(  )
(2)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.
解析 (1)f(x)=1-e|x|是偶函数,图象关于y轴对称,
又e|x|≥1,∴f(x)的值域为(-∞,0],
因此排除B、C、D,只有A满足.
(2)曲线|y|=2x+1与直线y=b的图象如图所示,由图象可知:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].
答案 (1)A (2)[-1,1]
规律方法 (1)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.
(2)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.
【训练2】 (1)(2017·福建五校联考)定义运算a⊕b=则函数f(x)=1⊕2x的图象是(  )
(2)方程2x=2-x的解的个数是________.
解析 (1)因为当x≤0时,2x≤1;当x>0时,2x>1.
则f(x)=1⊕2x=图象A满足.
(2)方程的解可看作函数y=2x和y=2-x的图象交点的横坐标,分别作出这两个函数图象(如图).
由图象得只有一个交点,因此该方程只有一个解.
答案 (1)A (2)1
考点三 指数函数的性质及应用(易错警示)
【例3】 (1)下列各式比较大小正确的是(  )
A.1.72.5>1.73 B.0.6-1>0.62
C.0.8-0.1>1.250.2 D.1.70.3<0.93.1
(2)已知函数f(x)=.
①若a=-1,求f(x)的单调区间;
②若f(x)有最大值3,求a的值;
③若f(x)的值域是(0,+∞),求a的值.
(1)解析 A中,
∵函数y=1.7x在R上是增函数,2.5<3,
∴1.72.5<1.73,错误;
B中,∵y=0.6x在R上是减函数,-1<2,
∴0.6-1>0.62,正确;
C中,∵(0.8)-1=1.25,
∴问题转化为比较1.250.1与1.250.2的大小.
∵y=1.25x在R上是增函数,0.1<0.2,
∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误;
D中,∵1.70.3>1, 0<0.93.1<1,
∴1.70.3>0.93.1,错误.故选B.
答案 B
(2)解 ①当a=-1时,f(x)=,
令u=-x2-4x+3=-(x+2)2+7.
在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y=在R上单调递减,所以f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f(x)的递增区间是(-2,+∞),递减区间是(-∞,-2).
②令h(x)=ax2-4x+3,y=,由于f(x)有最大值3,所以h(x)应有最小值-1,
因此必有解得a=1,
即当f(x)有最大值3时,a的值等于1.
③由f(x)的值域是(0,+∞)知,ax2-4x+3的值域为R,则必有a=0.
规律方法 (1)比较指数式的大小的方法是:①能化成同底数的先化成同底数幂,再利用单调性比较大小;②不能化成同底数的,一般引入“1”等中间量比较大小.
(2)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.
易错警示 在研究指数型函数的单调性时,当底数a与“1”的大小关系不确定时,要分类讨论.
【训练3】 (1)(2015·天津卷)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为(  )
A.aC.a(2)设函数f(x)=则使得f(x)≤3成立的x的取值范围是________.
解析 (1)由函数f(x)=2|x-m|-1为偶函数,得m=0,所以f(x)=2|x|-1,当x>0时,f(x)为增函数,
log0.53=-log23,所以log25>|-log23|>0,
所以b=f(log25)>a=f(log0.53)>c=f(2m)=f(0),
故b>a>c,选B.
(2)当x≥8时,f(x)=x≤3,
∴x≤27,即8≤x≤27;
当x<8时,f(x)=2ex-8≤3恒成立,故x<8.
综上,x∈(-∞,27].
答案 (1)B (2)(-∞,27]
[思想方法]
1.根式与分数指数幂的实质是相同的,分数指数幂与根式可以互化,通常利用分数指数幂进行根式的化简运算.
2.判断指数函数图象上底数大小的问题,可以先通过令x=1得到底数的值再进行比较.
3.指数函数的单调性取决于底数a的大小,当底数a与1的大小关系不确定时应分01两种情况分类讨论.
[易错防范]
1.对与复合函数有关的问题,要弄清楚复合函数由哪些基本初等函数复合而成,并且一定要注意函数的定义域.
2.对可化为a2x+b·ax+c=0或a2x+b·ax+c≥0(≤0)形式的方程或不等式,常借助换元法解题,但应注意换元后“新元”的范围.
第6讲 对数与对数函数
最新考纲 1.理解对数的概念,掌握对数的运算,会用换底公式;2.理解对数函数的概念,掌握对数函数的图象、性质及应用.
知 识 梳 理
1.对数的概念
如果ax=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.
2.对数的性质、换底公式与运算性质
(1)对数的性质:①alogaN=N;②logaab=b(a>0,且a≠1).
(2)对数的运算法则
如果a>0且a≠1,M>0,N>0,那么
①loga(MN)=logaM+logaN;
②loga=logaM-logaN;
③logaMn=nlogaM(n∈R);
④logamMn=logaM(m,n∈R,且m≠0).
(3)对数的重要公式
①换底公式:logbN=(a,b均大于零且不等于1);
②logab=,推广logab·logbc·logcd=logad.
3.对数函数及其性质
(1)概念:函数y=logax(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).
(2)对数函数的图象与性质
a>1
0图象
性质
定义域:(0,+∞)
值域:R
当x=1时,y=0,即过定点(1,0)
当x>1时,y>0;
当0当x>1时,y<0;
当00
在(0,+∞)上是增函数
在(0,+∞)上是减函数
4.反函数
指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)log2x2=2log2x.(  )
(2)函数y=log2(x+1)是对数函数(  )
(3)函数y=ln与y=ln(1+x)-ln(1-x)的定义域相同.(  )
(4)当x>1时,若logax>logbx,则a解析 (1)log2x2=2log2|x|,故(1)错.
(2)形如y=logax(a>0,且a≠1)为对数函数,故(2)错.
(4)当x>1时,logax>logbx,但a与b的大小不确定,故(4)错.
答案 (1)× (2)× (3)√ (4)×
2.已知函数y=loga(x+c)(a,c为常数,其中a>0,且a≠1)的图象如图,则下列结论成立的是(  )
A.a>1,c>1
B.a>1,0C.01
D.0解析 由题图可知,函数在定义域内为减函数,所以00,即logac>0,所以0答案 D
3.(必修1P73T3改编)已知a=2-,b=log2,c=log,则(  )
A.a>b>c B.a>c>b C.c>b>a D.c>a>b
解析 ∵01.
∴c>a>b.
答案 D
4.(2017·湖州调研)已知a>0且a≠1,若a=,则a=________;loga=________.
解析 ∵a>0且a≠1,∴由a=得a===;loga=log=2.
答案  2
5.(2015·浙江卷)计算:log2=________;2log23+log43=________.
解析 log2=log2-log22=-1=-;
2log23+log43=2log23·2log43=3×2log43=3×2log2=3.
答案 - 3
6.若loga<1(a>0,且a≠1),则实数a的取值范围是________.
解析 当01时,loga1.
答案 ∪(1,+∞)
考点一 对数的运算
【例1】 (1)设2a=5b=m,且+=2,则m等于(  )
A. B.10 C.20 D.100
(2)计算:÷100-=________.
解析 (1)由已知,得a=log2m,b=log5m,
则+=+=logm2+logm5=logm10=2.
解得m=.
(2)原式=(lg 2-2-lg 52)×100=lg×10=lg 10-2×10=-2×10=-20.
答案 (1)A (2)-20
规律方法 (1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.
(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.
(3)ab=N?b=logaN(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.
【训练1】 (1)(2017·北京东城区综合练习)已知函数f(x)=则f(2+log23)的值为(  )
A.24 B.16 C.12 D.8
(2)(2015·安徽卷)lg+2lg 2-=________.
解析 (1)因为3<2+log23<4,所以f(2+log23)=f(3+log23)=23+log23=8×2log23=24.
(2)lg+2lg 2-=lg 5-lg 2+2lg 2-2=lg 5+lg 2-2=lg 10-2=-1.
答案 (1)A (2)-1
考点二 对数函数的图象及应用
【例2】 (1)(2017·郑州一模)若函数y=a|x|(a>0,且a≠1)的值域为{y|y≥1},则函数y=loga|x|的图象大致是(  )
(2)(2017·金华调研)已知函数f(x)=且关于x的方程f(x)+x-a=0有且只有一个实根,则实数a的取值范围是________.
解析 (1)由于y=a|x|的值域为{y|y≥1},
∴a>1,则y=logax在(0,+∞)上是增函数,
又函数y=loga|x|的图象关于y轴对称.
因此y=loga|x|的图象应大致为选项B.
(2)如图,在同一坐标系中分别作出y=f(x)与y=-x+a的图象,其中a表示直线在y轴上截距.
由图可知,当a>1时,直线y=-x+a与y=log2x只有一个交点.
答案 (1)B (2)a>1
规律方法 (1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.
(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.
【训练2】 (1)函数y=2log4(1-x)的图象大致是(  )
(2)当0A. B.
C.(1,) D.(,2)
解析 (1)函数y=2log4(1-x)的定义域为(-∞,1),排除A、B;
又函数y=2log4(1-x)在定义域内单调递减,排除D.
(2)由题意得,当0当a>1时,不符合题意,舍去.
所以实数a的取值范围是.
答案 (1)C (2)B
考点三 对数函数的性质及应用(多维探究)
命题角度一 比较对数值的大小
【例3-1】 (2016·全国Ⅰ卷)若a>b>0,0A.logacC.accb
解析 由y=xc与y=cx的单调性知,C、D不正确.
∵y=logcx是减函数,得logcalogac=,logbc=,∵0<c<1,∴lg c<0.而a>b>0,∴lg a>lg b,但不能确定lg a,lg b的正负,∴logac与logbc的大小不能确定.
答案 B
命题角度二 解对数不等式
【例3-2】 若loga(a2+1)A.(0,1) B.
C. D.(0,1)∪(1,+∞)
解析 由题意得a>0且a≠1,故必有a2+1>2a,
又loga(a2+1)同时2a>1,∴a>.综上,a∈.
答案 C
命题角度三 对数型函数的性质
【例3-3】 已知函数f(x)=loga(3-ax).
(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围;
(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.
解 (1)∵a>0且a≠1,设t(x)=3-ax,
则t(x)=3-ax为减函数,
x∈[0,2]时,t(x)的最小值为3-2a,
当x∈[0,2]时,f(x)恒有意义,
即x∈[0,2]时,3-ax>0恒成立.
∴3-2a>0.∴a<.
又a>0且a≠1,∴a∈(0,1)∪.
(2)t(x)=3-ax,∵a>0,
∴函数t(x)为减函数.
∵f(x)在区间[1,2]上为减函数,∴y=logat为增函数,
∴a>1,x∈[1,2]时,t(x)最小值为3-2a,f(x)最大值为f(1)=loga(3-a),
∴即
故不存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1.
规律方法 (1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.
(2)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.
(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件.
【训练3】 (1)设a=log32,b=log52,c=log23,则(  )
A.a>c>b B.b>c>a
C.c>b>a D.c>a>b
(2)已知函数f(x)=loga(8-ax)(a>0,且a≠1),若f(x)>1在区间[1,2]上恒成立,则实数a的取值范围是________.
解析 (1)a=log32又c=log23>log22=1,
所以,c最大.
由1,即a>b,
所以c>a>b.
(2)当a>1时,f(x)=loga(8-ax)在[1,2]上是减函数,由f(x)>1在区间[1,2]上恒成立,
则f(x)min=loga(8-2a)>1,
解之得1若0由f(x)>1在区间[1,2]上恒成立,
则f(x)min=loga(8-a)>1,且8-2a>0.
∴a>4,且a<4,故不存在.
综上可知,实数a的取值范围是.
答案 (1)D (2)
[思想方法]
1.对数值取正、负值的规律
当a>1且b>1或00;
当a>1且01时,logab<0.
2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.
3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.
4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y=1交点的横坐标进行判定.
[易错防范]
1.在对数式中,真数必须是大于0的,所以对数函数y=logax的定义域应为(0,+∞).对数函数的单调性取决于底数a与1的大小关系,当底数a与1的大小关系不确定时,要分01两种情况讨论.
2.在运算性质logaMα=αlogaM中,要特别注意条件,在无M>0的条件下应为logaMα=αloga|M|(α∈N*,且α为偶数).
3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.
第7讲 函数的图象
最新考纲 1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,并运用函数的图象解简单的方程(不等式)问题.
知 识 梳 理
1.利用描点法作函数的图象
步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.
2.利用图象变换法作函数的图象
(1)平移变换
(2)对称变换
y=f(x)的图象y=-f(x)的图象;
y=f(x)的图象y=f(-x)的图象;
y=f(x)的图象y=-f(-x)的图象;
y=ax(a>0,且a≠1)的图象y=logax(a>0,且a≠1)的图象.
(3)伸缩变换
y=f(x)y=f(ax).
y=f(x)y=Af(x).
(4)翻转变换
y=f(x)的图象y=|f(x)|的图象;
y=f(x)的图象y=f(|x|)的图象.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)函数y=f(1-x)的图象,可由y=f(-x)的图象向左平移1个单位得到.(  )
(2)函数y=f(x)的图象关于y轴对称即函数y=f(x)与y=f(-x)的图象关于y轴对称.(  )
(3)当x∈(0,+∞)时,函数y=f(|x|)的图象与y=|f(x)|的图象相同.(  )
(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.(  ) 解析 (1)y=f(-x)的图象向左平移1个单位得到y=f(-1-x),故(1)错.
(2)两种说法有本质不同,前者为函数自身关于y轴对称,后者是两个函数关于y轴对称,故(2)错.
(3)令f(x)=-x,当x∈(0,+∞)时,y=|f(x)|=x,y=f(|x|)=-x,两函数图象不同,故(3)错.
答案 (1)× (2)× (3)× (4)√
2.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)的解析式为(  )
A.f(x)=ex+1 B.f(x)=ex-1
C.f(x)=e-x+1 D.f(x)=e-x-1
解析 依题意,与曲线y=ex关于y轴对称的曲线是y=e-x,于是f(x)相当于y=e-x向左平移1个单位的结果,∴f(x)=e-(x+1)=e-x-1.
答案 D
3.(2016·浙江卷)函数y=sin x2的图象是(  )
解析 ∵y=sin(-x)2=sin x2,且x∈R,
∴函数为偶函数,可排除A项和C项;当x=时,sin x2=sin≠1,排除B项,只有D满足.
答案 D
4.若函数y=f(x)在x∈[-2,2]的图象如图所示,则当x∈[-2,2]时,f(x)+f(-x)=________.
解析 由于y=f(x)的图象关于原点对称∴f(x)+f(-x)=f(x)-f(x)=0.
答案 0
5.若关于x的方程|x|=a-x只有一个解,则实数a的取值范围是________.
解析 在同一个坐标系中画出函数y=|x|与y=a-x的图象,如图所示.由图象知当a>0时,方程|x|=a-x只有一个解.
答案 (0,+∞)
6.(2017·绍兴调研)已知函数f(x)=2x,若函数g(x)的图象与f(x)的图象关于x轴对称,则g(x)=________;若把函数f(x)的图象向左移1个单位,向下移4个单位后,所得函数的解析式为h(x)=________.
解析 ∵g(x)的图象与函数f(x)=2x关于x轴对称,∴g(x)=-2x,把f(x)=2x的图象向左移1个单位,得m(x)=2x+1,再向下平移4个单位,得h(x)=2x+1-4.
答案 -2x 2x+1-4
考点一 作函数的图象
【例1】 作出下列函数的图象:
(1)y=;(2)y=|log2(x+1)|;
(3)y=;(4)y=x2-2|x|-1.
解 (1)先作出y=的图象,保留y=图象中x≥0的部分,再作出y=的图象中x>0部分关于y轴的对称部分,即得y=的图象,如图①实线部分.
(2)将函数y=log2x的图象向左平移一个单位,再将x轴下方的部分沿x轴翻折上去,即可得到函数y=|log2(x+1)|的图象,如图②.
(3)∵y=2+,故函数图象可由y=图象向右平移1个单位,再向上平移2个单位即得,如图③.
(4)∵y=且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图④.
规律方法 画函数图象的一般方法
(1)直接法.当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.
(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.
【训练1】 分别画出下列函数的图象:
(1)y=|lg x|;(2)y=sin |x|.
解 (1)∵y=|lg x|=
∴函数y=|lg x|的图象,如图①.
(2)当x≥0时,y=sin|x|与y=sin x的图象完全相同,又y=sin|x|为偶函数,图象关于y轴对称,其图象如图②.
考点二 函数图象的辨识
【例2】 (1)(2016·全国Ⅰ卷)函数y=2x2-e|x|在[-2,2]的图象大致为(  )
(2)(2015·全国Ⅱ卷)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为(  )
解析 (1)f(x)=2x2-e|x|,x∈[-2,2]是偶函数,
又f(2)=8-e2∈(0,1),排除选项A,B.
设g(x)=2x2-ex,x≥0,则g′(x)=4x-ex.
又g′(0)<0,g′(2)>0,
∴g(x)在(0,2)内至少存在一个极值点,
∴f(x)=2x2-e|x|在(0,2)内至少存在一个极值点,排除C,故选D.
(2)当x∈时,f(x)=tan x+,图象不会是直线段,从而排除A,C.
当x∈时,f=f=1+,
f=2.∵2<1+,
∴f答案 (1)D (2)B
规律方法 (1)抓住函数的性质,定性分析
①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.②从函数的单调性,判断图象的变化趋势;③从周期性,判断图象的循环往复.④从函数的奇偶性,判断图象的对称性.
(2)抓住函数的特征,定量计算
从函数的特征点,利用特征点、特殊值的计算分析解决问题.
【训练2】 (1)(2017·安徽“江南十校”联考)函数y=log2(|x|+1)的图象大致是(  )
(2)(2017·临沂一模)已知a是常数,函数f(x)=x3+(1-a)x2-ax+2的导函数y=f′(x)的图象如图所示,则函数g(x)=|ax-2|的图象可能是(  )
解析 (1)y=log2(|x|+1)是偶函数,当x≥0时,y=log2(x+1)是增函数,且过点(0,0),(1,1),只有选项B满足.
(2)由f(x)=x3+(1-a)x2-ax+2,得f′(x)=x2+(1-a)x-a,
根据y=f′(x)的图象知->0,∴a>1.
则函数g(x)=|ax-2|的图象是由函数y=ax的图象向下平移2个单位,然后将x轴下方的图象翻折到x轴上方得到的,故选D.
答案 (1)B (2)D
考点三 函数图象的应用(多维探究)
命题角度一 研究函数的零点
【例3-1】 已知f(x)=则函数y=2f2(x)-3f(x)+1的零点个数是________.
解析 由2f2(x)-3f(x)+1=0得f(x)=或f(x)=1
作出函数y=f(x)的图象.
由图象知y=与y=f(x)的图象有2个交点,y=1与y=f(x)的图象有3个交点.
因此函数y=2f2(x)-3f(x)+1的零点有5个.
答案 5
命题角度二 求不等式的解集
【例3-2】 函数f(x)是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式<0的解集为________.
解析 当x∈时,y=cos x>0.
当x∈时,y=cos x<0.
结合y=f(x),x∈[0,4]上的图象知,当1<x<时,<0.
又函数y=为偶函数,
∴在[-4,0]上,<0的解集为,
所以<0的解集为∪.
答案 ∪
命题角度三 求参数的取值或范围
【例3-3】 (2017·杭州五校联盟诊断)若直角坐标平面内两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;
②P,Q关于原点对称,则称(P,Q)是函数y=f(x)的一个“伙伴点组”(点组(P,Q)与(Q,P)看作同一个“伙伴点组”).已知函数f(x)=有两个“伙伴点组”,则实数k的取值范围是(  )
A.(-∞,0) B.(0,1) C. D.(0,+∞)
解析 依题意,“伙伴点组”的点满足:都在y=f(x)的图象上,且关于坐标原点对称.
可作出函数y=-ln(-x)(x<0)关于原点对称的函数y=ln x(x>0)的图象,
使它与直线y=kx-1(x>0)的交点个数为2即可.
当直线y=kx-1与y=ln x的图象相切时,设切点为(m,ln m),
又y=ln x的导数为y′=,
则km-1=ln m,k=,解得m=1,k=1,
可得函数y=ln x(x>0)的图象过(0,-1)点的切线的斜率为1,
结合图象可知k∈(0,1)时两函数图象有两个交点.
答案 B
规律方法 (1)利用函数的图象研究函数的性质,一定要注意其对应关系,如:图象的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性.
(2)研究方程根的个数或由方程根的个数确定参数的值(范围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.
(3)研究不等式的解:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.
【训练3】 (1)(2015·全国Ⅰ卷)设函数y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a=(  )
A.-1 B.1 C.2 D.4
(2)已知函数y=f(x)的图象是圆x2+y2=2上的两段弧,如图所示,则不等式f(x)>f(-x)-2x的解集是________.
解析 (1)设(x,y)是函数y=f(x)图象上任意一点,它关于直线y=-x的对称点为(-y,-x),由y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,可知(-y,-x)在y=2x+a的图象上,即-x=2-y+a,解得y=-log2(-x)+a,所以f(-2)+f(-4)=-log22+a-log24+a=1,解得a=2,选C.
(2)由图象可知,函数f(x)为奇函数,故原不等式可等价转化为f(x)>-x.
在同一直角坐标系中分别画出y=f(x)与y=-x的图象,由图象可知不等式的解集为(-1,0)∪(1,].
答案 (1)C (2)(-1,0)∪(1,]
[思想方法]
1.识图
对于给定函数的图象,要从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.
2.用图
借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质.利用函数的图象,还可以判断方程f(x)=g(x)的解的个数,求不等式的解集等.
[易错防范]
1.图象变换是针对自变量x而言的,如从f(-2x)的图象到f(-2x+1)的图象是向右平移个单位,先作如下变形f(-2x+1)=f,可避免出错.
2.明确一个函数的图象关于y轴对称与两个函数的图象关于y轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.
3.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.
第8讲 函数与方程、函数的模型及其应用
最新考纲 1.了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法;2.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义;3.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
知 识 梳 理
1.函数的零点
(1)函数零点的概念
对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.
(2)函数零点与方程根的关系
方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.
(3)零点存在性定理
如果函数y=f(x)满足:①在区间[a,b]上的图象是连续不断的一条曲线;②f(a)·f(b)<0;则函数y=f(x)在(a,b)上存在零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数
y=ax2+bx+c
(a>0)的图象
与x轴的交点
(x1,0),
(x2,0)
(x1,0)
无交点
零点个数
2
1
0
3.常见的几种函数模型
(1)一次函数模型:y=kx+b(k≠0).
(2)反比例函数模型:y=(k≠0).
(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).
(4)指数函数模型:y=a·bx+c(b>0,b≠1,a≠0).
(5)对数函数模型:y=mlogax+n(a>0,a≠1,m≠0).
4.指数、对数、幂函数模型性质比较
   函数
性质   
y=ax
(a>1)
y=logax
(a>1)
y=xn
(n>0)
在(0,+∞)
上的增减性
单调递增
单调递增
单调递增
增长速度
越来越快
越来越慢
相对平稳
图象的变化
随x的增大逐渐表现为与y轴平行
随x的增大逐渐表现为与x轴平行
随n值变化
而各有不同
值的比较
存在一个x0,当x>x0时,有logax诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)函数f(x)=lg x的零点是(1,0).(  )
(2)图象连续的函数y=f(x)(x∈D)在区间(a,b)?D内有零点,则f(a)·f(b)<0.(  )
(3)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.(  )
(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)(2)f(a)·f(b)<0是连续函数y=f(x)在(a,b)内有零点的充分不必要条件,故(2)错.
答案 (1)× (2)× (3)√ (4)√
2.(必修1P88例1改编)函数f(x)=ex+3x的零点个数是(  )
A.0 B.1 C.2 D.3
解析 由已知得f′(x)=ex+3>0,所以f(x)在R上单调递增,又f(-1)=-3<0,f(0)=1>0,因此函数f(x)有且只有一个零点.
答案 B
3.(2015·安徽卷)下列函数中,既是偶函数又存在零点的是(  )
A.y=cos x B.y=sin x
C.y=ln x D.y=x2+1
解析 由函数是偶函数,排除选项B、C,又选项D中函数没有零点,排除D,y=cos x为偶函数且有零点.
答案 A
4.已知某种动物繁殖量y(只)与时间x(年)的关系为y=alog3(x+1),设这种动物第2年有100只,到第8年它们发展到(  )
A.100只 B.200只
C.300只 D.400只
解析 由题意知100=alog3(2+1),∴a=100,∴y=100log3(x+1),当x=8时,y=100log39=200.
答案 B
5.函数f(x)=ax+1-2a在区间(-1,1)上存在一个零点,则实数a的取值范围是________.
解析 因为函数f(x)=ax+1-2a在区间(-1,1)上是单调函数,所以若f(x)在区间(-1,1)上存在一个零点,则满足f(-1)f(1)<0,即(-3a+1)·(1-a)<0,解得答案 
6.(2017·绍兴调研)已知f(x)=则f(f(-2))=________;函数f(x)的零点的个数为________.
解析 根据题意得:f(-2)=(-2)2=4,则f(f(-2))=f(4)=24-2=16-2=14;令f(x)=0,得到2x-2=0,解得:x=1,则函数f(x)的零点个数为1.
答案 14 1
考点一 函数零点所在区间的判断
【例1】 (1)若aA.(a,b)和(b,c)内 B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内 D.(-∞,a)和(c,+∞)内
(2)设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为(  )
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
解析 (1)∵a0,
f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,
由函数零点存在性定理可知:在区间(a,b),(b,c)内分别存在零点,又函数f(x)是二次函数,最多有两个零点;因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.
(2)法一 函数f(x)的零点所在的区间可转化为函数g(x)=ln x,h(x)=-x+2图象交点的横坐标所在的取值范围.作图如下:
可知f(x)的零点所在的区间为(1,2).
法二 易知f(x)=ln x+x-2在(0,+∞)上为增函数,
且f(1)=1-2=-1<0,f(2)=ln 2>0.
所以根据函数零点存在性定理可知在区间(1,2)内函数存在零点.
答案 (1)A (2)B
规律方法 确定函数f(x)的零点所在区间的常用方法
(1)利用函数零点的存在性定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.
(2)数形结合法:通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断.
【训练1】 已知函数f(x)=ln x-的零点为x0,则x0所在的区间是(  )
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
解析 ∵f(x)=ln x-在(0,+∞)上是增函数,
又f(1)=ln 1-=ln 1-2<0,
f(2)=ln 2-=ln 2-1<0,f(3)=ln 3->0.
故f(x)的零点x0∈(2,3).
答案 C
考点二 函数零点个数的判断
【例2】 (1)函数f(x)=的零点个数是________.
(2)函数f(x)=2x|log0.5x|-1的零点个数为________.
A.1 B.2 C.3 D.4
解析 (1)当x≤0时,令x2-2=0,解得x=-(正根舍).所以在(-∞,0]上有一个零点.
当x>0时,f′(x)=2+>0恒成立,所以f(x)在(0,+∞)上是增函数.
又因为f(2)=-2+ln 2<0,f(3)=ln 3>0,所以f(x)在(0,+∞)上有一个零点,综上,函数f(x)的零点个数为2.
(2)令f(x)=2x|log0,5x|-1=0,得|log0.5x|=.
设g(x)=|log0.5x|,h(x)=,在同一坐标系下分别画出函数g(x),h(x)的图象(如图).由图象知,两函数的图象有两个交点,因此函数f(x)有2个零点.
答案 (1)2 (2)B
规律方法 函数零点个数的判断方法:
(1)直接求零点,令f(x)=0,有几个解就有几个零点;
(2)零点存在性定理,要求函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,再结合函数的图象与性质确定函数零点个数;
(3)利用图象交点个数,作出两函数图象,观察其交点个数即得零点个数.
【训练2】 (2015·湖北卷)f(x)=2sin xsin-x2的零点个数为________.
解析 f(x)=2sin xcos x-x2=sin 2x-x2,则函数的零点即为函数y=sin 2x与函数y=x2图象的交点,如图所示,两图象有2个交点,则函数有2个零点.
答案 2
考点三 函数零点的应用
【例3】 (2017·昆明调研)已知定义在R上的偶函数f(x)满足f(x-4)=f(x),且在区间[0,2]上f(x)=x,若关于x的方程f(x)=logax有三个不同的实根,求a的取值范围.
解 由f(x-4)=f(x)知,函数的周期T=4.
又f(x)为偶函数,
∴f(x)=f(-x)=f(4-x),
因此函数y=f(x)的图象关于x=2对称.
又f(2)=f(6)=f(10)=2.
要使方程f(x)=logax有三个不同的实根.
由函数的图象(如图),必须有即解之得故a的取值范围是(,).
规律方法 已知函数有零点(方根有根)求参数值常用的方法:
(1)直接法,直接求解方程得到方程的根,再通过解不等式确定参数范围;
(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;
(3)数形结合,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解.
【训练3】 (1)(2017·东阳一中检测)已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是(  )
A.(-∞,-1) B.(-∞,0)
C.(-1,0) D.[-1,0)
(2)(2016·山东卷)已知函数f(x)=其中m>0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________.
解析 (1)当x>0时,f(x)=3x-1有一个零点x=.
因此当x≤0时,f(x)=ex+a=0只有一个实根,
∴a=-ex(x≤0),则-1≤a<0.
(2)在同一坐标系中,作y=f(x)与y=b的图象.当x>m时,x2-2mx+4m=(x-m)2+4m-m2,
∴要使方程f(x)=b有三个不同的根,则有4m-m2即m2-3m>0.又m>0,解得m>3.
答案 (1)D (2)(3,+∞)
考点四 构建函数模型解决实际问题(易错警示)
【例4】 (1)(2016·四川卷)某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)(  )
A.2018年 B.2019年
C.2020年 D.2021年
(2)(2017·河南省实验中学期中)为了降低能源损耗,某体育馆的外墙需要建造隔热层,体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10,k为常数),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.
①求k的值及f(x)的表达式;
②隔热层修建多厚时,总费用f(x)达到最小?并求最小值.
(1)解析 设2015年后的第n年该公司投入的研发资金为y万元,则y=130(1+12%)n.
依题意130(1+12%)n>200,得1.12n>.
两边取对数,得n·lg1.12>lg 2-lg 1.3
∴n>≈=,∴n≥4,∴从2019年开始,该公司投入的研发资金开始超过200万元.
答案 B
(2)解 ①当x=0时,C=8,∴k=40,
∴C(x)=(0≤x≤10),
∴f(x)=6x+=6x+(0≤x≤10).
②由①得f(x)=2(3x+5)+-10.
令3x+5=t,t∈[5,35],
则y=2t+-10≥2-10=70,当且仅当2t=即t=20时“=”成立,此时由3x+5=20得x=5.
∴函数y=2t+-10在t=20时取得最小值,此时x=5,
因此f(x)的最小值为70.
∴隔热层修建5 cm厚时,总费用f(x)达到最小,最小值为70万元.
规律方法 (1)构建函数模型解决实际问题的常见类型与求解方法:
①构建二次函数模型,常用配方法、数形结合、分类讨论思想求解.
②构建分段函数模型,应用分段函数分段求解的方法.
③构建f(x)=x+(a>0)模型,常用基本不等式、导数等知识求解.
(2)解函数应用题的程序是:①审题;②建模;③解模;④还原.
易错警示 求解过程中不要忽视实际问题是对自变量的限制.
【训练4】 (1)(2017·成都调研)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.
(2)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
①当0≤x≤200时,求函数v(x)的表达式;
②当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x·v(x)可以达到最大,并求出最大值(精确到1辆/时).
(1)解析 由已知条件,得192=eb
又48=e22k+b=eb·(e11k)2
∴e11k===,
设该食品在33 ℃的保鲜时间是t小时,
则t=e33k+b=192 e33k=192(e11k)3=192×=24.
答案 24
(2)解 ①由题意,得当0≤x≤20时,v(x)=60;
当20≤x≤200时,设v(x)=ax+b(a≠0),
所以解得
故当0≤x≤200时,函数v(x)的表达式为
v(x)=
②依题意并由(1)可得
f(x)=
当0≤x≤20时,f(x)为增函数,
所以f(x)在区间[0,20]上的最大值为f(20)=60×20=1 200;
当20=,当且仅当x=200-x,
即x=100时,等号成立.
所以当x=100时,f(x)在区间(20,200]上取得最大值.
综上可知,当x=100时,f(x)在区间[0,200]上取得最大值≈3 333,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时.
[思想方法]
1.转化思想在函数零点问题中的应用
方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.
2.判断函数零点个数的常用方法
(1)通过解方程来判断.
(2)根据零点存在性定理,结合函数性质来判断.
(3)将函数y=f(x)-g(x)的零点个数转化为函数y=f(x)与y=g(x)图象公共点的个数来判断.
3.求解函数应用问题的步骤:
(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;
(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;
(3)解模:求解数学模型,得出数学结论;
(4)还原:将数学问题还原为实际问题.
[易错防范]
1.函数的零点不是点,是方程f(x)=0的实根.
2.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.
3.函数模型应用不当,是常见的解题错误.所以,要正确理解题意,选择适当的函数模型.并根据实际问题,合理确定函数的定义域.
4.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.
第1讲 平面向量的概念及线性运算
最新考纲 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义.
知 识 梳 理
1.向量的有关概念
名称
定义
备注
向量
既有大小又有方向的量;向量的大小叫做向量的长度(或称模)
平面向量是自由向量
零向量
长度为零的向量;其方向是任意的
记作0
单位向量
长度等于1个单位的向量
非零向量a的单位向量为±
平行向量
方向相同或相反的非零向量
0与任一向量平行或共线
共线向量
方向相同或相反的非零向量又叫做共线向量
相等向量
长度相等且方向相同的向量
两向量只有相等或不等,不能比较大小
相反向量
长度相等且方向相反的向量
0的相反向量为0
2.向量的线性运算
向量运算
定 义
法则(或几何意义)
运算律
加法
求两个向量和的运算
(1)交换律:a+b=b+a.
(2)结合律:
(a+b)+c=
a+(b+c)
减法
求a与b的相反向量
-b的和的
运算叫做
a与b的差
a-b=a+(-b)
数乘
求实数λ与向量a的积的运算
(1)|λa|=|λ||a|;
(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0
λ(μa)=λμa;
(λ+μ)a=λa+μa;
λ(a+b)=λa+λb
3.共线向量定理
向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)零向量与任意向量平行.(  )
(2)若a∥b,b∥c,则a∥c.(  )
(3)向量与向量是共线向量,则A,B,C,D四点在一条直线上.(  )
(4)当两个非零向量a,b共线时,一定有b=λa,反之成立.(  )
(5)在△ABC中,D是BC中点,则=(+).(  )
解析 (2)若b=0,则a与c不一定平行.
(3)共线向量所在的直线可以重合,也可以平行,则A,B,C,D四点不一定在一条直线上.
答案 (1)√ (2)× (3)× (4)√ (5)√
2.给出下列命题:①零向量的长度为零,方向是任意的;②若a,b都是单位向量,则a=b;③向量与相等.则所有正确命题的序号是(  )
A.① B.③ C.①③ D.①②
解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量与互为相反向量,故③错误.
答案 A
3.(2017·枣庄模拟)设D为△ABC所在平面内一点,=-+,若=λ(λ∈R),则λ=(  )
A.2 B.3 C.-2 D.-3
解析 由=-+,可得3=-+4,即4-4=-,则4=,即=-4,可得+=-3,故=-3,则λ=-3,故选D.
答案 D
4.(2015·全国Ⅱ卷)设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=____________.
解析 ∵向量a,b不平行,∴a+2b≠0,又向量λa+b与a+2b平行,则存在唯一的实数μ,使λa+b=μ(a+2b)成
立,即λa+b=μa+2μb,则得解得λ=μ=.
答案 
5.(必修4P92A12改编)已知?ABCD的对角线AC和BD相交于O,且=a,=b,则=______,=________(用a,b表示).
解析 如图,==-=b-a,=-=--=-a-b.
答案 b-a -a-b
6.(2017·嘉兴七校联考)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1=________,λ2=________.
解析 如图所示,=-=-=(-)+=-+.又=λ1+λ2,且与不共线,所以λ1=-,λ2=.
答案 - 
考点一 平面向量的概念
【例1】 下列命题中,不正确的是________(填序号).
①若|a|=|b|,则a=b;
②若A,B,C,D是不共线的四点,则“=”是“四边形ABCD为平行四边形”的充要条件;
③若a=b,b=c,则a=c.
解析 ①不正确.两个向量的长度相等,但它们的方向不一定相同.
②正确.∵=,∴||=||且∥,又A,B,C,D是不共线的四点,∴四边形ABCD为平行四边形;反之,若四边形ABCD为平行四边形,则||=||,
∥且,方向相同,因此=.
③正确.∵a=b,∴a,b的长度相等且方向相同,又b=c,∴b,c的长度相等且方向相同,∴a,c的长度相等且方向相同,故a=c.
答案 ①
规律方法 (1)相等向量具有传递性,非零向量的平行也具有传递性.
(2)共线向量即为平行向量,它们均与起点无关.
(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.
(4)非零向量a与的关系:是与a同方向的单位向量.
【训练1】 下列命题中,正确的是________(填序号).
①有向线段就是向量,向量就是有向线段;
②向量a与向量b平行,则a与b的方向相同或相反;
③两个向量不能比较大小,但它们的模能比较大小.
解析 ①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;
②不正确,若a与b中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;
③正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.
答案 ③
考点二 平面向量的线性运算
【例2】 (1)(2017·潍坊模拟)在△ABC中,P,Q分别是AB,BC的三等分点,且AP=AB,BQ=BC.若=a,=b,则=(  )
A.a+b B.-a+b
C.a-b D.-a-b
(2)(2015·北京卷)在△ABC中,点M,N满足=2,=.若=x+y,则x=________;y=________.
解析 (1)=+=+=+
(-)=+=a+b,故选A.
(2)由题中条件得,=+=+=+(-)=-=x+y,所以x=,y=-.
答案 (1)A (2) -
规律方法 (1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.
(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.
【训练2】 (1)如图,正方形ABCD中,点E是DC的中点,点F是BC的一个靠近B点的三等分点,那么等于(  )
A.- B.+
C.+ D.-
(2)在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若=λ+μ,则λ+μ等于(  )
A.1 B. C. D.
解析 (1)在△CEF中,有=+.
因为点E为DC的中点,所以=.
因为点F为BC的一个靠近B点的三等分点,
所以=.
所以=+=+
=-,故选D.
(2)∵=+=+,
∴2=+,即=+.
故λ+μ=+=.
答案 (1)D (2)D
考点三 共线向量定理及其应用
【例3】 设两个非零向量a与b不共线.
(1)若=a+b,=2a+8b,=3(a-b).求证:A,B,D三点共线;
(2)试确定实数k,使ka+b和a+kb共线.
(1)证明 ∵=a+b,=2a+8b,=3(a-b).
∴=+=2a+8b+3(a-b)=2a+8b+3a-3b=5(a+b)=5.
∴,共线,又它们有公共点B,
∴A,B,D三点共线.
(2)解 ∵ka+b与a+kb共线,∴存在实数λ,
使ka+b=λ(a+kb),即ka+b=λa+λkb,
∴(k-λ)a=(λk-1)b.
∵a,b是不共线的两个非零向量,
∴k-λ=λk-1=0,∴k2-1=0,∴k=±1.
规律方法 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.
(2)向量a,b共线是指存在不全为零的实数λ1,λ2,使λ1a+λ2b=0成立.
【训练3】 (1)已知向量=a+3b,=5a+3b,=-3a+3b,则(  )
A.A,B,C三点共线 B.A,B,D三点共线
C.A,C,D三点共线 D.B,C,D三点共线
(2)已知A,B,C是直线l上不同的三个点,点O不在直线l上,则使等式x2+x+=0成立的实数x的取值集合为(  )
A.{0} B.? C.{-1} D.{0,-1}
解析 (1)∵=+=2a+6b=2(a+3b)=2,
∴、共线,又有公共点B,
∴A,B,D三点共线.故选B.
(2)因为=-,所以x2+x+-=0,即=-x2-(x-1),因为A,B,C三点共线,
所以-x2-(x-1)=1,即x2+x=0,解得x=0或x=-1.
答案 (1)B (2)D
[思想方法]
1.向量的线性运算满足三角形法则和平行四边形法则.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.
2.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.
3.对于三点共线有以下结论:对于平面上的任一点O,,不共线,满足=x+y(x,y∈R),则P,A,B共线?x+y=1.
[易错防范]
1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.
2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.
第2讲 平面向量基本定理与坐标表示
最新考纲 1.了解平面向量的基本定理及其意义;2.掌握平面向量的正交分解及其坐标表示;3.会用坐标表示平面向量的加法、减法与数乘运算;4.理解用坐标表示的平面向量共线的条件.
知 识 梳 理
1.平面向量的基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.
其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.
2.平面向量的正交分解
把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.
3.平面向量的坐标运算
(1)向量加法、减法、数乘向量及向量的模
设a=(x1,y1),b=(x2,y2),则
a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=.
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标.
②设A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),||=.
4.平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),则a∥b?x1y2-x2y1=0.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)平面内的任何两个向量都可以作为一组基底.(  )
(2)同一向量在不同基底下的表示是相同的.(  )
(3)设a,b是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2.(  )
(4)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可以表示成=.(  )
(5)在△ABC中,设=a,=b,则向量a与b的夹角为∠ABC.(  )
解析 (1)共线向量不可以作为基底.
(2)同一向量在不同基底下的表示不相同.
(4)若b=(0,0),则=无意义.
(5)向量a与b的夹角为∠ABC的补角.
答案 (1)× (2)× (3)√ (4)× (5)×
2.(2017·东阳月考)已知向量a=(2,4),b=(-1,1),则2a+b等于(  )
A.(5,7) B.(5,9) C.(3,7) D.(3,9)
解析 2a+b=2(2,4)+(-1,1)=(3,9),故选D.
答案 D
3.(2015·全国Ⅰ卷)已知点A(0,1),B(3,2),向量=(-4,-3),则向量=(  )
A.(-7,-4) B.(7,4)
C.(-1,4) D.(1,4)
解析 根据题意得=(3,1),∴=-=(-4,-3)-(3,1)=(-7,-4),故选A.
答案 A
4.(2016·全国Ⅱ卷)已知向量a=(m,4),b=(3,-2),且a∥b,则m=________.
解析 因为a∥b,所以由(-2)×m-4×3=0,解得m=-6.
答案 -6
5.(必修4P101A3改编)已知?ABCD的顶点A(-1,-2),B(3,-1),C(5,6),则顶点D的坐标为________.
解析 设D(x,y),则由=,得(4,1)=(5-x,6-y),即解得
答案 (1,5)
6.(2017·浙江五校联考)已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2+=0.
(1)用,表示为________;
(2)若点D是OB的中点,则四边形OCAD的形状是________.
解析 (1)因为2+=0,所以2(-)+(-)=0,
所以=2-.
(2)如图,D为OB的中点,则=+=-+=(2-).故=,
即DA∥OC,且DA≠OC,故四边形OCAD为梯形.
答案 (1)2- (2)梯形
考点一 平面向量基本定理及其应用
【例1】 (1)(2014·全国Ⅰ卷)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=(  )
A. B. C. D.
(2)(2017·金华调研)如图,在△ABC中,=,P是BN上的一点,若=m+,则实数m的值为________.
解析 (1)如图所示,+=(-)+(+)
=+=+=(+)=.
(2)设=k,k∈R.
因为=+=+k=+k(-)
=+k=(1-k)+,
且=m+,
所以1-k=m,=,解得k=,m=.
答案 (1)A (2)
规律方法 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.
(2)用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.
【训练1】 (1)如图,已知=a,=b,=3,用a,b表示,则=________.
(2)(2017·南京、盐城模拟)如图,在平行四边形ABCD中,AC,BD相交于点O,
E为线段AO的中点.若=λ+μ(λ,μ∈R),则λ+μ=________.
解析 (1)=+=+=+(-)=+=a+b.
(2)由题意可得=+=+,由平面向量基本定理可得λ=,μ=,所以λ+μ=.
答案 (1)a+b (2)
考点二 平面向量的坐标运算
【例2】 (1)已知向量a=(5,2),b=(-4,-3),c=(x,y),若3a-2b+c=0,则c=(  )
A.(-23,-12) B.(23,12)
C.(7,0) D.(-7,0)
(2)(2017·北京西城模拟)向量a,b,c在正方形网格中,如图所示,若c=λa+μb(λ,μ∈R),则=(  )
A.1 B.2 C.3 D.4
解析 (1)3a-2b+c=(23+x,12+y)=0,故x=-23,y=-12,故选A.
(2)以向量a,b的交点为坐标原点,建立如图直角坐标系(设每个小正方形边长为1),A(1,-1),B(6,2),C(5,-1),所以a=(-1,1),b=(6,2),c=(-1,-3),∵c=λa+μb,∴解之得λ=-2且μ=-,因此,==4,故选D.
答案 (1)A (2)D
规律方法 (1)巧借方程思想求坐标:若已知向量两端点的坐标,则应先求出向量的坐标,解题过程中注意方程思想的应用.
(2)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算的代数化,将数与形结合起来,使几何问题转化为数量运算问题.
【训练2】 (1)已知点A(-1,5)和向量a=(2,3),若=3a,则点B的坐标为(  )
A.(7,4) B.(7,14)
C.(5,4) D.(5,14)
(2)(2015·江苏卷)已知向量a=(2,1),b=(1,-2).若ma+nb=(9,-8)(m,n∈R),则m-n的值为________.
解析 (1)设点B的坐标为(x,y),则=(x+1,y-5).
由=3a,得解得
(2)由向量a=(2,1),b=(1,-2),得ma+nb=(2m+n,m-2n)=(9,-8),则解得故m-n=-3.
答案 (1)D (2)-3
考点三 平面向量共线的坐标表示
【例3】 (1)已知平面向量a=(1,2),b=(-2,m),且a∥b,则2a+3b=________.
(2)(必修4P101练习7改编)已知A(2,3),B(4,-3),点P在线段AB的延长线上,且|AP|=|BP|,则点P的坐标为________.
解析 (1)由a=(1,2),b=(-2,m),且a∥b,
得1×m-2×(-2)=0,即m=-4.
从而b=(-2,-4),
那么2a+3b=2(1,2)+3(-2,-4)=(-4,-8).
(2)设P(x,y),由点P在线段AB的延长线上,
则=,得(x-2,y-3)=(x-4,y+3),
即解得
所以点P的坐标为(8,-15).
答案 (1)(-4,-8) (2)(8,-15)
规律方法 (1)两平面向量共线的充要条件有两种形式:①若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0;②若a∥b(b≠0),则a=λb.(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.
【训练3】 (1)(2017·浙江三市十二校联考)已知点A(1,3),B(4,-1),则与同方向的单位向量是(  )
A. B.
C. D.
(2)若三点A(1,-5),B(a,-2),C(-2,-1)共线,则实数a的值为________.
解析 (1)=-=(4,-1)-(1,3)=(3,-4),
∴与同方向的单位向量为=.
(2)=(a-1,3),=(-3,4),根据题意∥,
∴4(a-1)-3×(-3)=0,即4a=-5,∴a=-.
答案 (1)A (2)-
[思想方法]
1.对平面向量基本定理的理解
(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量的坐标表示的基础.
(2)平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组.
(3)用平面向量基本定理可将平面中任一向量分解成形如a=λ1e1+λ2e2的形式.
2.向量共线的作用
向量共线常常用来解决交点坐标问题和三点共线问题,向量共线的充要条件用坐标可表示为x1y2-x2y1=0.
[易错防范]
1.要注意点的坐标和向量的坐标之间的关系,向量的终点坐标减去起点坐标就是向量坐标,当向量的起点是原点时,其终点坐标就是向量坐标..
2.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.
第3讲 平面向量的数量积及其应用
最新考纲 1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量的方法解决某些简单的平面几何问题;6.会用向量方法解决简单的力学问题与其他一些实际问题.
知 识 梳 理
1.平面向量数量积的有关概念
(1)向量的夹角:已知两个非零向量a和b,记=a,=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.
(2)数量积的定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ 叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a=0.
(3)数量积的几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos__θ的乘积.
2.平面向量数量积的性质及其坐标表示
设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.
(1)数量积:a·b=|a||b|cos θ=x1x2+y1y2.
(2)模:|a|==.
(3)夹角:cos θ==.
(4)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0.
(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)?|x1x2+y1y2|≤ ·.
3.平面向量数量积的运算律
(1)a·b=b·a(交换律).
(2)λa·b=λ(a·b)=a·(λb)(结合律).
(3)(a+b)·c=a·c+b·c(分配律).
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)两个向量的夹角的范围是.(  )
(2)向量在另一个向量方向上的投影为数量,而不是向量.(  )
(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.(  )
(4)若a·b>0,则a和b的夹角为锐角;若a·b<0,则a和b的夹角为钝角.(  )
(5)a·b=a·c(a≠0),则b=c.(  )
解析 (1)两个向量夹角的范围是[0,π].
(4)若a·b>0,a和b的夹角可能为0;若a·b<0,a和b的夹角可能为π.
(5)由a·b=a·c(a≠0)得|a||b|cos〈a,b〉=|a||c|cos〈a,c〉,所以向量b和c不一定相等.
答案 (1)× (2)√ (3)√ (4)× (5)×
2.(2015·全国Ⅱ卷)向量a=(1,-1),b=(-1,2),则(2a+b)·a等于(  )
A.-1 B.0 C.1 D.2
解析 因为a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)·a=(1,0)·(1,-1)=1,选C.
答案 C
3.(2017·湖州模拟)已知向量a,b,其中|a|=,|b|=2,且(a-b)⊥a,则向量a和b的夹角是________.
解析 因为(a-b)⊥a,所以(a-b)·a=|a|2-|a||b|·cos〈a,b〉=3-2×cos〈a,b〉=0,解得cos〈a,b〉=,由于〈a,b〉∈[0,π].则向量a,b的夹角为.
答案 
4.(2016·石家庄模拟)已知平面向量a,b的夹角为,|a|=2,|b|=1,则|a+b|=________.
解析 ∵|a+b|2=|a|2+2a·b+|b|2
=4+2|a||b|cos +1=4-2+1=3,∴|a+b|=.
答案 
5.(必修4P104例1改编)已知|a|=5,|b|=4,a与b的夹角θ=120°,则向量b在向量a方向上的投影为________.
解析 由数量积的定义知,b在a方向上的投影为
|b|cos θ=4×cos 120°=-2.
答案 -2
6.(2017·瑞安一中检测)已知a,b,c是同一平面内的三个向量,其中a=(1,2),|b|=1,且a+b与a-2b垂直,则向量a·b=________;a与b的夹角θ的余弦值为________.
解析 ∵(a+b)⊥(a-2b),∴(a+b)·(a-2b)=0,即|a|2-a·b-2|b|2=0,∴5-a·b-2=0,
∴a·b=3,∴cos θ==.
答案 3 
考点一 平面向量的数量积及在平面几何中的应用
【例1】 (1)(2015·四川卷)设四边形ABCD为平行四边形,||=6,||=4,若点M,N满足=3,=2,则·等于(  )
A.20 B. 15 C.9 D.6
(2)(2016·天津卷)已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则·的值为(  )
A.- B. C. D.
解析 (1)取,为一组基底.∵=3,∴=+=+=+,=-=-+,
∴·=(4+3)·(4-3)
=(162-92)=(16×62-9×42)=9,选C.
(2)法一 如图所示,根据已知得,=,所以=+=+,=-,
则·=·(-)
=·-2+2-·
=2-2-·=--×1×1×cos 60°=.故选B.
法二 建立如图所示的平面直角坐标系.
则B,C,
A,所以=(1,0).
易知DE=AC,∠FEC=∠ACE=60°,则EF=AC=,
所以点F的坐标为,
则=,
所以·=·(1,0)=.
故选B.
答案 (1)C (2)B
规律方法 (1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.
(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.
【训练1】 (1)(2017·义乌市调研)在Rt△ABC中,∠A=90°,AB=AC=2,点D为AC的中点,点E满足=,则·=________.
(2)(2017·宁波质检)已有正方形ABCD的边长为1,点E是AB边上的动点,则·的值为________;·的最大值为________.
解析 (1)法一 因为=+=+=+(-)=+,=+=-+.因为AB⊥AC,所以·=0,所以·=·=-||2+
||2=-×22+×22=-2.
法二 建立如图所示的平面直角坐标系,则A(0,0),B(2,0),D(0,1),E,所以=,=(-2,1),所以·=·(-2,1)=×(-2)+×1=-2.
(2)法一 如图,·=(+)·=·+·=2=1,
·=(+)·
=·+·
=·=||·||≤||2=1.
法二 以射线AB,AD为x轴,y轴的正方向建立平面直角坐标系,
则A(0,0),B(1,0),C(1,1),D(0,1),
设E(t,0),t∈[0,1],
则=(t,-1),=(0,-1),
所以·=(t,-1)·(0,-1)=1.因为=(1,0),
所以·=(t,-1)·(1,0)=t≤1,
故·的最大值为1.
法三 由图知,无论E点在哪个位置,在方向上的投影都是CB=1,∴·=||·1=1.
当E运动到B点时,在方向上的投影最大即为DC=1,
∴(·)max=||·1=1.
答案 (1)-2 (2)1 1
考点二 平面向量的夹角与垂直
【例2】 (1)(2016·全国Ⅱ卷)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m=(  )
A.-8 B.-6 C.6 D.8
(2)若向量a=(k,3),b=(1,4),c=(2,1),已知2a-3b与c的夹角为钝角,则k的取值范围是________.
解析 (1)由题知a+b=(4,m-2),因为(a+b)⊥b,所以(a+b)·b=0,
即4×3+(-2)×(m-2)=0,解之得m=8,故选D.
(2)∵2a-3b与c的夹角为钝角,
∴(2a-3b)·c<0,
即(2k-3,-6)·(2,1)<0,解得k<3.
又若(2a-3b)∥c,
则2k-3=-12,即k=-.
当k=-时,2a-3b=(-12,-6)=-6c,
即2a-3b与c反向.
综上,k的取值范围为∪.
答案 (1)D (2)∪
规律方法 (1)根据平面向量数量积的性质:若a,b为非零向量,cos θ=(夹角公式),a⊥b?a·b=0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.
(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.
【训练2】 (1)(2016·全国Ⅲ卷)已知向量=,=,则∠ABC=(  )
A.30° B.45° C.60° D.120°
(2)(2016·全国Ⅰ卷)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________.
解析 (1)||=1,||=1,cos∠ABC==.由〈,〉∈[0°,180°],得∠ABC=30°.
(2)由|a+b|2=|a|2+|b|2,得a⊥b,所以m×1+1×2=0,得m=-2.
答案 (1)A (2)-2
考点三 平面向量的模及其应用
【例3】 (1)(2017·云南统一检测)已知平面向量a与b的夹角等于,若|a|=2,|b|=3,则|2a-3b|=(  )
A. B.
C.57 D.61
(2)(2016·浙江卷)已知向量a,b,|a|=1,|b|=2.若对任意单位向量e,均有|a·e|+|b·e|≤,则a·b的最大值是________.
解析 (1)由题意可得a·b=|a|·|b|cos=3,
所以|2a-3b|====,故选B.
(2)由已知可得:
≥|a·e|+|b·e|≥|a·e+b·e|=|(a+b)·e|
由于上式对任意单位向量e都成立.
∴≥|a+b|成立.
∴6≥(a+b)2=a2+b2+2a·b=12+22+2a·b.
即6≥5+2a·b,∴a·b≤.
答案 (1)B (2)
规律方法 (1)求向量的模的方法:①公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;②几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.
(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.
【训练3】 (1)在平面直角坐标系中,O为原点,A(-1,0),B(0,),C(3,0),动点D满足||=1,则|++|的最大值是________.
(2)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3|的最小值为________.
解析 (1)设D(x,y),由||=1,得(x-3)2+y2=1,
向量++=(x-1,y+),
故|++|=的最大值为圆(x-3)2+y2=1上的动点到点(1,-)距离的最大值,其最大值为圆(x-3)2+y2=1的圆心(3,0)到点(1,-)的距离加上圆的半径,即+1=1+.
(2)以D为原点,分别以DA,DC所在直线为x轴,y轴建立如图所示的平面直角坐标系,设DC=a,DP=x(0≤x≤a),∴D(0,0),A(2,0),C(0,a),B(1,a),P(0,x).=(2,-x),=(1,a-x),32∴+3=(5,3a-4x),|+3|2=25+(3a-4x)2≥25,当x=时取等号.∴|+3|的最小值为5.
答案 (1)1+ (2)5
[思想方法]
1.计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,与图形有关的不要忽略数量积几何意义的应用.
2.求向量模的常用方法:利用公式|a|2=a2,将模的运算转化为向量的数量积的运算.
3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.
[易错防范]
1.数量积运算律要准确理解、应用,例如,a·b=a·c(a≠0)不能得出b=c,两边不能约去一个向量.
2.两个向量的夹角为锐角,则有a·b>0,反之不成立;两个向量夹角为钝角,则有a·b<0,反之也不成立.
第4讲 数系的扩充与复数的引入
最新考纲 1.理解复数的基本概念;2.理解复数相等的充要条件;3.了解复数的代数表示法及其几何意义;4.会进行复数代数形式的四则运算;5.了解复数代数形式的加、减运算的几何意义.
知 识 梳 理
1.复数的有关概念
内容
意义
备注
复数的概念
形如a+bi(a∈R,b∈R)的数叫复数,其中实部为a,虚部为b
若b=0,则a+bi为实数;若a=0且b≠0,则a+bi为纯虚数
复数相等
a+bi=c+di?a=c且b=d(a,b,c,d∈R)
共轭复数
a+bi与c+di共轭?a=c且b=-d(a,b,c,d∈R)
复平面
建立平面直角坐标系来表示复数的平面叫做复平面,x轴叫实轴,y轴叫虚轴
实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数
复数的模
设对应的复数为z=a+bi,则向量的长度叫做复数z=a+bi的模
|z|=|a+bi|=
2.复数的几何意义
复数集C和复平面内所有的点组成的集合是一一对应的,
复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即
(1)复数z=a+bi复平面内的点Z(a,b)(a,b∈R).
(2)复数z=a+bi(a,b∈R)平面向量.
3.复数的运算
设z1=a+bi,z2=c+di(a,b,c,d∈R),则
①加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;
②减法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;
③乘法:z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i;
④除法:==
=(c+di≠0).
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)复数z=a+bi(a,b∈R)中,虚部为bi.(  )
(2)复数中有相等复数的概念,因此复数可以比较大小.(  )
(3)原点是实轴与虚轴的交点.(  )
(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.(  )
解析 (1)虚部为b;(2)虚数不可以比较大小
答案 (1)× (2)× (3)√ (4)√
2.(2016·全国Ⅰ卷)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=(  )
A.-3 B.-2 C.2 D.3
解析 因为(1+2i)(a+i)=a-2+(2a+1)i,所以a-2=2a+1,解得a=-3,故选A.
答案 A
3.(选修2-2P112A2改编)在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是(  )
A.4+8i B.8+2i C.2+4i D.4+i
解析 ∵A(6,5),B(-2,3),∴线段AB的中点C(2,4),则点C对应的复数为z=2+4i.
答案 C
4.(2015·全国Ⅱ卷)若a为实数,且=3+i,则a等于(  )
A.-4 B.-3 C.3 D.4
解析 由=3+i,得2+ai=(3+i)(1+i)=2+4i,即ai=4i,因为a为实数,所以a=4.故选D.
答案 D
5.已知(1+2i)=4+3i,则z=________.
解析 ∵z==
==2-i,
∴z=2+i.
答案 2+i
6.(2017·温州调研)设a∈R,若复数(i为虚数单位)的实部和虚部相等,则a=________,||=________.
解析 复数==,由于复数(i为虚数单位)的实部和虚部相等,则a+1=1-a,解得a=0,则z=-i,则|z|==.
答案 0 
考点一 复数的有关概念
【例1】 (1)i为虚数单位,i607的共轭复数为(  )
A.i B.-i C.1 D.-1
(2)(2017·东阳中学期末)设i是虚数单位,复数是纯虚数,则实数a=(  )
A.2 B. C.- D.-2
解析 (1)因为i607=(i2)303·i=-i,-i的共轭复数为i.所以应选A.
(2)∵==是纯虚数,∴2a-1=0且a+2≠0,∴a=,故选B.
答案 (1)A (2)B
规律方法 (1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.
(2)解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
【训练1】 (1)(2016·河南六市联考)如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于(  )
A.-6 B. C.- D.2
(2)设复数a+bi(a,b∈R)的模为,则(a+bi)(a-bi)=________.
解析 (1)由==,由2-2b=b+4,得b=-.
(2)因为复数a+bi(a,b∈R)的模为,即=,所以(a+bi)(a-bi)=a2-b2i2=a2+b2=3.
答案 (1)C (2)3
考点二 复数的几何意义
【例2】 (1)(2014·全国Ⅱ卷)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=(  )
A.-5 B.5 C.-4+i D.-4-i
(2)(2016·全国Ⅱ卷)已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是(  )
A.(-3,1) B.(-1,3)
C.(1,+∞) D.(-∞,-3)
解析 (1)由题意得z2=-2+i,∴z1z2=(2+i)(-2+i)=-5,故选A.
(2)由复数z=(m+3)+(m-1)i在复平面内对应的点在第四象限得解得-3答案 (1)A (2)A
规律方法 因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.
【训练2】 (1)(2016·邯郸一中月考)复数z=i(1+i)在复平面内所对应点的坐标为(  )
A.(1,1) B.(-1,-1) C.(1,-1) D.(-1,1)
(2)(2016·北京卷)设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=________.
解析 (1)因为z=i(1+i)=-1+i,故复数z=i(1+i)在复平面内所对应点的坐标为(-1,1),故选D.
(2)(1+i)(a+i)=(a-1)+(a+1)i,由已知得a+1=0,解得a=-1.
答案 (1)D (2)-1
考点三 复数的运算
【例3】 (1)(2016·全国Ⅲ卷)若z=1+2i,则=(  )
A.1 B.-1 C.i D.-i
(2)(2015·全国Ⅱ卷)若a为实数,且(2+ai)(a-2i)=-4i,则a=(  )
A.-1 B.0 C.1 D.2
解析 (1)==i.
(2)因为a为实数,且(2+ai)(a-2i)=4a+(a2-4)i=-4i,得4a=0且a2-4=-4,解得a=0,故选B.
答案 (1)C (2)B
规律方法 (1)复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i的幂写成最简形式.
(2)记住以下结论,可提高运算速度:
①(1±i)2=±2i;②=i;③=-i;④=b-ai;⑤i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N).
【训练3】 (1)(2016·北京卷)复数=(  )
A.i B.1+i C.-i D.1-i
(2)+=________.
解析 (1)====i,故选A.
(2)原式=+
=i6+=-1+i.
答案 (1)A (2)-1+i
[思想方法]
1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.
2.复数z=a+bi(a,b∈R)是由它的实部和虚部唯一确定的,两个复数相等的充要条件是把复数问题转化为实数问题的主要方法.对于一个复数z=a+bi(a,b∈R),既要从整体的角度去认识它,把复数看成一个整体;又要从实部、虚部的角度分解成两部分去认识.
[易错防范]
1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.
2.两个虚数不能比较大小.
3.注意复数的虚部是指在a+bi(a,b∈R)中的实数b,即虚部是一个实数.
专题探究课四 高考中立体几何问题的热点题型
高考导航 1.立体几何是高考的重要内容,每年都有选择题或填空题或解答题考查.小题主要考查学生的空间观念,空间想象能力及简单计算能力.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).
热点一 空间点、线、面的位置关系及空间角的计算(规范解答)
空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.
【例1】 (满分12分)(2017·湖州模拟)如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.
(1)求证:平面PBD⊥平面COD;
(2)求直线PD与平面BDC所成角的正弦值.
满分解答 (1)证明 ∵OB=OC,又∵∠ABC=,
∴∠OCB=,∴∠BOC=.
∴CO⊥AB.2分
又PO⊥平面ABC,
OC?平面ABC,∴PO⊥OC.
又∵PO,AB?平面PAB,PO∩AB=O,
∴CO⊥平面PAB,即CO⊥平面PDB.4分
又CO?平面COD,
∴平面PDB⊥平面COD.6分
(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.
设OA=1,则PO=OB=OC=2,DA=1.
则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),
∴=(0,-1,-1),=(2,-2,0),=(0,-3,1).
8分
设平面BDC的一个法向量为n=(x,y,z),
∴∴
令y=1,则x=1,z=3,∴n=(1,1,3).10分
设PD与平面BDC所成的角为θ,
则sin θ=
==.
即直线PD与平面BDC所成角的正弦值为.
12分
 
?得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,先证线面垂直,再证两面垂直.
?得关键分:解题过程不可忽视的关键点,有则给分,无则没分,如第(1)问中证线面垂直不可漏“CO⊥平面PDB”.
?得计算分:解题过程中计算准确是得满分的根本保证.
如第(2)问中求法向量n,计算线面角正弦值sin θ.
利用向量求空间角的步骤
第一步:建立空间直角坐标系.
第二步:确定点的坐标.
第三步:求向量(直线的方向向量、平面的法向量)坐标.
第四步:计算向量的夹角(或函数值).
第五步:将向量夹角转化为所求的空间角.
第六步:反思回顾.查看关键点、易错点和答题规范.
【训练1】 如图所示,在多面体A1B1D1-DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.
(1)证明:EF∥B1C.
(2)求二面角E-A1D-B1的余弦值.
(1)证明 由正方形的性质可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C∥A1D,又A1D?面A1DE,B1C?面A1DE,于是B1C∥面A1DE.又B1C?面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.
(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以,,为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.
设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量=,=(0,1,-1),由n1⊥,
n1⊥得
(-1,1,1)为其一组解,所以可取n1=(-1,1,1).
设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量=(1,0,0),=(0,1,-1),由此同理可得n2=(0,1,1).
则cos〈n1,n2〉===.
所以二面角E-A1D-B1的余弦值为.
热点二 立体几何中的探索性问题
此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:
(1)根据条件作出判断,再进一步论证;
(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.
【例2】 (2016·北京卷)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.
(1)求证:PD⊥平面PAB;
(2)求直线PB与平面PCD所成角的正弦值;
(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.
(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,
所以AB⊥平面PAD,所以AB⊥PD.
又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.
(2)解 取AD的中点O,连接PO,CO.
因为PA=PD,所以PO⊥AD.
因为PO?平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.
因为CO?平面ABCD,所以PO⊥CO.
因为AC=CD,所以CO⊥AD.
如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).
设平面PCD的一个法向量为n=(x,y,z),则

令z=2,则x=1,y=-2.所以n=(1,-2,2).
又=(1,1,-1),所以cos〈n,〉==-.
所以直线PB与平面PCD所成角的正弦值为.
(3)解 设M是棱PA上一点,则存在λ∈[0,1],使得=λ.
因此点M(0,1-λ,λ),=(-1,-λ,λ).
因为BM?平面PCD,所以要使BM∥平面PCD,
则·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.
所以在棱PA上存在点M,使得BM∥平面PCD,此时=.
探究提高 (1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.
(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.
【训练2】 (2015·天津卷改编)在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.
(1)求证:MN∥平面ABCD;
(2)求二面角D1-AC-B1的正弦值;
(3)在棱A1B1上是否存在点E,使得直线NE与平面ABCD所成角的正弦值为?若存在,求出线段A1E的长;若不存在,请说明理由.
解 如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2),又因为M,N分别为B1C和D1D的中点,
所以M,N(1,-2,1).
(1)证明 依题意,可得n=(0,0,1)为平面ABCD的一个法向量,=,由此可得·n=0,又因为直线MN?平面ABCD,所以MN∥平面ABCD.
(2)=(1,-2,2),=(2,0,0),设n1=(x1,y1,z1)为平面ACD1的一个法向量,则

不妨设z1=1,可得n1=(0,1,1).
设n2=(x2,y2,z2)为平面ACB1的一个法向量,则
又=(0,1,2),
得不妨设z2=1,可得n2=(0,-2,1).
因此有cos〈n1,n2〉==-,
于是sin〈n1,n2〉=,
所以二面角D1-AC-B1的正弦值为.
(3)假设存在点E,使得NE与平面ABCD所成角的正弦值为.依题意,可设=λ,其中λ∈[0,1],
则E(0,λ,2),从而=(-1,λ+2,1),又n=(0,0,1)为平面ABCD的一个法向量,
由已知,得|cos〈,n〉|=
==,
整理得λ2+4λ-3=0,解得λ=-2±.
又因为λ∈[0,1],所以λ=-2,
因此存在点E,满足题设条件,
且线段A1E=-2.
热点三 立体几何中的折叠问题
将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.
【例3】 (2016·全国Ⅱ卷)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.
(1)证明:D′H⊥平面ABCD;
(2)求二面角B-D′A-C的正弦值.
(1)证明 由已知得AC⊥BD,AD=CD.
又由AE=CF得=,故AC∥EF.
因此EF⊥HD,从而EF⊥D′H.
由AB=5,AC=6得DO=BO==4.
由EF∥AC得==.
所以OH=1,D′H=DH=3.
于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.
又D′H⊥EF,而OH∩EF=H,
所以D′H⊥平面ABCD.
(2)解 如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D′(0,0,3),=(3,-4,0),=(6,0,0),=(3,1,3).
设m=(x1,y1,z1)是平面ABD′的一个法向量,
则即
所以可取m=(4,3,-5).
设n=(x2,y2,z2)是平面ACD′的一个法向量,
则即
所以可取n=(0,-3,1).
于是cos〈m,n〉===-.
sin〈m,n〉=.
因此二面角B-D′A-C的正弦值是.
探究提高 立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.
【训练3】 (2015·陕西卷)如图1,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.
(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC.
又CD∥BE,所以CD⊥平面A1OC.
(2)解 由已知,平面A1BE⊥平面BCDE,
又由(1)知,BE⊥OA1,BE⊥OC,
所以∠A1OC为二面角A1-BE-C的平面角,
所以∠A1OC=.
如图,以O为原点,,,分别为x轴、y轴、z轴正方向建立空间直角坐标系,
因为A1B=A1E=BC=ED=1,BC∥ED,
所以B,E,A1,C,
得=,=,==(-,0,0).
设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则得取n1=(1,1,1); 得取n2=(0,1,1),
从而cos θ=|cos〈n1,n2〉|==,
即平面A1BC与平面A1CD夹角的余弦值为.
第1讲 空间几何体的结构、三视图和直观图
最新考纲 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.
知 识 梳 理
1.简单多面体的结构特征
(1)棱柱的侧棱都平行且相等,上、下底面是全等且平行的多边形;
(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形;
(3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.
2.旋转体的形成
几何体
旋转图形
旋转轴
圆柱
矩形
任一边所在的直线
圆锥
直角三角形
任一直角边所在的直线
圆台
直角梯形
垂直于底边的腰所在的直线

半圆
直径所在的直线
3.三视图
(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.
(2)三视图的画法
①基本要求:长对正,高平齐,宽相等.
②在画三视图时,重叠的线只画一条,挡住的线要画成虚线.
4.直观图
空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.
(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.(  )
(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.(  )
(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.(  )
(4)正方体、球、圆锥各自的三视图中,三视图均相同.(  )
解析 (1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.
(2)反例:如图所示不是棱锥.
(3)用斜二测画法画水平放置的∠A时,把x,y轴画成相交成45°或135°,平行于x轴的线还平行于x轴,平行于y轴的线还平行于y轴,所以∠A也可能为135°.
(4)正方体和球的三视图均相同,而圆锥的正视图和侧视图相同,且为等腰三角形, 其俯视图为圆心和圆.
答案 (1)× (2)× (3)× (4)×
2.某空间几何体的正视图是三角形,则该几何体不可能是(  )
A.圆柱 B.圆锥 C.四面体 D.三棱柱
解析 由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.
答案 A
3.如图,长方体ABCD-A′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是(  )
A.棱台      B.四棱柱
C.五棱柱 D.六棱柱
解析 由几何体的结构特征,剩下的几何体为五棱柱.
答案 C
4.(2016·天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为(  )
解析 先根据正视图和俯视图还原出几何体,再作其侧视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧视图为图②.
答案 B
5.正△AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.
解析 画出坐标系x′O′y′,作出△OAB的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=DB(D为OA的中点),
∴S△O′A′B′=×S△OAB=×a2=a2.
答案 a2
6.(2017·浙江五校联考)如图,正方体ABCD-A1B1C1D1的棱长为4,P为BC的中点,Q为线段CC1上的动点(异于C点),过点A,P,Q的平面截该正方体所得的截面记为M.
当CQ=________时(用数值表示),M为等腰梯形;
当CQ=4时,M的面积为________.
解析 连接AP交DC的延长线于点N,当点Q为CC1的中点,即CQ=2时,连接D1N,则D1N过点Q,PQ綉AD1,显然AP=D1Q,M为等腰梯形;当CQ=4时,NQ交棱DD1延长线上一点(设为G),且GD1=4,AG过A1D1的中点,此时M为菱形,其对角线长分别为4和4,故其面积为8.
答案 2 8
考点一 空间几何体的结构特征
【例1】 (1)给出下列命题:
①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;
②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;
③棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确命题的个数是(  )
A.0 B.1 C.2 D.3
(2)以下命题:
①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;
②圆柱、圆锥、圆台的底面都是圆面;
③一个平面截圆锥,得到一个圆锥和一个圆台.
其中正确命题的个数为(  )
A.0 B.1 C.2 D.3
解析 (1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.
(2)由圆台的定义可知①错误,②正确.对于命题③,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,③不正确.
答案 (1)A (2)B
规律方法 (1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例即可.
(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.
(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.
【训练1】 下列结论正确的是(  )
A.各个面都是三角形的几何体是三棱锥
B.夹在圆柱的两个平行截面间的几何体还是一个旋转体
C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥
D.圆锥的顶点与底面圆周上任意一点的连线都是母线
解析 如图1知,A不正确.如图2,两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.
若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,C错误.由母线的概念知,选项D正确.
答案 D
考点二 空间几何体的三视图(多维探究)
命题角度一 由空间几何体的直观图判断三视图
【例2-1】 一几何体的直观图如图,下列给出的四个俯视图中正确的是(  )
解析 该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选项B适合.
答案 B
命题角度二 由三视图判定几何体
【例2-2】 (1)(2014·全国Ⅰ卷)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是(  )
A.三棱锥    B.三棱柱
C.四棱锥    D.四棱柱
(2)(2015·北京卷)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为(  )
A.1 B. C. D.2
解析 (1)由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱,故选B.
(2)由题中三视图知,此四棱锥的直观图如图所示,其中PC⊥平面ABCD,PC=1,底面四边形ABCD为正方形且边长为1,最长棱长PA==.
答案 (1)B (2)C
规律方法 (1)由实物图画三视图或判断选择三视图,按照“正侧一样高,正俯一样长,俯侧一样宽”的特点确认.
(2)根据三视图还原几何体.
①对柱、锥、台、球的三视图要熟悉.
②明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.
③根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.
提醒 对于简单组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的组成方式,特别应注意它们的交线的位置,区分好实线和虚线的不同.
【训练2】 (1)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的侧视图为(  )
(2)如图,网格纸的各小格都是正方形,粗实线画出的是一个锥体的侧视图和俯视图,则该锥体的正视图可能是(  )
解析 (1)还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.故选B.
(2)由俯视图和侧视图可知原几何体是四棱锥,底面是长方形,内侧的侧面垂直于底面,所以正视图为A.
答案 (1)B (2)A
考点三 空间几何体的直观图
【例3】 已知等腰梯形ABCD,上底CD=1,腰AD=CB=,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.
解析 如图所示,作出等腰梯形ABCD的直观图:
因为OE==1,
所以O′E′=,E′F=,
则直观图A′B′C′D′的面积S′=×=.
答案 
规律方法 (1)画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y轴的线段长度减半,平行于x轴和z轴的线段长度不变)来掌握.对直观图的考查有两个方向,一是已知原图形求直观图的相关量,二是已知直观图求原图形中的相关量.
(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=S原图形.
【训练3】 (2017·余姚一中检测)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.
解析 如图1,在直观图中,过点A作AE⊥BC,垂足为E.
在Rt△ABE中,AB=1,∠ABE=45°,∴BE=.
又四边形AECD为矩形,AD=EC=1.
∴BC=BE+EC=+1.
由此还原为原图形如图2所示,是直角梯形A′B′C′D′.
在梯形A′B′C′D′中,A′D′=1,B′C′=+1,A′B′=2.
∴这块菜地的面积S=(A′D′+B′C′)·A′B′=××2=2+.
答案 2+
[思想方法]
1.画三视图的三个原则:
(1)画法规则:“长对正,宽相等,高平齐”.
(2)摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方.
(3)实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出.
2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.
[易错防范]
1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.
2.空间几何体不同放置时其三视图不一定相同.
3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.
基础巩固题组
(建议用时:30分钟)
一、选择题
1.关于空间几何体的结构特征,下列说法不正确的是(  )
A.棱柱的侧棱长都相等
B.棱锥的侧棱长都相等
C.三棱台的上、下底面是相似三角形
D.有的棱台的侧棱长都相等
解析 根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.
答案 B
2.如图所示的几何体是棱柱的有(  )
A.②③⑤ B.③④⑤
C.③⑤ D.①③
解析 由棱柱的定义知③⑤两个几何体是棱柱.
答案 C
3.(2017·衡水中学月考)将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为(  )
解析 易知侧视图的投影面为矩形,又AF的投影线为虚线,即为左下角到右上角的对角线,∴该几何体的侧视图为选项D.
答案 D
4.如图是一几何体的直观图、正视图和俯视图,该几何体的侧视图为(  )
解析 由直观图和正视图、俯视图可知,该几何体的侧视图应为面PAD,且EC投影在面PAD上且为实线,点E的投影点为PA的中点,故B正确.
答案 B
5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为(  )
A.6      B.4
C.6      D.4
解析 如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A-BCD,最长的棱为AD==6.
答案 C
6.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是(  )
A.①③ B.①④ C.②④ D.①②③④
解析 由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.
答案 A
7.(2015·全国Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(  )
A. B.
C. D.
解析 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V1=××1×1×1=.剩余部分的体积V2=13-=.因此,=.
答案 D
8.(2017·东阳调研)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为(  )
解析 由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD.
所以该三棱锥的侧视图可能为选项D.
答案 D
二、填空题
9.(2017·台州调研)直观图(如图)中,四边形O′A′B′C′为菱形且边长为2 cm,则在xOy原坐标系中四边形为________(填图形形状);面积为________cm2.
解析 将直观图恢复到平面图形(如图),
是OA=2 cm,OC=4 cm的矩形,SOABC=2×4=8(cm2).
答案 矩形 8
10.(2017·兰州模拟)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于________.
解析 由题知此正方体的正视图与侧视图是一样的,正视图的面积与侧视图的面积相等为.
答案 
11.某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.
解析 由题中三视图可知,三棱锥的直观图如图所示,其中PA⊥平面ABC,M为AC的中点,且BM⊥AC.故该三棱锥的最长棱为PC.在Rt△PAC中,PC===2.
答案 2
12.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正视图与侧视图的面积的比值为________.
解析 三棱锥P-ABC的正视图与侧视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.
答案 1
13.(2017·金华调研)在三棱锥P-ABC中,PB=6,AC=3,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC.则截面的周长为________.
解析 过点G作EF∥AC交PA,PC于点E,F,过E,F分别作EN∥PB,FM∥PB分别交AB,BC于点N,M,连接MN,∴四边形EFMN是平行四边形,∴=,即EF=MN=2,==,即FM=EN=2,∴截面的周长为2×4=8.
答案 8
能力提升题组
(建议用时:15分钟)
14.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为(  )
A.①和② B.③和① C.④和③ D.④和②
解析 如图,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④,俯视图为②.
答案 D
15.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是(  )
A.4 B.5 C.3 D.3
解析 由三视图知几何体的直观图如图所示,计算可知线段AF最长,且AF==3.
答案 D
16.(2017·绍兴一中检测)已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为________.
解析 如图,过C′作y′轴的平行线C′D′,与x′轴交于点D′.则C′D′==a.又C′D′是原△ABC的高CD的直观图,所以CD=a.
故S△ABC=AB·CD=a2.
答案 a2
17.(2016·北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为________.
解析 由题中三视图可画出长为2、宽为1、高为1的长方体,将该几何体还原到长方体中,如图所示,该几何体为四棱柱ABCD-A′B′C′D′.
故该四棱柱的体积V=Sh=×(1+2)×1×1=.
答案 
18.(2017·宁波检测)正六棱柱ABCDEF-A1B1C1D1E1F1的底面边长为,侧棱长为1,则动点从A沿表面移动到E1时的最短路程是________;动点从A沿表面移动到D1时的最短路程为________.
解析 侧面展开图如图(1),(2),∴从A沿表面到E1的最短路
程为AE1===3.从A沿表面到D1的最短路程为AD1===.
   
(1)            (2)
答案 3 
第2讲 空间几何体的表面积与体积
最新考纲 了解球、棱柱、棱锥、台的表面积和体积的计算公式.
知 识 梳 理
1.多面体的表(侧)面积
多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面展开图
侧面积公式
S圆柱侧=2πrl
S圆锥侧=πrl
S圆台侧=π(r1+r2)l
3.柱、锥、台和球的表面积和体积
表面积
体积
柱体(棱柱和圆柱)
S表面积=S侧+2S底
V=Sh
锥体(棱锥和圆锥)
S表面积=S侧+S底
V=Sh
台体(棱台和圆台)
S表面积=S侧+S上+S下
V=(S上+S下+)h

S=4πR2
V=πR3
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)锥体的体积等于底面面积与高之积.(  )
(2)球的体积之比等于半径比的平方.(  )
(3)台体的体积可转化为两个锥体的体积之差.(  )
(4)已知球O的半径为R,其内接正方体的边长为a,则R=a.(  )
解析 (1)锥体的体积等于底面面积与高之积的三分之一,故不正确.
(2)球的体积之比等于半径比的立方,故不正确.
答案 (1)× (2)× (3)√ (4)√
2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为(  )
A.1 cm B.2 cm C.3 cm D. cm
解析 S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2(cm).
答案 B
3.(2017·绍兴一中月考)一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.3π B.4π C.2π+4 D.3π+4
解析 由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.
表面积为2×2+2××π×12+π×1×2=4+3π.
答案 D
4.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为(  )
A.12π B.π
C.8π D.4π
解析 设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=a,即R=.所以球的表面积S=4πR2=12π.
答案 A
5.(2016·天津卷)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3.
解析 根据三视图可知该四棱锥的底面是底边长为2 m,高为1 m的平行四边形,四棱锥的高为3 m.
故该四棱锥的体积V=×2×1×3=2 (m3).
答案 2
6.(2016·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm2,体积是________cm3.
解析 由三视图可知,该几何体为两个相同长方体组合,长方体的长、宽、高分别为4 cm、2 cm、2 cm,其直观图如下:
其体积V=2×2×2×4=32(cm3),由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为S=2(2×2×2+2×4×4)-2×2×2=2×(8+32)-8=72(cm2).
答案 72 32
考点一 空间几何体的表面积
【例1】 (1)某几何体的三视图如图所示,则该几何体的表面积等于(  )
A.8+2 B.11+2
C.14+2 D.15
(2)(2016·全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是(  )
A.17π B.18π
C.20π D.28π
解析 (1)由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.
直角梯形斜腰长为=,所以底面周长为4+,侧面积为2×(4+)=8+2,两底面的面积和为2××1×(1+2)=3.
所以该几何体的表面积为8+2+3=11+2.
(2)由三视图知该几何体为球去掉了球所剩的几何体(如图).
设球的半径为R,
则×πR3=,R=2.
故几何体的表面积S=×4πR2+πR2=17 π.
答案 (1)B (2)A
规律方法 空间几何体表面积的求法.
(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.
(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.
(3)旋转体的表面积问题注意其侧面展开图的应用.
【训练1】 (2016·全国Ⅲ卷)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为(  )
A.18+36 B.54+18
C.90 D.81
解析 由几何体的三视图可知,该几何体是底面为正方形的斜平行六面体.
由题意可知该几何体底面边长为3,高为6,所以侧棱长为=3.故该几何体的表面积S=32×2+(3×6)×2+(3×3)×2=54+18.
答案 B
考点二 空间几何体的体积
【例2】 (1)(2016·山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(  )
A.+π B.+π
C.+π D.1+π
(2)(2016·浙江卷)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是________.
解析 (1)由三视图知该四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为,从而该几何体的体积为×12×1+×π×=+π.
(2)设PD=DA=x,
在△ABC中,AB=BC=2,∠ABC=120°,
∴AC=
==2,
∴CD=2-x,且∠ACB=(180°-120°)=30°,
∴S△BCD=BC·DC×sin∠ACB=×2×(2-x)×=(2-x).
要使四面体体积最大,当且仅当点P到平面BCD的距离最大,而P到平面BCD的最大距离为x.
则V四面体PBCD=×(2-x)x=[-(x-)2+3],由于0<x<2,故当x=时,V四面体PBCD的最大值为×3=.
答案 (1)C (2)
规律方法 空间几何体体积问题的常见类型及解题策略
(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.
(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.
(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.
【训练2】 (1)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为(  )
A. B. C.2π D.4π
(2)(2015·浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积是________cm3.
解析 (1)绕等腰直角三角形的斜边所在的直线旋转一周形成的曲面围成的几何体为两个底面重合,等体积的圆锥的组合体,如图所示.每一个圆锥的底面半径和高都为,故所求几何体的体积V=2××2π×=.
(2)由三视图可知该几何体是由棱长为2 cm的正方体与底面边长为2 cm正方形、高为2 cm的正四棱锥组成.
又正方体的体积V1=23=8(cm3),
正四棱锥的体积V2=×22×2=(cm3).
所以该几何体的体积V=V1+V2=(cm3).
答案 (1)B (2)
考点三 多面体与球的切、接问题(典例迁移)
【例3】 (经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是(  )
A.4π B. C.6π D.
解析 由AB⊥BC,AB=6,BC=8,得AC=10.
要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.
则×6×8=×(6+8+10)·r,所以r=2.
2r=4>3,不合题意.
球与三棱柱的上、下底面相切时,球的半径R最大.
由2R=3,即R=.
故球的最大体积V=πR3=π.
答案 B
【迁移探究1】 若本例中的条件变为“直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上”,若AB=3,AC=4,AB⊥AC,AA1=12,求球O的表面积.
解 将直三棱柱补形为长方体ABEC-A1B1E1C1,
则球O是长方体ABEC-A1B1E1C1的外接球.
∴体对角线BC1的长为球O的直径.
因此2R==13.
故S球=4πR2=169π.
【迁移探究2】 若本例中的条件变为“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.
解 如图,设球心为O,半径为r,
则在Rt△AOF中,(4-r)2+()2=r2,
解得r=,
则球O的体积V球=πr3=π×=.
规律方法 空间几何体与球接、切问题的求解方法.
(1)与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.
(2)若球面上四点P,A,B,C中PA,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.
[思想方法]
1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.
2.求体积的两种方法:(1)割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2)等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.
[易错防范]
1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.
2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.
3.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.
第3讲 空间点、直线、平面之间的位置关系
最新考纲 1.理解空间直线、平面位置关系的定义;2.了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.
知 识 梳 理
1.平面的基本性质
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
(2)公理2:过不在同一条直线上的三点,有且只有一个平面.
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
2.空间点、直线、平面之间的位置关系
直线与直线
直线与平面
平面与平面
平行关系
图形
语言
符号
语言
a∥b
a∥α
α∥β
相交关系
图形
语言
符号
语言
a∩b=A
a∩α=A
α∩β=l
独有关系
图形
语言
符号
语言
a,b是异面直线
a?α
3.平行公理(公理4)和等角定理
平行公理:平行于同一条直线的两条直线互相平行.
等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
4.异面直线所成的角
(1)定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
(2)范围:.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(  )
(2)两两相交的三条直线最多可以确定三个平面.(  )
(3)如果两个平面有三个公共点,则这两个平面重合.(  )
(4)若直线a不平行于平面α,且a?α,则α内的所有直线与a异面.(  )
解析 (1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误.
(3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误.
(4)由于a不平行于平面α,且a?α,则a与平面α相交,故平面α内有与a相交的直线,故错误.
答案 (1)× (2)√ (3)× (4)×
2.(必修2P52B1(2)改编)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为(  )
A.30° B.45°
C.60° D.90°
解析 连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求的角.
又B1D1=B1C=D1C,∴∠D1B1C=60°.
答案 C
3.在下列命题中,不是公理的是(  )
A.平行于同一个平面的两个平面相互平行
B.过不在同一条直线上的三点,有且只有一个平面
C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内
D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
解析 选项A是面面平行的性质定理,是由公理推证出来的.
答案 A
4.(2016·山东卷)已知直线a,b分别在两个不同的平面α ,β内,则“直线a和直线b相交”是“平面α和平面β相交”的(  )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析 由题意知a?α,b?β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.
答案 A
5.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是________.
答案 b与α相交或b∥α或b?α
6.如图所示,平面α,β,γ两两相交,a,b,c为三条交线,且a∥b,则a与c的位置关系是________;b与c的位置关系是________.
答案 a∥c b∥c
考点一 平面的基本性质及应用
【例1】 如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证:
(1)E,C,D1,F四点共面;
(2)CE,D1F,DA三线共点.
证明 (1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.
又A1B∥CD1,∴EF∥CD1,
∴E,C,D1,F四点共面.
(2)∵EF∥CD1,EF∴CE与D1F必相交,设交点为P,
则由P∈CE,CE?平面ABCD,得P∈平面ABCD.
同理P∈平面ADD1A1.
又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE,D1F,DA三线共点.
规律方法 (1)证明线共面或点共面的常用方法
①直接法,证明直线平行或相交,从而证明线共面.
②纳入平面法,先确定一个平面,再证明有关点、线在此平面内.
③辅助平面法,先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.
(2)证明点共线问题的常用方法
①基本性质法,一般转化为证明这些点是某两个平面的公共点,再根据基本性质3证明这些点都在这两个平面的交线上.
②纳入直线法,选择其中两点确定一条直线,然后证明其余点也在该直线上.
【训练1】 如图所示,四边形ABEF和ABCD都是梯形,BC綉AD,BE綉FA,G,H分别为FA,FD的中点.
(1)证明:四边形BCHG是平行四边形;
(2)C,D,F,E四点是否共面?为什么?
(1)证明 由已知FG=GA,FH=HD,可得GH綉AD.又BC綉AD,∴GH綉BC,
∴四边形BCHG为平行四边形.
(2)解 ∵BE綉AF,G为FA的中点,∴BE綉FG,
∴四边形BEFG为平行四边形,∴EF∥BG.
由(1)知BG綉CH,
∴EF∥CH,∴EF与CH共面.
又D∈FH,∴C,D,F,E四点共面.
考点二 判断空间两直线的位置关系
【例2】 (1)(2015·广东卷)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是(  )
A.l与l1,l2都不相交
B.l与l1,l2都相交
C.l至多与l1,l2中的一条相交
D.l至少与l1,l2中的一条相交
(2)(2017·嘉兴七校联考)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).
解析 (1)法一 由于l与直线l1,l2分别共面,故直线l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.
若l∥l1,l∥l2,则l1∥l2,这与l1,l2是异面直线矛盾.
故l至少与l1,l2中的一条相交.
法二 如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故C不正确.
(2)在图①中,直线GH∥MN;
在图②中,G,H,N三点共面,但M?平面GHN,N?GH,因此直线GH与MN异面;
在图③中,连接QM,GM∥HN,因此GH与MN共面;
在图④中,G,M,N共面,但H?平面GMN,G?MN,
因此GH与MN异面.
所以在图②④中GH与MN异面.
答案 (1)D (2)②④
规律方法 (1)异面直线的判定方法
①反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.
②定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.
(2)点、线、面位置关系的判定,要注意几何模型的选取,常借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系.
【训练2】 (1)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是(  )
A.MN与CC1垂直
B.MN与AC垂直
C.MN与BD平行
D.MN与A1B1平行
(2)(2017·武汉调研)a,b,c表示不同的直线,M表示平面,给出四个命题:①若a∥M,b∥M,则a∥b或a,b相交或a,b异面;②若b?M,a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.其中正确的为(  )
A.①④ B.②③ C.③④ D.①②
解析 (1)如图,连接C1D,
在△C1DB中,MN∥BD,故C正确;
∵CC1⊥平面ABCD,BD?平面ABCD,∴CC1⊥BD,
∴MN⊥CC1,故A正确;
∵AC⊥BD,MN∥BD,∴MN⊥AC,故B正确;
∵A1B1与BD异面,MN∥BD,
∴MN与A1B1不可能平行,故选项D错误.
(2)对于①,当a∥M,b∥M时,则a与b平行、相交或异面,①为真命题.②中,b?M,a∥b,则a∥M或a?M,②为假命题.命题③中,a与b相交、平行或异面,③为假命题.由线面垂直的性质,命题④为真命题,所以①,④为真命题.
答案 (1)D (2)A
考点三 异面直线所成的角
【例3】 (1)(2017·浙江五校联考)如图所示,在正三棱柱ABC-A1B1C1中,D是AC的中点,AA1∶AB=∶1,则异面直线AB1与BD所成的角为________.
(2)(2016·全国Ⅰ卷)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为(  )
A. B. C. D.
解析 (1)取A1C1的中点E,连接B1E,ED,AE,
在Rt△AB1E中,∠AB1E为异面直线AB1与BD所成的角.
设AB=1,则A1A=,AB1=,B1E=,故∠AB1E=60°.
(2)根据平面与平面平行的性质,将m,n所成的角转化为平面CB1D1与平面ABCD的交线及平面CB1D1与平面ABB1A1的交线所成的角.设平面CB1D1∩平面ABCD=m1.
∵平面α∥平面CB1D1,∴m1∥m.
又平面ABCD∥平面A1B1C1D1,
且平面CB1D1∩平面A1B1C1D1=B1D1,
∴B1D1∥m1,∴B1D1∥m.
∵平面ABB1A1∥平面DCC1D1,
且平面CB1D1∩平面DCC1D1=CD1,同理可证CD1∥n.
因此直线m与n所成的角即直线B1D1与CD1所成的角.
在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形,
故直线B1D1与CD1所成角为60°,其正弦值为.
答案 (1)60° (2)A
规律方法 (1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.
(2)求异面直线所成角的三个步骤
①作:通过作平行线,得到相交直线的夹角.
②证:证明相交直线夹角为异面直线所成的角.
③求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.
【训练3】 如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为(  )
A. B. C. D.
解析 连接BC1,易证BC1∥AD1,
则∠A1BC1即为异面直线A1B与AD1所成的角.
连接A1C1,由AB=1,AA1=2,
则A1C1=,A1B=BC1=,
在△A1BC1中,由余弦定理得
cos∠A1BC1==.
答案 D
[思想方法]
1.主要题型的解题方法
(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).
(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上.
2.判定空间两条直线是异面直线的方法
(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.
(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.
3.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为相交直线的夹角,体现了化归思想.
[易错防范]
1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.
2.直线与平面的位置关系在判断时最易忽视“线在面内”.
3.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.
第4讲 直线、平面平行的判定及其性质
最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.
知 识 梳 理
1.直线与平面平行
(1)直线与平面平行的定义
直线l与平面α没有公共点,则称直线l与平面α平行.
(2)判定定理与性质定理
文字语言
图形表示
符号表示
判定定理
平面外一条直线与此平面内的一条直线平行,则该直线平行于此平面
a?α,b?α,a∥b?a∥α
性质定理
一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行
a∥α,a?β,α∩β=b?a∥b
2.平面与平面平行
(1)平面与平面平行的定义
没有公共点的两个平面叫做平行平面.
(2)判定定理与性质定理
文字语言
图形表示
符号表示
判定定理
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行
a?α,b?α,a∩b=P,a∥β,b∥β?α∥β
性质定理
两个平面平行,则其中一个平面内的直线平行于另一个平面
α∥β,a?α?a∥β
如果两个平行平面同时和第三个平面相交,那么它们的交线平行
α∥β,α∩γ=a,β∩γ=b?a∥b
3.与垂直相关的平行的判定
(1)a⊥α,b⊥α?a∥b.
(2)a⊥α,a⊥β?α∥β.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.(  )
(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.(  )
(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(  )
(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(  )
解析 (1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.
(2)若a∥α,P∈α,则过点P且平行于a的直线只有一条,故(2)错误.
(3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误.
答案 (1)× (2)× (3)× (4)√
2.下列命题中,正确的是(  )
A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面
B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行
C.若直线a,b和平面α满足a∥α,b∥α,那么a∥b
D.若直线a,b和平面α满足a∥b,a∥α,b?α,则b∥α
解析 根据线面平行的判定与性质定理知,选D.
答案 D
3.(2015·北京卷)设α,β是两个不同的平面,m是直线且m?α.“m∥β”是“α∥β”的(  )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析 当m∥β时,可能α∥β,也可能α与β相交.
当α∥β时,由m?α可知,m∥β.
∴“m∥β”是“α∥β”的必要不充分条件.
答案 B
4.(必修2P56练习2改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.
解析 连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,E为DD1的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1?平面ACE,EO?平面ACE,所以BD1∥平面ACE.
答案 平行
5.(2017·金华检测)设α,β,γ为三个不同的平面,a,b为直线.
(1)若α∥γ,β∥γ,则α与β的关系是________;
(2)若a⊥α,b⊥β,a∥b,则α与β的关系是________.
解析 (1)由α∥γ,β∥γ?α∥β.
(2)a⊥α,a∥b?b⊥α,又b⊥β,从而α∥β.
答案 (1)平行 (2)平行
6.用一个截面去截正三棱柱ABC-A1B1C1,交A1C1,B1C1,BC,AC分别于E,F,G,H四点,已知A1A>A1C1,则截面的形状可以是________(把你认为可能的结果都填上).
解析 由题意知,当截面平行于侧棱时所得截面为矩形,当截面与侧棱不平行时,所得的截面是梯形.
答案 矩形或梯形
考点一 线面、面面平行的相关命题的真假判断
【例1】 (2015·安徽卷)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是(  )
A.若α,β垂直于同一平面,则α与β平行
B.若m,n平行于同一平面,则m与n平行
C.若α,β不平行,则在α内不存在与β平行的直线
D.若m,n不平行,则m与n不可能垂直于同一平面
解析 A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m?α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D项正确.
答案 D
规律方法 (1)判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.
(2)①结合题意构造或绘制图形,结合图形作出判断.
②特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.
【训练1】 (2017·台州调研)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m?α,n∥α,则m∥n;
②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若α∩β=n,m∥n,m∥α,则m∥β;
④若m∥α,n∥β,m∥n,则α∥β.
其中是真命题的是________(填上正确命题的序号).
解析 ①m∥n或m,n异面,故①错误;易知②正确;③m∥β或m?β,故③错误;④α∥β或α与β相交,故④错误.
答案 ②
考点二 直线与平面平行的判定与性质(多维探究)
命题角度一 直线与平面平行的判定
【例2-1】 (2016·全国Ⅲ卷)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求四面体N-BCM的体积.
(1)证明 由已知得AM=AD=2.
如图,取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.
又AD∥BC,故TN綉AM,所以四边形AMNT为平行四边形,于是MN∥AT.
因为AT?平面PAB,MN?平面PAB,
所以MN∥平面PAB.
(2)解 因为PA⊥平面ABCD,N为PC的中点,
所以N到平面ABCD的距离为PA.
如图,取BC的中点E,连接AE.由AB=AC=3得AE⊥BC,AE==.
由AM∥BC得M到BC的距离为,故S△BCM=×4×=2.所以四面体N-BCM的体积VN-BCM=×S△BCM×=.
命题角度二 直线与平面平行性质定理的应用
【例2-2】 如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.
(1)证明:GH∥EF;
(2)若EB=2,求四边形GEFH的面积.
(1)证明 因为BC∥平面GEFH,BC?平面PBC,且平面PBC∩平面GEFH=GH,
所以GH∥BC.同理可证EF∥BC,因此GH∥EF.
(2)解 如图,连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为PA=PC,O是AC的中点,所以PO⊥AC,
同理可得PO⊥BD.
又BD∩AC=O,且AC,BD都在底面ABCD内,所以PO⊥底面ABCD.又因为平面GEFH⊥平面ABCD,
且PO?平面GEFH,所以PO∥平面GEFH.
因为平面PBD∩平面GEFH=GK,
PO?平面PBD.
所以PO∥GK,且GK⊥底面ABCD,
又EF?平面ABCD,
从而GK⊥EF.
所以GK是梯形GEFH的高.
由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,
从而KB=DB=OB,即K为OB的中点.
再由PO∥GK得GK=PO,即G是PB的中点,且GH=BC=4.由已知可得OB=4,PO===6,所以GK=3.
故四边形GEFH的面积S=·GK=×3=18.
规律方法 (1)判断或证明线面平行的常用方法有:
①利用反证法(线面平行的定义);
②利用线面平行的判定定理(a?α,b?α,a∥b?a∥α);
③利用面面平行的性质定理(α∥β,a?α?a∥β);
④利用面面平行的性质(α∥β,a?β,a∥α?a∥β).
(2)利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.
【训练2】 在四棱锥P-ABCD中,AD∥BC,AB=BC=AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
(1)求证:AP∥平面BEF;
(2)求证:GH∥平面PAD.
证明 (1)连接EC,∵AD∥BC,BC=AD,
E为AD的中点,∴BC綉AE,
∴四边形ABCE是平行四边形,
∴O为AC的中点,
又∵F是PC的中点,∴FO∥AP,
又FO?平面BEF,AP?平面BEF,∴AP∥平面BEF.
(2)连接FH,OH,∵F,H分别是PC,CD的中点,
∴FH∥PD,又PD?平面PAD,FH?平面PAD,
∴FH∥平面PAD.
又∵O是BE的中点,H是CD的中点,
∴OH∥AD,又∵AD?平面PAD,OH?平面PAD,
∴OH∥平面PAD.
又FH∩OH=H,∴平面OHF∥平面PAD.
又∵GH?平面OHF,∴GH∥平面PAD.
考点三 面面平行的判定与性质(典例迁移)
【例3】 (经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:
(1)B,C,H,G四点共面;
(2)平面EFA1∥平面BCHG.
证明 (1)∵G,H分别是A1B1,A1C1的中点,
∴GH是△A1B1C1的中位线,则GH∥B1C1.
又∵B1C1∥BC,
∴GH∥BC,
∴B,C,H,G四点共面.
(2)∵E,F分别为AB,AC的中点,∴EF∥BC,
∵EF?平面BCHG,BC?平面BCHG,
∴EF∥平面BCHG.
又G,E分别为A1B1,AB的中点,A1B1綉AB,
∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.
∵A1E?平面BCHG,GB?平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,
∴平面EFA1∥平面BCHG.
【迁移探究1】 如图,在本例条件下,若点D为BC1的中点,求证:HD∥平面A1B1BA.
证明 如图所示,连接A1B.
∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,
又HD?平面A1B1BA,
A1B?平面A1B1BA,
∴HD∥平面A1B1BA.
【迁移探究2】 在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求的值.
解 连接A1B交AB1于O,连接OD1.
由平面BC1D∥平面AB1D1,且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D1=D1O,所以BC1∥D1O,则==1.又由题设=,
∴=1,即=1.
规律方法 (1)判定面面平行的主要方法
①利用面面平行的判定定理.
②线面垂直的性质(垂直于同一直线的两平面平行).
(2)面面平行的性质定理
①两平面平行,则一个平面内的直线平行于另一平面.
②若一平面与两平行平面相交,则交线平行.
提醒 利用面面平行的判定定理证明两平面平行时需要说明是一个平面内的两条相交直线与另一个平面平行.
【训练3】 (2016·山东卷)在如图所示的几何体中,D是AC的中点,EF∥DB.
(1)已知AB=BC,AE=EC.求证:AC⊥FB;
(2)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.
证明 (1)因为EF∥DB,所以EF与DB确定平面BDEF,
图①
如图①,连接DE.因为AE=EC,D为AC的中点,
所以DE⊥AC.同理可得BD⊥AC.
又BD∩DE=D,
所以AC⊥平面BDEF.
因为FB?平面BDEF,
所以AC⊥FB.
(2)如图②,设FC的中点为I,连接GI,HI.
图②
在△CEF中,因为G是CE的中点,
所以GI∥EF.又EF∥DB,
所以GI∥DB.
在△CFB中,因为H是FB的中点,所以HI∥BC.
又HI∩GI=I,
所以平面GHI∥平面ABC,
因为GH?平面GHI,
所以GH∥平面ABC.
[思想方法]
1.线线、线面、面面平行间的转化
其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.
2.直线与平面平行的主要判定方法
(1)定义法;(2)判定定理;(3)面面平行的性质.
3.平面与平面平行的主要判定方法
(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β?α∥β.
[易错防范]
1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.
2.面面平行的判定中易忽视“面内两条相交线”这一条件.
3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.
4.运用性质定理,要遵从由“高维”到“低维”,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.
第5讲 直线、平面垂直的判定及其性质
最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.
知 识 梳 理
1.直线与平面垂直
(1)直线和平面垂直的定义
如果一条直线l与平面α内的任意直线都垂直,就说直线l与平面α互相垂直.
(2)判定定理与性质定理
文字语言
图形表示
符号表示
判定定理
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
?l⊥α
性质定理
两直线垂直于同一个平面,那么这两条直线平行
?a∥b
2.平面与平面垂直
(1)平面与平面垂直的定义
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
(2)判定定理与性质定理
文字语言
图形表示
符号表示
判定定理
一个平面经过另一个平面的一条垂线,则这两个平面互相垂直
?α⊥β
性质定理
如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面
?l⊥α
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)直线l与平面α内的无数条直线都垂直,则l⊥α.(  )
(2)垂直于同一个平面的两平面平行.(  )
(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.(  )
(4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.(  )
解析 (1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或l?α或l∥α,故(1)错误.
(2)垂直于同一个平面的两个平面平行或相交,故(2)错误.
(3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误.
(4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误.
答案 (1)× (2)× (3)× (4)×
2.(必修2P56A组7T改编)下列命题中错误的是(  )
A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
解析 对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项易知均是正确的.
答案 D
3.(2016·浙江卷)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则(  )
A.m∥l B.m∥n
C.n⊥l D.m⊥n
解析 因为α∩β=l,所以l?β,又n⊥β,所以n⊥l,故选C.
答案 C
4.已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是(  )
A.α⊥β且m?α B.α⊥β且m∥α
C.m∥n且n⊥β D.m⊥n且α∥β
解析 由线线平行性质的传递性和线面垂直的判定定理,可知C正确.
答案 C
5.(2017·浙江名校协作体联考)已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,(  )
A.存在某个位置,使得直线AC与直线BD垂直
B.存在某个位置,使得直线AB与直线CD垂直
C.存在某个位置,使得直线AD与直线BC垂直
D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直
解析 若AB⊥CD,BC⊥CD,则可得CD⊥平面ACB,因此有CD⊥AC.因为AB=1,BC=AD=,CD=1,所以AC=1,所以存在某个位置,使得AB⊥CD.
答案 B
6.(必修2P67练习2改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O,
(1)若PA=PB=PC,则点O是△ABC的________心.
(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.
解析 (1)如图1,连接OA,OB,OC,OP,
在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB,
所以OA=OB=OC,即O为△ABC的外心.
  
图1        图2
(2)如图2,∵PC⊥PA,PB⊥PC,PA∩PB=P,
∴PC⊥平面PAB,AB?平面PAB,
∴PC⊥AB,又AB⊥PO,PO∩PC=P,
∴AB⊥平面PGC,又CG?平面PGC,∴AB⊥CG,
即CG为△ABC边AB的高.
同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.
答案 (1)外 (2)垂
考点一 线面垂直的判定与性质
【例1】 如图,在四棱锥P-ABCD中,PA⊥底面ABCD,
AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:
(1)CD⊥AE;
(2)PD⊥平面ABE.
证明 (1)在四棱锥P-ABCD中,
∵PA⊥底面ABCD,CD?平面ABCD,
∴PA⊥CD,
又∵AC⊥CD,且PA∩AC=A,
∴CD⊥平面PAC.而AE?平面PAC,
∴CD⊥AE.
(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.
∵E是PC的中点,∴AE⊥PC.
由(1)知AE⊥CD,且PC∩CD=C,
∴AE⊥平面PCD.
而PD?平面PCD,∴AE⊥PD.
∵PA⊥底面ABCD,AB?平面ABCD,
∴PA⊥AB.
又∵AB⊥AD,且PA∩AD=A,
∴AB⊥平面PAD,而PD?平面PAD,
∴AB⊥PD.
又∵AB∩AE=A,∴PD⊥平面ABE.
规律方法 (1)证明直线和平面垂直的常用方法有:
①判定定理;②垂直于平面的传递性(a∥b,a⊥α?b⊥α);③面面平行的性质(a⊥α,α∥β?a⊥β);④面面垂直的性质(α⊥β,α∩β=a,l⊥a,l?β?l⊥α).
(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.
【训练1】 如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=DB,点C为圆O上一点,且BC=AC,PD⊥平面ABC,PD=DB.
求证:PA⊥CD.
证明 因为AB为圆O的直径,所以AC⊥CB.
在Rt△ABC中,由AC=BC得,∠ABC=30°.
设AD=1,由3AD=DB得,DB=3,BC=2.
由余弦定理得CD2=DB2+BC2-2DB·BCcos 30°=3,
所以CD2+DB2=BC2,即CD⊥AB.
因为PD⊥平面ABC,CD?平面ABC,
所以PD⊥CD,由PD∩AB=D得,CD⊥平面PAB,
又PA?平面PAB,所以PA⊥CD.
考点二 面面垂直的判定与性质
【例2】 (2015·山东卷)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.
(1)求证:BD∥平面FGH;
(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.
证明 (1)连接DG,CD,设CD∩GF=M,连接MH.
在三棱台DEF-ABC中,
AB=2DE,G为AC中点,
可得DF∥GC,且DF=GC,
则四边形DFCG为平行四边形.
从而M为CD的中点,
又H为BC的中点,
所以HM∥BD,又HM?平面FGH,BD?平面FGH,
故BD∥平面FGH.
(2)连接HE,因为G,H分别为AC,BC的中点,
所以GH∥AB.由AB⊥BC,得GH⊥BC.
又H为BC的中点,所以EF∥HC,EF=HC,
因此四边形EFCH是平行四边形,
所以CF∥HE.又CF⊥BC,所以HE⊥BC.
又HE,GH?平面EGH,HE∩GH=H,
所以BC⊥平面EGH.
又BC?平面BCD,所以平面BCD⊥平面EGH.
规律方法 (1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理.
(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.
【训练2】 如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.
(1)求证:PB∥平面MNC;
(2)若AC=BC,求证:PA⊥平面MNC.
证明 (1)因为M,N分别为AB,PA的中点,所以MN∥PB.
又因为MN?平面MNC,PB?平面MNC,所以PB∥平面MNC.
(2)因为PA⊥PB,MN∥PB,所以PA⊥MN.
因为AC=BC,AM=BM,所以CM⊥AB.
因为平面PAB⊥平面ABC,
CM?平面ABC,平面PAB∩平面ABC=AB.
所以CM⊥平面PAB.
因为PA?平面PAB,所以CM⊥PA.
又MN∩CM=M,所以PA⊥平面MNC.
考点三 平行与垂直的综合问题(多维探究)
命题角度一 多面体中平行与垂直关系的证明
【例3-1】 (2016·江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:
(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
证明 (1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.
在△ABC中,因为D,E分别为AB,BC的中点,
所以DE∥AC,于是DE∥A1C1.
又因为DE?平面A1C1F,A1C1?平面A1C1F,
所以直线DE∥平面A1C1F.
(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.
因为A1C1?平面A1B1C1,所以A1A⊥A1C1.
又因为A1C1⊥A1B1,A1A?平面ABB1A1,A1B1?平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.
因为B1D?平面ABB1A1,所以A1C1⊥B1D.
又因为B1D⊥A1F,A1C1?平面A1C1F,A1F?平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.
因为直线B1D?平面B1DE,所以平面B1DE⊥平面A1C1F.
规律方法 (1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.
(2)垂直与平行的结合问题,求解时应注意平行、垂直的性质及判定的综合应用.
命题角度二 平行垂直中探索性问题
【例3-2】 如图所示,平面ABCD⊥平面BCE,四边形ABCD为矩形,BC=CE,点F为CE的中点.
(1)证明:AE∥平面BDF.
(2)点M为CD上任意一点,在线段AE上是否存在点P,使得PM⊥BE?若存在,确定点P的位置,并加以证明;若不存在,请说明理由.
(1)证明 
连接AC交BD于O,连接OF,如图①.
∵四边形ABCD是矩形,∴O为AC的中点,又F为EC的中点,
∴OF为△ACE的中位线,
∴OF∥AE,又OF?平面BDF,AE?平面BDF,
∴AE∥平面BDF.
(2)解 当P为AE中点时,有PM⊥BE,
证明如下:取BE中点H,连接DP,PH,CH,∵P为AE的中点,H为BE的中点,
∴PH∥AB,又AB∥CD,∴PH∥CD,∴P,H,C,D四点共面.
∵平面ABCD⊥平面BCE,平面ABCD∩平面BCE=BC,CD?平面ABCD,CD⊥BC.
∴CD⊥平面BCE,又BE?平面BCE,
∴CD⊥BE,∵BC=CE,H为BE的中点,∴CH⊥BE,
又CD∩CH=C,∴BE⊥平面DPHC,又PM?平面DPHC,
∴BE⊥PM,即PM⊥BE.
规律方法 (1)求条件探索性问题的主要途径:①先猜后证,即先观察与尝试给出条件再证明;②先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.
(2)涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.
【训练3】 (2017·嘉兴七校联考)在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AC=,AB=2BC=2,AC⊥FB.
(1)求证:AC⊥平面FBC.
(2)求四面体FBCD的体积.
(3)线段AC上是否存在点M,使EA∥平面FDM?若存在,请说明其位置,并加以证明;若不存在,请说明理由.
(1)证明 在△ABC中,
因为AC=,AB=2,BC=1,所以AC2+BC2=AB2,
所以AC⊥BC.
又因为AC⊥FB,BC∩FB=B,
所以AC⊥平面FBC.
(2)解 因为AC⊥平面FBC,FC?平面FBC,所以AC⊥FC.
因为CD⊥FC,AC∩CD=C,所以FC⊥平面ABCD.
在等腰梯形ABCD中可得CB=DC=1,所以FC=1.
所以△BCD的面积为S=.
所以四面体FBCD的体积为VF-BCD=S·FC=.
(3)解 线段AC上存在点M,且点M为AC中点时,有EA∥平面FDM.证明如下:
连接CE,与DF交于点N,取AC的中点M,连接MN.
因为四边形CDEF是正方形,
所以点N为CE的中点.
所以EA∥MN.因为MN?平面FDM,EA?平面FDM,
所以EA∥平面FDM.
所以线段AC上存在点M,且M为AC的中点,使得EA∥平面FDM成立.
[思想方法]
1.证明线面垂直的方法:
(1)线面垂直的定义:a与α内任何直线都垂直?a⊥α;
(2)判定定理1:?l⊥α;
(3)判定定理2:a∥b,a⊥α?b⊥α;
(4)面面垂直的性质:α⊥β,α∩β=l,a?α,a⊥l?a⊥β;
2.证明面面垂直的方法
(1)利用定义:两个平面相交,所成的二面角是直二面角;
(2)判定定理:a?α,a⊥β?α⊥β.
3.转化思想:垂直关系的转化
[易错防范]
1.证明线面垂直时,易忽视面内两条线为相交线这一条件.
2.面面垂直的判定定理中,直线在面内且垂直于另一平面易忽视.
3.面面垂直的性质定理在使用时易忘面内一线垂直于交线而盲目套用造成失误.
4.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的相互转化.
第6讲 空间向量及其运算
最新考纲 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2.掌握空间向量的线性运算及其坐标表示;3.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.
知 识 梳 理
1.空间向量的有关概念
名称
概念
表示
零向量
模为0的向量
0
单位向量
长度(模)为1的向量
相等向量
方向相同且模相等的向量
a=b
相反向量
方向相反且模相等的向量
a的相反向量为-a
共线向量
表示空间向量的有向线段所在的直线互相平行或重合的向量
a∥b
共面向量
平行于同一个平面的向量
2.空间向量中的有关定理
(1)共线向量定理
空间两个向量a(a≠0)与b共线的充要条件是存在实数λ,使得b=λa.
推论 如图所示,点P在l上的充要条件是=+ta①
其中a叫直线l的方向向量,t∈R,在l上取=a,则①可化为=+t或=(1-t)+t.
(2)共面向量定理
共面向量定理的向量表达式:p=xa+yb,其中x,y∈R,a,b为不共线向量,推论的表达式为=x+y或对空间任意一点O,有=+x+y或=x+y+z,其中x+y+z=1.
(3)空间向量基本定理
如果向量e1,e2,e3是空间三个不共面的向量,a是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3,使得a=λ1e1+λ2e2+λ3e3,空间中不共面的三个向量e1,e2,e3叫作这个空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉,其范围是[0,π],若〈a,b〉=,则称a与b互相垂直,记作a⊥b.
②两向量的数量积
已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉.
(2)空间向量数量积的运算律
①结合律:(λa)·b=λ(a·b);
②交换律:a·b=b·a;
③分配律:a·(b+c)=a·b+a·c.
4.空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
向量表示
坐标表示
数量积
a·b
a1b1+a2b2+a3b3
共线
a=λb(b≠0,λ∈R)
a1=λb1,a2=λb2,a3=λb3
垂直
a·b=0
(a≠0,b≠0)
a1b1+a2b2+a3b3=0

|a|
夹角
〈a,b〉(a≠0,b≠0)
cos〈a,b〉=
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)空间中任意两非零向量a,b共面(  )
(2)对任意两个空间向量a,b,若a·b=0,则a⊥b(  )
(3)若{a,b,c}是空间的一个基底,则a,b,c中至多有一个零向量(  )
(4)若a·b<0,则〈a,b〉是钝角(  )
解析 对于(2),因为0与任何向量数量积为0,所以(2)不正确;对于(3),若a,b,c中有一个是0,则a,b,c共面,所以(3)不正确;对于(4),若〈a,b〉=π,则a·b<0,故(4)不正确.
答案 (1)√ (2)× (3)× (4)×
2.在空间直角坐标系中,A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是(  )
A.垂直 B.平行
C.异面 D.相交但不垂直
解析 由题意得,=(-3,-3,3),=(1,1,-1),
∴=-3,∴与共线,又AB与CD没有公共点.
∴AB∥CD.
答案 B
3.(选修2-1P97A2改编)如图所示,在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若=a,=b,1=c,则下列向量中与相等的向量是(  )
A.-a+b+c B.a+b+c
C.-a-b+c D.a-b+c
解析 由题意,根据向量运算的几何运算法则,=1+=1+(-)=c+(b-a)=-a+b+c.
答案 A
4.已知a=(2,3,1),b=(-4,2,x),且a⊥b,则|b|=________.
解析 a·b=2×(-4)+3×2+1·x=0,∴x=2,∴|b|==2.
答案 2
5.O为空间中任意一点,A,B,C三点不共线,且=++t,若P,A,B,C四点共面,则实数t=________.
解析 ∵P,A,B,C四点共面,∴++t=1,∴t=.
答案 
6.(2017·浙江三市十二校联考)已知向量a=(1,2,3),b=(x,x2+y-2,y),并且a,b同向,则x=________;y=________.
解析 由题意知a∥b,则==,可得
把①代入②得x2+x-2=0,解得x=-2或x=1.
当x=-2时,y=-6;当x=1时,y=3.
当时,b=(-2,-4,-6)=-2a,向量a与b反向,不符合题意,故舍去.
当时,b=(1,2,3)=a,向量a与b同向,故
答案 1 3
考点一 空间向量的线性运算
【例1】 如图所示,在空间几何体ABCD-A1B1C1D1中,各面为平行四边形,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:
(1);(2)+.
解 (1)因为P是C1D1的中点,所以=++=a++
=a+c+=a+c+b.
(2)因为M是AA1的中点,所以=+
=+
=-a+=a+b+c.
又=+=+
=+
=c+a,
所以+=+
=a+b+c.
规律方法 (1)选定空间不共面的三个向量作基向量,这是用向量解决立体几何问题的基本要求.用已知基向量表示指定向量时,应结合已知和所求向量观察图形,将已知向量和未知向量转化至三角形或平行四边形中,然后利用三角形法则或平行四边形法则进行运算.
(2)首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们把这个法则称为向量加法的多边形法则.
提醒 空间向量的坐标运算类似于平面向量中的坐标运算.
【训练1】 (2017·上饶期中)如图,三棱锥O-ABC中,M,N分别是AB,OC的中点,设=a,=b,=c,用a,b,c表示,则=(  )
A.(-a+b+c) B.(a+b-c)
C.(a-b+c) D.(-a-b+c)
解析 =+=(-)+=-+(-)=+-=(a+b-c).
答案 B
考点二 共线定理、共面定理的应用
【例2】 已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,用向量方法求证:
(1)E,F,G,H四点共面;
(2)BD∥平面EFGH.
证明 (1)连接BG,则=+=+(+)=++=+,由共面向量定理知E,F,G,H四点共面.
(2)因为=-=-=(-)=,因为E,H,B,D四点不共线,所以EH∥BD.
又EH?平面EFGH,BD?平面EFGH,
所以BD∥平面EFGH.
规律方法 (1)证明空间三点P,A,B共线的方法
①=λ(λ∈R);
②对空间任一点O,=x+y(x+y=1).
(2)证明空间四点P,M,A,B共面的方法
①=x+y;
②对空间任一点O,=x+y+z(x+y+z=1);
③∥(或∥或∥).
(3)三点共线通常转化为向量共线,四点共面通常转化为向量共面,线面平行可转化为向量共线、共面来证明.
【训练2】 (1)若A(-1,2,3),B(2,1,4),C(m,n,1)三点共线,则m+n=________.
(2)已知空间四点A(-2,0,2),B(-1,1,2),C(-3,0,4),D(1,2,t),若四点共面,则t的值为________.
解析 (1)=(3,-1,1),=(m+1,n-2,-2).
∵A,B,C三点共线,∴∥,
∴==,
∴m=-7,n=4,∴m+n=-3.
(2)=(1,1,0),=(-1,0,2),=(3,2,t-2),
∵A,B,C,D四点共面,
∴,,共面.
设=x+y,
即(3,2,t-2)=(x-y,x,2y),
则解得∴t的值为0.
答案 (1)-3 (2)0
考点三 空间向量数量积的应用
【例3】 如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M,N分别是AB,CD的中点.
(1)求证:MN⊥AB,MN⊥CD;
(2)求MN的长;
(3)求异面直线AN与CM所成角的余弦值.
(1)证明 设=p,=q,=r.
由题意可知,|p|=|q|=|r|=a,且p,q,r三向量两两夹角均为60°.
=-=(+)-=(q+r-p),
∴·=(q+r-p)·p=(q·p+r·p-p2)
=(a2cos 60°+a2cos 60°-a2)=0.
∴⊥,即MN⊥AB.
同理可证MN⊥CD.
(2)解 由(1)可知=(q+r-p),
∴||2=(q+r-p)2
=[q2+r2+p2+2(q·r-p·q-r·p)]

=×2a2=.
∴||=a.
∴MN的长为a.
(3)解 设向量与的夹角为θ.
∵=(+)=(q+r),
=-=q-p,
∴·=(q+r)·(q-p)
=(q2-q·p+r·q-r·p)
=(a2-a2cos 60°+a2cos 60°-a2cos 60°)
=(a2-+-)=.
又∵||=||=a,
∴·=||||cos θ=a×a×cos θ=.
∴cos θ=,∴向量与的夹角的余弦值为,
因此异面直线AN与CM所成角的余弦值为.
规律方法 利用数量积解决问题的两条途径:一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.可解决有关垂直、夹角、长度问题.
(1)a≠0,b≠0,a⊥b?a·b=0;
(2)|a|=;
(3)cos〈a,b〉=.
【训练3】 如图所示,四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.
(1)求AC1的长;
(2)求证:AC1⊥BD;
(3)求BD1与AC夹角的余弦值.
(1)解 记=a,=b,=c,
则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
∴a·b=b·c=c·a=.
||2=(a+b+c)2=a2+b2+c2+2(a·b+b·c+c·a)
=1+1+1+2×=6,
∴|1|=,即AC1的长为.
(2)证明 ∵=a+b+c,=b-a,
∴·=(a+b+c)·(b-a)
=a·b+|b|2+b·c-|a|2-a·b-a·c
=b·c-a·c
=|b||c|cos 60°-|a||c|cos 60°=0.
∴⊥,∴AC1⊥BD.
(3)解 =b+c-a,=a+b,∴||=,||=,
·=(b+c-a)·(a+b)
=b2-a2+a·c+b·c=1.
∴cos〈,〉==.
∴AC与BD1夹角的余弦值为.
[思想方法]
1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.
2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.
3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题.其中合理选取基底是优化运算的关键.
4.向量的运算有线性运算和数量积运算两大类,运算方法有两种,一种是建立空间坐标系,用坐标表示向量,向量运算转化为坐标运算,另一种是选择一组基向量,用基向量表示其它向量,向量运算转化为基向量的运算.
[易错防范]
1.在利用=x+y①证明MN∥平面ABC时,必须说明M点或N点不在面ABC内(因为①式只表示与,共面).
2.求异面直线所成角,一般可转化为两向量夹角,但要注意两种角范围不同,注意两者关系,合理转化.
3.找两个向量的夹角,应使两个向量具有同一起点,不要误找成它的补角.
4.a·b<0不等价为〈a,b〉为钝角,因为〈a,b〉可能为180°;
a·b>0不等价为〈a,b〉为锐角,因为〈a,b〉可能为0°.
第7讲 立体几何中的向量方法(一)——证明平行与垂直
最新考纲 1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.
知 识 梳 理
1.直线的方向向量和平面的法向量
(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.
(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.
2.空间位置关系的向量表示
位置关系
向量表示
直线l1,l2的方向向量分别为n1,n2
l1∥l2
n1∥n2?n1=λn2
l1⊥l2
n1⊥n2?n1·n2=0
直线l的方向向量为n,平面α的法向量为m
l∥α
n⊥m?n·m=0
l⊥α
n∥m?n=λm
平面α,β的法向量分别为n,m
α∥β
n∥m?n=λm
α⊥β
n⊥m?n·m=0
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)直线的方向向量是唯一确定的.(  )
(2)若两直线的方向向量不平行,则两直线不平行.(  )
(3)若两平面的法向量平行,则两平面平行或重合.(  )
(4)若空间向量a平行于平面α,则a所在直线与平面α平行.(  )
答案 (1)× (2)√ (3)√ (4)×
2.(选修2-1P104练习2改编)已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则(  )
A.α∥β B.α⊥β
C.α,β相交但不垂直 D.以上均不对
解析 ∵n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β不平行,也不垂直.
答案 C
3.已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC法向量的是(  )
A.(-1,1,1) B.(1,-1,1)
C. D.
解析 设n=(x,y,z)为平面ABC的法向量,
则化简得∴x=y=z.
答案 C
4.(2017·青岛月考)所图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.
解析 以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设|AD|=2,则A(2,0,0),M(0,0,1),O(1,1,0),N(2,1,2),所以=(-2,0,1),=(1,0,2),因此·=-2+0+2=0,故AM⊥ON.
答案 垂直
5.(2017·杭州调研)设直线l的方向向量为a,平面α的法向量为n=(2,2,4),若a=(1,1,2),则直线l与平面α的位置关系为________;
若a=(-1,-1,1),则直线l与平面α的位置关系为________.
解析 当a=(1,1,2)时,a=n,则l⊥α;
当a=(-1,-1,1)时,a·n=(-1,-1,1)·(2,2,4)=0,则l∥α或l?α.
答案 l⊥α l∥α或l?α
6.(2017·绍兴月考)设α,β为两个不同的平面,u=(-2,2,5),v=(1,-1,x)分别为平面α,β的法向量.
(1)若α⊥β,则x=________;
(2)若α∥β,则x=________.
解析 (1)由α⊥β,得u·v=0,即-2-2+5x=0,x=;
(2)由α∥β,得u∥v,即==,x=-.
答案 (1) (2)-
考点一 利用空间向量证明平行问题
【例1】 如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
证明:PQ∥平面BCD.
证明 法一 如图,取BD的中点O,以O为原点,OD,OP所在射线分别为y,z轴的正半轴,建立空间直角坐标系Oxyz.
由题意知,A(0,,2),B(0,-,0),D(0,,0).
设点C的坐标为(x0,y0,0).
因为=3,
所以Q.
因为M为AD的中点,故M(0,,1).
又P为BM的中点,故P,
所以=.
又平面BCD的一个法向量为a=(0,0,1),故·a=0.
又PQ?平面BCD,所以PQ∥平面BCD.
法二 在线段CD上取点F,使得DF=3FC,连接OF,同法一建立空间直角坐标系,写出点A,B,C的坐标,设点C坐标为(x0,y0,0).
∵=,设点F坐标为(x,y,0),则
(x-x0,y-y0,0)=(-x0,-y0,0),
∴∴=
又由法一知=,
∴=,∴PQ∥OF.
又PQ?平面BCD,OF?平面BCD,
∴PQ∥平面BCD.
规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.
(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.
【训练1】 如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.
证明 ∵平面PAD⊥平面ABCD,且ABCD为正方形,
∴AB,AP,AD两两垂直.
以A为坐标原点,建立如右图所示的空间直角坐标系A-xyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).
法一 ∴=(0,1,0),=(1,2,-1),
设平面EFG的法向量为n=(x,y,z),
则即
令z=1,则n=(1,0,1)为平面EFG的一个法向量,
∵=(2,0,-2),∴·n=0,∴n⊥,
∵PB?平面EFG,∴PB∥平面EFG.
法二 =(2,0,-2),=(0,-1,0),
=(1,1,-1).设=s+t,
即(2,0,-2)=s(0,-1,0)+t(1,1,-1),
∴解得s=t=2.∴=2+2,
又∵与不共线,∴,与共面.
∵PB?平面EFG,∴PB∥平面EFG.
考点二 利用空间向量证明垂直问题
【例2】 如图所示,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD.证明:
(1)PA⊥BD;
(2)平面PAD⊥平面PAB.
证明 (1)取BC的中点O,连接PO,
∵平面PBC⊥底面ABCD,△PBC为等边三角形,
∴PO⊥底面ABCD.
以BC的中点O为坐标原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,OP所在直线为z轴,建立空间直角坐标系,如图所示.
不妨设CD=1,则AB=BC=2,PO=.
∴A(1,-2,0),B(1,0,0),D(-1,-1,0),P(0,0,).
∴=(-2,-1,0),=(1,-2,-).
∵·=(-2)×1+(-1)×(-2)+0×(-)=0,
∴⊥,∴PA⊥BD.
(2)取PA的中点M,连接DM,则M.
∵=,=(1,0,-),
∴·=×1+0×0+×(-)=0,
∴⊥,即DM⊥PB.
∵·=×1+0×(-2)+×(-)=0,
∴⊥,即DM⊥PA.又∵PA∩PB=P,
∴DM⊥平面PAB.∵DM?平面PAD,
∴平面PAD⊥平面PAB.
规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.
(2)用向量证明垂直的方法
①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.
②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.
③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.
【训练2】 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC-A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.
证明 法一 设平面A1BD内的任意一条直线m的方向向量为m.由共面向量定理,则存在实数λ,μ,使m=λ+μ.
令=a,=b,=c,显然它们不共面,并且|a|=|b|=|c|=2,a·b=a·c=0,b·c=2,以它们为空间的一个基底,
则=a+c,=a+b,=a-c,
m=λ+μ=a+μb+λc,
·m=(a-c)·
=4-2μ-4λ=0.故⊥m,故AB1⊥平面A1BD.
法二 如图所示,取BC的中点O,连接AO.
因为△ABC为正三角形,
所以AO⊥BC.
因为在正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1,
所以AO⊥平面BCC1B1.
取B1C1的中点O1,以O为原点,分别以,,所在直线为x轴,y轴,z轴建立空间直角坐标系,
则B(1,0,0),D(-1,1,0),A1(0,2,),A(0,0,),
B1(1,2,0).
设平面A1BD的法向量为n=(x,y,z),=(-1,2,),=(-2,1,0).
因为n⊥,n⊥,
故?
令x=1,则y=2,z=-,
故n=(1,2,-)为平面A1BD的一个法向量,
而=(1,2,-),所以=n,所以∥n,
故AB1⊥平面A1BD.
考点三 利用空间向量解决探索性问题
【例3】 (2017·湖州调研)如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.
(1)求证:BD⊥AA1;
(2)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,请说明理由.
(1)证明 设BD与AC交于点O,则BD⊥AC,连接A1O,在△AA1O中,AA1=2,AO=1,∠A1AO=60°,
∴A1O2=AA+AO2-2AA1·AOcos 60°=3,
∴AO2+A1O2=AA,∴A1O⊥AO.
由于平面AA1C1C⊥平面ABCD,
平面AA1C1C∩平面ABCD=AC,
A1O?平面AA1C1C,
∴A1O⊥平面ABCD,以OB,OC,OA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,),C1(0,2,).
由于=(-2,0,0),=(0,1,),
·=0×(-2)+1×0+×0=0,
∴⊥,即BD⊥AA1.
(2)解 假设在直线CC1上存在点P,使BP∥平面DA1C1,设=λ,P(x,y,z),则(x,y-1,z)=λ(0,1,).
从而有P(0,1+λ,λ),=(-,1+λ,λ).
设n3⊥平面DA1C1,则
又=(0,2,0),=(,0,),
设n3=(x3,y3,z3),
取n3=(1,0,-1),因为BP∥平面DA1C1,
则n3⊥,即n3·=--λ=0,得λ=-1,
即点P在C1C的延长线上,且C1C=CP.
规律方法 向量法解决与垂直、平行有关的探索性问题
(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.
(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.
【训练3】 在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.
(1)求证:EF⊥CD;
(2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.
(1)证明 由题意知,DA,DC,DP两两垂直.
如图,以DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设AD=a,
则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E,P(0,0,a),
F.=,=(0,a,0).
∵·=0,∴⊥,从而得EF⊥CD.
(2)解 假设存在满足条件的点G,
设G(x,0,z),则=,
若使GF⊥平面PCB,则由
·=·(a,0,0)=a=0,得x=;
由·=·(0,-a,a)
=+a=0,得z=0.
∴G点坐标为,
即存在满足条件的点G,且点G为AD的中点.
[思想方法]
1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.
2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.
3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直.
[易错防范]
1.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥b,只需证明向量a=λb(λ∈R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.
2.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.
第8讲 立体几何中的向量方法(二)——求空间角
最新考纲 1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.
知 识 梳 理
1.异面直线所成的角
设a,b分别是两异面直线l1,l2的方向向量,则
a与b的夹角β
l1与l2所成的角θ
范围
(0,π)
求法
cos β=
cos θ=|cos β|=
2.求直线与平面所成的角
设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,则sin θ=|cos〈a,n〉|=.
3.求二面角的大小
(1)如图①,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=__〈,〉.
(2)如图②③,n1,n2 分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)两直线的方向向量所成的角就是两条直线所成的角.(  )
(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(  )
(3)两个平面的法向量所成的角是这两个平面所成的角.(  )
(4)两异面直线夹角的范围是,直线与平面所成角的范围是,二面角的范围是[0,π].(  )
答案 (1)× (2)× (3)× (4)√
2.(选修2-1P104练习2改编)已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为(  )
A.45° B.135°
C.45°或135° D.90°
解析 cos〈m,n〉===,即〈m,n〉=45°.
∴两平面所成二面角为45°或180°-45°=135°.
答案 C
3.(2014·全国Ⅱ卷)在直三棱柱 ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为(  )
A. B.
C. D.
解析 建立如图所示的空间直角坐标系C-xyz,设BC=2,则B(0,2,0),A(2,0,0),M(1,1,2),N(1,0,2),所以=(1,-1,2),=(-1,0,2),故BM与AN所成角θ的余弦值cos θ===.
答案 C
4.正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且=1,N为B1B的中点,则||为(  )
A.a B.a
C.a D.a
解析 以D为原点建立如图所示的空间直角坐标系D-xyz,则A( a,0,0),C1(0,a,a),N.
设M(x,y,z),
∵点M在AC1上且=1,
(x-a,y,z)=(-x,a-y,a-z)
∴x=a,y=,z=.
得M,∴||==a.
答案 A
5.已知向量m,n分别是直线l和平面α的方向向量和法向量,若 cos〈m,n〉=-,则l与α所成的角为________.
解析 设l与α所成角为θ,∵cos〈m,n〉=-,∴ sin θ=| cos〈m,n〉|=,∵0°≤θ≤90°,∴θ=30°.
答案 30°
6.(2017·郑州预测)过正方形ABCD的顶点A作线段PA⊥平面ABCD,若AB=PA,则平面ABP与平面CDP所成的二面角为________.
解析 如图,建立空间直角坐标系,设AB=PA=1,则A(0,0,0),D(0,1,0),P(0,0,1),由题意,AD⊥平面PAB,设E为PD的中点,连接AE,则AE⊥PD,
又CD⊥平面PAD,∴CD⊥AE,从而AE⊥平面PCD.所以=(0,1,0),=分别是平面PAB,平面PCD的法向量,且〈,〉=45°.故平面PAB与平面PCD所成的二面角为45°.
答案 45°
考点一 利用空间向量求异面直线所成的角
【例1】 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点.已知AB=2,AD=2,PA=2.求:
(1)△PCD的面积.
(2)异面直线BC与AE所成的角的大小.
解 (1)因为PA⊥底面ABCD,CD?平面ABCD,
所以PA⊥CD.又AD⊥CD,PA∩AD=A,
所以CD⊥平面PAD,又PD?平面PAD,从而CD⊥PD.因为PD==2,CD=2,
所以△PCD的面积为×2×2=2.
(2)法一 如图1,取PB中点F,连接EF,AF,则EF∥BC,从而∠AEF(或其补角)是异面直线BC与AE所成的角.
图1
在△AEF中,由于EF=,AF=,AE=PC=2.所以AF2+EF2=AE2,∠AFE=90°,
则△AEF是等腰直角三角形,所以∠AEF=.
因此,异面直线BC与AE所成的角的大小是.
法二 如图2,建立空间直角坐标系,则B(2,0,0),C(2,2,0),
E(1,,1),=(1, ,1),=(0,2,0).
图2
设与的夹角为θ,则
cos θ===,所以θ=.
由此可知,异面直线BC与AE所成的角的大小是.
规律方法 (1)利用向量法求异面直线所成角的一般步骤是:①选好基底或建立空间直角坐标系;②求出两直线的方向向量v1,v2;③代入公式|cos〈v1,v2〉|=求解.
(2)两异面直线所成角的范围是θ∈,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.
【训练1】 (2016·上海卷)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.
(1)求三棱锥C-O1A1B1的体积;
(2)求异面直线B1C与AA1所成的角的大小.
解 (1)连接A1B1,因为=,∴∠O1A1B1=∠A1O1B1=,∴△O1A1B1为正三角形,∴S△O1A1B1=·O1A1·O1B1·sin 60°=.
∴VC-O1A1B1=·OO1·S△O1A1B1=×1×=,
∴三棱锥C-O1A1B1的体积为.
(2)以O为坐标原点建系如图,则A(0,1,0),A1(0,1,1),
B1,C.∴=(0,0,1),=(0,-1,-1),
∴cos〈,〉==
=-,
∴〈,〉=,
∴异面直线B1C与AA1所成的角为.
考点二 利用空间向量求直线与平面所成的角
【例2】 (2016·全国Ⅲ卷)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.
(1)证明 由已知得AM=AD=2.
取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.
又AD∥BC,故TN綉AM,所以四边形AMNT为平行四边形,于是MN∥AT.
因为AT?平面PAB,MN?平面PAB,所以MN∥平面PAB.
(2)解 取BC的中点E,连接AE.
由AB=AC得AE⊥BC,
从而AE⊥AD,且AE===.
以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.
由题意知,P(0,0,4),M(0,2,0),C(,2,0),N,=(0,2,-4),=,=.
设n=(x,y,z)为平面PMN的法向量,则
即可取n=(0,2,1).
于是|cos〈n,〉|==.
所以直线AN与平面PMN所成的角的正弦值为.
规律方法 利用向量法求线面角的方法:
(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);
(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.
【训练2】 (2017·福州质检)如图,三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,AB=AC=1,BB1=2,∠ABB1=60°.
(1)证明:AB⊥B1C;
(2)若B1C=2,求AC1与平面BCB1所成角的正弦值.
(1)证明 连接AB1,在△ABB1中,AB=1,BB1=2,∠ABB1=60°,
由余弦定理得,AB=AB2+BB-2AB·BB1·cos∠ABB1=3,
∴AB1=,∴BB=AB2+AB,
∴AB1⊥AB.
又△ABC为等腰直角三角形,且AB=AC,
∴AC⊥AB,∵AC∩AB1=A,
∴AB⊥平面AB1C.又B1C?平面AB1C,
∴AB⊥B1C.
(2)解 ∵AB1=,AB=AC=1,B1C=2,
∴B1C2=AB+AC2,∴AB1⊥AC.
如图,以A为原点,以,,的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,0),B1(0,0,),
B(1,0,0),C(0,1,0),
∴=(-1,0,),
=(-1,1,0).
设平面BCB1的一个法向量为n=(x,y,z),
由得令z=1,得x=y=,
∴平面BCB1的一个法向量为n=(,,1).
∵=+=+=(0,1,0)+(-1,0,)=(-1,1,),
∴cos〈,n〉===,
∴AC1与平面BCB1所成角的正弦值为.
考点三 利用空间向量求二面角(易错警示)
【例3】 (2017·金丽衢十二校联考)如图,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D为AC的中点,AB⊥B1D.
(1)求证:平面ABB1A1⊥平面ABC;
(2)求直线B1D与平面ACC1A1所成角的正弦值;
(3)求二面角B-B1D-C的余弦值.
(1)证明 取AB中点为O,连接OD,OB1,
∵B1B=B1A,∴OB1⊥AB.
又AB⊥B1D,OB1∩B1D=B1,①
∴AB⊥平面B1OD,
∵OD?平面B1OD,∴AB⊥OD.
∵∠B1BC=90°,即BC⊥BB1,
又OD∥BC,∴OD⊥BB1,又AB∩BB1=B,
∴OD⊥平面ABB1A1,
又OD?平面ABC,
∴平面ABC⊥平面ABB1A1.
(2)解 由(1)知,OB,OD,OB1两两垂直.②
以O为坐标原点,的方向为x轴的方向,||为单位长度1,建立如图所示的空间直角坐标系O-xyz.
由题设知B1(0,0,),D(0,1,0),
A(-1,0,0),C(1,2,0),C1(0,2,).
则=(0,1,-),=(2,2,0),=(-1,0,).
设平面ACC1A1的一个法向量为m=(x,y,z),则由得可取m=(,-,1).
∴cos〈,m〉=
==-,
∴直线B1D与平面ACC1A1所成角的正弦值为.③
(3)解 由题设知B(1,0,0),则=(-1,1,0),=(0,1,-),=(1,1,0).
设平面BB1D的一个法向量为n1=(x1,y1,z1),则由
得可取n1=(,,1).
同理可得平面B1DC的一个法向量为n2=(-,,1),
∴cos〈n1,n2〉=
==.
∴二面角B-B1D-C的余弦值为.④
规律方法 利用向量计算二面角大小的常用方法:
(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.
(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.
易错警示 对于①:用线面垂直的判定定理易忽视面内两直线相交;
对于②:建立空间直角坐标系,若垂直关系不明确时,应先给出证明;
对于③:线面角θ的正弦sin θ=|cos〈,m〉|,易误认为cos θ=|cos〈,m〉|;
对于④:求出法向量夹角的余弦值后,不清楚二面角的余弦值取正值还是负值,确定二面角余弦值正负有两种方法:
1°通过观察二面角是锐角还是钝角来确定其余弦值的正负;
2°当不易观察二面角是锐角还是钝角时可判断两半平面的法向量与二面角的位置关系来确定.
【训练3】 (2017·浙江五校联考)如图,在四棱锥P-ABCD中,侧面PAB⊥底面ABCD,底面ABCD为矩形,PA=PB,O为AB的中点,OD⊥PC.
(1)求证:OC⊥PD;
(2)若PD与平面PAB所成的角为30°,求二面角D-PC-B的余弦值.
(1)证明 如图,连接OP.
∵PA=PB,O为AB的中点,
∴OP⊥AB.
∵侧面PAB⊥底面ABCD,
∴OP⊥平面ABCD,
∴OP⊥OD,OP⊥OC.
∵OD⊥PC,∴OD⊥平面OPC,
∴OD⊥OC,
又OP⊥OC,OP∩OD=O,∴OC⊥平面OPD,
∴OC⊥PD.
(2)解 法一 在矩形ABCD中,由(1)得OD⊥OC,∴AB=2AD,不妨设AD=1,则AB=2.
∵侧面PAB⊥底面ABCD,底面ABCD为矩形,
∴DA⊥平面PAB,CB⊥平面PAB,△DPA≌△CPB,
∴∠DPA为直线PD与平面PAB所成的角,
∴∠DPA=30°,∠CPB=30°,PA=PB=,
∴DP=CP=2,∴△PDC为等边三角形.
设PC的中点为M,连接DM,则DM⊥PC.
在Rt△CBP中,过M作NM⊥PC,交PB于点N,连接ND,则∠DMN为二面角D-PC-B的一个平面角.
由于∠CPB=30°,PM=1,故在Rt△PMN中,MN=,PN=.∵cos∠APB==,
∴AN2=+3-2×××=3,
∴ND2=3+1=4,
∴cos∠DMN==-,
即二面角D-PC-B的余弦值为-.
法二 取CD的中点E,以O为原点,OE,OB,OP所在的直线分别为x,y,z轴建立空间直角坐标系O-xyz.在矩形ABCD中,由(1)得OD⊥OC,∴AB=2AD,不妨设AD=1,则AB=2.
∵侧面PAB⊥底面ABCD,底面ABCD为矩形,
∴DA⊥平面PAB,CB⊥平面PAB,△DPA≌△CPB,
∴∠DPA为直线PD与平面PAB所成的角,
∴∠DPA=30°,∠CPB=30°,PA=PB=,
∴B(0,1,0),C(1,1,0),D(1,-1,0),P(0,0,),从而=(1,1,-),=(0,-2,0).
设平面PCD的法向量为n1=(x1,y1,z1),
由得可取n1=(,0,1).
同理,可取平面PCB的一个法向量为n2=(0,-,-1).
于是cos〈n1,n2〉==-,
∴二面角D-PC-B的余弦值为-.
[思想方法]
1.利用空间向量求空间角,避免了寻找平面角和垂线段等诸多麻烦,使空间点、线、面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算.
2.合理建立空间直角坐标系
(1)使用空间向量解决立体几何问题的关键环节之一就是建立空间直角坐标系,建系方法的不同可能导致解题的简繁程度不同.
(2)一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三条直线时,就以这三条直线为坐标轴建立空间直角坐标系;如果不存在这样的三条直线,则应尽可能找两条垂直相交的直线,以其为两条坐标轴建立空间直角坐标系,即坐标系建立时以其中的垂直相交直线为基本出发点.
(3)建系的基本思想是寻找其中的线线垂直关系,在没有现成的垂直关系时要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系.
[易错防范]
1.异面直线所成的角与其方向向量的夹角:当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;否则向量夹角的补角是异面直线所成的角.
2.线面角θ的正弦值等于直线的方向向量a与平面的法向量n所成角的余弦值的绝对值,即sin θ=|cos〈a,n〉|,不要误记为cos θ=|cos〈a,n〉|.
3.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n1,n2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n1,n2的夹角是相等,还是互补.
第1讲 不等式的性质与一元二次不等式
最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一元二次不等式模型;3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
知 识 梳 理
1.两个实数比较大小的方法
(1)作差法
(2)作商法
2.不等式的性质
(1)对称性:a>b?b<a;
(2)传递性:a>b,b>c?a>c;
(3)可加性:a>b?a+c>b+c;a>b,c>d?a+c≥b+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?ac>bd;
(5)可乘方:a>b>0?an>bn(n∈N,n≥1);
(6)可开方:a>b>0?>(n∈N,n≥2).
3.三个“二次”间的关系
判别式Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数y=ax2+bx+c (a>0)的图象
一元二次方程ax2+bx+c=0 (a>0)的根
有两相异实根
x1,x2(x1<x2)
有两相等实根
x1=x2=-
没有实数根
ax2+bx+c>0 (a>0)的解集
R
ax2+bx+c<0 (a>0)的解集
{x|x1<x<x2}
?
?
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)a>b?ac2>bc2.(  )
(2)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.(  )
(3)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0的解集为R.(  )
(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.(  )
解析 (1)由不等式的性质,ac2>bc2?a>b;反之,c=0时,a>b?ac2>bc2.
(3)若方程ax2+bx+c=0(a<0)没有实根.则不等式ax2+bx+c>0的解集为?.
(4)当a=b=0,c≤0时,不等式ax2+bx+c≤0也在R上恒成立.
答案 (1)× (2)√ (3)× (4)×
2.若a>b>0,c<d<0,则一定有(  )
A.> B.<
C.> D.<
解析 因为c<d<0,所以0>>,两边同乘-1,得->->0,又a>b>0,故由不等式的性质可知->->0.两边同乘-1,得<.故选B.
答案 B
3.设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N等于(  )
A.(0,4] B.[0,4) C.[-1,0) D.(-1,0]
解析 ∵M={x|x2-3x-4<0}={x|-1∴M∩N=[0,4).
答案 B
4.(2017·金华模拟)若不等式ax2+bx+2>0的解集为,则a=________,b=________.
解析 由题意知,方程ax2+bx+2=0的两根为x1=-,x2=,又即解得
答案 -12 -2
5.当x>0时,若不等式x2+ax+1≥0恒成立,则a的最小值为(  )
A.-2 B.-3
C.-1 D.-
解析 当Δ=a2-4≤0,即-2≤a≤2时,不等式x2+ax+1≥0对任意x>0恒成立,当Δ=a2-4>0,则需解得a>2,所以使不等式x2+ax+1≥0对任意x>0恒成立的实数a的最小值是-2.
答案 A
6.(必修5P80A3改编)若关于x的一元二次方程x2-(m+1)x-m=0有两个不相等的实数根,则m的取值范围是________.
解析 由题意知Δ=[(m+1)]2+4m>0.即m2+6m+1>0,
解得m>-3+2或m<-3-2.
答案 (-∞,-3-2)∪(-3+2,+∞)
考点一 比较大小及不等式的性质的应用
【例1】 (1)已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系是(  )
A.c≥b>a B.a>c≥b
C.c>b>a D.a>c>b
(2)若<<0,给出下列不等式:①<;②|a|+b>0;③a->b-;④ln a2>ln b2.其中正确的不等式是(  )
A.①④ B.②③ C.①③ D.②④
解析 (1)∵c-b=4-4a+a2=(a-2)2≥0,∴c≥b.
又b+c=6-4a+3a2,∴2b=2+2a2,∴b=a2+1,
∴b-a=a2-a+1=+>0,
∴b>a,∴c≥b>a.
(2)法一 因为<<0,故可取a=-1,b=-2.
显然|a|+b=1-2=-1<0,所以②错误;因为ln a2=ln(-1)2=0,ln b2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A,B,D.
法二 由<<0,可知b<a<0.①中,因为a+b<0,ab>0,所以<0,>0.故有<,即①正确;
②中,因为b<a<0,所以-b>-a>0.故-b>|a|,即|a|+b<0,故②错误;
③中,因为b<a<0,又<<0,则->->0,
所以a->b-,故③正确;
④中,因为b<a<0,根据y=x2在(-∞,0)上为减函数,可得b2>a2>0,而y=ln x在定义域(0,+∞)上为增函数,所以ln b2>ln a2,故④错误.由以上分析,知①③正确.
答案 (1)A (2)C
规律方法 (1)比较大小常用的方法:
①作差法;②作商法;③函数的单调性法.
(2)判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.
【训练1】 (1)(2017·金华四校联考)已知p=a+,q=,其中a>2,x∈R,则p,q的大小关系是(  )
A.p≥q B.p>q C.p(2)设a>b>1,c<0,给出下列三个结论:①>;②ac<bc;③logb(a-c)>loga(b-c).其中所有的正确结论的序号是(  )
A.① B.①② C.②③ D.①②③
解析 (1)由于a>2,故p=a+=(a-2)++2≥2+2=4,当且仅当a=3时取等号.因为x2-2≥-2,所以q=≤=4,当且仅当x=0时取等号,所以p≥q.
(2)由不等式性质及a>b>1知<,又c<0,所以>,①正确;构造函数y=xc,∵c<0,∴y=xc在(0,+∞)上是减函数,又a>b>1,∴ac<bc,知②正确;
∵a>b>1,c<0,∴a-c>b-c>1,
∴logb(a-c)>loga(a-c)>loga(b-c),知③正确.
答案 (1)A (2)D
考点二 一元二次不等式的解法(多维探究)
命题角度一 不含参的不等式
【例2-1】 求不等式-2x2+x+3<0的解集.
解 化-2x2+x+3<0为2x2-x-3>0,
解方程2x2-x-3=0得x1=-1,x2=,
∴不等式2x2-x-3>0的解集为(-∞,-1)∪,
即原不等式的解集为(-∞,-1)∪.
命题角度二 含参不等式
【例2-2】 解关于x的不等式ax2-2≥2x-ax(x∈R).
解 原不等式可化为ax2+(a-2)x-2≥0.
①当a=0时,原不等式化为x+1≤0,解得x≤-1.
②当a>0时,原不等式化为(x+1)≥0,
解得x≥或x≤-1.
③当a<0时,原不等式化为(x+1)≤0.
当>-1,即a<-2时,解得-1≤x≤;
当=-1,即a=-2时,解得x=-1满足题意;
当<-1,即-2综上所述,当a=0时,不等式的解集为{x|x≤-1};
当a>0时,不等式的解集为;
当-2<a<0时,不等式的解集为;
当a=-2时,不等式的解集为{-1};
当a<-2时,不等式的解集为.
规律方法 含有参数的不等式的求解,往往需要比较(相应方程)根的大小,对参数进行分类讨论:
(1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;
(2)若二次项系数为参数,则应先考虑二次项是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;
(3)其次对相应方程的根进行讨论,比较大小,以便写出解集.
【训练2】 (1)已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x2+ax+b<0的解集为A∩B,则a+b等于(  )
A.-3 B.1
C.-1 D.3
(2)不等式2x2-x<4的解集为________.
解析 (1)由题意得,A={x|-1<x<3},B={x|-3<x<2},所以A∩B={x|-1<x<2},由题意知,-1,2为方程x2+ax+b=0的两根,由根与系数的关系可知,a=-1,b=-2,则a+b=-3.
(2)因为4=22且y=2x在R上单调递增,所以2x2-x<4可化为x2-x<2,解得-1<x<2,所以2x2-x<4的解集是{x|-1<x<2}.
答案 (1)A (2){x|-1<x<2}
考点三 一元二次不等式的恒成立问题(多维探究)
命题角度一 在R上恒成立
【例3-1】 若一元二次不等式2kx2+kx-<0对一切实数x都成立,则k的取值范围为(  )
A.(-3,0] B.[-3,0) C.[-3,0] D.(-3,0)
解析 2kx2+kx-<0对一切实数x都成立,
则必有
解之得-3<k<0.
答案 D
命题角度二 在给定区间上恒成立
【例3-2】 设函数f(x)=mx2-mx-1(m≠0),若对于x∈[1,3],f(x)<-m+5恒成立,则m的取值范围是________.
解析 要使f(x)<-m+5在[1,3]上恒成立,
则mx2-mx+m-6<0,
即m+m-6<0在x∈[1,3]上恒成立.
有以下两种方法:
法一 令g(x)=m+m-6,x∈[1,3].
当m>0时,g(x)在[1,3]上是增函数,
所以g(x)max=g(3)=7m-6<0.
所以m<,则0<m<.
当m<0时,g(x)在[1,3]上是减函数,
所以g(x)max=g(1)=m-6<0.
所以m<6,所以m<0.
综上所述,m的取值范围是.
法二 因为x2-x+1=+>0,
又因为m(x2-x+1)-6<0,所以m<.
因为函数y==在[1,3]上的最小值为,所以只需m<即可.
因为m≠0,所以m的取值范围是
.
答案 
命题角度三 给定参数范围的恒成立问题
【例3-3】 已知a∈[-1,1]时不等式x2+(a-4)x+4-2a>0恒成立,则x的取值范围为(  )
A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞)
C.(-∞,1)∪(3,+∞) D.(1,3)
解析 把不等式的左端看成关于a的一次函数,记f(a)=(x-2)a+x2-4x+4,
则由f(a)>0对于任意的a∈[-1,1]恒成立,
所以f(-1)=x2-5x+6>0,
且f(1)=x2-3x+2>0即可,解不等式组
得x<1或x>3.
答案 C
规律方法 恒成立问题求解思路
(1)一元二次不等式在R上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解.
(2)一元二次不等式在x∈[a,b]上恒成立确定参数范围时,要根据函数的单调性,求其最小值,让最小值大于等于0,从而求参数的范围.
(3)一元二次不等式对于参数m∈[a,b]恒成立确定x的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.
【训练3】 (1)若不等式x2-2x+5≥a2-3a对任意实数x恒成立,则实数a的取值范围是(  )
A.[-1,4] B.(-∞,-2]∪[5,+∞)
C.(-∞,-1]∪[4,+∞) D.[-2,5]
(2)已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是______.
解析 (1)由于x2-2x+5=(x-1)2+4的最小值为4,所以x2-2x+5≥a2-3a对任意实数x恒成立,只需a2-3a≤4,解得-1≤a≤4.
(2)二次函数f(x)对于任意x∈[m,m+1],
都有f(x)<0成立,

解得-<m<0.
答案 (1)A (2)
[思想方法]
1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.
2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单.
3.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a<0的情况转化为a>0时的情形.
4.(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.
(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.
[易错防范]
1.对于不等式ax2+bx+c>0,求解时不要忘记讨论a=0时的情形.
2.当Δ<0时,ax2+bx+c>0(a≠0)的解集为R还是?,要注意区别.
3.含参数的不等式要注意选好分类标准,避免盲目讨论.
第2讲 二元一次不等式(组)与简单的线性规划问题
最新考纲 1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
知 识 梳 理
1.二元一次不等式(组)表示的平面区域
(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(半平面)不含边界直线.不等式Ax+By+C≥0所表示的平面区域(半平面)包括边界直线.
(2)对于直线Ax+By+C=0同一侧的所有点(x,y),使得Ax+By+C的值符号相同,也就是位于同一半平面内的点,其坐标适合同一个不等式Ax+By+C>0;而位于另一个半平面内的点,其坐标适合另一个不等式Ax+By+C<0.
(3)由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.
2.线性规划的有关概念
名称
意义
线性约束条件
由x,y的一次不等式(或方程)组成的不等式组,是对x,y的约束条件
目标函数
关于x,y的解析式
线性目标函数
关于x,y的一次解析式
可行解
满足线性约束条件的解(x,y)
可行域
所有可行解组成的集合
最优解
使目标函数达到最大值或最小值的可行解
线性规划问题
求线性目标函数在线性约束条件下的最大值或最小值的问题
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.(  )
(2)线性目标函数的最优解可能是不唯一的.(  )
(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.(  )
(4)在目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.(  )
(5)不等式x2-y2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y轴的两块区域.(  )
解析 (1)不等式x-y+1>0表示的平面区域在直线x-y+1=0的下方.
(4)直线ax+by-z=0在y轴上的截距是.
答案 (1)× (2)√ (3)√ (4)× (5)√
2.下列各点中,不在x+y-1≤0表示的平面区域内的是(  )
A.(0,0) B.(-1,1)
C.(-1,3) D.(2,-3)
解析 把各点的坐标代入可得(-1,3)不适合,故选C.
答案 C
3.(必修5P86T3)不等式组表示的平面区域是(  )
解析 x-3y+6≥0表示直线x-3y+6=0及其右下方部分,x-y+2<0表示直线x-y+2=0左上方部分,故不等式表示的平面区域为选项B.
答案 B
4.(2016·全国Ⅱ卷)若x,y满足约束条件则z=x-2y的最小值为________.
解析 画出可行域,数形结合可知目标函数的最小值在直线x=3与直线x-y+1=0的交点(3,4)处取得,代入目标函数z=x-2y得到-5.
答案 -5
5.(2017·舟山统考)已知整数x,y满足不等式则2x+y的最大值是________;x2+y2的最小值是________.
解析 满足不等式组的可行域如图所示,由z=2x+y,得y=-2x+z,由图可知,当直线y=-2x+z过A时,直线在y轴上的截距最大,由可得即A点坐标为(8,8),z最大值等于2×8+8=24.x2+y2的最小值是可行域的B到原点距离的平方,由可得B(2,2),可得22+22=8.
答案 24 8
6.若变量x,y满足约束条件且z=2x+y的最小值为-6,则k=________.
解析 作出不等式组表示的平面区域,如图中阴影部分所示,z=2x+y,则y=-2x+z.易知当直线y=-2x+z过点A(k,k)时,z=2x+y取得最小值,即3k=-6,所以k=-2.
答案 -2
考点一 二元一次不等式(组)表示的平面区域
【例1】 (2015·重庆卷)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为(  )
A.-3 B.1
C. D.3
解析 如图,要使不等式组表示的平面区域为三角形,则-2m<2,则m>-1,
由解得
即A(1-m,1+m).
由解得
即B,所围成的区域为△ABC,则S△ABC=S△ADC-S△BDC=(2+2m)(1+m)-(2+2m)·(1+m)=(1+m)2=,解得m=-3(舍去)或m=1.故选B.
答案 B
规律方法 二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域,注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.
【训练1】 若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k的值是(  )
A. B.
C. D.
解析 不等式组表示的平面区域如图所示.
由于直线y=kx+过定点.因此只有直线过AB中点时,直线y=kx+能平分平面区域.
因为A(1,1),B(0,4),
所以AB中点D.
当y=kx+过点时,=+,
所以k=.
答案 A
考点二 线性规划相关问题(多维探究)
命题角度一 求目标函数的最值
【例2-1】 (1)(2016·全国Ⅲ卷)设x,y满足约束条件则z=2x+3y-5的最小值为________.
(2)(2015·全国Ⅰ卷)若x,y满足约束条件则的最大值为________.
解析 (1)画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,
当直线y=-x++过点A(-1,-1)时,z取得最小值,即zmin=2×(-1)+3×(-1)-5=-10.
(2)作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A(1,3)与原点连线的斜率最大,故的最大值为3.
答案 (1)-10 (2)3
命题角度二 求参数的值或范围
【例2-2】 (2015·福建卷)变量x,y满足约束条件若z=2x-y的最大值为2,则实数m等于(  )
A.-2 B.-1 C.1 D.2
解析 如图所示,目标函数z=2x-y取最大值2,即y=2x-2时,画出表示的区域,由于mx-y≤0过定点(0,0),要使z=2x-y取最大值2,则目标函数必过两直线x-2y+2=0与y=2x-2的交点A(2,2),因此直线mx-y=0过点A(2,2),故有2m-2=0,解得m=1.
答案 C
规律方法 线性规划两类问题的解决方法
(1)求目标函数的最值:画出可行域后,要根据目标函数的几何意义求解,常见的目标函数有:①截距型:形如z=ax+by;②距离型:形如z=.③斜率型:形如z=.
(2)求参数的值或范围:参数的位置可能在目标函数中,也可能在约束条件中.求解步骤为:①注意对参数取值的讨论,将各种情况下的可行域画出来;②在符合题意的可行域里,寻求最优解.
【训练2】 (1)设x,y满足约束条件且z=x+ay的最小值为7,则a=(  )
A.-5 B.3
C.-5或3 D.5或-3
(2)(2017·诸暨市统考)已知变量x,y满足则z=()2x+y的最大值为________.
解析 (1)二元一次不等式组表示的平面区域如图所示,其中A.由z=x+ay得y=-x+.
由图可知当-1≤-≤1时,z可取得最小值,此时a≥1或a≤-1.
又直线y=-x+过A点时,z取得最小值,因此+a×=7,化简得a2+2a-15=0,解得a=3或a=-5,
当a=3时,经检验知满足题意;当a=-5时,目标函数z=x+ay过点A时取得最大值,不满足题意,故选B.
(2)作出不等式组所表示的平面区域,如图阴影部分所示.令m=2x+y,由图象可知当直线y=-2x+m经过点A时,直线y=-2x+m的纵截距最大,此时m最大,故z最大.
由解得
即A(1,2).代入目标函数z=()2x+y得,z=()2×1+2=4.
答案 (1)B (2)4
考点三 实际生活中的线性规划问题
【例3】 (2016·全国Ⅰ卷)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________元.
解析 设生产A产品x件,B产品y件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为
目标函数z=2 100x+900y.
作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,zmax=2 100×60+900×100=216 000(元).
答案 216 000
规律方法 解线性规划应用问题的一般步骤:
(1)分析题意,设出未知量;
(2)列出线性约束条件和目标函数;
(3)作出可行域并利用数形结合求解;
(4)作答.
【训练3】 (2015·陕西卷)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为(  )


原料限额
A(吨)
3
2
12
B(吨)
1
2
8
A.12万元 B.16万元
C.17万元 D.18万元
解析 设每天生产甲、乙产品分别为x吨、y吨,每天所获利润为z万元,则有目标函数z=3x+4y,线性约束条件表示的可行域如图阴影部分所示:
可得目标函数在点A处取到最大值.
由得A(2,3).则zmax=3×2+4×3=18(万元).
答案 D
[思想方法]
1.求最值:求二元一次目标函数z=ax+by(ab≠0)的最值,将z=ax+by转化为直线的斜截式:y=-x+,通过求直线的截距的最值间接求出z的最值.最优解在顶点或边界取得.
2.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.
3.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题.
[易错防范]
1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.
2.在通过求直线的截距的最值间接求出z的最值时,要注意:当b>0时,截距取最大值时,z也取最大值;截距取最小值时,z也取最小值;当b<0时,截距取最大值时,z取最小值;截距取最小值时,z取最大值.
第3讲 基本不等式:≤
最新考纲 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.
知 识 梳 理
1.基本不等式:≤
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当a=b时取等号.
(3)其中称为正数a,b的算术平均数,称为正数a,b的几何平均数.
2.几个重要的不等式
(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
(2)ab≤(a,b∈R),当且仅当a=b时取等号.
(3)≥(a,b∈R),当且仅当a=b时取等号.
(4)+≥2(a,b同号),当且仅当a=b时取等号.
3.利用基本不等式求最值
已知x≥0,y≥0,则
(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2(简记:积定和最小).
(2)如果和x+y是定值s,那么当且仅当x=y时,xy有最大值是(简记:和定积最大).
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)当a≥0,b≥0时,≥.(  )
(2)两个不等式a2+b2≥2ab与≥成立的条件是相同的.(  )
(3)函数y=x+的最小值是2.(  )
(4)函数f(x)=sin x+的最小值为2.(  )
(5)x>0且y>0是+≥2的充要条件.(  )
解析 (2)不等式a2+b2≥2ab成立的条件是a,b∈R;
不等式≥成立的条件是a≥0,b≥0.
(3)函数y=x+值域是(-∞,-2]∪[2,+∞),没有最小值.
(4)函数f(x)=sin x+的最小值为-5.
(5)x>0且y>0是+≥2的充分条件.
答案 (1)√ (2)× (3)× (4)× (5)×
2.设x>0,y>0,且x+y=18,则xy的最大值为(  )
A.80 B.77 C.81 D.82
解析 xy≤=81,当且仅当x=y=9时等号成立,故选C.
答案 C
3.(2015·福建卷)若直线+=1(a>0,b>0)过点(1,1),则a+b的最小值等于(  )
A.2 B.3 C.4 D.5
解析 因为直线+=1(a>0,b>0)过点(1,1),所以+=1.所以a+b=(a+b)·=2++≥2+2=4,当且仅当a=b=2时取“=”,故选C.
答案 C
4.若函数f(x)=x+(x>2)在x=a处取最小值,则a等于(  )
A.1+ B.1+ C.3 D.4
解析 当x>2时,x-2>0,f(x)=(x-2)++2≥2+2=4,当且仅当x-2=(x>2),即x=3时取等号,即当f(x)取得最小值时,即a=3,选C.
答案 C
5.(必修5P100A2改编)一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为______m,宽为________m时菜园面积最大.
解析 设矩形的长为x m,宽为y m.则x+2y=30,所以S=xy=x·(2y)≤=,当且仅当x=2y,即x=15,y=时取等号.
答案 15 
6.(2017·浙江五校联考)已知正数x,y满足x+y=1,则x-y的取值范围为________,+的最小值为________.
解析 ∵正数x,y满足x+y=1,
∴y=1-x,0∴x-y=2x-1,又0∴0<2x<2,∴-1<2x-1<1,
即x-y的取值范围为(-1,1).
+=+=1++≥1+2=1+2=3,当且仅当x=y=时取“=”;∴+的最小值为3.
答案 (-1,1) 3
考点一 配凑法求最值
【例1】 (1)已知x<,求f(x)=4x-2+的最大值;
(2)求函数y=的最大值.
解 (1)因为x<,所以5-4x>0,
则f(x)=4x-2+=-+3≤
-2+3=-2+3=1.
当且仅当5-4x=,即x=1时,等号成立.
故f(x)=4x-2+的最大值为1.
(2)令t=≥0,则x=t2+1,
所以y==.
当t=0,即x=1时,y=0;
当t>0,即x>1时,y=,
因为t+≥2=4(当且仅当t=2时取等号),
所以y=≤,
即y的最大值为(当t=2,即x=5时y取得最大值).
规律方法 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.
(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.
【训练1】 (1)(2017·丽水模拟)若对任意的x≥1,不等式x+-1≥a恒成立,则实数a的取值范围是________.
(2)函数y=(x>1)的最小值为________.
解析 (1)因为函数f(x)=x+-1在[1,+∞)上单调递增,所以函数g(x)=x+1+-2在[0,+∞)上单调递增,所以函数g(x)在[1,+∞)的最小值为g(1)=,因此对?x≥1不等式x+-1≥a恒成立,所以a≤g(x)最小值=,故实数a的取值范围是.
(2)y==

=(x-1)++2≥2+2.
当且仅当x-1=,即x=+1时,等号成立.
答案 (1) (2)2+2
考点二 常数代换或消元法求最值
【例2】 (1)若正数x,y满足x+3y=5xy,则3x+4y的最小值为________.
(2)已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为________.
解析 (1)法一 由x+3y=5xy可得+=1,
∴3x+4y=(3x+4y)
=+++≥+=5(当且仅当=,即x=1,y=时,等号成立),
∴3x+4y的最小值是5.
法二 由x+3y=5xy,得x=,
∵x>0,y>0,∴y>,
∴3x+4y=+4y=+4y=+·+4
≥+2=5,
当且仅当y=时等号成立,∴(3x+4y)min=5.
(2)由已知得x=.
法一 (消元法)
因为x>0,y>0,所以0<y<3,
所以x+3y=+3y
=+3(y+1)-6≥2-6=6,
当且仅当=3(y+1),
即y=1,x=3时,(x+3y)min=6.
法二 ∵x>0,y>0,
9-(x+3y)=xy=x·(3y)≤·,
当且仅当x=3y时等号成立.
设x+3y=t>0,则t2+12t-108≥0,
∴(t-6)(t+18)≥0,
又∵t>0,∴t≥6.故当x=3,y=1时,(x+3y)min=6.
答案 (1)5 (2)6
规律方法 条件最值的求解通常有三种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值;三是对条件使用基本不等式,建立所求目标函数的不等式求解.
易错警示 (1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.
【训练2】 (1)已知x>0,y>0且x+y=1,则+的最小值为________.
(2)(2016·东阳检测)已知正数x,y满足x+2y-xy=0,则x+2y的最小值为(  )
A.8 B.4 C.2 D.0
解析 (1)(常数代换法)
因为x>0,y>0,且x+y=1,
所以+=(x+y)
=10++≥10+2=18,
当且仅当=,即x=2y时等号成立,
所以当x=,y=时,+有最小值18.
(2)由x+2y-xy=0,得+=1,且x>0,y>0.
∴x+2y=(x+2y)×=++4≥4+4=8.
答案 (1)18 (2)A
考点三 基本不等式在实际问题中的应用
【例3】 运货卡车以每小时x千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
解 (1)设所用时间为t=(h),
y=×2×+14×,x∈[50,100].
所以,这次行车总费用y关于x的表达式是y=+x,x∈[50,100]
(或y=+x,x∈[50,100]).
(2)y=+x≥26,
当且仅当=x,
即x=18时等号成立.
故当x=18千米/时,这次行车的总费用最低,最低费用的值为26元.
规律方法 (1)设变量时一般要把求最大值或最小值的变量定义为函数.
(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.
(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)求解.
【训练3】 (2017·湖州月考)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒),平均车长l(单位:米)的值有关,其公式为F=.
(1)如果不限定车型,l=6.05,则最大车流量为______辆/时;
(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/时.
解析 (1)当l=6.05时,F=,
∴F==≤=1 900,
当且仅当v=,即v=11时取“=”.
∴最大车流量F为1 900辆/时.
(2)当l=5时,F==,
∴F≤=2 000,
当且仅当v=,即v=10时取“=”.
∴最大车流量比(1)中的最大车流量增加2 000-1 900=100辆/时.
答案 (1)1 900 (2)100
[思想方法]
1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.
2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab≤≤,≤≤(a>0,b>0)等,同时还要注意不等式成立的条件和等号成立的条件.
3.对使用基本不等式时等号取不到的情况,可考虑使用函数y=x+(m>0)的单调性.
[易错防范]
1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.
2.连续使用基本不等式求最值要求每次等号成立的条件一致.
第4讲 绝对值不等式
最新考纲 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a.
知 识 梳 理
1.绝对值不等式的解法
(1)含绝对值的不等式|x|a的解集
不等式
a>0
a=0
a<0
|x|(-a,a)
?
?
|x|>a
(-∞,-a)∪(a,+∞)
(-∞,0)∪(0,+∞)
R
(2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法
①|ax+b|≤c?-c≤ax+b≤c;
②|ax+b|≥c?ax+b≥c或ax+b≤-c;
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法
①利用绝对值不等式的几何意义求解,体现了数形结合的思想;
②利用“零点分段法”求解,体现了分类讨论的思想;
③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.
2.含有绝对值的不等式的性质
(1)如果a,b是实数,则|a|-|b|≤|a±b|≤|a|+|b|,当且仅当ab≥0时,等号成立.
(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)若|x|>c的解集为R,则c≤0.(  )
(2)不等式|x-1|+|x+2|<2的解集为?.(  )
(3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.(  )
(4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.(  )
(5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.(  )
答案 (1)× (2)√ (3)× (4)× (5)√
2.若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为(  )
A.5或8 B.-1或5
C.-1或-4 D.-4或8
解析 分类讨论:
当a≤2时,f(x)=
显然,x=-时,f(x)min=+1-a=3,∴a=-4,
当a>2时,f(x)=
显然x=-时,f(x)min=--1+a=3,∴a=8.
答案 D
3.(2015·山东卷改编)不等式|x-1|-|x-5|<2的解集为________.
解析 ①当x≤1时,原不等式可化为1-x-(5-x)<2,
∴-4<2,不等式恒成立,∴x≤1.
②当1∴x<4,∴1③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.
综上,原不等式的解集为(-∞,4).
答案 (-∞,4)
4.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=________.
解析 ∵|kx-4|≤2,∴-2≤kx-4≤2,∴2≤kx≤6.
∵不等式的解集为{x|1≤x≤3},∴k=2.
答案 2
5.(2017·杭州调研)设函数f(x)=|x-a|+3x,其中a>0.
(1)当a=1时,则不等式f(x)≥3x+2的解集为________.
(2)若不等式f(x)≤0的解集为{x|x≤-1},则a的值为________.
解析 (1)当a=1时,f(x)≥3x+2可化为|x-1|≥2.
由此可得x≥3或x≤-1.
故当a=1时,不等式f(x)≥3x+2的解集为{x|x≥3或x≤-1}.
(2)由f(x)≤0得|x-a|+3x≤0.
此不等式化为不等式组或
即或
因为a>0,所以不等式组的解集为.
由题设可得-=-1,故a=2.
答案 (1){x|x≥3或x≤-1} (2)2
6.若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围为________.
解析 设y=|2x-1|+|x+2|

当x<-2时,y=-3x-1>5;
当-2≤x<时,5≥y=-x+3>;
当x≥时,y=3x+1≥,故函数y=|2x-1|+|x+2|的最小值为.因为不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,所以≥a2+a+2.
解不等式≥a2+a+2,得-1≤a≤,故实数a的取值范围为.
答案 
考点一 含绝对值不等式的解法
【例1】 解不等式|x-1|+|x+2|≥5.
解 法一 如图,设数轴上与-2,1对应的点分别是A,B,则不等式的解就是数轴上到A,B两点的距离之和不小于5的点所对应的实数.显然,区间[-2,1]不是不等式的解集.把A向左移动一个单位到点A1,此时A1A+A1B=1+4=5.把点B向右移动一个单位到点B1,此时B1A+B1B=5,故原不等式的解集为(-∞,-3]∪[2,+∞).
法二 原不等式|x-1|+|x+2|≥5?

或解得x≥2或x≤-3,
∴原不等式的解集为(-∞,-3]∪[2,+∞).
法三 将原不等式转化为|x-1|+|x+2|-5≥0.
令f(x)=|x-1|+|x+2|-5,则
f(x)=作出函数的图象,如图所示.
由图象可知,当x∈(-∞,-3]∪[2,+∞)时,y≥0,
∴原不等式的解集为(-∞,-3]∪[2,+∞).
规律方法 形如|x-a|+|x-b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a,b],(b,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x-a|+|x-b|>c(c>0)的几何意义:数轴上到点x1=a和x2=b的距离之和大于c的全体;(3)图象法:作出函数y1=|x-a|+|x-b|和y2=c的图象,结合图象求解.
【训练1】 (2016·全国Ⅰ卷)已知函数f(x)=|x+1|-|2x-3|.
(1)在图中画出y=f(x)的图象;
(2)求不等式|f(x)|>1的解集.
解 (1)f(x)=
y=f(x)的图象如图所示.
(2)由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;
当f(x)=-1时,可得x=或x=5,
故f(x)>1的解集为{x|1所以|f(x)|>1的解集为
.
考点二 含参数的绝对值不等式问题
【例2】 (1)对任意x,y∈R,求|x-1|+|x|+|y-1|+|y+1|的最小值.
(2)对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-2y+1|的最大值.
解 (1)∵x,y∈R,
∴|x-1|+|x|≥|(x-1)-x|=1,
∴|y-1|+|y+1|≥|(y-1)-(y+1)|=2,
∴|x-1|+|x|+|y-1|+|y+1|≥1+2=3.
∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.
(2)|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+|2(y-2)+2|≤1+2|y-2|+2≤5,即|x-2y+1|的最大值为5.
规律方法 求含绝对值的函数最值时,常用的方法有三种:(1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a|+|b|≥|a±b|≥|a|-|b|;(3)利用零点分区间法.
【训练2】 (1)若关于x的不等式|2 014-x|+|2 015-x|≤d有解,求实数d的取值范围.
(2)不等式≥|a-2|+sin y对一切非零实数x,y均成立,求实数a的取值范围.
解 (1)∵|2 014-x|+|2 015-x|≥|2 014-x-2 015+x|=1,
∴关于x的不等式|2 014-x|+|2 015-x|≤d有解时,d≥1.
(2)∵x+∈(-∞,-2]∪[2,+∞),
∴∈[2,+∞),其最小值为2.
又∵sin y的最大值为1,
故不等式≥|a-2|+sin y恒成立时,
有|a-2|≤1,解得a∈[1,3].
考点三 含绝对值的不等式的应用
【例3】 (2016·全国Ⅲ卷)已知函数f(x)=|2x-a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求实数a的取值范围.
解 (1)当a=2时,f(x)=|2x-2|+2.
解不等式|2x-2|+2≤6得-1≤x≤3.
因此f(x)≤6的解集为{x|-1≤x≤3}.
(2)当x∈R时,
f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a,当x=时等号成立,
所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3.①
当a≤1时,①等价于1-a+a≥3,无解.
当a>1时,①等价于a-1+a≥3,解得a≥2.
所以实数a的取值范围是[2,+∞).
规律方法 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题的常用方法.
【训练3】 (2015·全国Ⅰ卷)已知函数f(x)=|x+1|-2|x-a|,a>0.
(1)当a=1时,求不等式f(x)>1的解集;
(2)若f(x)的图象与x轴围成的三角形面积大于6,求实数a的取值范围.
解 (1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.
当x≤-1时,不等式化为x-4>0,无解;
当-10,解得当x≥1时,不等式化为-x+2>0,解得1≤x<2.
所以f(x)>1的解集为.
(2)由题设可得,f(x)=
所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A,B(2a+1,0),C(a,a+1),
△ABC的面积为(a+1)2.
由题设得(a+1)2>6,故a>2.
所以实数a的取值范围为(2,+∞).
[思想方法]
1.绝对值不等式的三种常用解法:零点分段法,数形结合法,构造函数法.
2.不等式恒成立问题、存在性问题都可以转化为最值问题解决.
[易错防范]
1.可以利用绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|求函数最值,要注意其中等号成立的条件.
2.掌握分类讨论的标准,做到不重不漏.
第1讲 分类加法计数原理与分步乘法计数原理
最新考纲 1.理解分类加法计数原理和分步乘法计数原理;2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.
知 识 梳 理
1.分类加法计数原理
完成一件事有两类不同的方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.
2.分步乘法计数原理
完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.
3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(  )
(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(  )
(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(  )
(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.(  )
解析 分类加法计数原理,每类方案中的方法都是不同的,每一种方法都能完成这件事;分步乘法计数原理,每步的方法都是不同的,每步的方法只能完成这一步,不能完成这件事,所以(1),(4)均不正确.
答案 (1)× (2)√ (3)√ (4)×
2.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为(  )
A.6 B.5 C.3 D.2
解析 5个人中每一个都可主持,所以共有5种选法.
答案 B
3.(选修2-3P28B2改编)现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有(  )
A.24种 B.30种
C.36种 D.48种
解析 需要先给C块着色,有4种结果;再给A块着色,有3种结果;再给B块着色,有2种结果;最后给D块着色,有2种结果,由分步乘法计数原理知共有4×3×2×2=48(种).
答案 D
4.5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有________种(用数字作答).
解析 每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,总的报名方法共2×2×2×2×2=32(种).
答案 32
5.已知某公园有5个门,从任一门进,另一门出,则不同的走法的种数为________(用数字作答).
解析 分两步,第一步选一个门进有5种方法,第二步再选一个门出有4种方法,所以共有5×4=20种走法.
答案 20
6.(2015·广东卷改编)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了毕业留言________条;若每两个同学互通一次电话,那么共通________次电话(均用数字作答).
解析 第1位同学给余下的39位同学各写一条留言,共39条留言;依次下去,第40位同学给余下的39位同学各写一条留言,共39条留言,故全班共写了40×39=1 560条毕业留言.显然互通一次电话的次数为×1 560=780.
答案 1 560 780
考点一 分类加法计数原理
【例1】 (1)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽又被踢回给甲,则不同的传递方式共有(  )
A.4种 B.6种 C.10种 D.16种
(2)(2017·温州十校联考)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为(  )
A.14 B.13 C.12 D.10
解析 (1)分两类:甲第一次踢给乙时,满足条件有3种方法(如图),
同理,甲先传给丙时,满足条件有3种踢法.
由分类加法计数原理,共有3+3=6种传递方法.
(2)①当a=0,有x=-,b=-1,0,1,2有4种可能;
②当a≠0时,则Δ=4-4ab≥0,ab≤1,
(ⅰ)若a=-1时,b=-1,0,1,2有4种不同的选法;
(ⅱ)若a=1时,b=-1,0,1有3种可能;
(ⅲ)若a=2时,b=-1,0,有2种可能.
∴有序数对(a,b)共有4+4+3+2=13(个).
答案 (1)B (2)B
规律方法 分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素、关键位置.
(1)根据题目特点恰当选择一个分类标准.
(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.
(3)分类时除了不能交叉重复外,还不能有遗漏,如本例(2)中易漏a=0这一类.
【训练1】 (1)如图,从A到O有________种不同的走法(不重复过一点).
(2)若椭圆+=1的焦点在y轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________(用数字作答).
解析 (1)分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O共2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O共2种不同的走法,由分类加法计数原理可得共有1+2+2=5种不同的走法.
(2)当m=1时,n=2,3,4,5,6,7共6个
当m=2时,n=3,4,5,6,7共5个;
当m=3时,n=4,5,6,7共4个;
当m=4时,n=5,6,7共3个;
当m=5时,n=6,7共2个,故共有6+5+4+3+2=20个.
答案 (1)5 (2)20
考点二 分步乘法计数原理
【例2】 (1)(2017·郑州二模)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有(  )
A.10种 B.25种 C.52种 D.24种
(2)定义集合A与B的运算A*B如下:A*B={(x,y)|x∈A,y∈B},若A={a,b,c},B={a,c,d,e},则集合A*B的元素个数为________(用数字作答).
解析 (1)每相邻的两层之间各有2种走法,共分4步.
由分步乘法计数原理,共有24种不同的走法.
(2)显然(a,a),(a,c)等均为A*B中的关系,确定A*B中的元素是A中取一个元素来确定x,B中取一个元素来确定y,由分步计数原理可知A*B中有3×4=12个元素.
答案 (1)D (2)12
规律方法 (1)在第(1)题中,易误认为分5步完成,错选B.
(2)利用分步乘法计数原理应注意:①要按事件发生的过程合理分步,即分步是有先后顺序的.②各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.
【训练2】 (1)把3封信投到4个信箱,所有可能的投法共有(  )
A.24种 B.4种 C.43种 D.34种
(2)设集合A={-1,0,1},B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数为________(用数字作答).
解析 (1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.由分步乘法计数原理可得共有43种方法.
(2)易知A∩B={0,1},A∪B={-1,0,1,2,3},
∴x有两种取法,y有5种取法.
由分步乘法计数原理,A*B的元素有2×5=10(个).
答案 (1)C (2)10
考点三 两个计数原理的综合应用
【例3】 (1)(2015·四川卷)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有(  )
A.144个 B.120个 C.96个 D.72个
(2)(2017·杭州七校联考)如图所示,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________(用数字作答).
解析 (1)由题意,首位数字只能是4,5,若万位是5,则有3×A=72(个);若万位是4,则有2×A个=48(个),故比40 000大的偶数共有72+48=120(个).选B.
(2)按区域1与3是否同色分类:
①区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A种方法.
∴区域1与3涂同色,共有4A=24种方法.
②区域1与3不同色:先涂区域1与3有A种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.
∴这时共有A×2×1×3=72种方法.
由分类加法计数原理, 不同的涂色种数为24+72=96.
答案 (1)B (2)96
规律方法 (1)①注意在综合应用两个原理解决问题时,一般是先分类再分步.在分步时可能又用到分类加法计数原理.②注意对于较复杂的两个原理综合应用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.
(2)解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.第(2)题中,相邻区域不同色,是按区域1与3是否同色分类处理.
【训练3】 (1)如果一个三位正整数如“a1a2a3”满足a1a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为(  )
A.240 B.204
C.729 D.920
(2)从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).
解析 (1)若a2=2,则百位数字只能选1,个位数字可选1或0“凸数”为120与121,共2个.若a2=3,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).∴所有凸数有2+6+12+20+30+42+56+72=240(个).
(2)由题意知本题是一个分类计数问题,
共有8种不同的类型,
当有3个键同时按下,有C种结果,
当有4个键同时按下,有C种结果,
…,
以此类推,根据分类加法计数原理得到共有
C+C+C+…+C
=C+C+C+…+C-(C+C+C)
=210-(1+10+45)=968.
答案 (1)A (2)968
[思想方法]
1.应用两个计数原理的难点在于明确分类还是分步.
在处理具体的应用问题时,首先必须弄清楚“分类”与“分步”的具体标准是什么.选择合理的标准处理事情,可以避免计数的重复或遗漏.
2.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.
(2)分步要做到“步骤完整”,完成了所有步骤,恰好完成任务,当然步与步之间要相互独立,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
3.混合问题一般是先分类再分步.
4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.
[易错防范]
1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.
2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.
3.确定题目中是否有特殊条件限制.
第2讲 排列与组合
最新考纲 1.理解排列、组合的概念;2.能利用计数原理推导排列数公式、组合数公式;3.能解决简单的实际问题.
知 识 梳 理
1.排列与组合的概念
名称
定义
排列
从n个不同元素中取出m(m≤n)个不同元素
按照一定的顺序排成一列
组合
合成一组
2.排列数与组合数
(1)从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.
(2)从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.
3.排列数、组合数的公式及性质
公式
(1)A=n(n-1)(n-2)…(n-m+1)=
(2)C==
=(n,m∈N*,且m≤n).特别地C=1
性质
(1)0!=1;A=n!
(2)C=C;C=C+C
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)所有元素完全相同的两个排列为相同排列.(  )
(2)两个组合相同的充要条件是其中的元素完全相同.(  )
(3)若组合式C=C,则x=m成立.(  )
(4)kC=nC.(  )
解析 元素相同但顺序不同的排列是不同的排列,故(1)不正确;若C=C,则x=m或n-m,故(3)不正确.
答案 (1)× (2)√ (3)× (4)√
2.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是(  )
A.12 B.24 C.64 D.81
解析 4本不同的课外读物选3本分给3位同学,每人一本,则不同的分配方法为A=24.
答案 B
3.(选修2-3P28A17改编)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是(  )
A.18 B.24 C.30 D.36
解析 法一 选出的3人中有2名男同学1名女同学的方法有CC=18种,选出的3人中有1名男同学2名女同学的方法有CC=12种,故3名学生中男女生都有的选法有CC+CC=30种.
法二 从7名同学中任选3名的方法数,再除去所选3名同学全是男生或全是女生的方法数,即C-C-C=30.
答案 C
4.(2017·浙江三市十二校联考)用1,2,3,4,5,6这六个数字组成没有重复数字的六位数共有________个;其中1,3,5三个数字互不相邻的六位数有________个.
解析 用1,2,3,4,5,6组成没有重复数字六位数共有A=720个;将1,3,5三个数字插入到2,4,6三个数字排列后所形成的4个空中的3个,故有AA=144个.
答案 720 144
5.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为________(用数字作答).
解析 末位数字排法有A,其他位置排法有A种,共有AA=48种.
答案 48
6.(2017·绍兴调研)某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为________(用数字作答).
解析 法一 (直接法)甲、乙两人均入选,有CC种.
甲、乙两人只有1人入选,有CC种方法,
∴由分类加法计数原理,共有CC+CC=49(种)选法.
法二 (间接法)从9人中选3人有C种方法.
其中甲、乙均不入选有C种方法,
∴满足条件的选排方法是C-C=84-35=49(种).
答案 49
考点一 排列问题
【例1】 (2017·河南校级月考)3名女生和5名男生排成一排.
(1)如果女生全排在一起,有多少种不同排法?
(2)如果女生都不相邻,有多少种排法?
(3)如果女生不站两端,有多少种排法?
(4)其中甲必须排在乙前面(可不邻),有多少种排法?
(5)其中甲不站最左边,乙不站最右边,有多少种排法?
解 (1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有6个元素,排成一排有A种排法,而其中每一种排法中,三个女生间又有A种排法,因此共有A·A=4 320(种)不同排法.
(2)(插空法)先排5个男生,有A种排法,这5个男生之间和两端有6个位置,从中选取3个位置排女生,有A种排法,因此共有A·A=14 400(种)不同排法.
(3)法一 (位置分析法) 因为两端不排女生,只能从5个男生中选2人,有A种排法,剩余的位置没有特殊要求,有A种排法,因此共有A·A=14 400(种)不同排法.
法二 (元素分析法) 从中间6个位置选3个安排女生,有A种排法,其余位置无限制,有A种排法,因此共有A·A=14 400(种)不同排法.
(4)8名学生的所有排列共A种,其中甲在乙前面与乙在甲前面的各占其中,∴符合要求的排法种数为A=20 160(种).
(5)甲、乙为特殊元素,左、右两边为特殊位置.
法一 (特殊元素法)甲在最右边时,其他的可全排,有A种;
甲不在最右边时,可从余下6个位置中任选一个,有A种;
而乙可排在除去最右边位置后剩余的6个中的任一个上,有A种;
其余人6个人进行全排列,有A种.共有A·A·A种.
由分类加法计数原理,共有A+A·A·A=30 960(种).
法二 (特殊位置法)先排最左边,除去甲外,有A种,余下7个位置全排,有A种,但应剔除乙在最右边时的排法A·A种,因此共有A·A-A·A=30 960(种).
法三 (间接法)8个人全排,共A种,其中,不合条件的有甲在最左边时,有A种,乙在最右边时,有A种,其中都包含了甲在最左边,同时乙在最右边的情形,有A种.因此共有A-2A+A=30 960(种).
规律方法 (1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.
(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.
【训练1】 (1)(2017·新余二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为(  )
A.120 B.240 C.360 D.480
(2)(2017·抚顺模拟)某班准备从甲、乙等七人中选派四人发言,要求甲乙两人至少有一人参加,那么不同的发言顺序有(  )
A.30 B.600 C.720 D.840
解析 (1)第一步,从甲、乙、丙三人选一个加到前排,有3种,第二步,前排3人形成了4个空,任选一个空加一人,有4种,第三步,后排4人形成了5个空,任选一个空加一人有5种,此时形成6个空,任选一个空加一人,有6种,根据分步计数原理有3×4×5×6=360种方法.
(2)若只有甲乙其中一人参加,有CCA=480种方法;若甲乙两人都参加,有CCA=240种方法,则共有480+240=720种方法,故选C.
答案 (1)C (2)C
考点二 组合问题
【例2】 某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.
(1)其中某一种假货必须在内,不同的取法有多少种?
(2)其中某一种假货不能在内,不同的取法有多少种?
(3)恰有2种假货在内,不同的取法有多少种?
(4)至少有2种假货在内,不同的取法有多少种?
(5)至多有2种假货在内,不同的取法有多少种?
解 (1)从余下的34种商品中,选取2种有C=561种,∴某一种假货必须在内的不同取法有561种.
(2)从34种可选商品中,选取3种,有C种或者C-C=C=5 984种.
∴某一种假货不能在内的不同取法有5 984种.
(3)从20种真货中选取1件,从15种假货中选取2件有CC=2 100种.
∴恰有2种假货在内的不同的取法有2 100种.
(4)选取2种假货有CC种,选取3件假货有C种,共有选取方式CC+C=2 100+455=2 555种.
∴至少有2种假货在内的不同的取法有2 555种.
(5)选取3件的总数为C,因此共有选取方式
C-C=6 545-455=6 090种.
∴至多有2种假货在内的不同的取法有6 090种.
规律方法 组合问题常有以下两类题型变化:
(1)“含有”或“不含有”某些元素的组合题型;“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.
(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.
【训练2】 (1)(2017·邯郸一模)现有6个不同的白球,4个不同的黑球,任取4个球,则至少有两个黑球的取法种数是(  )
A.90 B.115 C.210 D.385
(2)(2017·湖州市质检)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有(  )
A.60种 B.63种 C.65种 D.66种
解析 (1)分三类,取2个黑球有CC=90种,取3个黑球有CC=24种,取4个黑球有C=1种,故共有90+24+1=115种取法,选B.
(2)共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,∴共有不同的取法有C+C+CC=66(种).
答案 (1)B (2)D
考点三 排列、组合的综合应用
【例3】 4个不同的球,4个不同的盒子,把球全部放入盒内.
(1)恰有1个盒不放球,共有几种放法?
(2)恰有1个盒内有2个球,共有几种放法?
(3)恰有2个盒不放球,共有几种放法?
解 (1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有CCC×A=144(种).
(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.
(3)确定2个空盒有C种方法.
4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有CCA种方法;第二类有序均匀分组有·A种方法.故共有C(CCA+·A)=84(种).
规律方法 (1)解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).对于排列组合的综合题目,一般是将符合要求的元素取出或进行分组,再对取出的元素或分好的组进行排列.
(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的差异.其次对于相同元素的“分配”问题,常用的方法是采用“隔板法”.
【训练3】 (1)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为(  )
A.AC B.AC
C.AA D.2A
(2)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).
解析 (1)法一 将4人平均分成两组有C种方法,将此两组分配到6个班级中的2个班有A(种).
所以不同的安排方法有CA(种).
法二 先从6个班级中选2个班级有C种不同方法,然后安排学生有CC种,故有CCC=AC(种).
(2)把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C种分法,再分给4人有CA种分法,所以不同获奖情况种数为A+CA=24+36=60.
答案 (1)B (2)60
[思想方法]
1.对于有附加条件的排列、组合应用题,通常从三个途径考虑
(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.
(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.
2.排列、组合问题的求解方法与技巧
(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.
[易错防范]
1.区分一个问题属于排列问题还是组合问题,关键在于是否与顺序有关.
2.解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法).分类时标准应统一,避免出现重复或遗漏.
3.解组合应用题时,应注意“至少”、“至多”、“恰好”等词的含义.
4.对于分配问题,一般先分组,再分配,注意平均分组与不平均分组的区别,避免重复或遗漏.
第3讲 二项式定理
最新考纲 1.能用计数原理证明二项式定理;2.会用二项式定理解决与二项展开式有关的简单问题.
知 识 梳 理
1.二项式定理
(1)二项式定理:(a+b)n=Can+Can-1b+…+Can-rbr+…+Cbn(n∈N*);
(2)通项公式:Tr+1=Can-rbr,它表示第r+1项;
(3)二项式系数:二项展开式中各项的系数C,C,…,C.
2.二项式系数的性质
性质
性质描述
对称性
与首末等距离的两个二项式系数相等,即C=C
增减性
二项式系数C
当k<(n∈N*)时,是递增的
当k>(n∈N*)时,是递减的
二项式
系数最
大值
当n为偶数时,中间的一项取得最大值
当n为奇数时,中间的两项与取最大值
3.各二项式系数和
(1)(a+b)n展开式的各二项式系数和:C+C+C+…+C=2n.
(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C+C+C+…=C+C+C+…=2n-1.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)Can-kbk是二项展开式的第k项.(  )
(2)二项展开式中,系数最大的项为中间一项或中间两项.(  )
(3)(a+b)n的展开式中某一项的二项式系数与a,b无关.(  )
(4)(a+b)n某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.(  )
解析 二项式展开式中Can-kbk是第k+1项,二项式系数最大的项为中间一项或中间两项,故(1)(2)均不正确.
答案 (1)× (2)× (3)√ (4)√
2.(x-y)n的二项展开式中,第m项的系数是(  )
A.C B.C
C.C D.(-1)m-1C
解析 (x-y)n展开式中第m项的系数为C(-1)m-1.
答案 D
3.(选修2-3P35练习T1(3)改编)
的值为(  )
A.2 B.4
C.2 017 D.2 016×2 017
解析 原式==22=4.
答案 B
4.(2017·瑞安市质检)的展开式中,第4项的二项式系数是________,第4项的系数是________.
解析 展开式通项为Tr+1=Cx2(9-r)
=(-1)rCx18-3r(其中r=0,1,…,9)
∴T4=(-1)3Cx9,
故第4项的二项式系数为C=84,第4项的系数为
(-1)3C=-.
答案 84 -
5.(2017·石家庄调研)(1+x)n的二项式展开式中,仅第6项的系数最大,则n=________.
解析 (1+x)n的二项式展开式中,项的系数就是项的二项式系数,所以+1=6,n=10.
答案 10
6.展开式中的常数项为________.
解析 Tk+1=C(x2)5-k=C(-2)kx10-5k.令10-5k=0,则k=2.∴常数项为T3=C(-2)2=40.
答案 40
考点一 求展开式中的特定项或特定项的系数
【例1】 已知在的展开式中,第6项为常数项.
(1)求n;
(2)求含x2的项的系数;
(3)求展开式中所有的有理项.
解 (1)通项公式为
Tk+1=Cxx-=Cx.
因为第6项为常数项,所以k=5时,=0,即n=10.
(2)令=2,得k=2,
故含x2的项的系数是C=.
(3)根据通项公式,由题意
令=r (r∈Z),则10-2k=3r,k=5-r,
∵k∈N,∴r应为偶数.
∴r可取2,0,-2,即k可取2,5,8,
∴第3项,第6项与第9项为有理项,
它们分别为x2,-,x-2.
规律方法 (1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求的项.
(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.
【训练1】 (1)(2015·全国Ⅰ卷)(x2+x+y)5的展开式中,x5y2的系数为(  )
A.10 B.20 C.30 D.60
(2)(2016·全国Ⅰ卷)(2x+)5的展开式中,x3的系数是________(用数字作答).
(3)(2014·全国Ⅰ卷)(x-y)(x+y)8的展开式中x2y7的系数为________(用数字作答).
解析 (1)法一 (x2+x+y)5=[(x2+x)+y]5,
含y2的项为T3=C(x2+x)3·y2.
其中(x2+x)3中含x5的项为Cx4·x=Cx5.
所以x5y2的系数为CC=30.
法二 (x2+x+y)5表示5个x2+x+y之积.
∴x5y2可从其中5个因式中选两个因式取y,两个取x2,一个取x.因此x5y2的系数为CCC=30.
(2)由(2x+)5得Tr+1=C(2x)5-r()r=
25-rCx5-,令5-=3得r=4,此时系数为10.
(3)(x-y)(x+y)8=x(x+y)8-y(x+y)8,
∵x(x+y)8中含x2y7的项为x·Cxy7,y(x+y)8中含x2y7的项为y·Cx2y6.
故(x-y)(x+y)8的展开式中x2y7的系数为C-C=C-C=-20.
答案 (1)C (2)10 (3)-20
考点二 二项式系数的和与各项的系数和问题
【例2】 在(2x-3y)10的展开式中,求:
(1)二项式系数的和;
(2)各项系数的和;
(3)奇数项的二项式系数和与偶数项的二项式系数和;
(4)奇数项系数和与偶数项系数和;
(5)x的奇次项系数和与x的偶次项系数和.
解 设(2x-3y)10=a0x10+a1x9y+a2x8y2+…+a10y10,(*)
各项系数和为a0+a1+…+a10,奇数项系数和为a0+a2+…+a10,偶数项系数和为a1+a3+a5+…+a9,x的奇次项系数和为a1+a3+a5+…+a9,x的偶次项系数和为a0+a2+a4+…+a10.
由于(*)是恒等式,故可用“赋值法”求出相关的系数和.
(1)二项式系数的和为C+C+…+C=210.
(2)令x=y=1,各项系数和为(2-3)10=(-1)10=1.
(3)奇数项的二项式系数和为C+C+…+C=29,
偶数项的二项式系数和为C+C+…+C=29.
(4)令x=y=1,得到a0+a1+a2+…+a10=1,①
令x=1,y=-1(或x=-1,y=1),
得a0-a1+a2-a3+…+a10=510,②
①+②得2(a0+a2+…+a10)=1+510,
∴奇数项系数和为;
①-②得2(a1+a3+…+a9)=1-510,
∴偶数项系数和为.
(5)x的奇次项系数和为a1+a3+a5+…+a9=;
x的偶次项系数和为a0+a2+a4+…+a10=.
规律方法 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax+b)n、(ax2+bx+c)m (a,b∈R)的式子求其展开式的各项系数之和,常用赋值法,只需令x=1即可;对形如(ax+by)n (a,b∈R)的式子求其展开式各项系数之和,只需令x=y=1即可.
(2)若f(x)=a0+a1x+a2x2+…+anxn,则f(x)展开式中各项系数之和为f(1),奇数项系数之和为a0+a2+a4+…=,偶数项系数之和为a1+a3+a5+…=.
【训练2】 (1)(2017·岳阳模拟)若二项式的展开式中各项系数的和是512,则展开式中的常数项为(  )
A.-27C B.27C
C.-9C D.9C
(2)(2017·义乌调研)(1-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,求|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=(  )
A.1 024 B.243 C.32 D.24
解析 (1)令x=1得2n=512,所以n=9,故的展开式的通项为Tr+1=C(3x2)9-r=(-1)rC·39-rx18-3r,令18-3r=0得r=6,所以常数项为T7=(-1)6C·33=27C.
(2)令x=-1得a0-a1+a2-a3+a4-a5=|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=[1-(-3)]5=45=1 024.
答案 (1)B (2)A
考点三 二项式定理的应用
【例3】 (1)求证:1+2+22+…+25n-1(n∈N*)能被31整除;
(2)用二项式定理证明2n>2n+1(n≥3,n∈N*).
证明 (1)∵1+2+22+…+25n-1=
=25n-1=32n-1=(31+1)n-1
=C×31n+C×31n-1+…+C×31+C-1
=31(C×31n-1+C×31n-2+…+C),
显然C×31n-1+C×31n-2+…+C为整数,
∴原式能被31整除.
(2)当n≥3,n∈N*.
2n=(1+1)n=C+C+…+C+C≥C+C+C+C=2n+2>2n+1,∴不等式成立.
规律方法 (1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项.而求近似值则应关注展开式的前几项.
(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式.
(3)由于(a+b)n的展开式共有n+1项,故可通过对某些项的取舍来放缩,从而达到证明不等式的目的.
【训练3】 求S=C+C+…+C除以9的余数.
解 S=C+C+…+C=227-1=89-1
=(9-1)9-1=C×99-C×98+…+C×9-C-1
=9(C×98-C×97+…+C)-2.
∵C×98-C×97+…+C是整数,
∴S被9除的余数为7.
[思想方法]
1.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C,C,…,C,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.
2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意给字母赋值是求解二项展开式各项系数和的一种重要方法.赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1.
[易错防范]
1.通项Tk+1=Can-kbk是(a+b)n的展开式的第k+1项,而不是第k项,这里k=0,1,…,n.
2.区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a,b有关,可正可负,二项式系数只与n有关,恒为正.
3.切实理解“常数项”“有理项”(字母指数为整数)“系数最大的项”等概念.
第4讲 随机事件的概率
最新考纲 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式.
知 识 梳 理
1.频率与概率
(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率.
2.事件的关系与运算
定义
符号表示
包含关系
如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
B?A(或A?B)
相等关系
若B?A且A?B
A=B
并事件(和事件)
若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)
A∪B(或A+B)
交事件(积事件)
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
A∩B(或AB)
互斥事件
若A∩B为不可能事件,则称事件A与事件B互斥
A∩B=?
对立事件
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
A∩B=?P(A∪B)=1
3.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)互斥事件概率的加法公式
①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
②若事件B与事件A互为对立事件,则P(A)=1-P(B).
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)事件发生的频率与概率是相同的.(  )
(2)在大量的重复实验中,概率是频率的稳定值.(  )
(3)若随机事件A发生的概率为P(A),则0≤P(A)≤1.(  )
(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.(  )
答案 (1)× (2)√ (3)√ (4)×
2.袋中装有3个白球,4个黑球,从中任取3个球,则:①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.
在上述事件中,是对立事件的为(  )
A.① B.②
C.③ D.④
解析 至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件.
答案 B
3.(2016·天津卷)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为(  )
A. B.
C. D.
解析 设“两人下成和棋”为事件A,“甲获胜”为事件B.事件A与B是互斥事件,所以甲不输的概率P=P(A∪B)=P(A)+P(B)=+=.
答案 A
4.(2017·威海模拟)围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是________.
解析 由题意知,所求概率P=+=.
答案 
5.袋中装有100个大小相同的红球、白球和黑球,从中任取一球,摸出红球、白球的概率分别是0.40和0.35,那么黑球共有________个.
解析 任取一球是黑球的概率为1-(0.40+0.35)=0.25,∴黑球有100×0.25=25(个).
答案 25
6.(2017·绍兴一中检测)口袋内有一些大小、形状完全相同的红球、黄球和白球,从中任意摸出一球,摸出的球是红球或黄球的概率为0.4,摸出的球是红球或白球的概率为0.9,那么摸出的球是黄球的概率为________;是白球的概率为________.
解析 设摸出红球的概率是P(A),摸出黄球的概率是P(B),摸出白球的概率是P(C),∴P(A)+P(B)=0.4,P(A)+P(C)=0.9,∴P(C)=1-P(A)-P(B)=0.6,P(B)=1-P(A)-P(C)=0.1.
答案 0.1 0.6
考点一 随机事件间的关系
【例1】 从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是(  )
A.① B.②④
C.③ D.①③
解析 从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数.
其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.
又①②④中的事件可以同时发生,不是对立事件.
答案 C
规律方法 (1)本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.
(2)准确把握互斥事件与对立事件的概念.
①互斥事件是不可能同时发生的事件,但可以同时不发生.
②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.
【训练1】 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________.
①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C∪E)=1;⑤P(B)=P(C).
解析 当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C∪E不一定为必然事件,P(C∪E)≤1,④不正确.由于P(B)=,P(C)=,所以⑤不正确.
答案 ①
考点二 随机事件的频率与概率
【例2】 (2016·全国Ⅱ卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数
0
1
2
3
4
≥5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数
0
1
2
3
4
≥5
频数
60
50
30
30
20
10
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
解 (1)事件A发生当且仅当一年内出险次数小于2,由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.
(2)事件B发生当且仅当一年内出险次数大于1且小于4,由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.
(3)由所给数据得
保费
0.85a
a
1.25a
1.5a
1.75a
2a
频率
0.30
0.25
0.15
0.15
0.10
0.05
调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.
因此,续保人本年度平均保费的估计值为1.192 5a.
规律方法 (1)解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率.
(2)频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值.
【训练2】 (2015·北京卷)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
商品
顾客人数




100

×


217
×

×

200



×
300

×

×
85

×
×
×
98
×

×
×
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,
所以顾客同时购买乙和丙的概率可以估计为=0.2.
(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.
所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3.
(3)与(1)同理,可得:
顾客同时购买甲和乙的概率可以估计为=0.2,
顾客同时购买甲和丙的概率可以估计为=0.6,顾客同时购买甲和丁的概率可以估计为=0.1.
所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.
考点三 互斥事件与对立事件的概率
【例3】 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量
1至
4件
5至
8件
9至
12件
13至
16件
17件及以上
顾客数/人
x
30
25
y
10
结算时间/(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
解 (1)由已知得25+y+10=55,x+30=45,
所以x=15,y=20.
该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为
=1.9(分钟).
(2)记A表示事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事件“该顾客一次购物的结算时间为1分钟”、“该顾客一次购物的结算时间为1.5分钟”、“该顾客一次购物的结算时间为2分钟”.将频率视为概率得
P(A1)==,P(A2)==,P(A3)==.
因为A=A1∪A2∪A3,且A1,A2,A3彼此是互斥事件,
所以P(A)=P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)
=++=.
故一位顾客一次购物的结算时间不超过2分钟的概率为.
规律方法 (1)①求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来.
②结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误.
(2)求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”、“至少”型问题,多考虑间接法.
【训练3】 某商场有奖销售活动中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
解 (1)P(A)=,P(B)==,
P(C)==.
故事件A,B,C的概率分别为,,.
(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.
∵A,B,C两两互斥,
∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)
==.
故1张奖券的中奖概率为.
(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,
∴P(N)=1-P(A∪B)=1-=.
故1张奖券不中特等奖且不中一等奖的概率为.
[思想方法]
1.对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
2.对立事件不仅两个事件不能同时发生,而且二者必有一个发生.
3.求复杂的互斥事件的概率一般有两种方法:
(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算.
(2)间接法:先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维(正难则反).
[易错防范]
1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.
2.正确认识互斥事件与对立事件的关系,对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.
3.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.
第5讲 古典概型
最新考纲 1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.
知 识 梳 理
1.基本事件的特点
(1)任何两个基本事件是互斥的.
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
2.古典概型
具有以下两个特点的概率模型称为古典概率模型,简称古典概型.
(1)试验中所有可能出现的基本事件只有有限个.
(2)每个基本事件出现的可能性相等.
3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=.
4.古典概型的概率公式
P(A)=.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.(  )
(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.(  )
(3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.(  )
(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.(  )
解析 对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),应利用几何概型求概率,所以(4)不正确.
答案 (1)× (2)× (3)√ (4)×
2.(必修3P127例3改编)掷两颗均匀的骰子,则点数之和为5的概率等于(  )
A. B. C. D.
解析 所有基本事件的个数为6×6=36,点数之和为5的基本事件有(1,4),(2,3),(3,2),(4,1)共4个,故所求概率为P==.
答案 B
3.(2016·北京卷)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(  )
A. B. C. D.
解析 甲被选中的概率为P===.
答案 B
4.(2017·嘉兴一模)从3名男同学,2名女同学中任选2人参加知识竞赛,则选到的2名同学中至少有1名男同学的概率是________.
解析 所求概率为P=1-=.
答案 
5.从1,2,3,4,5,6这6个数字中,任取2个数字相加,其和为奇数的概率是________.
解析 和为奇数的两个数为一奇一偶,故所求概率为P===.
答案 
6.(2017·金华十校联考)如果下了课后,教室里最后还剩下3位女同学,2位男同学,一会儿又走了一位女同学.如果没有两位同学一块儿走,则下一位是男同学走的可能性为________.
解析 已知走了一位女同学,还剩下两位女同学和两位男同学,所有走的可能顺序为(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男)一共6种.
那么下一位是男同学的可能性只有(男,男,女,女),(男,女,男,女),(男,女,女,男),故P==,
∴下一位是女同学走的可能性为1-=.
答案 
考点一 基本事件与古典概型的判断
【例1】 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.
(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?
(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?
解 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.
又因为所有球大小相同,因此每个球被摸中的可能性相等,
故以球的编号为基本事件的概率模型为古典概型.
(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,
又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为,而白球有5个,
故一次摸球摸到白球的可能性为,
同理可知摸到黑球、红球的可能性均为,
显然这三个基本事件出现的可能性不相等,
所以以颜色为划分基本事件的依据的概率模型不是古典概型.
规律方法 古典概型需满足两个条件:①对于每次随机试验来说,只可能出现有限个不同的试验结果;②对于所有不同的试验结果而言,它们出现的可能性是相等的.
【训练1】 (1)下列问题中是古典概型的是(  )
A.种下一粒杨树种子,求其能长成大树的概率
B.掷一颗质地不均匀的骰子,求出现1点的概率
C.在区间[1,4]上任取一数,求这个数大于1.5的概率
D.同时掷两颗骰子,求向上的点数之和是5的概率
(2)将一枚硬币抛掷三次共有________种结果.
解析 (1)A、B两项中的基本事件的发生不是等可能的;
C项中基本事件的个数是无限多个;
D项中基本事件的发生是等可能的,且是有限个.
(2)设出现正面为1,反面为0,则共有(1,1,1),(1,1,0),(1,0,1),(1,0,0),(0,1,1),(0,1,0),(0,0,1),(0,0,0)8种结果.
答案 (1)D (2)8
考点二 简单的古典概型的概率
【例2】 将一颗骰子先后抛掷2次,观察向上的点数,求:
(1)两数中至少有一个奇数的概率;
(2)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的外部或圆上的概率.
解 由题意,先后掷2次,向上的点数(x,y)共有n=6×6=36种等可能结果,为古典概型.
(1)记“两数中至少有一个奇数”为事件B,则事件B与“两数均为偶数”为对立事件,记为.
∵事件包含的基本事件数m=CC=9.
∴P()==,则P(B)=1-P()=,
因此,两数中至少有一个奇数的概率为.
(2)点(x,y)在圆x2+y2=15的内部记为事件C,则表示“点(x,y)在圆x2+y2=15上或圆的外部”.
又事件C包含基本事件:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共有8个.
∴P(C)==,从而P()=1-P(C)=1-=.
∴点(x,y)在圆x2+y2=15上或圆外部的概率为.
规律方法 计算古典概型的概率可分三步:
(1)算出基本事件的总个数n;
(2)求出事件A所包含的基本事件个数m;
(3)代入公式求出概率P.解题时可根据需要灵活选择列举法、列表法或树形图法.
【训练2】 (1)(2015·广东卷)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为(  )
A. B. C. D.1
(2)(2016·江苏卷)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.
解析 (1)从袋中任取2个球共有C=105种取法,其中恰好1个白球1个红球共有CC=50种取法,所以所取的球恰好1个白球1个红球的概率为=.
(2)将一颗质地无均匀的骰子先后抛掷2次,所有等可能的结果有36种,其中点数之和不小于10的有(6,6),(6,5),(6,4),(5,6),(5,5),(4,6),共6种,故所求概率为1-=.
答案 (1)B (2)
考点三 复杂的古典概型的概率
【例3】 (2015·四川卷改编)某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.
(1)求A中学至少有1名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.
解 (1)由题意,参加集训的男、女生各有6名.
参赛学生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为=,
因此,A中学至少有1名学生入选代表队的概率为
1-=.
(2)设“参赛的4人中女生不少于2人”为事件A,记“参赛女生有2人”为事件B,“参赛女生有3人”为事件C.
则P(B)==,P(C)==.
由互斥事件的概率加法,
得P(A)=P(B)+P(C)=+=,
故所求事件的概率为.
规律方法 (1)求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.
(2)注意区别排列与组合,以及计数原理的正确使用.
【训练3】 (2016·威海模拟)一个盒子里装有大小均匀的6个小球,其中有红球4个,编号分别为1,2,3,4,白球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).
(1)求取出的3个小球中,含有编号为4的小球的概率;
(2)在取出的3个小球中,求小球编号最大值为4的概率.
解 基本事件总数为n=C=20,
(1)取出的3个小球中,含有编号为4的小球的基本事件个数为m=CC+CC=16,
∴取出的3个球中,含有编号为4的小球的概率P===.
(2)小球编号最大值为4的基本事件个数为CC+CC=9,
所以,小球编号最大值为4的概率P=.
[思想方法]
1.古典概型计算三步曲
第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.
2.确定基本事件个数的方法
列举法、列表法、树状图法或利用排列、组合.
[易错防范]
1.古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是不是等可能的.
2.对较复杂的古典概型,其基本事件的个数常涉及排列数、组合数的计算,计算时要首先判断事件是否与顺序有关,以确定是按排列处理,还是按组合处理.
第6讲 离散型随机变量及其分布列
最新考纲 1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;2.理解超几何分布及其导出过程,并能进行简单应用.
知 识 梳 理
1.离散型随机变量
随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.
2.离散型随机变量的分布列及性质
(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则表
X
x1
x2

xi

xn
P
p1
p2

pi

pn
称为离散型随机变量X的概率分布列.
(2)离散型随机变量的分布列的性质:
①pi≥0(i=1,2,…,n);②p1+p2+…+pn=1
3.常见离散型随机变量的分布列
(1)两点分布:若随机变量X服从两点分布,其分布列为
X
0
1
P
1-p
p
,其中p=P(X=1)称为成功概率.
(2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称随机变量X服从超几何分布.
X
0
1

m
P

诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)离散型随机变量的概率分布列中,各个概率之和可以小于1.(  )
(2)离散型随机变量的各个可能值表示的事件是彼此互斥的.(  )
(3)如果随机变量X的分布列由下表给出,
X
2
5
P
0.3
0.7
则它服从两点分布.(  )
(4)从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.(  )
解析 对于(1),离散型随机变量所有取值的并事件是必然事件,故各个概率之和等于1,故(1)不正确;对于(3),X的取值不是0,1,故不是两点分布,所以(3)不正确.
答案 (1)× (2)√ (3)× (4)√
2.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是(  )
A.至少取到1个白球 B.至多取到1个白球
C.取到白球的个数 D.取到的球的个数
解析 选项A,B表述的都是随机事件,选项D是确定的值2,并不随机;选项C是随机变量,可能取值为0,1,2.
答案 C
3.(选修2-3P49A4改编)设随机变量X的分布列如下:
X
1
2
3
4
5
P
p
则p为(  )
A. B. C. D.
解析 由分布列的性质,++++p=1,
∴p=1-=.
答案 C
4.设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么n=______.
解析 由于随机变量X等可能取1,2,3,…,n.所以取到每个数的概率均为.
∴P(X<4)=P(X=1)+P(X=2)+P(X=3)==0.3,∴n=10.
答案 10
5.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是(  )
A.ξ=4 B.ξ=5
C.ξ=6 D.ξ≤5
解析 “放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6.
答案 C
6.从装有3个红球,2个白球的袋中随机取出2个球,设其中有X个红球,则随机变量X=1的概率为________.
解析 P(X=1)===.
答案 
考点一 离散型随机变量分布列的性质
【例1】 设离散型随机变量X的分布列为
X
0
1
2
3
4
P
0.2
0.1
0.1
0.3
m
求:(1)2X+1的分布列;
(2)|X-1|的分布列.
解 由分布列的性质知:0.2+0.1+0.1+0.3+m=1,∴m=0.3.
首先列表为
X
0
1
2
3
4
2X+1
1
3
5
7
9
|X-1|
1
0
1
2
3
从而由上表得两个分布列为
(1)2X+1的分布列
2X+1
1
3
5
7
9
P
0.2
0.1
0.1
0.3
0.3
(2)|X-1|的分布列为
|X-1|
0
1
2
3
P
0.1
0.3
0.3
0.3
规律方法 (1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证两个概率值均为非负数.
(2)若X是随机变量,则η=|X-1|等仍然是随机变量,求它的分布列可先求出相应随机变量的值,再根据互斥事件概率加法求对应的事件概率,进而写出分布列.
【训练1】 (2017·丽水月考)设随机变量X的概率分布列如下表,则P(|X-2|=1)=(  )
X
1
2
3
4
P
m
A. B. C. D.
解析 由|X-2|=1得X=1或3,m=1-=,∴P(|X-2|=1)=P(X=1)+P(X=3)=+=.
答案 C
考点二 离散型随机变量的分布列
【例2】 (2016·天津卷节选)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.
(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列.
解 (1)由已知,有P(A)==.
所以,事件A发生的概率为.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)==,
P(X=1)==,
P(X=2)==.
所以,随机变量X的分布列为
X
0
1
2
P
规律方法 求离散型随机变量X的分布列的步骤:
(1)找出随机变量X的所有可能取值xi(i=1,2,3,…,n);
(2)求出各取值的概率P(X=xi)=pi;
(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确.
提醒 求离散型随机变量的分布列的关键是求随机变量所有取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.
【训练2】 某商店试销某种商品20天,获得如下数据:
日销售量(件)
0
1
2
3
频数
1
5
9
5
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.
(1)求当天商店不进货的概率;
(2)记X为第二天开始营业时该商品的件数,求X的分布列.
解 (1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=+=.
(2)由题意知,X的可能取值为2,3.
P(X=2)=P(当天商品销售量为1件)==;
P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=++=.
所以X的分布列为
X
2
3
P
考点三 超几何分布
【例3】 (2017·嘉兴模拟)某外语学校的一个社团中有7名同学,其中2人只会法语;2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.
(1)在选派的3人中恰有2人会法语的概率;
(2)在选派的3人中既会法语又会英语的人数X的分布列.
解 (1)设事件A:选派的三人中恰有2人会法语,则
P(A)==.
(2)依题意知X的取值为0,1,2,3,
P(X=0)==,
P(X=1)==,
P(X=2)==,
P(X=3)==,
∴X的分布列为
X
0
1
2
3
P
规律方法 超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:
(1)考察对象分两类;
(2)已知各类对象的个数;
(3)从中抽取若干个个体,考查某类个体数X的概率分布.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.
【训练3】 (2017·昆明调研)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
从某自然保护区2013年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:
PM2.5日均值(微克/立方米)
[25,35]
(35,45]
(45,55]
(55,65]
(65,75]
(75,85]
频数
3
1
1
1
1
3
(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;
(2)从这10天的数据中任取3天数据,记X表示抽到PM2.5监测数据超标的天数,求X的分布列.
解 (1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A,则
P(A)==.
(2)依据条件,X服从超几何分布,其中N=10,M=3,n=3,且随机变量X的可能取值为0,1,2,3.
P(X=k)=(k=0,1,2,3).
∴P(X=0)==,
P(X=1)==,
P(X=2)==,
P(X=3)==.
因此X的分布列为
X
0
1
2
3
P
[思想方法]
1.对于随机变量X的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X的取值范围以及取这些值的概率.
2.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.
[易错防范]
掌握离散型随机变量的分布列,须注意:
(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.
(2)要会根据分布列的两个性质来检验求得的分布列的正误.
(3)超几何分布是一种常见的离散型随机变量的概率分布模型,要会根据问题特征去判断随机变量是否服从超几何分布,然后利用相关公式进行计算.
第7讲 二项分布及其应用
最新考纲 1.理解条件概率和两个事件相互独立的概念;2.理解n次独立重复试验的模型及二项分布.能解决一些简单的实际问题.
知 识 梳 理
1.条件概率
条件概率的定义
条件概率的性质
设A、B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率
(1)0≤P(B|A)≤1;
(2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)
2.事件的相互独立性
(1)定义:设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立.
(2)性质:若事件A与B相互独立,则A与、与B、与也都相互独立,P(B|A)=P(B),P(A|B)=P(A).
3.独立重复试验与二项分布
(1)独立重复试验
在相同条件下重复做的n次试验称为n次独立重复试验,其中Ai(i=1,2,…,n)是第i次试验结果,则
P(A1A2A3…An)=P(A1)P(A2)P(A3)…P(An).
(2)二项分布
在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)若事件A,B相互独立,则P(B|A)=P(B).(  )
(2)P(AB)表示事件A,B同时发生的概率,一定有P(AB)=P(A)·P(B).(  )
(3)二项分布是一个概率分布列,是一个用公式P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n表示的概率分布列,它表示了n次独立重复试验中事件A发生的次数的概率分布.(  )
解析 对于(2),若A,B独立,则P(AB)=P(A)·P(B),若A,B不独立,则P(AB)=P(A)·P(B|A),故(2)不正确.
答案 (1)√ (2)× (3)√
2.(选修2-3P54T2改编)已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同.甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为(  )
A. B. C. D.
解析 设“第一次拿到白球”为事件A,“第二次拿到红球”为事件B,依题意P(A)==,P(AB)==,
故P(B|A)==.
答案 B
3.设随机变量X~B,则P(X=3)等于(  )
A. B. C. D.
解析 X~B,由二项分布可得,
P(X=3)=C·=.
答案 A
4.两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(  )
A. B.
C. D.
解析 设事件A:甲实习生加工的零件为一等品;事件B:乙实习生加工的零件为一等品,且A,B相互独立,则P(A)=,P(B)=,所以这两个零件中恰有一个一等品的概率为P(A)+P(B)=P(A)P()+P()P(B)=×+×=.
答案 B
5.(2017·嘉兴七校联考)天气预报,端午节假期甲、乙、丙三地降雨的概率分别是0.9、0.8、0.75,若甲、乙、丙三地是否降雨相互之间没有影响,则其中至少一个地方降雨的概率为________.
解析 ∵甲、乙、丙三地降雨的概率分别是0.9、0.8、0.75,
∴甲、乙、丙三地不降雨的概率分别是0.1、0.2、0.25,
甲、乙、丙三地都不降雨的概率是0.1×0.2×0.25=0.005,
故至少一个地方降雨的概率为1-0.005=0.995.
答案 0.995
6.连续掷一个质地均匀的骰子3次,各次互不影响,则恰好有一次出现1点的概率为________.
解析 掷一次骰子出现1点的概率为P=,所以所求概率为P=C··=.
答案 
考点一 条件概率
【例1】 (1)从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)=(  )
A. B. C. D.
(2)(2014·全国Ⅱ卷)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是(  )
A.0.8 B.0.75 C.0.6 D.0.45
解析 (1)法一 事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个.
事件AB发生的结果只有(2,4)一种情形,即n(AB)=1.
故由古典概型概率P(B|A)==.
法二 P(A)==,P(AB)==.
由条件概率计算公式,得P(B|A)===.
(2)记事件A表示“一天的空气质量为优良”,事件B表示“随后一天的空气质量为优良”,P(A)=0.75,P(AB)=0.6.由条件概率,得P(B|A)===0.8.
答案 (1)B (2)A
规律方法 (1)利用定义,分别求P(A)和P(AB),得P(B|A)=,这是求条件概率的通法.
(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),得P(B|A)=.
【训练1】 (2016·唐山二模)已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为(  )
A.0.6 B.0.7 C.0.8 D.0.9
解析 设“第一个路口遇到红灯”为事件A,“第二个路口遇到红灯”为事件B,则P(A)=0.5,P(AB)=0.4,则P(B|A)==0.8.
答案 C
考点二 相互独立事件的概率
【例2】 (2017·东阳调研)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B.设甲、乙两组的研发相互独立.
(1)求至少有一种新产品研发成功的概率;
(2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.
解 记E={甲组研发新产品成功},F={乙组研发新产品成功},由题设知P(E)=,P()=,P(F)=,P()=,且事件E与F,E与,与F,与都相互独立.
(1)记H={至少有一种新产品研发成功},则=,
于是P()=P()P()=×=,
故所求的概率为P(H)=1-P()=1-=.
(2)设企业可获利润为X(万元),则X的可能取值为0,100,120,220,因为P(X=0)=P(EF)=×=,P(X=100)=P()=×==,
P(X=120)=P(F)=×=,
P(X=220)=P(E)=×==.
故所求的分布列为
X
0
100
120
220
P
规律方法 (1)求解该类问题在于正确分析所求事件的构成,将其转化为彼此互斥事件的和或相互独立事件的积,然后利用相关公式进行计算.
(2)求相互独立事件同时发生的概率的主要方法
①利用相互独立事件的概率乘法公式直接求解.
②正面计算较繁(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.
【训练2】 为了迎接2017在德国波恩举行的联合国气候大会,某社区举办《“环保我参与”有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题,已知甲家庭回答对这道题的概率是,甲、丙两个家庭都回答错的概率是,乙、丙两个家庭都回答对的概率是.若各家庭回答是否正确互不影响.
(1)求乙、丙两个家庭各自回答对这道题的概率;
(2)求甲、乙、丙三个家庭中不少于2个家庭回答对这道题的概率.
解 (1)记“甲答对这道题”、“乙答对这道题”、“丙答对这道题”分别为事件A,B,C,则P(A)=,且有

所以P(B)=,P(C)=.
(2)有0个家庭回答对的概率为
P0=P()=P()·P()·P()=××=,
有1个家庭回答对的概率为P1=P(A+B+C)=××+××+××=,
所以不少于2个家庭回答对这道题的概率为P=1-P0-P1=1--=.
考点三 独立重复试验与二项分布
【例3】 (2015·湖南卷)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列.
解 (1)记事件A1为“从甲箱中摸出的1个球是红球”,
A2为“从乙箱中摸出的1个球是红球”,
B为“顾客抽奖1次能获奖”,
则表示“顾客抽奖1次没有获奖”.
由题意A1与A2相互独立,则1与2相互独立,且=1·2,因为P(A1)==,P(A2)==,
所以P()=P(1·2)=·=,
故所求事件的概率P(B)=1-P()=1-=.
(2)设“顾客抽奖一次获得一等奖”为事件C,
由P(C)=P(A1·A2) =P(A1)·P(A2)=,
顾客抽奖3次可视为3次独立重复试验,则X~B,
于是P(X=0)=C=,
P(X=1)=C=,
P(X=2)=C=,
P(X=3)=C=.
故X的分布列为
X
0
1
2
3
P
规律方法 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P(X=k)=Cpk(1-p)n-k的三个条件:(1)在一次试验中某事件A发生的概率是一个常数p;(2)n次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n次试验中事件A恰好发生了k次的概率.
【训练3】 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率.
解 (1)设“每盘游戏中击鼓三次后,出现音乐的次数为ξ”.依题意,ξ的取值可能为0,1,2,3,且ξ~B,则P(ξ=k)=C=C·.
又每盘游戏得分X的取值为10,20,100,-200.根据题意
则P(X=10)=P(ξ=1)=C=,
P(X=20)=P(ξ=2)=C=,
P(X=100)=P(ξ=3)=C=,
P(X=-200)=P(ξ=0)=C=.
所以X的分布列为
X
10
20
100
-200
P
(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),
则P(A1)=P(A2)=P(A3)=P(X=-200)=.
所以,“三盘游戏中至少有一次出现音乐”的概率为
1-P(A1A2A3)=1-=1-=.
因此,玩三盘游戏至少有一盘出现音乐的概率是.
[思想方法]
1.古典概型中,A发生的条件下B发生的条件概率公式为P(B|A)==,其中,在实际应用中P(B|A)=是一种重要的求条件概率的方法.
2.相互独立事件与互斥事件的区别
相互独立事件是指两个事件发生的概率互不影响,计算公式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).
3.二项分布是概率论中最重要的几种分布之一,在实际应用和理论分析中都有重要的地位.
(1)判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n次.
(2)对于二项分布,如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(X=k)=Cpkqn-k.其中k=0,1,…,n,q=1-p.
[易错防范]
1.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A,B相互独立时,公式才成立.
2.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意恰好与至多(少)的关系,灵活运用对立事件.
3.注意二项分布与超几何分布的联系与区别.有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体数量很大时,超几何分布可近似为二项分布来处理.
第8讲 离散型随机变量的均值与方差
最新考纲 1.理解取有限个值的离散型随机变量的均值、方差的概念;2.能计算简单离散型随机变量的均值、方差,并能解决一些简单实际问题.
知 识 梳 理
1.离散型随机变量的均值与方差
若离散型随机变量X的分布列为
X
x1
x2

xi

xn
P
p1
p2

pi

pn
(1)均值
称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.
(2)方差
称D(X)=__(xi-E(X))2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根为随机变量X的标准差.
2.均值与方差的性质
(1)E(aX+b)=aE(X)+b.
(2)D(aX+b)=a2D(X)(a,b为常数).
3.两点分布与二项分布的均值、方差
(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).
(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)期望值就是算术平均数,与概率无关.(  )
(2)随机变量的均值是常数,样本的平均值是随机变量.(  )
(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(  )
(4)均值与方差都是从整体上刻画离散型随机变量的情况,因此它们是一回事.(  )
解析 均值即期望值刻画了离散型随机变量取值的平均水平,而方差刻画了离散型随机变量的取值偏离期望值的平均程度,因此它们不是一回事,故(1)(4)均不正确.
答案 (1)× (2)√ (3)√ (4)×
2.(选修2-3P68T1改编)已知X的分布列为
X
-1
0
1
P
设Y=2X+3,则E(Y)的值为(  )
A. B.4 C.-1 D.1
解析 E(X)=-+=-,
E(Y)=E(2X+3)=2E(X)+3=-+3=.
答案 A
3.已知某离散型随机变量X的分布列如下表,则随机变量X的方差D(X)等于(  )
X
0
1
P
m
2m
A. B. C. D.
解析 由已知得m+2m=1得m=,由于X服从两点分布,所以D(X)=m·2m=.
答案 B
4.设随机变量X的分布列为P(X=k)=(k=2,4,6,8,10),则D(X)等于________.
解析 ∵E(X)=(2+4+6+8+10)=6,
∴D(X)=[(-4)2+(-2)2+02+22+42]=8.
答案 8
5.(2015·广东卷)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则p=________.
解析 由于X~B(n,p),且E(X)=30,D(X)=20.
所以解之得p=.
答案 
6.某学校要从5名男生和2名女生中选出2人作为社区志愿者,若用随机变量X表示选出的志愿者中女生的人数,则随机变量X的数学期望E(X)=________(结果用最简分数表示).
解析 随机变量X只能取0,1,2三个数,
因为P(X=0)==,P(X=1)==,
P(X=2)==,故E(X)=1×+2×=.
答案 
考点一 一般分布列的均值与方差
【例1】 (2017·台州调研)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E(ξ),方差D(ξ).
解 (1)两人所付费用相同,相同的费用可能为0,40,80元,
两人都付0元的概率为P1=×=,
两人都付40元的概率为P2=×=,
两人都付80元的概率为
P3=×=×=,
则两人所付费用相同的概率为P=P1+P2+P3=++=.
(2)设甲、乙所付费用之和为ξ,ξ可能取值为0,40,80,120,160,则:
P(ξ=0)=×=;
P(ξ=40)=×+×=;
P(ξ=80)=×+×+×=;
P(ξ=120)=×+×=;
P(ξ=160)=×=.
ξ的分布列为
ξ
0
40
80
120
160
P
E(ξ)=0×+40×+80×+120×+160×=80.
D(ξ)=(0-80)2×+(40-80)2×+(80-80)2×+(120-80)2×+(160-80)2×=.
规律方法 (1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.
(2)注意E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)的应用.
【训练1】 根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:
降水量X
X<300
300≤X<700
700≤X<900
X≥900
工期延误天数Y
0
2
6
10
历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(1)工程延误天数Y的均值与方差;
(2)在降水量X至少是300 mm的条件下,工期延误不超过6天的概率.
解 (1)由条件和概率的加法公式有:P(X<300)=0.3,
P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2,
P(X≥900)=1-P(X<900)=1-0.9=0.1.
所以Y的分布列为:
Y
0
2
6
10
P
0.3
0.4
0.2
0.1
于是,E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3;
D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.
故工期延误天数Y的均值为3,方差为9.8.
(2)由概率加法公式, 得P(X≥300)=1-P(X<300)=0.7,
又P(300≤X<900)=P(X<900)-P(X<300)=0.9-0.3=0.6.
由条件概率,得P(Y≤6|X≥300)=P(X<900|X≥300)===.
故在降水量X至少是300 mm的条件下,工期延误不超过6天的概率是.
考点二 与二项分布有关的均值、方差
【例2】 (2017·北京海淀区模拟)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?
解 (1)由已知得,小明中奖的概率为,小红中奖的概率为,且两人中奖与否互不影响.
记“这2人的累计得分X≤3”的事件为A,
则事件A的对立事件为“X=5”,
因为P(X=5)=×=,
所以P(A)=1-P(X=5)=,
即这2人的累计得分X≤3的概率为.
(2)法一 设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).
由已知可得,X1~B,X2~B,
所以E(X1)=2×=,E(X2)=2×=,
因此E(2X1)=2E(X1)=,
E(3X2)=3E(X2)=.
因为E(2X1)>E(3X2),
所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.
法二 设小明、小红都选择方案甲所获得的累计得分为Y1,都选择方案乙所获得的累计得分为Y2,则Y1,Y2的分布列为:
Y1
0
2
4
P
 
Y2
0
3
6
P
∴E(Y1)=0×+2×+4×=,
E(Y2)=0×+3×+6×=,
因为E(Y1)>E(Y2),
所以二人都选择方案甲抽奖,累计得分的数学期望较大.
规律方法 二项分布的期望与方差.
(1)如果ξ~B(n,p),则用公式E(ξ)=np;D(ξ)=np(1-p)求解,可大大减少计算量.
(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(aξ+b)=aE(ξ)+b以及E(ξ)=np求出E(aξ+b),同样还可求出D(aξ+b).
【训练2】 (2017·诸暨模拟)甲、乙、丙三人准备报考某大学,假设甲考上的概率为,甲、丙都考不上的概率为,乙、丙都考上的概率为,且三人能否考上相互独立.
(1)求乙、丙两人各自考上的概率;
(2)设X表示甲、乙、丙三人中考上的人数与没考上的人数之差的绝对值,求X的分布列与数学期望.
解 (1)设A表示“甲考上”,B表示“乙考上”,C表示“丙考上”,
则P(A)=,且
解得P(C)=,P(B)=.
∴乙考上的概率为,丙考上的概率为.
(2)由题意X的可能取值为1,3,
P(X=1)=××+××+××+××+××+××=,
P(X=3)=××+××=,
∴X的分布列为:
X
1
3
P
EX=1×+3×=.
考点三 均值与方差在决策中的应用
【例3】 计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
年入流量X
4080≤X≤120
X>120
发电机最多可运行台数
1
2
3
若某台发电机运行,则该台年利润为5 000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?
解 (1)依题意,p1=P(40p2=P(80≤x≤120)==0.7,
p3=P(X>120)==0.1.
由二项分布,在未来4年中至多有1年的年入流量超过120的概率为
p=C(1-p3)4+C(1-p3)3p3=+4××=0.947 7.
(2)记水电站年总利润为Y(单位:万元).
①安装1台发电机的情形.
由于水库年入流量总大于40,故一台发电机运行的概率为1,
对应的年利润Y=5 000,E(Y)=5 000×1=5 000.
②安装2台发电机的情形.
依题意,当40Y
4 200
10 000
P
0.2
0.8
所以,E(Y)=4 200×0.2+10 000×0.8=8 840.
③安装3台发电机的情形.
依题意,当40当80≤X≤120时,两台发电机运行,此时Y=5 000×2-800=9 200,因此P(Y=9 200)=P(80≤X≤120)=p2=0.7;
当X>120时,三台发电机运行,此时Y=5 000×3=15 000,因此P(Y=15 000)=P(X>120)=p3=0.1.因此得Y的分布列如下:
Y
3 400
9 200
15 000
P
0.2
0.7
0.1
所以,E(Y)=3 400×0.2+9 200×0.7+15 000×0.1=8 620.
综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.
规律方法 随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.
【训练3】 (2017·贵州调研)某投资公司在2018年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:
项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为和;
项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为,和.
针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.
解 若按“项目一”投资,设获利为X1万元.则X1的分布列为
X1
300
-150
P
∴E(X1)=300×+(-150)×=200(万元).
若按“项目二”投资,设获利X2万元,
则X2的分布列为:
X2
500
-300
0
P
∴E(X2)=500×+(-300)×+0×=200(万元).
D(X1)=(300-200)2×+(-150-200)2×=35 000,
D(X2)=(500-200)2×+(-300-200)2×+(0-200)2×=140 000.
所以E(X1)=E(X2),D(X1)这说明虽然项目一、项目二获利相等,但项目一更稳妥.
综上所述,建议该投资公司选择项目一投资.
[思想方法]
1.掌握下述均值与方差有关性质,会给解题带来方便:
(1)E(aX+b)=aE(X)+b,E(X+Y)=E(X)+E(Y),
D(aX+b)=a2D(X);
(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).
2.基本方法
(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;
(2)已知随机变量X的均值、方差,求X的线性函数Y=aX+b的均值、方差和标准差,可直接用均值、方差的性质求解;
(3)如能分析所给随机变量服从常用的分布(如二项分布),可直接利用它们的均值、方差公式求解.
[易错防范]
1.在没有准确判断分布列模型之前不能乱套公式.
2.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.
专题探究课二 高考中三角函数问题的热点题型
高考导航 该部分解答题是高考得分的基本组成部分,不能掉以轻心.该部分的解答题考查的热点题型有:一考查三角函数的图象变换以及单调性、最值等;二考查解三角形问题;三是考查三角函数、解三角形与平面向量的交汇性问题,在解题过程中抓住平面向量作为解决问题的工具,要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.
热点一 三角函数的图象和性质(规范解答)
注意对基本三角函数y=sin x,y=cos x的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y=Asin(ωx+φ)的形式,然后利用整体代换的方法求解.
【例1】 (满分13分)(2015·北京卷)已知函数f(x)=sin x-2sin2.
(1)求f(x)的最小正周期;
(2)求f(x)在区间上的最小值.
满分解答 (1)解 因为f(x)=sin x+cos x-.
2分
=2sin-.4分
所以f(x)的最小正周期为2π.6分
(2)解 因为0≤x≤,所以≤x+≤π.8分
当x+=π,即x=时,f(x)取得最小值.11分
所以f(x)在区间上的最小值为f=-.
13分
 
?将f(x)化为asin x+bcos x+c形式得2分.
?将f(x)化为Asin(ωx+φ)+h形式得2分.
?求出最小正周期得2分.
?写出ωx+φ的取值范围得2分.
?利用单调性分析最值得3分.
?求出最值得2分.
求函数y=Asin(ωx+φ)+B周期与最值的模板
第一步:三角函数式的化简,一般化成y=Asin(ωx+φ)+h或y=Acos(ωx+φ)+h的形式;
第二步:由T=求最小正周期;
第三步:确定f(x)的单调性;
第四步:确定各单调区间端点处的函数值;
第五步:明确规范地表达结论.
【训练1】 设函数f(x)=-sin2ωx-sin ωxcos ωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为.
(1)求ω的值;
(2)求f(x)在区间上的最大值和最小值.
解 (1)f(x)=-sin2ωx-sin ωxcos ωx
=-·-sin 2ωx
=cos 2ωx-sin 2ωx=-sin.
因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为,故该函数的周期T=4×=π.又ω>0,所以=π,因此ω=1.
(2)由(1)知f(x)=-sin.设t=2x-,则函数f(x)可转化为y=-sin t.
当π≤x≤时,≤t=2x-≤ ,如图所示,作出函数y=sin t在 上的图象,
由图象可知,当t∈时,sin t∈,
故-1≤-sin t≤,因此-1≤f(x)=-sin≤.
故f(x)在区间上的最大值和最小值分别为,-1.
热点二 解三角形
高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.
【例2】 (2017·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,f(x)=2sin(x-A)cos x+sin(B+C)(x∈R),函数f(x)的图象关于点对称.
(1)当x∈时,求函数f(x)的值域;
(2)若a=7,且sin B+sin C=,求△ABC的面积.
解 (1)∵f(x)=2sin(x-A)cos x+sin(B+C)
=2(sin xcos A-cos xsin A)cos x+sin A
=2sin xcos Acos x-2cos2xsin A+sin A
=sin 2xcos A-cos 2xsin A=sin(2x-A),
又函数f(x)的图象关于点对称,
则f=0,即sin=0,
又A∈(0,π),则A=,
则f(x)=sin.
由于x∈,
则2x-∈,
即-则函数f(x)的值域为.
(2)由正弦定理,得===,
则sin B=b,sin C=c,
sin B+sin C=(b+c)=,即b+c=13.
由余弦定理,得a2=c2+b2-2bccos A,
即49=c2+b2-bc=(b+c)2-3bc,即bc=40.
则△ABC的面积S=bcsin A=×40×=10.
探究提高 三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和(差)角公式的灵活运用是解决此类问题的关键.
【训练2】 四边形ABCD的内角A与C互补,且AB=1,BC=3,CD=DA=2.
(1)求角C的大小和线段BD的长度;
(2)求四边形ABCD的面积.
解 (1)设BD=x,
在△ABD中,由余弦定理,得cos A=,
在△BCD中,由余弦定理,得cos C=,
∵A+C=π,∴cos A+cos C=0.
联立上式,解得x=,cos C=.
由于C∈(0,π).
∴C=,BD=.
(2)∵A+C=π,C=,∴sin A=sin C=.
又四边形ABCD的面积SABCD=S△ABD+S△BCD
=AB·ADsin A+CB·CDsin C=×(1+3)=2,
∴四边形ABCD的面积为2.
热点三 三角函数与平面向量结合
三角函数、解三角形与平面向量的结合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.
【例3】 (2016·浙江适应性考试)已知△ABC的三内角A,B,C所对的边分别是a,b,c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大小;
(2)若b=,求a+c的范围.
解 (1)∵m=(cos B,cos C),n=(2a+c,b),且m⊥n,
∴(2a+c)cos B+bcos C=0,
∴cos B(2sin A+sin C)+sin Bcos C=0,
∴2cos Bsin A+cos Bsin C+sin Bcos C=0.
即2cos Bsin A=-sin(B+C)=-sin A.
∵A∈(0,π),∴sin A≠0,
∴cos B=-.
∵0<B<π,∴B=.
(2)由余弦定理得
b2=a2+c2-2accosπ=a2+c2+ac=(a+c)2-ac≥(a+c)2-=(a+c)2,当且仅当a=c时取等号.
∴(a+c)2≤4,故a+c≤2.
又a+c>b=,∴a+c∈(,2].即a+c的取值范围是(,2].
探究提高 向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.
【训练3】 已知向量a=(m,cos 2x),b=(sin 2x,n),函数f(x)=a·b,且y=f(x)的图象过点和点.
(1)求m,n的值;
(2)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.
解 (1)由题意知f(x)=a·b=msin 2x+ncos 2x.
因为y=f(x)的图象过点和,
所以
即解得
(2)由(1)知f(x)=sin 2x+cos 2x=2sin.
由题意知g(x)=f(x+φ)=2sin.
设y=g(x)的图象上符合题意的最高点为(x0,2),
由题意知x+1=1,所以x0=0,
即到点(0,3)的距离为1的最高点为(0,2).
将其代入y=g(x)得sin=1,
因为0<φ<π,所以φ=,
因此g(x)=2sin=2cos 2x.
由2kπ-π≤2x≤2kπ,k∈Z得kπ-≤x≤kπ,k∈Z.
所以函数y=g(x)的单调递增区间为,k∈Z.
第1讲 任意角、弧度制及任意角的三角函数
最新考纲 1.了解任意角的概念和弧度制的概念;2.能进行弧度与角度的互化;3.理解任意角的三角函数(正弦、余弦、正切)的定义.
知 识 梳 理
1.角的概念的推广
(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.
(2)分类
(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.
2.弧度制的定义和公式
(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.
(2)公式
角α的弧度数公式
|α|=(弧长用l表示)
角度与弧度的换算
①1°= rad;②1 rad=°
弧长公式
弧长l=|α|r
扇形面积公式
S=lr=|α|r2
3.任意角的三角函数
三角函数
正弦
余弦
正切
定义
设α是一个任意角,它的终边与单位圆交于点P(x,y),那么
y叫做α的正弦,记作sin α
x叫做α的余弦,记作cos α
叫做α的正切,记作tan α
各象限符号
















三角函数线
有向线段MP为正弦线
有向线段OM为余弦线
有向线段AT为正切线
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)小于90°的角是锐角.(  )
(2)锐角是第一象限角,反之亦然.(  )
(3)将表的分针拨快5分钟,则分针转过的角度是30°.(  )
(4)若α∈,则tan α>α>sin α.(  )
(5)相等的角终边一定相同,终边相同的角也一定相等.(  )
解析 (1)锐角的取值范围是(0°,90°).
(2)第一象限角不一定是锐角.
(3)顺时针旋转得到的角是负角.
(5)终边相同的角不一定相等.
答案 (1)× (2)× (3)× (4)√ (5)×
2.角-870°的终边所在的象限是(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析 由-870°=-3×360°+210°,知-870°角和210°角的终边相同,在第三象限.
答案 C
3.下列与的终边相同的角的表达式中正确的是(  )
A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)
C.k·360°-315°(k∈Z) D.kπ+(k∈Z)
解析 与的终边相同的角可以写成2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有C正确.
答案 C
4.已知角α的终边经过点(-4,3),则cos α=(  )
A. B.
C.- D.-
解析 ∵角α的终边经过点(-4,3),
∴x=-4,y=3,r=5.
∴cos α==-,故选D.
答案 D
5.(必修4P10A6改编)一条弦的长等于半径,这条弦所对的圆心角大小为________弧度.
答案 
6.(2017·绍兴调研)弧长为3π,圆心角为135°的扇形半径为________,面积为________.
解析 135°==(弧度),由α=,得r===4,S扇形=lr=×4×3π=6π.
答案 4 6π
考点一 角的概念及其集合表示
【例1】 (1)若角α是第二象限角,则是(  )
A.第一象限角 B.第二象限角
C.第一或第三象限角 D.第二或第四象限角
(2)终边在直线y=x上,且在[-2π,2π)内的角α的集合为________.
解析 (1)∵α是第二象限角,
∴+2kπ<α<π+2kπ,k∈Z,
∴+kπ<<+kπ,k∈Z.
当k为偶数时,是第一象限角;
当k为奇数时,是第三象限角.
(2)如图,在坐标系中画出直线y=x,可以发现它与x轴的夹角是,在[0,2π)内,终边在直线y=x上的角有两个:,π;在[-2π,0)内满足条件的角有两个:-π,-π,故满足条件的角α构成的集合为.
答案 (1)C (2)
规律方法 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需的角.
(2)确定kα,(k∈N*)的终边位置的方法
先用终边相同角的形式表示出角α的范围,再写出kα或的范围,然后根据k的可能取值讨论确定kα或的终边所在位置.
【训练1】 (1)设集合M=,N=,那么(  )
A.M=N B.M?N
C.N?M D.M∩N=?
(2)集合中的角所表示的范围(阴影部分)是(  )
解析 (1)法一 由于M=={…,-45°,45°,135°,225°,…},
N=={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M?N,故选B.
法二 由于M中,x=·180°+45°=k·90°+45°=(2k+1)·45°,2k+1是奇数;
而N中,x=·180°+45°=k·45°+45°=(k+1)·45°,k+1是整数,因此必有M?N,故选B.
(2)当k=2n(n∈Z)时,2nπ+≤α≤2nπ+,此时α表示的范围与≤α≤表示的范围一样;
当k=2n+1(n∈Z)时,2nπ+≤α≤2nπ+,此时α表示的范围与≤α≤表示的范围一样,故选C.
答案 (1)B (2)C
考点二 弧度制及其应用
【例2】 已知一扇形的圆心角为α,半径为R,弧长为l.
(1)若α=60°,R=10 cm,求扇形的弧长l;
(2)已知扇形的周长为10 cm,面积是4 cm2,求扇形的圆心角;
(3)若扇形周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?
解 (1)α=60°= rad,∴l=α·R=×10=(cm).
(2)由题意得解得(舍去),
故扇形圆心角为.
(3)由已知得,l+2R=20.
所以S=lR=(20-2R)R=10R-R2=-(R-5)2+25,所以当R=5时,S取得最大值25,
此时l=10,α=2.
规律方法 应用弧度制解决问题的方法
(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.
(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.
(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.
【训练2】 已知一扇形的圆心角为α (α>0),所在圆的半径为R.
(1)若α=90°,R=10 cm,求扇形的弧长及该弧所在的弓形的面积;
(2)若扇形的周长是一定值C (C>0),当α为多少弧度时,该扇形有最大面积?
解 (1)设弧长为l,弓形面积为S弓,则
α=90°=,R=10,l=×10=5π(cm),
S弓=S扇-S△=×5π×10-×102=25π-50(cm2).
(2)扇形周长C=2R+l=2R+αR,
∴R=,
∴S扇=α·R2=α·
=·=·≤.
当且仅当α2=4,
即α=2时,扇形面积有最大值.
考点三 三角函数的概念
【例3】 (1)(2017·东阳一中月考)已知角α的终边与单位圆x2+y2=1交于点P,则cos 2α等于(  )
A.- B. C.- D.1
(2)(2016·兰州模拟)已知角α的终边过点P(-8m,-6sin 30°),且cos α=-,则m的值为(  )
A.- B. C.- D.
(3)若角θ同时满足sin θ<0且tan θ<0,则角θ的终边一定落在(  )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析 (1)根据题意可知,cos α=,∴cos 2α=2cos2α-1=2×-1=-,故选A.
(2)∵r=,
∴cos α==-,
∴m>0,∴=,
即m=,故选B.
(3)由sin θ<0知θ的终边在第三、四象限或y轴负半轴上,由tan θ<0知θ的终边在第二、四象限,故选D.
答案 (1)A (2)B (3)D
规律方法 (1)利用三角函数的定义,求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r.
(2)根据三角函数定义中x,y的符号来确定各象限内三角函数的符号,理解并记忆:“一全正、二正弦、三正切、四余弦”.
(3)利用三角函数线解三角不等式时要注意边界角的取舍,结合三角函数的周期性正确写出角的范围.
【训练3】 (1)(2017·青岛模拟)已知角α的终边与单位圆的交点P,则sin α·tan α=(  )
A.- B.± C.- D.±
(2)满足cos α≤-的角α的集合为________.
解析 (1)由|OP|2=+y2=1,
得y2=,y=±.
当y=时,sin α=,tan α=-,
此时,sin α·tan α=-.
当y=-时,sin α=-,tan α=,
此时,sin α·tan α=-.
(2)作直线x=-交单位圆于C,D两点,连接OC,OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为.
答案 (1)C (2)
[思想方法]
1.在利用三角函数定义时,点P可取终边上任一点,如有可能则取终边与单位圆的交点.|OP|=r一定是正值.
2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.
3.在解决简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.
[易错防范]
1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.
2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.
3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.
第2讲 同角三角函数的基本关系式与诱导公式
最新考纲 1.理解同角三角函数的基本关系式:sin2α+cos2α=1,=tan α;2.能利用单位圆中的三角函数线推导出±α,π±α的正弦、余弦、正切的诱导公式.
知 识 梳 理
1.同角三角函数的基本关系
(1)平方关系:sin2α+cos2α=1.
(2)商数关系:=tan__α.
2.三角函数的诱导公式
公式







2kπ+α(k∈Z)
π+α
-α
π-α
-α
+α
正弦
sin α
-sin__α
-sin__α
sin__α
cos__α
cos__α
余弦
cos α
-cos__α
cos__α
-cos__α
sin__α
-sin__α
正切
tan α
tan__α
-tan__α
-tan__α
口诀
函数名不变,符号看象限
函数名改变,
符号看象限
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)sin(π+α)=-sin α成立的条件是α为锐角.(  )
(2)六组诱导公式中的角α可以是任意角.(  )
(3)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指的奇数倍和偶数倍,变与不变指函数名称的变化.(  )
(4)若sin(kπ-α)=(k∈Z),则sin α=.(  )
解析 (1)对于α∈R,sin(π+α)=-sin α都成立.
(4)当k为奇数时,sin α=,
当k为偶数时,sin α=-.
答案 (1)× (2)√ (3)√ (4)×
2.(2017·泰安模拟)sin 600°的值为(  )
A.- B.- C. D.
解析 sin 600°=sin(360°+240°)=sin 240°=sin(180°+60°)=-sin 60°=-.
答案 B
3.已知sin=,那么cos α=(  )
A.- B.- C. D.
解析 ∵sin=sin=cos α,∴cos α=.故选C.
答案 C
4.已知sin θ+cos θ=,θ∈,则sin θ-cos θ的值为(  )
A. B.- C. D.-
解析 ∵sin θ+cos θ=,∴sin θcos θ=.
又∵(sin θ-cos θ)2=1-2sin θcos θ=,
∴sin θ-cos θ=或-.
又∵θ∈,∴sin θ-cos θ=-.
答案 B
5.(必修4P22B3改编)已知tan α=2,则的值为________.
解析 原式===3.
答案 3
6.(2017·丽水调研)设a为常数,且a>1,0≤x≤2π,则当x=________时,函数f(x)=cos2x+2asin x-1的最大值为________.
解析 f(x)=cos2x+2asin x-1=1-sin2x+2asin x-1=-(sin x-a)2+a2,因为0≤x≤2π,所以-1≤sin x≤1,又因为a>1,所以f(x)max=-(1-a)2+a2=2a-1.
答案  2a-1
考点一 同角三角函数基本关系式的应用
【例1】 (1)(2015·福建卷)若sin α=-,且α为第四象限角,则tan α的值等于(  )
A. B.- C. D.-
(2)(2017·东阳模拟)已知sin αcos α=,且<α<,则cos α-sin α的值为(  )
A.- B. C.- D.
(3)(2016·全国Ⅲ卷)若tan α=,则cos2α+2sin 2α=(  )
A. B. C.1 D.
解析 (1)∵sin α=-,且α为第四象限角,∴cos α==,∴tan α==-,故选D.
(2)∵<α<,
∴cos α<0,sin α<0且cos α>sin α,
∴cos α-sin α>0.
又(cos α-sin α)2=1-2sin αcos α=1-2×=,
∴cos α-sin α=.
(3)tan α=,则cos2α+2sin 2α===.
答案 (1)D (2)B (3)A
规律方法 (1)利用sin2α+cos2α=1可以实现角α的正弦、余弦的互化,利用=tan α可以实现角α的弦切互化.
(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.
(3)注意公式逆用及变形应用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.
【训练1】 (1)已知sin α-cos α=,α∈(0,π),则tan α=(  )
A.-1 B.- C. D.1
(2)若3sin α+cos α=0,则的值为(  )
A. B. C. D.-2
解析 (1)由
得:2cos2α+2cos α+1=0,
即=0,∴cos α=-.
又α∈(0,π),∴α=,
∴tan α=tan =-1.
(2)3sin α+cos α=0?cos α≠0?tan α=-,==
==.
答案 (1)A (2)A
考点二 诱导公式的应用
【例2】 (1)化简:sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°);
(2)设f(α)=(1+2sin α≠0),求f的值.
解 (1)原式=-sin 1 200°cos 1 290°-cos 1 020°sin 1 050°
=-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°)sin(2×360°+330°)
=-sin 120°cos 210°-cos 300°sin 330°
=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°)=sin 60°cos 30°+cos 60°sin 30°=×+×=1.
(2)∵f(α)=
===,
∴f====.
规律方法 (1)诱导公式的两个应用
①求值:负化正,大化小,化到锐角为终了.
②化简:统一角,统一名,同角名少为终了.
(2)含2π整数倍的诱导公式的应用
由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.
【训练2】 (1)已知A=+(k∈Z),则A的值构成的集合是(  )
A.{1,-1,2,-2} B.{-1,1}
C.{2,-2} D.{1,-1,0,2,-2}
(2)化简:=______.
解析 (1)当k为偶数时,A=+=2;
k为奇数时,A=-=-2.
(2)原式=
===-1.
答案 (1)C (2)-1
考点三 诱导公式、同角三角函数关系式的综合应用
【例3】 (1)已知tan=,则tan=________.
(2)(2017·温州模拟)已知cos=,且-π<α<-,则cos等于(  )
A. B. C.- D.-
解析 (1)∵+=π,
∴tan=tan
=-tan=-.
(2)因为+=,
所以cos=sin=sin.
因为-π<α<-,所以-<α+<-.
又cos=>0,所以-<α+<-,
所以sin=-
=-=-.
答案 (1)- (2)D
规律方法 (1)常见的互余的角:-α与+α;+α与-α;+α与-α等.
(2)常见的互补的角:+θ与-θ;+θ与-θ等.
【训练3】 (1)已知sin=,则cos=________.
(2)设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x,当0≤x<π时,f(x)=0,则f=(  )
A. B. C.0 D.-
解析 (1)∵+=,
∴cos=cos=sin=.
(2)由f(x+π)=f(x)+sin x,得f(x+2π)=f(x+π)+sin(x+π)=f(x)+sin x-sin x=f(x),
所以f=f
=f=f=f+sinπ.
因为当0≤x<π时,f(x)=0.
所以f=0+=.
答案 (1) (2)A
[思想方法]
1.同角三角函数基本关系可用于统一函数;诱导公式主要用于统一角,其主要作用是进行三角函数的求值、化简和证明,已知一个角的某一三角函数值,求这个角的其它三角函数值时,要特别注意平方关系的使用.
2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x=进行切化弦或弦化切,如,asin2x+bsin xcos x+ccos2x等类型可进行弦化切.(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=sin2θ=tan =….
[易错防范]
1.利用诱导公式进行化简求值时,可利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.
特别注意函数名称和符号的确定.
2.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.
3.注意求值与化简后的结果一般要尽可能有理化、整式化.
第3讲 三角函数的图象与性质
最新考纲 1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间内的单调性.
知 识 梳 理
1.用五点法作正弦函数和余弦函数的简图
(1)正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),,(π,0),,(2π,0).
(2)余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),,(π,-1),,(2π,1).
2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)
函数
y=sin x
y=cos x
y=tan x
图象
定义域
R
R
{x
值域
[-1,1]
[-1,1]
R
周期性


π
奇偶性
奇函数
偶函数
奇函数
递增区间
[2kπ-π,2kπ]
递减区间
[2kπ,2kπ+π]

对称中心
(kπ,0)
对称轴方程
x=kπ+
x=kπ

诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)由sin=sin 知,是正弦函数y=sin x(x∈R)的一个周期.(  )
(2)余弦函数y=cos x的对称轴是y轴.(  )
(3)正切函数y=tan x在定义域内是增函数.(  )
(4)已知y=ksin x+1,x∈R,则y的最大值为k+1.(  )
(5)y=sin|x|是偶函数.(  )
解析 (1)函数y=sin x的周期是2kπ(k∈Z).
(2)余弦函数y=cos x的对称轴有无穷多条,y轴只是其中的一条.
(3)正切函数y=tan x在每一个区间(k∈Z)上都是增函数,但在定义域内不是单调函数,故不是增函数.
(4)当k>0时,ymax=k+1;当k<0时,ymax=-k+1.
答案 (1)× (2)× (3)× (4)× (5)√
2.(2015·四川卷)下列函数中,最小正周期为π的奇函数是(  )
A.y=sin B.y=cos
C.y=sin 2x+cos 2x D.y=sin x+cos x
解析 y=sin=cos 2x是最小正周期为π的偶函数;y=cos=-sin 2x是最小正周期为π的奇函数;y=sin 2x+cos 2x=sin是最小正周期为π的非奇非偶函数;y=sin x+cos x=sin是最小正周期为2π的非奇非偶函数.
答案 B
3.(2017·郑州模拟)若函数f(x)=sin(φ∈[0,2π])是偶函数,则φ=(  )
A. B. C. D.
解析 由已知f(x)=sin是偶函数,可得=kπ+,即φ=3kπ+(k∈Z),又φ∈[0,2π],所以φ=.
答案 C
4.函数f(x)=sin在区间上的最小值为(  )
A.-1 B.- C. D.0
解析 由已知x∈,得2x-∈,所以sin∈,故函数f(x)=sin在区间上的最小值为-.
答案 B
5.(必修4P47B2改编)函数y=-tan的单调递减区间为________.
解析 因为y=tan x的单调递增区间为(k∈Z),
所以由-+kπ<2x-<+kπ,
得+<x<+(k∈Z),
所以y=-tan的单调递减区间为(k∈Z).
答案 (k∈Z)
6.(2017·绍兴调研)设函数f(x)=2sin(ω>0,x∈R),最小正周期T=π,则实数ω=________,函数f(x)的图象的对称中心为________,单调递增区间是________.
解析 由T==π,∴ω=2,f(x)=2sin,令2sin=0,得2x+=kπ(k∈Z),∴x=-,对称中心为(k∈Z),由2kπ-≤2x+≤2kπ+(k∈Z),得kπ-≤x≤kπ+(k∈Z),∴单调递增区间为(k∈Z).
答案 2 (k∈Z) (k∈Z)
考点一 三角函数的定义域及简单的三角不等式
【例1】 (1)函数f(x)=-2tan的定义域是(  )
A. B.
C. D.
(2)不等式+2cos x≥0的解集是________.
(3)函数f(x)=+log2(2sin x-1)的定义域是________.
解析 (1)由正切函数的定义域,得2x+≠kπ+,
即x≠+(k∈Z),故选D.
(2)由+2cos x≥0,得cos x≥-,
由余弦函数的图象,得在一个周期[-π,π]上,
不等式cos x≥-的解集为,
故原不等式的解集为.
(3)由题意,得
由①得-8≤x≤8,由②得sin x>,由正弦曲线得+2kπ所以不等式组的解集为∪∪.
答案 (1)D (2) (3)∪∪
规律方法 (1)三角函数定义域的求法
①以正切函数为例,应用正切函数y=tan x的定义域求函数y=Atan(ωx+φ)的定义域.
②转化为求解简单的三角不等式求复杂函数的定义域.
(2)简单三角不等式的解法
①利用三角函数线求解.
②利用三角函数的图象求解.
【训练1】 (1)函数y=tan 2x的定义域是(  )
A. B.
C. D.
(2)函数y=的定义域为________.
解析 (1)由2x≠kπ+,k∈Z,得x≠+,k∈Z,
∴y=tan 2x的定义域为.
(2)法一 要使函数有意义,必须使sin x-cos x≥0.利用图象,在同一坐标系中画出[0,2π]上y=sin x和y=cos x的图象,如图所示.
在[0,2π]内,满足sin x=cos x的x为,,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为
.
法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).
所以定义域为
.
法三 sin x-cos x=sin≥0,将x-视为一个整体,由正弦函数y=sin x的图象和性质可知2kπ≤x-≤π+2kπ(k∈Z),
解得2kπ+≤x≤2kπ+(k∈Z).
所以定义域为.
答案 (1)D (2)
考点二 三角函数的值域
【例2】 (1)函数y=-2sin x-1,x∈的值域是(  )
A.[-3,1] B.[-2,1] C.(-3,1] D.(-2,1]
(2)(2016·全国Ⅱ卷)函数f(x)=cos 2x+6cos的最大值为(  )
A.4 B.5 C.6 D.7
(3)函数y=sin x-cos x+sin xcos x的值域为________.
解析 (1)由正弦曲线知y=sin x在上,-1≤sin x<,所以函数y=-2sin x-1,x∈的值域是(-2,1].
(2)由f(x)=cos 2x+6cos=1-2sin2x+6sin x=-2+,所以当sin x=1时函数的最大值为5,故选B.
(3)设t=sin x-cos x,
则t2=sin2x+cos2x-2sin xcos x,
sin xcos x=,且-≤t≤.
∴y=-+t+=-(t-1)2+1.
当t=1时,ymax=1;
当t=-时,ymin=--.
∴函数的值域为.
答案 (1)D (2)B (3)
规律方法 求解三角函数的值域(最值)常见到以下几种类型:
(1)形如y=asin x+bcos x+c的三角函数化为y=Asin(ωx+φ)+c的形式,再求值域(最值);
(2)形如y=asin2x+bsin x+c的三角函数,可先设sin x=t,化为关于t的二次函数求值域(最值);
(3)形如y=asin xcos x+b(sin x±cos x)+c的三角函数,可先设t=sin x±cos x,化为关于t的二次函数求值域(最值).
【训练2】 (1)(2017·杭州调研)函数y=2sin(0≤x≤9)的最大值与最小值之和为(  )
A.2- B.0 C.-1 D.-1-
(2)(2017·金华检测)函数y=-2cos+1的最大值是________,此时x的取值集合为________.
解析 (1)因为0≤x≤9,所以-≤x-≤,
所以sin∈.
所以y∈[-,2],
所以ymax+ymin=2-.选A.
(2)ymax=-2×(-1)+1=3,
此时,x-=2kπ+π,
即x=4kπ+(k∈Z).
答案 (1)A (2)3 
考点三 三角函数的性质(多维探究)
命题角度一 三角函数的奇偶性与周期性
【例3-1】 (1)(2017·宁波调研)函数y=2cos2-1是(  )
A.最小正周期为π的奇函数
B.最小正周期为π的偶函数
C.最小正周期为的奇函数
D.最小正周期为的偶函数
(2)(2017·衡水中学金卷)设函数f(x)=sin-cos的图象关于y轴对称,则θ=(  )
A.- B. C.- D.
解析 (1)y=2cos2-1
=cos2=cos
=cos=sin 2x,
则函数为最小正周期为π的奇函数.
(2)f(x)=sin-cos=
2sin,由题意可得f(0)=2sin=±2,即sin=±1,∴θ-=+kπ(k∈Z),∴θ=+kπ(k∈Z),∵|θ|<,∴k=-1时,θ=-.故选A.
答案 (1)A (2)A
规律方法 (1)若f(x)=Asin(ωx+φ)(A,ω≠0),则
①f(x)为偶函数的充要条件是φ=+kπ(k∈Z);
②f(x)为奇函数的充要条件是φ=kπ(k∈Z).
(2)函数y=Asin(ωx+φ)与y=Acos(ωx+φ)的最小正周期T=,y=Atan(ωx+φ)的最小正周期T=.
命题角度二 三角函数的单调性
【例3-2】 (1)函数f(x)=sin的单调递减区间为________.
(2)若f(x)=2sin ωx+1(ω>0)在区间上是增函数,则ω的取值范围是________.
解析 (1)由已知可得函数为y=-sin,欲求函数的单调减区间,只需求y=sin的单调增区间.
由2kπ-≤2x-≤2kπ+,k∈Z,
得kπ-≤x≤kπ+,k∈Z.
故所求函数的单调递减区间为(k∈Z).
(2)法一 由2kπ-≤ωx≤2kπ+,k∈Z,
得f(x)的增区间是(k∈Z).
因为f(x)在上是增函数,
所以?.
所以-≥-且≤,所以ω∈.
法二 因为x∈,ω>0.
所以ωx∈,
又f(x)在区间上是增函数,
所以?,则又ω>0,得0<ω≤.
法三 因为f(x)在区间上是增函数,故原点到-,的距离不超过,即得T≥,即≥,又ω>0,得0<ω≤.
答案 (1)(k∈Z) (2)
规律方法 (1)求较为复杂的三角函数的单调区间时,首先化简成y=Asin(ωx+φ)形式,再求y=Asin(ωx+φ)的单调区间,只需把ωx+φ看作一个整体代入y=sin x的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.
命题角度三 三角函数的对称轴或对称中心
【例3-3】 (1)(2017·浙江适应性测试)若函数f(x)=2sin(4x+φ)(φ<0)的图象关于直线x=对称,则φ的最大值为(  )
A.- B.- C.- D.-
(2)(2016·全国Ⅰ卷)已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在上单调,则ω的最大值为(  )
A.11 B.9 C.7 D.5
解析 (1)由题可得,4×+φ=+kπ,k∈Z,∴φ=+kπ,k∈Z,∵φ<0,∴φmax=-.
(2)因为x=-为f(x)的零点,x=为f(x)的图象的对称轴,所以-=+kT,即=T=·,所以ω=4k+1(k∈N*),又因为f(x)在上单调,所以-=≤=,即ω≤12,由此得ω的最大值为9,故选B.
答案 (1)B (2)B
规律方法 (1)对于可化为f(x)=Asin(ωx+φ)形式的函数,如果求f(x)的对称轴,只需令ωx+φ=+kπ(k∈Z),求x即可;如果求f(x)的对称中心的横坐标,只需令ωx+φ=kπ(k∈Z),求x即可.
(2)对于可化为f(x)=Acos(ωx+φ)形式的函数,如果求f(x)的对称轴,只需令ωx+φ=kπ(k∈Z),求x即可;如果求f(x)的对称中心的横坐标,只需令ωx+φ=+kπ(k∈Z),求x即可.
【训练3】 (1)(2017·昆明二检)函数f(x)=cos的图象关于(  )
A.原点对称 B.y轴对称
C.直线x=对称 D.直线x=-对称
(2)已知ω>0,函数f(x)=cos在上单调递增,则ω的取值范围是(  )
A. B.
C. D.
解析 (1)因为f(x)=cos=cos=-sin 2x,f(-x)=-sin(-2x)=sin 2x=-f(x),所以f(x)=-sin 2x是奇函数,所以f(x)的图象关于原点对称.故选A.
(2)函数y=cos x的单调递增区间为[-π+2kπ,2kπ],k∈Z,
则(k∈Z),
解得4k-≤ω≤2k-,k∈Z,
又由4k--≤0,k∈Z且2k->0,k∈Z,
得k=1,所以ω∈.
答案 (1)A (2)D
[思想方法]
1.讨论三角函数性质,应先把函数式化成y=Asin(ωx+φ)(ω>0)的形式.
2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t=ωx+φ,将其转化为研究y=sin t的性质.
3.数形结合是本讲的重要数学思想.
[易错防范]
1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.
2.要注意求函数y=Asin(ωx+φ)的单调区间时A和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.
第4讲 函数y=Asin(ωx+φ)的图象及应用
最新考纲 1.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响;2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.
知 识 梳 理
1.“五点法”作函数y=Asin(ωx+φ)(A>0,ω>0)的简图
“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:
(1)定点:如下表所示.
x

ωx+φ
0
π

y=Asin(ωx+φ)
0
A
0
-A
0
(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=Asin(ωx+φ)在一个周期内的图象.
(3)扩展:将所得图象,按周期向两侧扩展可得y=Asin(ωx+φ)在R上的图象.
2.函数y=Asin(ωx+φ)中各量的物理意义
当函数y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示简谐振动时,几个相关的概念如下表:
简谐振动
振幅
周期
频率
相位
初相
y=Asin(ωx+φ)(A>0,ω>0),
x∈[0,+∞)
A
T=
f=
ωx+φ
φ
3.函数y=sin x的图象经变换得到y=Asin(ωx+φ)的图象的两种途径
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)将函数y=3sin 2x的图象左移个单位长度后所得图象的解析式是y=3sin.(  )
(2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.(  )
(3)函数y=Acos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.(  )
(4)由图象求解析式时,振幅A的大小是由一个周期内图象中最高点的值与最低点的值确定的.(  )
解析 (1)将函数y=3sin 2x的图象向左平移个单位长度后所得图象的解析式是y=3cos 2x.
(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为.故当ω≠1时平移的长度不相等.
答案 (1)× (2)× (3)√ (4)√
2.y=2sin的振幅、频率和初相分别为(  )
A.2,,- B.2,,-
C.2,,- D.2,,-
答案 A
3.(2016·全国Ⅰ卷)若将函数y=2sin的图象向右平移个周期后,所得图象对应的函数为(  )
A.y=2sin B.y=2sin
C.y=2sin D.y=2sin
解析 函数y=2sin的周期为π,将函数y=2sin的图象向右平移个周期即个单位,所得函数为y=2sin=2sin,故选D.
答案 D
4.(2017·衡水中学金卷)将函数y=sin的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位,所得函数图象的一个对称中心是(  )
A. B. C. D.
解析 将函数y=sin的图象上各点的横坐标伸长到原来的3倍,可得函数y=sin的图象,再向
右平移个单位长度,所得函数的解析式为y=sin 2x,
令2x=kπ,x=(k∈Z),故所得函数的对称中心为,(k∈Z),故所得函数的一个对称中心是,故选D.
答案 D
5.(2017·金华调研)函数f(x)=2sin(ωx+φ)
的图象如图所示,则ω=________,φ=________.
解析 由题中图象知T=π,∴ω=2,把(0,1)代入f(x)=2sin(2x+φ),得1=2sin φ,∴sin φ=,∵|φ|<,∴φ=.
答案 2 
6.(必修4P60例1改编)如图,某地一天,从6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b(A>0,ω>0,0<φ<π),则这段曲线的函数解析式为________.
解析 从图中可以看出,从6~14时是函数y=Asin(ωx+φ)+b的半个周期,又×=14-6,
所以ω=.由图可得A=(30-10)=10,
b=(30+10)=20.又×10+φ=2π,解得φ=,
∴y=10sin+20,x∈[6,14].
答案 y=10sin+20,x∈[6,14]
考点一 函数y=Asin(ωx+φ)的图象及变换
【例1】 设函数f(x)=sin ωx+cos ωx(ω>0)的周期为π.
(1)用五点法作出它在长度为一个周期的闭区间上的图象;
(2)说明函数f(x)的图象可由y=sin x的图象经过怎样的变换而得到.
解 f(x)=sin ωx+cos ωx
=2=2sin,
又∵T=π,∴=π,
即ω=2,∴f(x)=2sin.
(1)令z=2x+,则y=2sin=2sin z.
列表,并描点画出图象:
x

z
0
π

y=sin z
0
1
0
-1
0
y=2sin
0
2
0
-2
0
(2)法一 把y=sin x的图象上所有的点向左平移个单位,得到y=sin的图象;再把y=sin的图象上的点的横坐标缩短到原来的倍(纵坐标不变),得到y=sin的图象;最后把y=sin上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y=2sin的图象.
法二 将y=sin x的图象上每一点的横坐标缩短为原来的倍(纵坐标不变),得到y=sin 2x的图象;再将y=sin 2x的图象向左平移个单位,得到y=sin 2=sin的图象;再将y=sin的图象上每一点的纵坐标伸长到原来的2倍(横坐标不变),得到y=2sin的图象.
规律方法 作函数y=Asin(ωx+φ)(A>0,ω>0)的图象常用如下两种方法:
(1)五点法作图,用“五点法”作y=Asin(ωx+φ)的简图,主要是通过变量代换,设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象;
(2)图象的变换法,由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.
【训练1】 设函数f(x)=cos(ωx+φ)的最小正周期为π,且f=.
(1)求ω和φ的值;
(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.
解 (1)∵T==π,ω=2,
又f=cos=,
∴sin φ=-,
又-<φ<0,∴=-.
(2)由(1)得f(x)=cos,列表:
2x-

0
π
π
π
x
0
π
π
π
π
f(x)
1
0
-1
0
描点画出图象(如图).
考点二 由图象求函数y=Asin(ωx+φ)的解析式
【例2】 (1)将函数f(x)=sin(2x+θ)的图象向右平移φ(0<φ<π)个单位长度后,得到函数g(x)的图象,若f(x),g(x)的图象都经过点P,则φ的值为________.
(2)函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.
解析 (1)将函数f(x)=sin(2x+θ)的图象向右平移φ(0<φ<π)个单位长度后,得到函数g(x)=sin[2(x-φ)+θ]=sin(2x-2φ+θ)的图象,若f(x),g(x)的图象都经过点P,
所以sin θ=,sin(-2φ+θ)=,
所以θ=,sin=.又0<φ<π,所以-<-2φ<,所以-2φ=-.
即φ=.
(2)由题图可知A=,
法一 =-=,
所以T=π,故ω=2,
因此f(x)=sin(2x+φ),
又对应五点法作图中的第三个点,
因此2×+φ=π,所以φ=,故f(x)=sin.
法二 以为第二个“零点”,为最小值点,
列方程组解得
故f(x)=sin.
答案 (1) (2)f(x)=sin
规律方法 已知f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:
(1)五点法,由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;
(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.
【训练2】 (2016·全国Ⅱ卷)函数y=Asin(ωx+φ)的部分图象如图所示,则(  )
A.y=2sin B.y=2sin
C.y=2sin D.y=2sin
解析 由题图可知,T=2=π,所以ω=2,由五点作图法可知2×+φ=,所以φ=-,所以函数的解析式为y=2sin,故选A.
答案 A
考点三 三角函数模型及其应用
【例3】 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-sint,t∈[0,24).
(1)求实验室这一天的最大温差;
(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?
解 (1)因为f(t)=10-2
=10-2sin,
又0≤t<24,所以≤t+<,
当t=2时,sin=1;
当t=14时,sin=-1.
于是f(t)在[0,24)上取得最大值12 ℃,取得最小值8 ℃.
故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.
(2)依题意,当f(t)>11时实验室需要降温,
由(1)得f(t)=10-2sin,
故有10-2sin>11,
即sin<-.
又0≤t<24,因此在10时至18时实验室需要降温.
规律方法 三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题,二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题.
【训练3】 如图,某大风车的半径为2 m,每12 s旋转一周,它的最低点O离地面0.5 m.风车圆周上一点A从最低点O开始,运动t(s)后与地面的距离为h(m).
(1)求函数h=f(t)的关系式;
(2)画出函数h=f(t)(0≤t≤12)的大致图象.
解 (1)如图,以O为原点,过点O的圆的切线为x轴,建立直角坐标系.
设点A的坐标为(x,y),则h=y+0.5.
设∠OO1A=θ,则cos θ=,y=-2cos θ+2.
又θ=×t,即θ=t,所以y=-2cost+2,
h=f(t)=-2cost+2.5.
(2)函数h=-2cost+2.5(0≤t≤12)的大致图象如下.
考点四 y=Asin(ωx+φ)图象与性质的综合应用
【例4】 (2017·杭州质检)已知函数f(x)=4cos ωx·sin+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.
(1)求a和ω的值;
(2)求函数f(x)在[0,π]上的单调递减区间.
解 (1)f(x)=4cos ωx· sin+a
=4cos ωx·+a
=2sin ωxcos ωx+2cos2ωx-1+1+a
=sin 2ωx+cos 2ωx+1+a
=2sin+1+a.
当sin=1时,f(x)取得最大值2+1+a=3+a.
又f(x)最高点的纵坐标为2,∴3+a=2,即a=-1.
又f(x)图象上相邻两个最高点的距离为π,
∴f(x)的最小正周期为T=π,
∴2ω==2,ω=1.
(2)由(1)得f(x)=2sin,
由+2kπ≤2x+≤+2kπ,k∈Z,
得+kπ≤x≤+kπ,k∈Z.
令k=0,得≤x≤.
∴函数f(x)在[0,π]上的单调递减区间为.
规律方法 函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间和对称性的确定,基本思想是把ωx+φ看做一个整体.在单调性应用方面,比较大小是一类常见的题目,依据是同一区间内函数的单调性.对称性是三角函数图象的一个重要性质,因此要抓住其轴对称、中心对称的本质,同时还要会综合利用这些性质解决问题,解题时可利用数形结合思想.
【训练4】 已知函数f(x)=2sin·cos-sin(x+π).
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.
解 (1)f(x)=2sin·cos-sin(x+π)
=cos x+sin x=2sin,于是T==2π.
(2)由已知得g(x)=f=2sin,
∵x∈[0,π],∴x+∈,
∴sin∈,
∴g(x)=2sin∈[-1,2],
故函数g(x)在区间[0,π]上的最大值为2,最小值为-1.
[思想方法]
1.五点法作图及图象变换问题
(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;
(2)图象变换时的伸缩、平移总是针对自变量x而言,而不是看角ωx+φ的变化.
2.由图象确定函数解析式
解决由函数y=Asin(ωx+φ)的图象确定A,ω,φ的问题时,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准第一个“零点”和第二个“零点”的位置.要善于抓住特殊量和特殊点.
[易错防范]
1.由函数y=sin x的图象经过变换得到y=Asin(ωx+φ)的图象,如先伸缩再平移时,要把x前面的系数提取出来.
2.复合形式的三角函数的单调区间的求法.函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间的确定,基本思想是把ωx+φ看做一个整体.若ω<0,要先根据诱导公式进行转化.
3.求函数y=Asin(ωx+φ)在x∈[m,n]上的最值,可先求t=ωx+φ的范围,再结合图象得出y=Asin t的值域.
第5讲 两角和与差的正弦、余弦和正切公式
最新考纲 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).
知 识 梳 理
1.两角和与差的正弦、余弦和正切公式
sin(α±β)=sin__αcos__β±cos__αsin__β.
cos(α?β)=cos__αcos__β±sin__αsin__β.
tan(α±β)=.
2.二倍角的正弦、余弦、正切公式
sin 2α=2sin__αcos__α.
cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.
tan 2α=.
3.有关公式的逆用、变形等
(1)tan α±tan β=tan(α±β)(1?tan__αtan__β).
(2)cos2α=,sin2α=.
(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,
sin α±cos α=sin.
4.函数f(α)=asin α+bcos α(a,b为常数),可以化为f(α)=sin(α+φ)或f(α)=·cos(α-φ).
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)两角和与差的正弦、余弦公式中的角α,β是任意的.(  )
(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(  )
(3)公式tan(α+β)=可以变形为tan α+tan β
=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.(  )
(4)存在实数α,使tan 2α=2tan α.(  )
解析 (3)变形可以,但不是对任意的α,β都成立,α,β,α+β≠+kπ,k∈Z.
答案 (1)√ (2)√ (3)× (4)√
2.(2016·全国Ⅲ卷)若tan θ=-,则cos 2θ=(  )
A.- B.- C. D.
解析 cos 2θ=cos2θ-sin2θ===.
答案 D
3.(2015·重庆卷)若tan α=,tan(α+β)=,则tan β等于(  )
A. B. C. D.
解析 tan β=tan[(α+β)-α]===,故选A.
答案 A
4.(2017·广州调研)已知sin α+cos α=,则sin2=(  )
A. B. C. D.
解析 由sin α+cos α=两边平方得1+sin 2α=,解得sin 2α=-,所以sin2====,故选B.
答案 B
5.(必修4P137A13(5)改编)sin 347°cos 148°+sin 77°·cos 58°=________.
解析 sin 347°cos 148°+sin 77°cos 58°
=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°
=(-cos 77°)·(-sin 58°)+sin 77°cos 58°
=sin 58°cos 77°+cos 58°sin 77°
=sin(58°+77°)=sin 135°=.
答案 
6.(2017·宁波调研)已知cos=-,θ为锐角,则sin 2θ=________,sin=________.
解析 由题意得,cos=-?(cos θ-sin θ)=-?(1-2sin θcos θ)=?sin 2θ=,∴(sin θ+cos θ)2=1+sin 2θ=?sin θ+cos θ=?cos 2θ=cos2θ-sin2θ=(cos θ+sin θ)·(cos θ-sin θ)=-·=-,∴sin=sin 2θcos+cos 2θsin=×+×=.
答案  
考点一 三角函数式的化简
【例1】 (1)(2017·杭州模拟)cos(α+β)cos β+sin(α+β)sin β=(  )
A.sin(α+2β) B.sin α
C.cos(α+2β) D.cos α
(2)化简:(0<α<π)=________.
解析 (1)cos(α+β)cos β+sin(α+β)sin β=cos[(α+β)-β]=cos α.
(2)原式=
==.
因为0<α<π,所以0<<,所以cos>0,所以原式=cos α.
答案 (1)D (2)cos α
规律方法 三角函数式的化简要遵循“三看”原则:一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;三看结构特征,找到变形的方向,常见的有“遇到分式要通分”、“遇到根式一般要升幂”等.
【训练1】 (1)+2的化简结果是________.
(2)化简:=________.
解析 (1)原式=+2
=2|cos 4|+2|sin 4-cos 4|,
因为π<4<π,所以cos 4<0,且sin 4所以原式=-2cos 4-2(sin 4-cos 4)=-2sin 4.
(2)原式=
==
==cos 2α.
答案 (1)-2sin 4 (2)cos 2α
考点二 三角函数式的求值
【例2】 (1)[2sin 50°+sin 10°(1+tan 10°)]·=________.
(2)已知cos=,<α<,则的值为________.
(3)已知α,β∈(0,π),且tan(α-β)=,tan β=-,则2α-β的值为________.
解析 (1)原式=·
sin 80°=(2sin 50°+2sin 10°·)·
cos 10°=2[sin 50°·cos 10°+sin 10°·cos(60°-10°)]
=2sin(50°+10°)=2×=.
(2)=

=sin 2α=sin 2α·tan.
由<α<得<α+<2π,又cos=,
所以sin=-,tan=-.
cos α=cos=-,sin α=-,sin 2α=.
所以=-.
(3)∵tan α=tan[(α-β)+β]=
==>0,又α∈(0,π),
∴0<α<,又∵tan 2α===>0,
∴0<2α<,
∴tan(2α-β)===1.
∵tan β=-<0,∴<β<π,-π<2α-β<0,
∴2α-β=-.
答案 (1) (2)- (3)-
规律方法 (1)已知条件下的求值问题常先化简需求值的式子,再观察已知条件与所求值的式子之间的联系(从三角函数名及角入手),最后将已知条件及其变形代入所求式子,化简求值.
(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,选正弦较好.
【训练2】 (1)4cos 50°-tan 40°=(  )
A. B.
C. D.2-1
(2)已知sin+sin α=-,-<α<0,则cos α的值为________.
(3)(2017·绍兴月考)已知cos α=,cos(α-β)=(0<β<α<),则tan 2α=________,β=________.
解析 (1)原式=4sin 40°-




==,故选C.
(2)由sin+sin α=-,得sin α+cos α=-,sin=-.
又-<α<0,所以-<α+<,
于是cos=.
所以cos α=cos=.
(3)∵cos α=,0<α<,
∴sin α=,tan α=4,
∴tan 2α===-.
∵0<β<α<,∴0<α-β<,
∴sin(α-β)=,
∴cos β=cos[α-(α-β)]
=cos αcos(α-β)+sin αsin(α-β)
=×+×=,
∴β=.
答案 (1)C (2) (3)- 
考点三 三角变换的简单应用
【例3】 已知△ABC为锐角三角形,若向量p=(2-2sin A,cos A+sin A)与向量q=(sin A-cos A,1+sin A)是共线向量.
(1)求角A;
(2)求函数y=2sin2B+cos的最大值.
解 (1)因为p,q共线,所以(2-2sin A)(1+sin A)=(cos A+sin A)(sin A-cos A),则sin2A=.
又A为锐角,所以sin A=,则A=.
(2)y=2sin2 B+cos=2sin2B+cos=2sin2B+cos=1-cos 2B+cos 2B+sin 2B=sin 2B-cos 2B+1=sin+1.
因为B∈,所以2B-∈,所以当2B-=时,函数y取得最大值,此时B=,ymax=2.
规律方法 解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两种,一种是变换函数的名称,一种是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.
【训练3】 (2017·合肥模拟)已知函数f(x)=(2cos2x-1)·sin 2x+cos 4x.
(1)求f(x)的最小正周期及单调减区间;
(2)若α∈(0,π),且f=,求tan的值.
解 (1)f(x)=(2cos2x-1)sin 2x+cos 4x
=cos 2xsin 2x+cos 4x
=(sin 4x+cos 4x)=sin,
∴f(x)的最小正周期T=.
令2kπ+≤4x+≤2kπ+π,k∈Z,
得+≤x≤+,k∈Z.
∴f(x)的单调减区间为,k∈Z.
(2)∵f=,即sin=1.
因为α∈(0,π),-<α-<,
所以α-=,故α=.
因此tan===2-.
[思想方法]
1.重视三角函数的“三变”:“三变”是指“变角、变名、变式”.
(1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等.
2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.
[易错防范]
1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升幂、降幂的灵活运用,要注意“1”的各种变通.
2.在(0,π)范围内,sin α=所对应的角α不是唯一的.
3.在三角求值时,往往要借助角的范围求值.
第6讲 正弦定理和余弦定理
最新考纲 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
知 识 梳 理
1.正、余弦定理
在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则
定理
正弦定理
余弦定理
公式
===2R
a2=b2+c2-2bccos__A;
b2=c2+a2-2cacos__B;
c2=a2+b2-2abcos__C
常见变形
(1)a=2Rsin A,b=2Rsin__B,c=2Rsin__C;
(2)sin A=,sin B=,sin C=;
(3)a∶b∶c=sin__A∶sin__B∶sin__C;
(4)asin B=bsin A,bsin C=csin B,asin C=csin A
cos A=;
cos B=;
cos C=
2.S△ABC=absin C=bcsin A=acsin B==(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r.
3.在△ABC中,已知a,b和A时,解的情况如下:
A为锐角
A为钝角或直角
图形
关系式
a=bsin A
bsin Aa≥b
a>b
a≤b
解的个数
一解
两解
一解
一解
无解
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)三角形中三边之比等于相应的三个内角之比.(  )
(2)在△ABC中,若sin A>sin B,则A>B.(  )
(3)在△ABC的六个元素中,已知任意三个元素可求其他元素.(  )
(4)当b2+c2-a2>0时,△ABC为锐角三角形;当b2+c2-a2=0时,△ABC为直角三角形;当b2+c2-a2<0时,△ABC为钝角三角形.(  )
(5)在三角形中,已知两边和一角就能求三角形的面积.(  )
解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比.
(3)已知三角时,不可求三边.
(4)当b2+c2-a2>0时,三角形ABC不一定为锐角三角形.
答案 (1)× (2)√ (3)× (4)× (5)√
2.(2016·全国Ⅰ卷)△ABC的内角A,B,C的对边分别为a,b,c.已知a=,c=2,cos A=,则b=(  )
A. B. C.2 D.3
解析 由余弦定理,得5=b2+22-2×b×2×,解得b=3,故选D.
答案 D
3.(2017·湖州预测)在△ABC中,角A,B,C所对的边分别为a,b,c,若=,则cos B=(  )
A.- B.
C.- D.
解析 由正弦定理知==1,即tan B=,由B∈(0,π),所以B=,所以cos B=cos=,故选B.
答案 B
4.在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为(  )
A. B.
C.2 D.2
解析 因为S=×AB×ACsin A=×2×AC=,所以AC=1,
所以BC2=AB2+AC2-2AB·ACcos 60°=3,
所以BC=.
答案 B
5.(必修5P10B2改编)在△ABC中,acos A=bcos B,则这个三角形的形状为________.
解析 由正弦定理,得sin Acos A=sin Bcos B,
即sin 2A=sin 2B,所以2A=2B或2A=π-2B,
即A=B或A+B=,
所以这个三角形为等腰三角形或直角三角形.
答案 等腰三角形或直角三角形
6.(2017·绍兴调研)已知钝角△ABC的面积为,AB=1,BC=,则角B=________,AC=________.
解析 ∵钝角△ABC的面积为,AB=1,BC=,
∴=×1××sin B,解得sin B=,∴B=或,
∵当B=时,由余弦定理可得
AC=
==1,
此时,AB2+AC2=BC2,可得A=,此△ABC为直角三角形,与已知矛盾,舍去.
∴B=,由余弦定理可得AC=
==.
答案  
考点一 利用正、余弦定理解三角形
【例1】 (1)在△ABC中,已知a=2,b=,A=45°,则满足条件的三角形有(  )
A.1个 B.2个
C.0个 D.无法确定
(2)在△ABC中,已知sin A∶sin B=∶1,c2=b2+bc,则三内角A,B,C的度数依次是________.
(3)(2015·广东卷)设△ABC的内角A,B,C的对边分别为a,b,c,若a=,sin B=,C=,则b=________.
解析 (1)∵bsin A=×=,∴bsin A∴满足条件的三角形有2个.
(2)由题意知a=b,a2=b2+c2-2bccos A,
即2b2=b2+c2-2bccos A,又c2=b2+bc,
∴cos A=,∵A∈(0°,180°),∴A=45°,sin B=,又B∈(0°,180°),b<a,∴B=30°,∴C=105°.
(3)因为sin B=且B∈(0,π),所以B=或B=.
又C=,B+C<π,所以B=,A=π-B-C=.
又a=,由正弦定理得=,即=,
解得b=1.
答案 (1)B (2)45°,30°,105° (3)1
规律方法 (1)判断三角形解的个数的两种方法
①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断.
②几何图形法:根据条件画出图形,通过图形直观判断解的个数.
(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.
【训练1】 (1)(2017·金华模拟)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=3,A=60°,则边c=(  )
A.1 B.2 C.4 D.6
(2)(2016·全国Ⅱ卷)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=________.
解析 (1)a2=c2+b2-2cbcos A?13=c2+9-2c×3×cos 60°,即c2-3c-4=0,解得c=4或c=-1(舍去).
(2)在△ABC中,由cos A=,cos C=,可得sin A=,sin C=,sin B=sin(A+C)=sin Acos C+cos Asin C=,由正弦定理得b==.
答案 (1)C (2)
考点二 利用正弦、余弦定理判定三角形的形状(典例迁移)
【例2】 (经典母题)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B=asin A,则△ABC的形状为(  )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.不确定
解析 由正弦定理得sin Bcos C+sin Ccos B=sin2A,
∴sin(B+C)=sin2A,即sin(π-A)=sin2A,sin A=sin2A.
∵A∈(0,π),∴sin A>0,∴sin A=1,即A=.
答案 B
【迁移探究1】 将本例条件变为“若2sin Acos B=sin C”,那么△ABC一定是(  )
A.直角三角形 B.等腰三角形
C.等腰直角三角形 D.等边三角形
解析 法一 由已知得2sin Acos B=sin C=sin(A+B)=sin Acos B+cos Asin B,即sin(A-B)=0,因为-π法二 由正弦定理得2acos B=c,再由余弦定理得2a·=c?a2=b2?a=b.
答案 B
【迁移探究2】 将本例条件变为“若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13”,则△ABC(  )
A.一定是锐角三角形
B.一定是直角三角形
C.一定是钝角三角形
D.可能是锐角三角形,也可能是钝角三角形
解析 在△ABC中,sin A∶sin B∶sin C=5∶11∶13,
∴a∶b∶c=5∶11∶13,
故设a=5k,b=11k,c=13k(k>0),由余弦定理可得
cos C===-<0,
又∵C∈(0,π),∴C∈,∴△ABC为钝角三角形.
答案 C
【迁移探究3】 将本例条件变为“若a2+b2-c2=ab,且2cos Asin B=sin C”,试确定△ABC的形状.
解 法一 利用边的关系来判断:
由正弦定理得=,
由2cos Asin B=sin C,有cos A==.
又由余弦定理得cos A=,
∴=,
即c2=b2+c2-a2,所以a2=b2,所以a=b.
又∵a2+b2-c2=ab.∴2b2-c2=b2,所以b2=c2,
∴b=c,∴a=b=c.∴△ABC为等边三角形.
法二 利用角的关系来判断:
∵A+B+C=180°,∴sin C=sin(A+B),
又∵2cos Asin B=sin C,
∴2cos Asin B=sin Acos B+cos Asin B,
∴sin(A-B)=0,
又∵A与B均为△ABC的内角,所以A=B.
又由a2+b2-c2=ab,
由余弦定理,得cos C===,
又0°规律方法 (1)判定三角形形状的途径:①化边为角,通过三角变换找出角之间的关系;②化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.
(2)无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.
考点三 和三角形面积有关的问题
【例3】 (2016·全国Ⅰ卷)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.
(1)求C;
(2)若c=,△ABC的面积为,求△ABC的周长.
解 (1)由已知及正弦定理得,2cos C(sin Acos B+sin B·cos A)=sin C,2cos Csin(A+B)=sin C,
故2sin Ccos C=sin C.由C∈(0,π)知sin C≠0,
可得cos C=,所以C=.
(2)由已知,absin C=,又C=,所以ab=6,由已知及余弦定理得,a2+b2-2abcos C=7,故a2+b2=13,从而(a+b)2=25.所以△ABC的周长为5+.
规律方法 三角形面积公式的应用原则
(1)对于面积公式S=absin C=acsin B=bcsin A,一般是已知哪一个角就使用哪一个公式.
(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.
【训练2】 (2017·日照模拟)在△ABC中,角A,B,C的对边分别为a,b,c,满足(2a-b)cos C-ccos B=0.
(1)求角C的值;
(2)若三边a,b,c满足a+b=13,c=7,求△ABC的面积.
解 (1)根据正弦定理,(2a-b)cos C-ccos B=0可化为(2sin A-sin B)cos C-sin Ccos B=0.
整理得2sin Acos C=sin Bcos C+sin Ccos B=sin(B+C)=sin A.
∵0又∵0(2)由(1)知cos C=,又a+b=13,c=7,
∴由余弦定理得c2=a2+b2-2abcos C=(a+b)2-3ab=169-3ab=49,
解得ab=40.
∴S△ABC=absin C=×40×sin=10.
[思想方法]
1.应熟练掌握和运用内角和定理:A+B+C=π,++=中互补和互余的情况,结合诱导公式可以减少角的种数.
2.解题中要灵活使用正弦定理、余弦定理进行边、角的互化,一般要化到只含角或只含边.
[易错防范]
1.在利用正弦定理解有关已知三角形的两边和其中一边的对角三角形时,有时出现一解、两解,所以要进行分类讨论(此种类型也可利用余弦定理求解).
2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.
第7讲 解三角形应用举例
最新考纲 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题.
知 识 梳 理
1.仰角和俯角
在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).
2.方位角
从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).
3.方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.
4.坡度:坡面与水平面所成的二面角的正切值.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)东北方向就是北偏东45°的方向.(  )
(2)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.(  )
(3)俯角是铅垂线与视线所成的角,其范围为.(  )
(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.(  )
解析 (2)α=β.(3)俯角是视线与水平线所构成的角.
答案 (1)√ (2)× (3)× (4)√
2.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的(  )
A.北偏东15° B.北偏西15°
C.北偏东10° D.北偏西10°
解析 如图所示,∠ACB=90°,
又AC=BC,
∴∠CBA=45°,而β=30°,
∴α=90°-45°-30°=15°.
∴点A在点B的北偏西15°.
答案 B
3.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km,速度为1 000 km/h,飞行员先看到山顶的俯角为30°,经过1 min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1 km,参考数据:≈1.732)(  )
A.11.4 km B.6.6 km
C.6.5 km D.5.6 km
解析 ∵AB=1 000×=(km),∴BC=·sin 30°=(km).
∴航线离山顶h=×sin 75°=×sin(45°+30°)≈11.4(km).∴山高为18-11.4=6.6(km).
答案 B
4.(必修5P11例1改编)如图,设A,B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是m米,∠BAC=α,∠ACB=β,则A,B两点间的距离为(  )
A. B.
C. D.
解析 在△ABC中,∠ABC=π-(α+β),AC=m,
由正弦定理,得=,
所以AB==.
答案 C
5.轮船A和轮船B在中午12时同时离开海港C,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h,15 n mile/h,则下午2时两船之间的距离是______n mile.
解析 设两船之间的距离为d,
则d2=502+302-2×50×30×cos 120°=4 900,
∴d=70,即两船相距70 n mile.
答案 70
6.(2017·湖州调研)一缉私艇发现在北偏东45°方向,距离12 n mile的海上有一走私船正以10 n mile/h的速度沿南偏东75°方向逃窜,若缉私艇的速度为14 n mile/h,缉私艇沿北偏东45°+α的方向追去,若要在最短的时间内追上走私船,则追上所需的时间为________h,α角的正弦值为________.
解析 如图所示,A,C分别表示缉私艇、走私船的位置,设经x小时后在B处追上走私船.则AB=14x,BC=10x,∠ACB=120°,在△ABC中,由余弦定理得(14x)2=122+(10x)2-240·x·cos 120°,解得x=2.故AB=28,sin α==,即所需时间为2小时,sin α=.
答案 2 
考点一 测量高度问题
【例1】 (2015·湖北卷)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.
解析 在△ABC中,AB=600,∠BAC=30°,∠ACB=75°-30°=45°,由正弦定理得=,即=,所以BC=300(m).在Rt△BCD中,∠CBD=30°,
CD=BCtan∠CBD=300·tan 30°=100(m).
答案 100
规律方法 (1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.
(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.
(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.
【训练1】 (2017·郑州一中月考)如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,求山高CD.
解 由已知得,∠BCA=90°+β,∠ABC=90°-α,∠BAC=α-β,∠CAD=β.
在△ABC中,由正弦定理得=,
即=,
∴AC==.
在Rt△ACD中,CD=ACsin∠CAD=ACsin β=.
故山高CD为.
考点二 测量距离问题
【例2】 如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出AB的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.
若测得CD= km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.
解 ∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,
∴∠DAC=60°,∴AC=DC=(km).
在△BCD中,∠DBC=45°,
由正弦定理,得BC=·sin∠BDC=·sin 30°=(km).
在△ABC中,由余弦定理,得
AB2=AC2+BC2-2AC·BCcos 45°
=+-2×××=.
∴AB=(km).
∴A,B两点间的距离为 km.
规律方法 (1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.
(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.
【训练2】 如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离,即AB=.
若测得CA=400 m,CB=600 m,∠ACB=60°,试计算AB的长.
解 在△ABC中,由余弦定理得
AB2=AC2+BC2-2AC·BCcos∠ACB,
∴AB2=4002+6002-2×400×600cos 60°=280 000,
∴AB=200(m),
即A,B两点间的距离为200 m.
考点三 测量角度问题
【例3】 如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的________方向.
解析 由已知∠ACB=180°-40°-60°=80°,
又AC=BC,∴∠A=∠ABC=50°,60°-50°=10°,
∴灯塔A处于灯塔B的北偏西10°.
答案 北偏西10°
规律方法 解决测量角度问题的注意事项
(1)首先应明确方位角或方向角的含义.
(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.
(3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的结合使用.
【训练3】 如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角∠CAD等于(  )
A.30° B.45°
C.60° D.75°
解析 依题意可得AD=20m,AC=30m,
又CD=50 m,所以在△ACD中,由余弦定理得cos∠CAD==
==,又0°<∠CAD<180°,所以∠CAD=45°,
所以从顶端A看建筑物CD的张角为45°.
答案 B
[思想方法]
1.利用解三角形解决实际问题时:(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型;(2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义.
2.在三角形和三角函数的综合问题中,要注意边角关系相互制约,推理题中的隐含条件.
[易错防范]
1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混.
2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误.
同课章节目录