名称 | (浙江专用)2018年高考数学总复习全册学案(打包64套) | | |
格式 | zip | ||
文件大小 | 10.5MB | ||
资源类型 | 教案 | ||
版本资源 | 通用版 | ||
科目 | 数学 | ||
更新时间 | 2017-12-11 09:33:20 |
(2)设a>b>1,c<0,给出下列三个结论:①>;②ac<bc;③logb(a-c)>loga(b-c).其中所有的正确结论的序号是( )
A.① B.①② C.②③ D.①②③
解析 (1)由于a>2,故p=a+=(a-2)++2≥2+2=4,当且仅当a=3时取等号.因为x2-2≥-2,所以q=≤=4,当且仅当x=0时取等号,所以p≥q.
(2)由不等式性质及a>b>1知<,又c<0,所以>,①正确;构造函数y=xc,∵c<0,∴y=xc在(0,+∞)上是减函数,又a>b>1,∴ac<bc,知②正确;
∵a>b>1,c<0,∴a-c>b-c>1,
∴logb(a-c)>loga(a-c)>loga(b-c),知③正确.
答案 (1)A (2)D
考点二 一元二次不等式的解法(多维探究)
命题角度一 不含参的不等式
【例2-1】 求不等式-2x2+x+3<0的解集.
解 化-2x2+x+3<0为2x2-x-3>0,
解方程2x2-x-3=0得x1=-1,x2=,
∴不等式2x2-x-3>0的解集为(-∞,-1)∪,
即原不等式的解集为(-∞,-1)∪.
命题角度二 含参不等式
【例2-2】 解关于x的不等式ax2-2≥2x-ax(x∈R).
解 原不等式可化为ax2+(a-2)x-2≥0.
①当a=0时,原不等式化为x+1≤0,解得x≤-1.
②当a>0时,原不等式化为(x+1)≥0,
解得x≥或x≤-1.
③当a<0时,原不等式化为(x+1)≤0.
当>-1,即a<-2时,解得-1≤x≤;
当=-1,即a=-2时,解得x=-1满足题意;
当<-1,即-2综上所述,当a=0时,不等式的解集为{x|x≤-1};
当a>0时,不等式的解集为;
当-2<a<0时,不等式的解集为;
当a=-2时,不等式的解集为{-1};
当a<-2时,不等式的解集为.
规律方法 含有参数的不等式的求解,往往需要比较(相应方程)根的大小,对参数进行分类讨论:
(1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;
(2)若二次项系数为参数,则应先考虑二次项是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;
(3)其次对相应方程的根进行讨论,比较大小,以便写出解集.
【训练2】 (1)已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x2+ax+b<0的解集为A∩B,则a+b等于( )
A.-3 B.1
C.-1 D.3
(2)不等式2x2-x<4的解集为________.
解析 (1)由题意得,A={x|-1<x<3},B={x|-3<x<2},所以A∩B={x|-1<x<2},由题意知,-1,2为方程x2+ax+b=0的两根,由根与系数的关系可知,a=-1,b=-2,则a+b=-3.
(2)因为4=22且y=2x在R上单调递增,所以2x2-x<4可化为x2-x<2,解得-1<x<2,所以2x2-x<4的解集是{x|-1<x<2}.
答案 (1)A (2){x|-1<x<2}
考点三 一元二次不等式的恒成立问题(多维探究)
命题角度一 在R上恒成立
【例3-1】 若一元二次不等式2kx2+kx-<0对一切实数x都成立,则k的取值范围为( )
A.(-3,0] B.[-3,0) C.[-3,0] D.(-3,0)
解析 2kx2+kx-<0对一切实数x都成立,
则必有
解之得-3<k<0.
答案 D
命题角度二 在给定区间上恒成立
【例3-2】 设函数f(x)=mx2-mx-1(m≠0),若对于x∈[1,3],f(x)<-m+5恒成立,则m的取值范围是________.
解析 要使f(x)<-m+5在[1,3]上恒成立,
则mx2-mx+m-6<0,
即m+m-6<0在x∈[1,3]上恒成立.
有以下两种方法:
法一 令g(x)=m+m-6,x∈[1,3].
当m>0时,g(x)在[1,3]上是增函数,
所以g(x)max=g(3)=7m-6<0.
所以m<,则0<m<.
当m<0时,g(x)在[1,3]上是减函数,
所以g(x)max=g(1)=m-6<0.
所以m<6,所以m<0.
综上所述,m的取值范围是.
法二 因为x2-x+1=+>0,
又因为m(x2-x+1)-6<0,所以m<.
因为函数y==在[1,3]上的最小值为,所以只需m<即可.
因为m≠0,所以m的取值范围是
.
答案
命题角度三 给定参数范围的恒成立问题
【例3-3】 已知a∈[-1,1]时不等式x2+(a-4)x+4-2a>0恒成立,则x的取值范围为( )
A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞)
C.(-∞,1)∪(3,+∞) D.(1,3)
解析 把不等式的左端看成关于a的一次函数,记f(a)=(x-2)a+x2-4x+4,
则由f(a)>0对于任意的a∈[-1,1]恒成立,
所以f(-1)=x2-5x+6>0,
且f(1)=x2-3x+2>0即可,解不等式组
得x<1或x>3.
答案 C
规律方法 恒成立问题求解思路
(1)一元二次不等式在R上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解.
(2)一元二次不等式在x∈[a,b]上恒成立确定参数范围时,要根据函数的单调性,求其最小值,让最小值大于等于0,从而求参数的范围.
(3)一元二次不等式对于参数m∈[a,b]恒成立确定x的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.
【训练3】 (1)若不等式x2-2x+5≥a2-3a对任意实数x恒成立,则实数a的取值范围是( )
A.[-1,4] B.(-∞,-2]∪[5,+∞)
C.(-∞,-1]∪[4,+∞) D.[-2,5]
(2)已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是______.
解析 (1)由于x2-2x+5=(x-1)2+4的最小值为4,所以x2-2x+5≥a2-3a对任意实数x恒成立,只需a2-3a≤4,解得-1≤a≤4.
(2)二次函数f(x)对于任意x∈[m,m+1],
都有f(x)<0成立,
则
解得-<m<0.
答案 (1)A (2)
[思想方法]
1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.
2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单.
3.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a<0的情况转化为a>0时的情形.
4.(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.
(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.
[易错防范]
1.对于不等式ax2+bx+c>0,求解时不要忘记讨论a=0时的情形.
2.当Δ<0时,ax2+bx+c>0(a≠0)的解集为R还是?,要注意区别.
3.含参数的不等式要注意选好分类标准,避免盲目讨论.
第2讲 二元一次不等式(组)与简单的线性规划问题
最新考纲 1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
知 识 梳 理
1.二元一次不等式(组)表示的平面区域
(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(半平面)不含边界直线.不等式Ax+By+C≥0所表示的平面区域(半平面)包括边界直线.
(2)对于直线Ax+By+C=0同一侧的所有点(x,y),使得Ax+By+C的值符号相同,也就是位于同一半平面内的点,其坐标适合同一个不等式Ax+By+C>0;而位于另一个半平面内的点,其坐标适合另一个不等式Ax+By+C<0.
(3)由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.
2.线性规划的有关概念
名称
意义
线性约束条件
由x,y的一次不等式(或方程)组成的不等式组,是对x,y的约束条件
目标函数
关于x,y的解析式
线性目标函数
关于x,y的一次解析式
可行解
满足线性约束条件的解(x,y)
可行域
所有可行解组成的集合
最优解
使目标函数达到最大值或最小值的可行解
线性规划问题
求线性目标函数在线性约束条件下的最大值或最小值的问题
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.( )
(2)线性目标函数的最优解可能是不唯一的.( )
(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( )
(4)在目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.( )
(5)不等式x2-y2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y轴的两块区域.( )
解析 (1)不等式x-y+1>0表示的平面区域在直线x-y+1=0的下方.
(4)直线ax+by-z=0在y轴上的截距是.
答案 (1)× (2)√ (3)√ (4)× (5)√
2.下列各点中,不在x+y-1≤0表示的平面区域内的是( )
A.(0,0) B.(-1,1)
C.(-1,3) D.(2,-3)
解析 把各点的坐标代入可得(-1,3)不适合,故选C.
答案 C
3.(必修5P86T3)不等式组表示的平面区域是( )
解析 x-3y+6≥0表示直线x-3y+6=0及其右下方部分,x-y+2<0表示直线x-y+2=0左上方部分,故不等式表示的平面区域为选项B.
答案 B
4.(2016·全国Ⅱ卷)若x,y满足约束条件则z=x-2y的最小值为________.
解析 画出可行域,数形结合可知目标函数的最小值在直线x=3与直线x-y+1=0的交点(3,4)处取得,代入目标函数z=x-2y得到-5.
答案 -5
5.(2017·舟山统考)已知整数x,y满足不等式则2x+y的最大值是________;x2+y2的最小值是________.
解析 满足不等式组的可行域如图所示,由z=2x+y,得y=-2x+z,由图可知,当直线y=-2x+z过A时,直线在y轴上的截距最大,由可得即A点坐标为(8,8),z最大值等于2×8+8=24.x2+y2的最小值是可行域的B到原点距离的平方,由可得B(2,2),可得22+22=8.
答案 24 8
6.若变量x,y满足约束条件且z=2x+y的最小值为-6,则k=________.
解析 作出不等式组表示的平面区域,如图中阴影部分所示,z=2x+y,则y=-2x+z.易知当直线y=-2x+z过点A(k,k)时,z=2x+y取得最小值,即3k=-6,所以k=-2.
答案 -2
考点一 二元一次不等式(组)表示的平面区域
【例1】 (2015·重庆卷)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为( )
A.-3 B.1
C. D.3
解析 如图,要使不等式组表示的平面区域为三角形,则-2m<2,则m>-1,
由解得
即A(1-m,1+m).
由解得
即B,所围成的区域为△ABC,则S△ABC=S△ADC-S△BDC=(2+2m)(1+m)-(2+2m)·(1+m)=(1+m)2=,解得m=-3(舍去)或m=1.故选B.
答案 B
规律方法 二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域,注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.
【训练1】 若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k的值是( )
A. B.
C. D.
解析 不等式组表示的平面区域如图所示.
由于直线y=kx+过定点.因此只有直线过AB中点时,直线y=kx+能平分平面区域.
因为A(1,1),B(0,4),
所以AB中点D.
当y=kx+过点时,=+,
所以k=.
答案 A
考点二 线性规划相关问题(多维探究)
命题角度一 求目标函数的最值
【例2-1】 (1)(2016·全国Ⅲ卷)设x,y满足约束条件则z=2x+3y-5的最小值为________.
(2)(2015·全国Ⅰ卷)若x,y满足约束条件则的最大值为________.
解析 (1)画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,
当直线y=-x++过点A(-1,-1)时,z取得最小值,即zmin=2×(-1)+3×(-1)-5=-10.
(2)作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A(1,3)与原点连线的斜率最大,故的最大值为3.
答案 (1)-10 (2)3
命题角度二 求参数的值或范围
【例2-2】 (2015·福建卷)变量x,y满足约束条件若z=2x-y的最大值为2,则实数m等于( )
A.-2 B.-1 C.1 D.2
解析 如图所示,目标函数z=2x-y取最大值2,即y=2x-2时,画出表示的区域,由于mx-y≤0过定点(0,0),要使z=2x-y取最大值2,则目标函数必过两直线x-2y+2=0与y=2x-2的交点A(2,2),因此直线mx-y=0过点A(2,2),故有2m-2=0,解得m=1.
答案 C
规律方法 线性规划两类问题的解决方法
(1)求目标函数的最值:画出可行域后,要根据目标函数的几何意义求解,常见的目标函数有:①截距型:形如z=ax+by;②距离型:形如z=.③斜率型:形如z=.
(2)求参数的值或范围:参数的位置可能在目标函数中,也可能在约束条件中.求解步骤为:①注意对参数取值的讨论,将各种情况下的可行域画出来;②在符合题意的可行域里,寻求最优解.
【训练2】 (1)设x,y满足约束条件且z=x+ay的最小值为7,则a=( )
A.-5 B.3
C.-5或3 D.5或-3
(2)(2017·诸暨市统考)已知变量x,y满足则z=()2x+y的最大值为________.
解析 (1)二元一次不等式组表示的平面区域如图所示,其中A.由z=x+ay得y=-x+.
由图可知当-1≤-≤1时,z可取得最小值,此时a≥1或a≤-1.
又直线y=-x+过A点时,z取得最小值,因此+a×=7,化简得a2+2a-15=0,解得a=3或a=-5,
当a=3时,经检验知满足题意;当a=-5时,目标函数z=x+ay过点A时取得最大值,不满足题意,故选B.
(2)作出不等式组所表示的平面区域,如图阴影部分所示.令m=2x+y,由图象可知当直线y=-2x+m经过点A时,直线y=-2x+m的纵截距最大,此时m最大,故z最大.
由解得
即A(1,2).代入目标函数z=()2x+y得,z=()2×1+2=4.
答案 (1)B (2)4
考点三 实际生活中的线性规划问题
【例3】 (2016·全国Ⅰ卷)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________元.
解析 设生产A产品x件,B产品y件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为
目标函数z=2 100x+900y.
作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,zmax=2 100×60+900×100=216 000(元).
答案 216 000
规律方法 解线性规划应用问题的一般步骤:
(1)分析题意,设出未知量;
(2)列出线性约束条件和目标函数;
(3)作出可行域并利用数形结合求解;
(4)作答.
【训练3】 (2015·陕西卷)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )
甲
乙
原料限额
A(吨)
3
2
12
B(吨)
1
2
8
A.12万元 B.16万元
C.17万元 D.18万元
解析 设每天生产甲、乙产品分别为x吨、y吨,每天所获利润为z万元,则有目标函数z=3x+4y,线性约束条件表示的可行域如图阴影部分所示:
可得目标函数在点A处取到最大值.
由得A(2,3).则zmax=3×2+4×3=18(万元).
答案 D
[思想方法]
1.求最值:求二元一次目标函数z=ax+by(ab≠0)的最值,将z=ax+by转化为直线的斜截式:y=-x+,通过求直线的截距的最值间接求出z的最值.最优解在顶点或边界取得.
2.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.
3.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题.
[易错防范]
1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.
2.在通过求直线的截距的最值间接求出z的最值时,要注意:当b>0时,截距取最大值时,z也取最大值;截距取最小值时,z也取最小值;当b<0时,截距取最大值时,z取最小值;截距取最小值时,z取最大值.
第3讲 基本不等式:≤
最新考纲 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.
知 识 梳 理
1.基本不等式:≤
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当a=b时取等号.
(3)其中称为正数a,b的算术平均数,称为正数a,b的几何平均数.
2.几个重要的不等式
(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
(2)ab≤(a,b∈R),当且仅当a=b时取等号.
(3)≥(a,b∈R),当且仅当a=b时取等号.
(4)+≥2(a,b同号),当且仅当a=b时取等号.
3.利用基本不等式求最值
已知x≥0,y≥0,则
(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2(简记:积定和最小).
(2)如果和x+y是定值s,那么当且仅当x=y时,xy有最大值是(简记:和定积最大).
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)当a≥0,b≥0时,≥.( )
(2)两个不等式a2+b2≥2ab与≥成立的条件是相同的.( )
(3)函数y=x+的最小值是2.( )
(4)函数f(x)=sin x+的最小值为2.( )
(5)x>0且y>0是+≥2的充要条件.( )
解析 (2)不等式a2+b2≥2ab成立的条件是a,b∈R;
不等式≥成立的条件是a≥0,b≥0.
(3)函数y=x+值域是(-∞,-2]∪[2,+∞),没有最小值.
(4)函数f(x)=sin x+的最小值为-5.
(5)x>0且y>0是+≥2的充分条件.
答案 (1)√ (2)× (3)× (4)× (5)×
2.设x>0,y>0,且x+y=18,则xy的最大值为( )
A.80 B.77 C.81 D.82
解析 xy≤=81,当且仅当x=y=9时等号成立,故选C.
答案 C
3.(2015·福建卷)若直线+=1(a>0,b>0)过点(1,1),则a+b的最小值等于( )
A.2 B.3 C.4 D.5
解析 因为直线+=1(a>0,b>0)过点(1,1),所以+=1.所以a+b=(a+b)·=2++≥2+2=4,当且仅当a=b=2时取“=”,故选C.
答案 C
4.若函数f(x)=x+(x>2)在x=a处取最小值,则a等于( )
A.1+ B.1+ C.3 D.4
解析 当x>2时,x-2>0,f(x)=(x-2)++2≥2+2=4,当且仅当x-2=(x>2),即x=3时取等号,即当f(x)取得最小值时,即a=3,选C.
答案 C
5.(必修5P100A2改编)一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为______m,宽为________m时菜园面积最大.
解析 设矩形的长为x m,宽为y m.则x+2y=30,所以S=xy=x·(2y)≤=,当且仅当x=2y,即x=15,y=时取等号.
答案 15
6.(2017·浙江五校联考)已知正数x,y满足x+y=1,则x-y的取值范围为________,+的最小值为________.
解析 ∵正数x,y满足x+y=1,
∴y=1-x,0∴x-y=2x-1,又0 ∴0<2x<2,∴-1<2x-1<1,
即x-y的取值范围为(-1,1).
+=+=1++≥1+2=1+2=3,当且仅当x=y=时取“=”;∴+的最小值为3.
答案 (-1,1) 3
考点一 配凑法求最值
【例1】 (1)已知x<,求f(x)=4x-2+的最大值;
(2)求函数y=的最大值.
解 (1)因为x<,所以5-4x>0,
则f(x)=4x-2+=-+3≤
-2+3=-2+3=1.
当且仅当5-4x=,即x=1时,等号成立.
故f(x)=4x-2+的最大值为1.
(2)令t=≥0,则x=t2+1,
所以y==.
当t=0,即x=1时,y=0;
当t>0,即x>1时,y=,
因为t+≥2=4(当且仅当t=2时取等号),
所以y=≤,
即y的最大值为(当t=2,即x=5时y取得最大值).
规律方法 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.
(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.
【训练1】 (1)(2017·丽水模拟)若对任意的x≥1,不等式x+-1≥a恒成立,则实数a的取值范围是________.
(2)函数y=(x>1)的最小值为________.
解析 (1)因为函数f(x)=x+-1在[1,+∞)上单调递增,所以函数g(x)=x+1+-2在[0,+∞)上单调递增,所以函数g(x)在[1,+∞)的最小值为g(1)=,因此对?x≥1不等式x+-1≥a恒成立,所以a≤g(x)最小值=,故实数a的取值范围是.
(2)y==
=
=(x-1)++2≥2+2.
当且仅当x-1=,即x=+1时,等号成立.
答案 (1) (2)2+2
考点二 常数代换或消元法求最值
【例2】 (1)若正数x,y满足x+3y=5xy,则3x+4y的最小值为________.
(2)已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为________.
解析 (1)法一 由x+3y=5xy可得+=1,
∴3x+4y=(3x+4y)
=+++≥+=5(当且仅当=,即x=1,y=时,等号成立),
∴3x+4y的最小值是5.
法二 由x+3y=5xy,得x=,
∵x>0,y>0,∴y>,
∴3x+4y=+4y=+4y=+·+4
≥+2=5,
当且仅当y=时等号成立,∴(3x+4y)min=5.
(2)由已知得x=.
法一 (消元法)
因为x>0,y>0,所以0<y<3,
所以x+3y=+3y
=+3(y+1)-6≥2-6=6,
当且仅当=3(y+1),
即y=1,x=3时,(x+3y)min=6.
法二 ∵x>0,y>0,
9-(x+3y)=xy=x·(3y)≤·,
当且仅当x=3y时等号成立.
设x+3y=t>0,则t2+12t-108≥0,
∴(t-6)(t+18)≥0,
又∵t>0,∴t≥6.故当x=3,y=1时,(x+3y)min=6.
答案 (1)5 (2)6
规律方法 条件最值的求解通常有三种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值;三是对条件使用基本不等式,建立所求目标函数的不等式求解.
易错警示 (1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.
【训练2】 (1)已知x>0,y>0且x+y=1,则+的最小值为________.
(2)(2016·东阳检测)已知正数x,y满足x+2y-xy=0,则x+2y的最小值为( )
A.8 B.4 C.2 D.0
解析 (1)(常数代换法)
因为x>0,y>0,且x+y=1,
所以+=(x+y)
=10++≥10+2=18,
当且仅当=,即x=2y时等号成立,
所以当x=,y=时,+有最小值18.
(2)由x+2y-xy=0,得+=1,且x>0,y>0.
∴x+2y=(x+2y)×=++4≥4+4=8.
答案 (1)18 (2)A
考点三 基本不等式在实际问题中的应用
【例3】 运货卡车以每小时x千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
解 (1)设所用时间为t=(h),
y=×2×+14×,x∈[50,100].
所以,这次行车总费用y关于x的表达式是y=+x,x∈[50,100]
(或y=+x,x∈[50,100]).
(2)y=+x≥26,
当且仅当=x,
即x=18时等号成立.
故当x=18千米/时,这次行车的总费用最低,最低费用的值为26元.
规律方法 (1)设变量时一般要把求最大值或最小值的变量定义为函数.
(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.
(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)求解.
【训练3】 (2017·湖州月考)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒),平均车长l(单位:米)的值有关,其公式为F=.
(1)如果不限定车型,l=6.05,则最大车流量为______辆/时;
(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/时.
解析 (1)当l=6.05时,F=,
∴F==≤=1 900,
当且仅当v=,即v=11时取“=”.
∴最大车流量F为1 900辆/时.
(2)当l=5时,F==,
∴F≤=2 000,
当且仅当v=,即v=10时取“=”.
∴最大车流量比(1)中的最大车流量增加2 000-1 900=100辆/时.
答案 (1)1 900 (2)100
[思想方法]
1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.
2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab≤≤,≤≤(a>0,b>0)等,同时还要注意不等式成立的条件和等号成立的条件.
3.对使用基本不等式时等号取不到的情况,可考虑使用函数y=x+(m>0)的单调性.
[易错防范]
1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.
2.连续使用基本不等式求最值要求每次等号成立的条件一致.
第4讲 绝对值不等式
最新考纲 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a.
知 识 梳 理
1.绝对值不等式的解法
(1)含绝对值的不等式|x|a的解集
不等式
a>0
a=0
a<0
|x|(-a,a)
?
?
|x|>a
(-∞,-a)∪(a,+∞)
(-∞,0)∪(0,+∞)
R
(2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法
①|ax+b|≤c?-c≤ax+b≤c;
②|ax+b|≥c?ax+b≥c或ax+b≤-c;
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法
①利用绝对值不等式的几何意义求解,体现了数形结合的思想;
②利用“零点分段法”求解,体现了分类讨论的思想;
③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.
2.含有绝对值的不等式的性质
(1)如果a,b是实数,则|a|-|b|≤|a±b|≤|a|+|b|,当且仅当ab≥0时,等号成立.
(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)若|x|>c的解集为R,则c≤0.( )
(2)不等式|x-1|+|x+2|<2的解集为?.( )
(3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.( )
(4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.( )
(5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.( )
答案 (1)× (2)√ (3)× (4)× (5)√
2.若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为( )
A.5或8 B.-1或5
C.-1或-4 D.-4或8
解析 分类讨论:
当a≤2时,f(x)=
显然,x=-时,f(x)min=+1-a=3,∴a=-4,
当a>2时,f(x)=
显然x=-时,f(x)min=--1+a=3,∴a=8.
答案 D
3.(2015·山东卷改编)不等式|x-1|-|x-5|<2的解集为________.
解析 ①当x≤1时,原不等式可化为1-x-(5-x)<2,
∴-4<2,不等式恒成立,∴x≤1.
②当1∴x<4,∴1 ③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.
综上,原不等式的解集为(-∞,4).
答案 (-∞,4)
4.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=________.
解析 ∵|kx-4|≤2,∴-2≤kx-4≤2,∴2≤kx≤6.
∵不等式的解集为{x|1≤x≤3},∴k=2.
答案 2
5.(2017·杭州调研)设函数f(x)=|x-a|+3x,其中a>0.
(1)当a=1时,则不等式f(x)≥3x+2的解集为________.
(2)若不等式f(x)≤0的解集为{x|x≤-1},则a的值为________.
解析 (1)当a=1时,f(x)≥3x+2可化为|x-1|≥2.
由此可得x≥3或x≤-1.
故当a=1时,不等式f(x)≥3x+2的解集为{x|x≥3或x≤-1}.
(2)由f(x)≤0得|x-a|+3x≤0.
此不等式化为不等式组或
即或
因为a>0,所以不等式组的解集为.
由题设可得-=-1,故a=2.
答案 (1){x|x≥3或x≤-1} (2)2
6.若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围为________.
解析 设y=|2x-1|+|x+2|
=
当x<-2时,y=-3x-1>5;
当-2≤x<时,5≥y=-x+3>;
当x≥时,y=3x+1≥,故函数y=|2x-1|+|x+2|的最小值为.因为不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,所以≥a2+a+2.
解不等式≥a2+a+2,得-1≤a≤,故实数a的取值范围为.
答案
考点一 含绝对值不等式的解法
【例1】 解不等式|x-1|+|x+2|≥5.
解 法一 如图,设数轴上与-2,1对应的点分别是A,B,则不等式的解就是数轴上到A,B两点的距离之和不小于5的点所对应的实数.显然,区间[-2,1]不是不等式的解集.把A向左移动一个单位到点A1,此时A1A+A1B=1+4=5.把点B向右移动一个单位到点B1,此时B1A+B1B=5,故原不等式的解集为(-∞,-3]∪[2,+∞).
法二 原不等式|x-1|+|x+2|≥5?
或
或解得x≥2或x≤-3,
∴原不等式的解集为(-∞,-3]∪[2,+∞).
法三 将原不等式转化为|x-1|+|x+2|-5≥0.
令f(x)=|x-1|+|x+2|-5,则
f(x)=作出函数的图象,如图所示.
由图象可知,当x∈(-∞,-3]∪[2,+∞)时,y≥0,
∴原不等式的解集为(-∞,-3]∪[2,+∞).
规律方法 形如|x-a|+|x-b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a,b],(b,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x-a|+|x-b|>c(c>0)的几何意义:数轴上到点x1=a和x2=b的距离之和大于c的全体;(3)图象法:作出函数y1=|x-a|+|x-b|和y2=c的图象,结合图象求解.
【训练1】 (2016·全国Ⅰ卷)已知函数f(x)=|x+1|-|2x-3|.
(1)在图中画出y=f(x)的图象;
(2)求不等式|f(x)|>1的解集.
解 (1)f(x)=
y=f(x)的图象如图所示.
(2)由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;
当f(x)=-1时,可得x=或x=5,
故f(x)>1的解集为{x|1所以|f(x)|>1的解集为
.
考点二 含参数的绝对值不等式问题
【例2】 (1)对任意x,y∈R,求|x-1|+|x|+|y-1|+|y+1|的最小值.
(2)对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-2y+1|的最大值.
解 (1)∵x,y∈R,
∴|x-1|+|x|≥|(x-1)-x|=1,
∴|y-1|+|y+1|≥|(y-1)-(y+1)|=2,
∴|x-1|+|x|+|y-1|+|y+1|≥1+2=3.
∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.
(2)|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+|2(y-2)+2|≤1+2|y-2|+2≤5,即|x-2y+1|的最大值为5.
规律方法 求含绝对值的函数最值时,常用的方法有三种:(1)利用绝对值的几何意义;(2)利用绝对值三角不等式,即|a|+|b|≥|a±b|≥|a|-|b|;(3)利用零点分区间法.
【训练2】 (1)若关于x的不等式|2 014-x|+|2 015-x|≤d有解,求实数d的取值范围.
(2)不等式≥|a-2|+sin y对一切非零实数x,y均成立,求实数a的取值范围.
解 (1)∵|2 014-x|+|2 015-x|≥|2 014-x-2 015+x|=1,
∴关于x的不等式|2 014-x|+|2 015-x|≤d有解时,d≥1.
(2)∵x+∈(-∞,-2]∪[2,+∞),
∴∈[2,+∞),其最小值为2.
又∵sin y的最大值为1,
故不等式≥|a-2|+sin y恒成立时,
有|a-2|≤1,解得a∈[1,3].
考点三 含绝对值的不等式的应用
【例3】 (2016·全国Ⅲ卷)已知函数f(x)=|2x-a|+a.
(1)当a=2时,求不等式f(x)≤6的解集;
(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求实数a的取值范围.
解 (1)当a=2时,f(x)=|2x-2|+2.
解不等式|2x-2|+2≤6得-1≤x≤3.
因此f(x)≤6的解集为{x|-1≤x≤3}.
(2)当x∈R时,
f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a,当x=时等号成立,
所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3.①
当a≤1时,①等价于1-a+a≥3,无解.
当a>1时,①等价于a-1+a≥3,解得a≥2.
所以实数a的取值范围是[2,+∞).
规律方法 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题的常用方法.
【训练3】 (2015·全国Ⅰ卷)已知函数f(x)=|x+1|-2|x-a|,a>0.
(1)当a=1时,求不等式f(x)>1的解集;
(2)若f(x)的图象与x轴围成的三角形面积大于6,求实数a的取值范围.
解 (1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.
当x≤-1时,不等式化为x-4>0,无解;
当-10,解得 当x≥1时,不等式化为-x+2>0,解得1≤x<2.
所以f(x)>1的解集为.
(2)由题设可得,f(x)=
所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A,B(2a+1,0),C(a,a+1),
△ABC的面积为(a+1)2.
由题设得(a+1)2>6,故a>2.
所以实数a的取值范围为(2,+∞).
[思想方法]
1.绝对值不等式的三种常用解法:零点分段法,数形结合法,构造函数法.
2.不等式恒成立问题、存在性问题都可以转化为最值问题解决.
[易错防范]
1.可以利用绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|求函数最值,要注意其中等号成立的条件.
2.掌握分类讨论的标准,做到不重不漏.
第1讲 分类加法计数原理与分步乘法计数原理
最新考纲 1.理解分类加法计数原理和分步乘法计数原理;2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.
知 识 梳 理
1.分类加法计数原理
完成一件事有两类不同的方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.
2.分步乘法计数原理
完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.
3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )
(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( )
(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )
(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( )
解析 分类加法计数原理,每类方案中的方法都是不同的,每一种方法都能完成这件事;分步乘法计数原理,每步的方法都是不同的,每步的方法只能完成这一步,不能完成这件事,所以(1),(4)均不正确.
答案 (1)× (2)√ (3)√ (4)×
2.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为( )
A.6 B.5 C.3 D.2
解析 5个人中每一个都可主持,所以共有5种选法.
答案 B
3.(选修2-3P28B2改编)现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )
A.24种 B.30种
C.36种 D.48种
解析 需要先给C块着色,有4种结果;再给A块着色,有3种结果;再给B块着色,有2种结果;最后给D块着色,有2种结果,由分步乘法计数原理知共有4×3×2×2=48(种).
答案 D
4.5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有________种(用数字作答).
解析 每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,总的报名方法共2×2×2×2×2=32(种).
答案 32
5.已知某公园有5个门,从任一门进,另一门出,则不同的走法的种数为________(用数字作答).
解析 分两步,第一步选一个门进有5种方法,第二步再选一个门出有4种方法,所以共有5×4=20种走法.
答案 20
6.(2015·广东卷改编)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了毕业留言________条;若每两个同学互通一次电话,那么共通________次电话(均用数字作答).
解析 第1位同学给余下的39位同学各写一条留言,共39条留言;依次下去,第40位同学给余下的39位同学各写一条留言,共39条留言,故全班共写了40×39=1 560条毕业留言.显然互通一次电话的次数为×1 560=780.
答案 1 560 780
考点一 分类加法计数原理
【例1】 (1)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽又被踢回给甲,则不同的传递方式共有( )
A.4种 B.6种 C.10种 D.16种
(2)(2017·温州十校联考)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )
A.14 B.13 C.12 D.10
解析 (1)分两类:甲第一次踢给乙时,满足条件有3种方法(如图),
同理,甲先传给丙时,满足条件有3种踢法.
由分类加法计数原理,共有3+3=6种传递方法.
(2)①当a=0,有x=-,b=-1,0,1,2有4种可能;
②当a≠0时,则Δ=4-4ab≥0,ab≤1,
(ⅰ)若a=-1时,b=-1,0,1,2有4种不同的选法;
(ⅱ)若a=1时,b=-1,0,1有3种可能;
(ⅲ)若a=2时,b=-1,0,有2种可能.
∴有序数对(a,b)共有4+4+3+2=13(个).
答案 (1)B (2)B
规律方法 分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素、关键位置.
(1)根据题目特点恰当选择一个分类标准.
(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.
(3)分类时除了不能交叉重复外,还不能有遗漏,如本例(2)中易漏a=0这一类.
【训练1】 (1)如图,从A到O有________种不同的走法(不重复过一点).
(2)若椭圆+=1的焦点在y轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________(用数字作答).
解析 (1)分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O共2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O共2种不同的走法,由分类加法计数原理可得共有1+2+2=5种不同的走法.
(2)当m=1时,n=2,3,4,5,6,7共6个
当m=2时,n=3,4,5,6,7共5个;
当m=3时,n=4,5,6,7共4个;
当m=4时,n=5,6,7共3个;
当m=5时,n=6,7共2个,故共有6+5+4+3+2=20个.
答案 (1)5 (2)20
考点二 分步乘法计数原理
【例2】 (1)(2017·郑州二模)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( )
A.10种 B.25种 C.52种 D.24种
(2)定义集合A与B的运算A*B如下:A*B={(x,y)|x∈A,y∈B},若A={a,b,c},B={a,c,d,e},则集合A*B的元素个数为________(用数字作答).
解析 (1)每相邻的两层之间各有2种走法,共分4步.
由分步乘法计数原理,共有24种不同的走法.
(2)显然(a,a),(a,c)等均为A*B中的关系,确定A*B中的元素是A中取一个元素来确定x,B中取一个元素来确定y,由分步计数原理可知A*B中有3×4=12个元素.
答案 (1)D (2)12
规律方法 (1)在第(1)题中,易误认为分5步完成,错选B.
(2)利用分步乘法计数原理应注意:①要按事件发生的过程合理分步,即分步是有先后顺序的.②各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.
【训练2】 (1)把3封信投到4个信箱,所有可能的投法共有( )
A.24种 B.4种 C.43种 D.34种
(2)设集合A={-1,0,1},B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数为________(用数字作答).
解析 (1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.由分步乘法计数原理可得共有43种方法.
(2)易知A∩B={0,1},A∪B={-1,0,1,2,3},
∴x有两种取法,y有5种取法.
由分步乘法计数原理,A*B的元素有2×5=10(个).
答案 (1)C (2)10
考点三 两个计数原理的综合应用
【例3】 (1)(2015·四川卷)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )
A.144个 B.120个 C.96个 D.72个
(2)(2017·杭州七校联考)如图所示,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________(用数字作答).
解析 (1)由题意,首位数字只能是4,5,若万位是5,则有3×A=72(个);若万位是4,则有2×A个=48(个),故比40 000大的偶数共有72+48=120(个).选B.
(2)按区域1与3是否同色分类:
①区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A种方法.
∴区域1与3涂同色,共有4A=24种方法.
②区域1与3不同色:先涂区域1与3有A种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.
∴这时共有A×2×1×3=72种方法.
由分类加法计数原理, 不同的涂色种数为24+72=96.
答案 (1)B (2)96
规律方法 (1)①注意在综合应用两个原理解决问题时,一般是先分类再分步.在分步时可能又用到分类加法计数原理.②注意对于较复杂的两个原理综合应用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.
(2)解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.第(2)题中,相邻区域不同色,是按区域1与3是否同色分类处理.
【训练3】 (1)如果一个三位正整数如“a1a2a3”满足a1a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为( )
A.240 B.204
C.729 D.920
(2)从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).
解析 (1)若a2=2,则百位数字只能选1,个位数字可选1或0“凸数”为120与121,共2个.若a2=3,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).∴所有凸数有2+6+12+20+30+42+56+72=240(个).
(2)由题意知本题是一个分类计数问题,
共有8种不同的类型,
当有3个键同时按下,有C种结果,
当有4个键同时按下,有C种结果,
…,
以此类推,根据分类加法计数原理得到共有
C+C+C+…+C
=C+C+C+…+C-(C+C+C)
=210-(1+10+45)=968.
答案 (1)A (2)968
[思想方法]
1.应用两个计数原理的难点在于明确分类还是分步.
在处理具体的应用问题时,首先必须弄清楚“分类”与“分步”的具体标准是什么.选择合理的标准处理事情,可以避免计数的重复或遗漏.
2.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.
(2)分步要做到“步骤完整”,完成了所有步骤,恰好完成任务,当然步与步之间要相互独立,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
3.混合问题一般是先分类再分步.
4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.
[易错防范]
1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.
2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.
3.确定题目中是否有特殊条件限制.
第2讲 排列与组合
最新考纲 1.理解排列、组合的概念;2.能利用计数原理推导排列数公式、组合数公式;3.能解决简单的实际问题.
知 识 梳 理
1.排列与组合的概念
名称
定义
排列
从n个不同元素中取出m(m≤n)个不同元素
按照一定的顺序排成一列
组合
合成一组
2.排列数与组合数
(1)从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.
(2)从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数.
3.排列数、组合数的公式及性质
公式
(1)A=n(n-1)(n-2)…(n-m+1)=
(2)C==
=(n,m∈N*,且m≤n).特别地C=1
性质
(1)0!=1;A=n!
(2)C=C;C=C+C
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)所有元素完全相同的两个排列为相同排列.( )
(2)两个组合相同的充要条件是其中的元素完全相同.( )
(3)若组合式C=C,则x=m成立.( )
(4)kC=nC.( )
解析 元素相同但顺序不同的排列是不同的排列,故(1)不正确;若C=C,则x=m或n-m,故(3)不正确.
答案 (1)× (2)√ (3)× (4)√
2.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是( )
A.12 B.24 C.64 D.81
解析 4本不同的课外读物选3本分给3位同学,每人一本,则不同的分配方法为A=24.
答案 B
3.(选修2-3P28A17改编)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是( )
A.18 B.24 C.30 D.36
解析 法一 选出的3人中有2名男同学1名女同学的方法有CC=18种,选出的3人中有1名男同学2名女同学的方法有CC=12种,故3名学生中男女生都有的选法有CC+CC=30种.
法二 从7名同学中任选3名的方法数,再除去所选3名同学全是男生或全是女生的方法数,即C-C-C=30.
答案 C
4.(2017·浙江三市十二校联考)用1,2,3,4,5,6这六个数字组成没有重复数字的六位数共有________个;其中1,3,5三个数字互不相邻的六位数有________个.
解析 用1,2,3,4,5,6组成没有重复数字六位数共有A=720个;将1,3,5三个数字插入到2,4,6三个数字排列后所形成的4个空中的3个,故有AA=144个.
答案 720 144
5.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为________(用数字作答).
解析 末位数字排法有A,其他位置排法有A种,共有AA=48种.
答案 48
6.(2017·绍兴调研)某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为________(用数字作答).
解析 法一 (直接法)甲、乙两人均入选,有CC种.
甲、乙两人只有1人入选,有CC种方法,
∴由分类加法计数原理,共有CC+CC=49(种)选法.
法二 (间接法)从9人中选3人有C种方法.
其中甲、乙均不入选有C种方法,
∴满足条件的选排方法是C-C=84-35=49(种).
答案 49
考点一 排列问题
【例1】 (2017·河南校级月考)3名女生和5名男生排成一排.
(1)如果女生全排在一起,有多少种不同排法?
(2)如果女生都不相邻,有多少种排法?
(3)如果女生不站两端,有多少种排法?
(4)其中甲必须排在乙前面(可不邻),有多少种排法?
(5)其中甲不站最左边,乙不站最右边,有多少种排法?
解 (1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有6个元素,排成一排有A种排法,而其中每一种排法中,三个女生间又有A种排法,因此共有A·A=4 320(种)不同排法.
(2)(插空法)先排5个男生,有A种排法,这5个男生之间和两端有6个位置,从中选取3个位置排女生,有A种排法,因此共有A·A=14 400(种)不同排法.
(3)法一 (位置分析法) 因为两端不排女生,只能从5个男生中选2人,有A种排法,剩余的位置没有特殊要求,有A种排法,因此共有A·A=14 400(种)不同排法.
法二 (元素分析法) 从中间6个位置选3个安排女生,有A种排法,其余位置无限制,有A种排法,因此共有A·A=14 400(种)不同排法.
(4)8名学生的所有排列共A种,其中甲在乙前面与乙在甲前面的各占其中,∴符合要求的排法种数为A=20 160(种).
(5)甲、乙为特殊元素,左、右两边为特殊位置.
法一 (特殊元素法)甲在最右边时,其他的可全排,有A种;
甲不在最右边时,可从余下6个位置中任选一个,有A种;
而乙可排在除去最右边位置后剩余的6个中的任一个上,有A种;
其余人6个人进行全排列,有A种.共有A·A·A种.
由分类加法计数原理,共有A+A·A·A=30 960(种).
法二 (特殊位置法)先排最左边,除去甲外,有A种,余下7个位置全排,有A种,但应剔除乙在最右边时的排法A·A种,因此共有A·A-A·A=30 960(种).
法三 (间接法)8个人全排,共A种,其中,不合条件的有甲在最左边时,有A种,乙在最右边时,有A种,其中都包含了甲在最左边,同时乙在最右边的情形,有A种.因此共有A-2A+A=30 960(种).
规律方法 (1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.
(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.
【训练1】 (1)(2017·新余二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为( )
A.120 B.240 C.360 D.480
(2)(2017·抚顺模拟)某班准备从甲、乙等七人中选派四人发言,要求甲乙两人至少有一人参加,那么不同的发言顺序有( )
A.30 B.600 C.720 D.840
解析 (1)第一步,从甲、乙、丙三人选一个加到前排,有3种,第二步,前排3人形成了4个空,任选一个空加一人,有4种,第三步,后排4人形成了5个空,任选一个空加一人有5种,此时形成6个空,任选一个空加一人,有6种,根据分步计数原理有3×4×5×6=360种方法.
(2)若只有甲乙其中一人参加,有CCA=480种方法;若甲乙两人都参加,有CCA=240种方法,则共有480+240=720种方法,故选C.
答案 (1)C (2)C
考点二 组合问题
【例2】 某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.
(1)其中某一种假货必须在内,不同的取法有多少种?
(2)其中某一种假货不能在内,不同的取法有多少种?
(3)恰有2种假货在内,不同的取法有多少种?
(4)至少有2种假货在内,不同的取法有多少种?
(5)至多有2种假货在内,不同的取法有多少种?
解 (1)从余下的34种商品中,选取2种有C=561种,∴某一种假货必须在内的不同取法有561种.
(2)从34种可选商品中,选取3种,有C种或者C-C=C=5 984种.
∴某一种假货不能在内的不同取法有5 984种.
(3)从20种真货中选取1件,从15种假货中选取2件有CC=2 100种.
∴恰有2种假货在内的不同的取法有2 100种.
(4)选取2种假货有CC种,选取3件假货有C种,共有选取方式CC+C=2 100+455=2 555种.
∴至少有2种假货在内的不同的取法有2 555种.
(5)选取3件的总数为C,因此共有选取方式
C-C=6 545-455=6 090种.
∴至多有2种假货在内的不同的取法有6 090种.
规律方法 组合问题常有以下两类题型变化:
(1)“含有”或“不含有”某些元素的组合题型;“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.
(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.
【训练2】 (1)(2017·邯郸一模)现有6个不同的白球,4个不同的黑球,任取4个球,则至少有两个黑球的取法种数是( )
A.90 B.115 C.210 D.385
(2)(2017·湖州市质检)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )
A.60种 B.63种 C.65种 D.66种
解析 (1)分三类,取2个黑球有CC=90种,取3个黑球有CC=24种,取4个黑球有C=1种,故共有90+24+1=115种取法,选B.
(2)共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,∴共有不同的取法有C+C+CC=66(种).
答案 (1)B (2)D
考点三 排列、组合的综合应用
【例3】 4个不同的球,4个不同的盒子,把球全部放入盒内.
(1)恰有1个盒不放球,共有几种放法?
(2)恰有1个盒内有2个球,共有几种放法?
(3)恰有2个盒不放球,共有几种放法?
解 (1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有CCC×A=144(种).
(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.
(3)确定2个空盒有C种方法.
4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有CCA种方法;第二类有序均匀分组有·A种方法.故共有C(CCA+·A)=84(种).
规律方法 (1)解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).对于排列组合的综合题目,一般是将符合要求的元素取出或进行分组,再对取出的元素或分好的组进行排列.
(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的差异.其次对于相同元素的“分配”问题,常用的方法是采用“隔板法”.
【训练3】 (1)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( )
A.AC B.AC
C.AA D.2A
(2)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).
解析 (1)法一 将4人平均分成两组有C种方法,将此两组分配到6个班级中的2个班有A(种).
所以不同的安排方法有CA(种).
法二 先从6个班级中选2个班级有C种不同方法,然后安排学生有CC种,故有CCC=AC(种).
(2)把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C种分法,再分给4人有CA种分法,所以不同获奖情况种数为A+CA=24+36=60.
答案 (1)B (2)60
[思想方法]
1.对于有附加条件的排列、组合应用题,通常从三个途径考虑
(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.
(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.
2.排列、组合问题的求解方法与技巧
(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.
[易错防范]
1.区分一个问题属于排列问题还是组合问题,关键在于是否与顺序有关.
2.解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法).分类时标准应统一,避免出现重复或遗漏.
3.解组合应用题时,应注意“至少”、“至多”、“恰好”等词的含义.
4.对于分配问题,一般先分组,再分配,注意平均分组与不平均分组的区别,避免重复或遗漏.
第3讲 二项式定理
最新考纲 1.能用计数原理证明二项式定理;2.会用二项式定理解决与二项展开式有关的简单问题.
知 识 梳 理
1.二项式定理
(1)二项式定理:(a+b)n=Can+Can-1b+…+Can-rbr+…+Cbn(n∈N*);
(2)通项公式:Tr+1=Can-rbr,它表示第r+1项;
(3)二项式系数:二项展开式中各项的系数C,C,…,C.
2.二项式系数的性质
性质
性质描述
对称性
与首末等距离的两个二项式系数相等,即C=C
增减性
二项式系数C
当k<(n∈N*)时,是递增的
当k>(n∈N*)时,是递减的
二项式
系数最
大值
当n为偶数时,中间的一项取得最大值
当n为奇数时,中间的两项与取最大值
3.各二项式系数和
(1)(a+b)n展开式的各二项式系数和:C+C+C+…+C=2n.
(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C+C+C+…=C+C+C+…=2n-1.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)Can-kbk是二项展开式的第k项.( )
(2)二项展开式中,系数最大的项为中间一项或中间两项.( )
(3)(a+b)n的展开式中某一项的二项式系数与a,b无关.( )
(4)(a+b)n某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.( )
解析 二项式展开式中Can-kbk是第k+1项,二项式系数最大的项为中间一项或中间两项,故(1)(2)均不正确.
答案 (1)× (2)× (3)√ (4)√
2.(x-y)n的二项展开式中,第m项的系数是( )
A.C B.C
C.C D.(-1)m-1C
解析 (x-y)n展开式中第m项的系数为C(-1)m-1.
答案 D
3.(选修2-3P35练习T1(3)改编)
的值为( )
A.2 B.4
C.2 017 D.2 016×2 017
解析 原式==22=4.
答案 B
4.(2017·瑞安市质检)的展开式中,第4项的二项式系数是________,第4项的系数是________.
解析 展开式通项为Tr+1=Cx2(9-r)
=(-1)rCx18-3r(其中r=0,1,…,9)
∴T4=(-1)3Cx9,
故第4项的二项式系数为C=84,第4项的系数为
(-1)3C=-.
答案 84 -
5.(2017·石家庄调研)(1+x)n的二项式展开式中,仅第6项的系数最大,则n=________.
解析 (1+x)n的二项式展开式中,项的系数就是项的二项式系数,所以+1=6,n=10.
答案 10
6.展开式中的常数项为________.
解析 Tk+1=C(x2)5-k=C(-2)kx10-5k.令10-5k=0,则k=2.∴常数项为T3=C(-2)2=40.
答案 40
考点一 求展开式中的特定项或特定项的系数
【例1】 已知在的展开式中,第6项为常数项.
(1)求n;
(2)求含x2的项的系数;
(3)求展开式中所有的有理项.
解 (1)通项公式为
Tk+1=Cxx-=Cx.
因为第6项为常数项,所以k=5时,=0,即n=10.
(2)令=2,得k=2,
故含x2的项的系数是C=.
(3)根据通项公式,由题意
令=r (r∈Z),则10-2k=3r,k=5-r,
∵k∈N,∴r应为偶数.
∴r可取2,0,-2,即k可取2,5,8,
∴第3项,第6项与第9项为有理项,
它们分别为x2,-,x-2.
规律方法 (1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求的项.
(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.
【训练1】 (1)(2015·全国Ⅰ卷)(x2+x+y)5的展开式中,x5y2的系数为( )
A.10 B.20 C.30 D.60
(2)(2016·全国Ⅰ卷)(2x+)5的展开式中,x3的系数是________(用数字作答).
(3)(2014·全国Ⅰ卷)(x-y)(x+y)8的展开式中x2y7的系数为________(用数字作答).
解析 (1)法一 (x2+x+y)5=[(x2+x)+y]5,
含y2的项为T3=C(x2+x)3·y2.
其中(x2+x)3中含x5的项为Cx4·x=Cx5.
所以x5y2的系数为CC=30.
法二 (x2+x+y)5表示5个x2+x+y之积.
∴x5y2可从其中5个因式中选两个因式取y,两个取x2,一个取x.因此x5y2的系数为CCC=30.
(2)由(2x+)5得Tr+1=C(2x)5-r()r=
25-rCx5-,令5-=3得r=4,此时系数为10.
(3)(x-y)(x+y)8=x(x+y)8-y(x+y)8,
∵x(x+y)8中含x2y7的项为x·Cxy7,y(x+y)8中含x2y7的项为y·Cx2y6.
故(x-y)(x+y)8的展开式中x2y7的系数为C-C=C-C=-20.
答案 (1)C (2)10 (3)-20
考点二 二项式系数的和与各项的系数和问题
【例2】 在(2x-3y)10的展开式中,求:
(1)二项式系数的和;
(2)各项系数的和;
(3)奇数项的二项式系数和与偶数项的二项式系数和;
(4)奇数项系数和与偶数项系数和;
(5)x的奇次项系数和与x的偶次项系数和.
解 设(2x-3y)10=a0x10+a1x9y+a2x8y2+…+a10y10,(*)
各项系数和为a0+a1+…+a10,奇数项系数和为a0+a2+…+a10,偶数项系数和为a1+a3+a5+…+a9,x的奇次项系数和为a1+a3+a5+…+a9,x的偶次项系数和为a0+a2+a4+…+a10.
由于(*)是恒等式,故可用“赋值法”求出相关的系数和.
(1)二项式系数的和为C+C+…+C=210.
(2)令x=y=1,各项系数和为(2-3)10=(-1)10=1.
(3)奇数项的二项式系数和为C+C+…+C=29,
偶数项的二项式系数和为C+C+…+C=29.
(4)令x=y=1,得到a0+a1+a2+…+a10=1,①
令x=1,y=-1(或x=-1,y=1),
得a0-a1+a2-a3+…+a10=510,②
①+②得2(a0+a2+…+a10)=1+510,
∴奇数项系数和为;
①-②得2(a1+a3+…+a9)=1-510,
∴偶数项系数和为.
(5)x的奇次项系数和为a1+a3+a5+…+a9=;
x的偶次项系数和为a0+a2+a4+…+a10=.
规律方法 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax+b)n、(ax2+bx+c)m (a,b∈R)的式子求其展开式的各项系数之和,常用赋值法,只需令x=1即可;对形如(ax+by)n (a,b∈R)的式子求其展开式各项系数之和,只需令x=y=1即可.
(2)若f(x)=a0+a1x+a2x2+…+anxn,则f(x)展开式中各项系数之和为f(1),奇数项系数之和为a0+a2+a4+…=,偶数项系数之和为a1+a3+a5+…=.
【训练2】 (1)(2017·岳阳模拟)若二项式的展开式中各项系数的和是512,则展开式中的常数项为( )
A.-27C B.27C
C.-9C D.9C
(2)(2017·义乌调研)(1-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,求|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=( )
A.1 024 B.243 C.32 D.24
解析 (1)令x=1得2n=512,所以n=9,故的展开式的通项为Tr+1=C(3x2)9-r=(-1)rC·39-rx18-3r,令18-3r=0得r=6,所以常数项为T7=(-1)6C·33=27C.
(2)令x=-1得a0-a1+a2-a3+a4-a5=|a0|+|a1|+|a2|+|a3|+|a4|+|a5|=[1-(-3)]5=45=1 024.
答案 (1)B (2)A
考点三 二项式定理的应用
【例3】 (1)求证:1+2+22+…+25n-1(n∈N*)能被31整除;
(2)用二项式定理证明2n>2n+1(n≥3,n∈N*).
证明 (1)∵1+2+22+…+25n-1=
=25n-1=32n-1=(31+1)n-1
=C×31n+C×31n-1+…+C×31+C-1
=31(C×31n-1+C×31n-2+…+C),
显然C×31n-1+C×31n-2+…+C为整数,
∴原式能被31整除.
(2)当n≥3,n∈N*.
2n=(1+1)n=C+C+…+C+C≥C+C+C+C=2n+2>2n+1,∴不等式成立.
规律方法 (1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项.而求近似值则应关注展开式的前几项.
(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式.
(3)由于(a+b)n的展开式共有n+1项,故可通过对某些项的取舍来放缩,从而达到证明不等式的目的.
【训练3】 求S=C+C+…+C除以9的余数.
解 S=C+C+…+C=227-1=89-1
=(9-1)9-1=C×99-C×98+…+C×9-C-1
=9(C×98-C×97+…+C)-2.
∵C×98-C×97+…+C是整数,
∴S被9除的余数为7.
[思想方法]
1.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C,C,…,C,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.
2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意给字母赋值是求解二项展开式各项系数和的一种重要方法.赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1.
[易错防范]
1.通项Tk+1=Can-kbk是(a+b)n的展开式的第k+1项,而不是第k项,这里k=0,1,…,n.
2.区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a,b有关,可正可负,二项式系数只与n有关,恒为正.
3.切实理解“常数项”“有理项”(字母指数为整数)“系数最大的项”等概念.
第4讲 随机事件的概率
最新考纲 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式.
知 识 梳 理
1.频率与概率
(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率.
2.事件的关系与运算
定义
符号表示
包含关系
如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
B?A(或A?B)
相等关系
若B?A且A?B
A=B
并事件(和事件)
若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)
A∪B(或A+B)
交事件(积事件)
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
A∩B(或AB)
互斥事件
若A∩B为不可能事件,则称事件A与事件B互斥
A∩B=?
对立事件
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
A∩B=?P(A∪B)=1
3.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)互斥事件概率的加法公式
①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
②若事件B与事件A互为对立事件,则P(A)=1-P(B).
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)事件发生的频率与概率是相同的.( )
(2)在大量的重复实验中,概率是频率的稳定值.( )
(3)若随机事件A发生的概率为P(A),则0≤P(A)≤1.( )
(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( )
答案 (1)× (2)√ (3)√ (4)×
2.袋中装有3个白球,4个黑球,从中任取3个球,则:①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.
在上述事件中,是对立事件的为( )
A.① B.②
C.③ D.④
解析 至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件.
答案 B
3.(2016·天津卷)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( )
A. B.
C. D.
解析 设“两人下成和棋”为事件A,“甲获胜”为事件B.事件A与B是互斥事件,所以甲不输的概率P=P(A∪B)=P(A)+P(B)=+=.
答案 A
4.(2017·威海模拟)围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是________.
解析 由题意知,所求概率P=+=.
答案
5.袋中装有100个大小相同的红球、白球和黑球,从中任取一球,摸出红球、白球的概率分别是0.40和0.35,那么黑球共有________个.
解析 任取一球是黑球的概率为1-(0.40+0.35)=0.25,∴黑球有100×0.25=25(个).
答案 25
6.(2017·绍兴一中检测)口袋内有一些大小、形状完全相同的红球、黄球和白球,从中任意摸出一球,摸出的球是红球或黄球的概率为0.4,摸出的球是红球或白球的概率为0.9,那么摸出的球是黄球的概率为________;是白球的概率为________.
解析 设摸出红球的概率是P(A),摸出黄球的概率是P(B),摸出白球的概率是P(C),∴P(A)+P(B)=0.4,P(A)+P(C)=0.9,∴P(C)=1-P(A)-P(B)=0.6,P(B)=1-P(A)-P(C)=0.1.
答案 0.1 0.6
考点一 随机事件间的关系
【例1】 从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )
A.① B.②④
C.③ D.①③
解析 从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数.
其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.
又①②④中的事件可以同时发生,不是对立事件.
答案 C
规律方法 (1)本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.
(2)准确把握互斥事件与对立事件的概念.
①互斥事件是不可能同时发生的事件,但可以同时不发生.
②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.
【训练1】 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________.
①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C∪E)=1;⑤P(B)=P(C).
解析 当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C∪E不一定为必然事件,P(C∪E)≤1,④不正确.由于P(B)=,P(C)=,所以⑤不正确.
答案 ①
考点二 随机事件的频率与概率
【例2】 (2016·全国Ⅱ卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数
0
1
2
3
4
≥5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数
0
1
2
3
4
≥5
频数
60
50
30
30
20
10
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
解 (1)事件A发生当且仅当一年内出险次数小于2,由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.
(2)事件B发生当且仅当一年内出险次数大于1且小于4,由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.
(3)由所给数据得
保费
0.85a
a
1.25a
1.5a
1.75a
2a
频率
0.30
0.25
0.15
0.15
0.10
0.05
调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.
因此,续保人本年度平均保费的估计值为1.192 5a.
规律方法 (1)解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率.
(2)频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值.
【训练2】 (2015·北京卷)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
商品
顾客人数
甲
乙
丙
丁
100
√
×
√
√
217
×
√
×
√
200
√
√
√
×
300
√
×
√
×
85
√
×
×
×
98
×
√
×
×
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,
所以顾客同时购买乙和丙的概率可以估计为=0.2.
(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.
所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3.
(3)与(1)同理,可得:
顾客同时购买甲和乙的概率可以估计为=0.2,
顾客同时购买甲和丙的概率可以估计为=0.6,顾客同时购买甲和丁的概率可以估计为=0.1.
所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.
考点三 互斥事件与对立事件的概率
【例3】 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量
1至
4件
5至
8件
9至
12件
13至
16件
17件及以上
顾客数/人
x
30
25
y
10
结算时间/(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
解 (1)由已知得25+y+10=55,x+30=45,
所以x=15,y=20.
该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为
=1.9(分钟).
(2)记A表示事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事件“该顾客一次购物的结算时间为1分钟”、“该顾客一次购物的结算时间为1.5分钟”、“该顾客一次购物的结算时间为2分钟”.将频率视为概率得
P(A1)==,P(A2)==,P(A3)==.
因为A=A1∪A2∪A3,且A1,A2,A3彼此是互斥事件,
所以P(A)=P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)
=++=.
故一位顾客一次购物的结算时间不超过2分钟的概率为.
规律方法 (1)①求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来.
②结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误.
(2)求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”、“至少”型问题,多考虑间接法.
【训练3】 某商场有奖销售活动中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
解 (1)P(A)=,P(B)==,
P(C)==.
故事件A,B,C的概率分别为,,.
(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.
∵A,B,C两两互斥,
∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)
==.
故1张奖券的中奖概率为.
(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,
∴P(N)=1-P(A∪B)=1-=.
故1张奖券不中特等奖且不中一等奖的概率为.
[思想方法]
1.对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).
2.对立事件不仅两个事件不能同时发生,而且二者必有一个发生.
3.求复杂的互斥事件的概率一般有两种方法:
(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算.
(2)间接法:先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维(正难则反).
[易错防范]
1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.
2.正确认识互斥事件与对立事件的关系,对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.
3.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.
第5讲 古典概型
最新考纲 1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.
知 识 梳 理
1.基本事件的特点
(1)任何两个基本事件是互斥的.
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
2.古典概型
具有以下两个特点的概率模型称为古典概率模型,简称古典概型.
(1)试验中所有可能出现的基本事件只有有限个.
(2)每个基本事件出现的可能性相等.
3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=.
4.古典概型的概率公式
P(A)=.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )
(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( )
(3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.( )
(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.( )
解析 对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),应利用几何概型求概率,所以(4)不正确.
答案 (1)× (2)× (3)√ (4)×
2.(必修3P127例3改编)掷两颗均匀的骰子,则点数之和为5的概率等于( )
A. B. C. D.
解析 所有基本事件的个数为6×6=36,点数之和为5的基本事件有(1,4),(2,3),(3,2),(4,1)共4个,故所求概率为P==.
答案 B
3.(2016·北京卷)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )
A. B. C. D.
解析 甲被选中的概率为P===.
答案 B
4.(2017·嘉兴一模)从3名男同学,2名女同学中任选2人参加知识竞赛,则选到的2名同学中至少有1名男同学的概率是________.
解析 所求概率为P=1-=.
答案
5.从1,2,3,4,5,6这6个数字中,任取2个数字相加,其和为奇数的概率是________.
解析 和为奇数的两个数为一奇一偶,故所求概率为P===.
答案
6.(2017·金华十校联考)如果下了课后,教室里最后还剩下3位女同学,2位男同学,一会儿又走了一位女同学.如果没有两位同学一块儿走,则下一位是男同学走的可能性为________.
解析 已知走了一位女同学,还剩下两位女同学和两位男同学,所有走的可能顺序为(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男)一共6种.
那么下一位是男同学的可能性只有(男,男,女,女),(男,女,男,女),(男,女,女,男),故P==,
∴下一位是女同学走的可能性为1-=.
答案
考点一 基本事件与古典概型的判断
【例1】 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.
(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?
(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?
解 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.
又因为所有球大小相同,因此每个球被摸中的可能性相等,
故以球的编号为基本事件的概率模型为古典概型.
(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,
又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为,而白球有5个,
故一次摸球摸到白球的可能性为,
同理可知摸到黑球、红球的可能性均为,
显然这三个基本事件出现的可能性不相等,
所以以颜色为划分基本事件的依据的概率模型不是古典概型.
规律方法 古典概型需满足两个条件:①对于每次随机试验来说,只可能出现有限个不同的试验结果;②对于所有不同的试验结果而言,它们出现的可能性是相等的.
【训练1】 (1)下列问题中是古典概型的是( )
A.种下一粒杨树种子,求其能长成大树的概率
B.掷一颗质地不均匀的骰子,求出现1点的概率
C.在区间[1,4]上任取一数,求这个数大于1.5的概率
D.同时掷两颗骰子,求向上的点数之和是5的概率
(2)将一枚硬币抛掷三次共有________种结果.
解析 (1)A、B两项中的基本事件的发生不是等可能的;
C项中基本事件的个数是无限多个;
D项中基本事件的发生是等可能的,且是有限个.
(2)设出现正面为1,反面为0,则共有(1,1,1),(1,1,0),(1,0,1),(1,0,0),(0,1,1),(0,1,0),(0,0,1),(0,0,0)8种结果.
答案 (1)D (2)8
考点二 简单的古典概型的概率
【例2】 将一颗骰子先后抛掷2次,观察向上的点数,求:
(1)两数中至少有一个奇数的概率;
(2)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的外部或圆上的概率.
解 由题意,先后掷2次,向上的点数(x,y)共有n=6×6=36种等可能结果,为古典概型.
(1)记“两数中至少有一个奇数”为事件B,则事件B与“两数均为偶数”为对立事件,记为.
∵事件包含的基本事件数m=CC=9.
∴P()==,则P(B)=1-P()=,
因此,两数中至少有一个奇数的概率为.
(2)点(x,y)在圆x2+y2=15的内部记为事件C,则表示“点(x,y)在圆x2+y2=15上或圆的外部”.
又事件C包含基本事件:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共有8个.
∴P(C)==,从而P()=1-P(C)=1-=.
∴点(x,y)在圆x2+y2=15上或圆外部的概率为.
规律方法 计算古典概型的概率可分三步:
(1)算出基本事件的总个数n;
(2)求出事件A所包含的基本事件个数m;
(3)代入公式求出概率P.解题时可根据需要灵活选择列举法、列表法或树形图法.
【训练2】 (1)(2015·广东卷)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )
A. B. C. D.1
(2)(2016·江苏卷)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.
解析 (1)从袋中任取2个球共有C=105种取法,其中恰好1个白球1个红球共有CC=50种取法,所以所取的球恰好1个白球1个红球的概率为=.
(2)将一颗质地无均匀的骰子先后抛掷2次,所有等可能的结果有36种,其中点数之和不小于10的有(6,6),(6,5),(6,4),(5,6),(5,5),(4,6),共6种,故所求概率为1-=.
答案 (1)B (2)
考点三 复杂的古典概型的概率
【例3】 (2015·四川卷改编)某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.
(1)求A中学至少有1名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.
解 (1)由题意,参加集训的男、女生各有6名.
参赛学生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为=,
因此,A中学至少有1名学生入选代表队的概率为
1-=.
(2)设“参赛的4人中女生不少于2人”为事件A,记“参赛女生有2人”为事件B,“参赛女生有3人”为事件C.
则P(B)==,P(C)==.
由互斥事件的概率加法,
得P(A)=P(B)+P(C)=+=,
故所求事件的概率为.
规律方法 (1)求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.
(2)注意区别排列与组合,以及计数原理的正确使用.
【训练3】 (2016·威海模拟)一个盒子里装有大小均匀的6个小球,其中有红球4个,编号分别为1,2,3,4,白球2个,编号分别为4,5,从盒子中任取3个小球(假设取到任何一个小球的可能性相同).
(1)求取出的3个小球中,含有编号为4的小球的概率;
(2)在取出的3个小球中,求小球编号最大值为4的概率.
解 基本事件总数为n=C=20,
(1)取出的3个小球中,含有编号为4的小球的基本事件个数为m=CC+CC=16,
∴取出的3个球中,含有编号为4的小球的概率P===.
(2)小球编号最大值为4的基本事件个数为CC+CC=9,
所以,小球编号最大值为4的概率P=.
[思想方法]
1.古典概型计算三步曲
第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.
2.确定基本事件个数的方法
列举法、列表法、树状图法或利用排列、组合.
[易错防范]
1.古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是不是等可能的.
2.对较复杂的古典概型,其基本事件的个数常涉及排列数、组合数的计算,计算时要首先判断事件是否与顺序有关,以确定是按排列处理,还是按组合处理.
第6讲 离散型随机变量及其分布列
最新考纲 1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;2.理解超几何分布及其导出过程,并能进行简单应用.
知 识 梳 理
1.离散型随机变量
随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.
2.离散型随机变量的分布列及性质
(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则表
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
称为离散型随机变量X的概率分布列.
(2)离散型随机变量的分布列的性质:
①pi≥0(i=1,2,…,n);②p1+p2+…+pn=1
3.常见离散型随机变量的分布列
(1)两点分布:若随机变量X服从两点分布,其分布列为
X
0
1
P
1-p
p
,其中p=P(X=1)称为成功概率.
(2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称随机变量X服从超几何分布.
X
0
1
…
m
P
…
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)离散型随机变量的概率分布列中,各个概率之和可以小于1.( )
(2)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )
(3)如果随机变量X的分布列由下表给出,
X
2
5
P
0.3
0.7
则它服从两点分布.( )
(4)从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.( )
解析 对于(1),离散型随机变量所有取值的并事件是必然事件,故各个概率之和等于1,故(1)不正确;对于(3),X的取值不是0,1,故不是两点分布,所以(3)不正确.
答案 (1)× (2)√ (3)× (4)√
2.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是( )
A.至少取到1个白球 B.至多取到1个白球
C.取到白球的个数 D.取到的球的个数
解析 选项A,B表述的都是随机事件,选项D是确定的值2,并不随机;选项C是随机变量,可能取值为0,1,2.
答案 C
3.(选修2-3P49A4改编)设随机变量X的分布列如下:
X
1
2
3
4
5
P
p
则p为( )
A. B. C. D.
解析 由分布列的性质,++++p=1,
∴p=1-=.
答案 C
4.设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么n=______.
解析 由于随机变量X等可能取1,2,3,…,n.所以取到每个数的概率均为.
∴P(X<4)=P(X=1)+P(X=2)+P(X=3)==0.3,∴n=10.
答案 10
5.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是( )
A.ξ=4 B.ξ=5
C.ξ=6 D.ξ≤5
解析 “放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6.
答案 C
6.从装有3个红球,2个白球的袋中随机取出2个球,设其中有X个红球,则随机变量X=1的概率为________.
解析 P(X=1)===.
答案
考点一 离散型随机变量分布列的性质
【例1】 设离散型随机变量X的分布列为
X
0
1
2
3
4
P
0.2
0.1
0.1
0.3
m
求:(1)2X+1的分布列;
(2)|X-1|的分布列.
解 由分布列的性质知:0.2+0.1+0.1+0.3+m=1,∴m=0.3.
首先列表为
X
0
1
2
3
4
2X+1
1
3
5
7
9
|X-1|
1
0
1
2
3
从而由上表得两个分布列为
(1)2X+1的分布列
2X+1
1
3
5
7
9
P
0.2
0.1
0.1
0.3
0.3
(2)|X-1|的分布列为
|X-1|
0
1
2
3
P
0.1
0.3
0.3
0.3
规律方法 (1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证两个概率值均为非负数.
(2)若X是随机变量,则η=|X-1|等仍然是随机变量,求它的分布列可先求出相应随机变量的值,再根据互斥事件概率加法求对应的事件概率,进而写出分布列.
【训练1】 (2017·丽水月考)设随机变量X的概率分布列如下表,则P(|X-2|=1)=( )
X
1
2
3
4
P
m
A. B. C. D.
解析 由|X-2|=1得X=1或3,m=1-=,∴P(|X-2|=1)=P(X=1)+P(X=3)=+=.
答案 C
考点二 离散型随机变量的分布列
【例2】 (2016·天津卷节选)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.
(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列.
解 (1)由已知,有P(A)==.
所以,事件A发生的概率为.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)==,
P(X=1)==,
P(X=2)==.
所以,随机变量X的分布列为
X
0
1
2
P
规律方法 求离散型随机变量X的分布列的步骤:
(1)找出随机变量X的所有可能取值xi(i=1,2,3,…,n);
(2)求出各取值的概率P(X=xi)=pi;
(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确.
提醒 求离散型随机变量的分布列的关键是求随机变量所有取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.
【训练2】 某商店试销某种商品20天,获得如下数据:
日销售量(件)
0
1
2
3
频数
1
5
9
5
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.
(1)求当天商店不进货的概率;
(2)记X为第二天开始营业时该商品的件数,求X的分布列.
解 (1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=+=.
(2)由题意知,X的可能取值为2,3.
P(X=2)=P(当天商品销售量为1件)==;
P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=++=.
所以X的分布列为
X
2
3
P
考点三 超几何分布
【例3】 (2017·嘉兴模拟)某外语学校的一个社团中有7名同学,其中2人只会法语;2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.
(1)在选派的3人中恰有2人会法语的概率;
(2)在选派的3人中既会法语又会英语的人数X的分布列.
解 (1)设事件A:选派的三人中恰有2人会法语,则
P(A)==.
(2)依题意知X的取值为0,1,2,3,
P(X=0)==,
P(X=1)==,
P(X=2)==,
P(X=3)==,
∴X的分布列为
X
0
1
2
3
P
规律方法 超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:
(1)考察对象分两类;
(2)已知各类对象的个数;
(3)从中抽取若干个个体,考查某类个体数X的概率分布.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.
【训练3】 (2017·昆明调研)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
从某自然保护区2013年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:
PM2.5日均值(微克/立方米)
[25,35]
(35,45]
(45,55]
(55,65]
(65,75]
(75,85]
频数
3
1
1
1
1
3
(1)从这10天的PM2.5日均值监测数据中,随机抽出3天,求恰有一天空气质量达到一级的概率;
(2)从这10天的数据中任取3天数据,记X表示抽到PM2.5监测数据超标的天数,求X的分布列.
解 (1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A,则
P(A)==.
(2)依据条件,X服从超几何分布,其中N=10,M=3,n=3,且随机变量X的可能取值为0,1,2,3.
P(X=k)=(k=0,1,2,3).
∴P(X=0)==,
P(X=1)==,
P(X=2)==,
P(X=3)==.
因此X的分布列为
X
0
1
2
3
P
[思想方法]
1.对于随机变量X的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X的取值范围以及取这些值的概率.
2.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.
[易错防范]
掌握离散型随机变量的分布列,须注意:
(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.
(2)要会根据分布列的两个性质来检验求得的分布列的正误.
(3)超几何分布是一种常见的离散型随机变量的概率分布模型,要会根据问题特征去判断随机变量是否服从超几何分布,然后利用相关公式进行计算.
第7讲 二项分布及其应用
最新考纲 1.理解条件概率和两个事件相互独立的概念;2.理解n次独立重复试验的模型及二项分布.能解决一些简单的实际问题.
知 识 梳 理
1.条件概率
条件概率的定义
条件概率的性质
设A、B为两个事件,且P(A)>0,称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率
(1)0≤P(B|A)≤1;
(2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)
2.事件的相互独立性
(1)定义:设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立.
(2)性质:若事件A与B相互独立,则A与、与B、与也都相互独立,P(B|A)=P(B),P(A|B)=P(A).
3.独立重复试验与二项分布
(1)独立重复试验
在相同条件下重复做的n次试验称为n次独立重复试验,其中Ai(i=1,2,…,n)是第i次试验结果,则
P(A1A2A3…An)=P(A1)P(A2)P(A3)…P(An).
(2)二项分布
在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)若事件A,B相互独立,则P(B|A)=P(B).( )
(2)P(AB)表示事件A,B同时发生的概率,一定有P(AB)=P(A)·P(B).( )
(3)二项分布是一个概率分布列,是一个用公式P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n表示的概率分布列,它表示了n次独立重复试验中事件A发生的次数的概率分布.( )
解析 对于(2),若A,B独立,则P(AB)=P(A)·P(B),若A,B不独立,则P(AB)=P(A)·P(B|A),故(2)不正确.
答案 (1)√ (2)× (3)√
2.(选修2-3P54T2改编)已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同.甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为( )
A. B. C. D.
解析 设“第一次拿到白球”为事件A,“第二次拿到红球”为事件B,依题意P(A)==,P(AB)==,
故P(B|A)==.
答案 B
3.设随机变量X~B,则P(X=3)等于( )
A. B. C. D.
解析 X~B,由二项分布可得,
P(X=3)=C·=.
答案 A
4.两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )
A. B.
C. D.
解析 设事件A:甲实习生加工的零件为一等品;事件B:乙实习生加工的零件为一等品,且A,B相互独立,则P(A)=,P(B)=,所以这两个零件中恰有一个一等品的概率为P(A)+P(B)=P(A)P()+P()P(B)=×+×=.
答案 B
5.(2017·嘉兴七校联考)天气预报,端午节假期甲、乙、丙三地降雨的概率分别是0.9、0.8、0.75,若甲、乙、丙三地是否降雨相互之间没有影响,则其中至少一个地方降雨的概率为________.
解析 ∵甲、乙、丙三地降雨的概率分别是0.9、0.8、0.75,
∴甲、乙、丙三地不降雨的概率分别是0.1、0.2、0.25,
甲、乙、丙三地都不降雨的概率是0.1×0.2×0.25=0.005,
故至少一个地方降雨的概率为1-0.005=0.995.
答案 0.995
6.连续掷一个质地均匀的骰子3次,各次互不影响,则恰好有一次出现1点的概率为________.
解析 掷一次骰子出现1点的概率为P=,所以所求概率为P=C··=.
答案
考点一 条件概率
【例1】 (1)从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)=( )
A. B. C. D.
(2)(2014·全国Ⅱ卷)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )
A.0.8 B.0.75 C.0.6 D.0.45
解析 (1)法一 事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个.
事件AB发生的结果只有(2,4)一种情形,即n(AB)=1.
故由古典概型概率P(B|A)==.
法二 P(A)==,P(AB)==.
由条件概率计算公式,得P(B|A)===.
(2)记事件A表示“一天的空气质量为优良”,事件B表示“随后一天的空气质量为优良”,P(A)=0.75,P(AB)=0.6.由条件概率,得P(B|A)===0.8.
答案 (1)B (2)A
规律方法 (1)利用定义,分别求P(A)和P(AB),得P(B|A)=,这是求条件概率的通法.
(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),得P(B|A)=.
【训练1】 (2016·唐山二模)已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( )
A.0.6 B.0.7 C.0.8 D.0.9
解析 设“第一个路口遇到红灯”为事件A,“第二个路口遇到红灯”为事件B,则P(A)=0.5,P(AB)=0.4,则P(B|A)==0.8.
答案 C
考点二 相互独立事件的概率
【例2】 (2017·东阳调研)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B.设甲、乙两组的研发相互独立.
(1)求至少有一种新产品研发成功的概率;
(2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.
解 记E={甲组研发新产品成功},F={乙组研发新产品成功},由题设知P(E)=,P()=,P(F)=,P()=,且事件E与F,E与,与F,与都相互独立.
(1)记H={至少有一种新产品研发成功},则=,
于是P()=P()P()=×=,
故所求的概率为P(H)=1-P()=1-=.
(2)设企业可获利润为X(万元),则X的可能取值为0,100,120,220,因为P(X=0)=P(EF)=×=,P(X=100)=P()=×==,
P(X=120)=P(F)=×=,
P(X=220)=P(E)=×==.
故所求的分布列为
X
0
100
120
220
P
规律方法 (1)求解该类问题在于正确分析所求事件的构成,将其转化为彼此互斥事件的和或相互独立事件的积,然后利用相关公式进行计算.
(2)求相互独立事件同时发生的概率的主要方法
①利用相互独立事件的概率乘法公式直接求解.
②正面计算较繁(如求用“至少”表述的事件的概率)或难以入手时,可从其对立事件入手计算.
【训练2】 为了迎接2017在德国波恩举行的联合国气候大会,某社区举办《“环保我参与”有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题,已知甲家庭回答对这道题的概率是,甲、丙两个家庭都回答错的概率是,乙、丙两个家庭都回答对的概率是.若各家庭回答是否正确互不影响.
(1)求乙、丙两个家庭各自回答对这道题的概率;
(2)求甲、乙、丙三个家庭中不少于2个家庭回答对这道题的概率.
解 (1)记“甲答对这道题”、“乙答对这道题”、“丙答对这道题”分别为事件A,B,C,则P(A)=,且有
即
所以P(B)=,P(C)=.
(2)有0个家庭回答对的概率为
P0=P()=P()·P()·P()=××=,
有1个家庭回答对的概率为P1=P(A+B+C)=××+××+××=,
所以不少于2个家庭回答对这道题的概率为P=1-P0-P1=1--=.
考点三 独立重复试验与二项分布
【例3】 (2015·湖南卷)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列.
解 (1)记事件A1为“从甲箱中摸出的1个球是红球”,
A2为“从乙箱中摸出的1个球是红球”,
B为“顾客抽奖1次能获奖”,
则表示“顾客抽奖1次没有获奖”.
由题意A1与A2相互独立,则1与2相互独立,且=1·2,因为P(A1)==,P(A2)==,
所以P()=P(1·2)=·=,
故所求事件的概率P(B)=1-P()=1-=.
(2)设“顾客抽奖一次获得一等奖”为事件C,
由P(C)=P(A1·A2) =P(A1)·P(A2)=,
顾客抽奖3次可视为3次独立重复试验,则X~B,
于是P(X=0)=C=,
P(X=1)=C=,
P(X=2)=C=,
P(X=3)=C=.
故X的分布列为
X
0
1
2
3
P
规律方法 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P(X=k)=Cpk(1-p)n-k的三个条件:(1)在一次试验中某事件A发生的概率是一个常数p;(2)n次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n次试验中事件A恰好发生了k次的概率.
【训练3】 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率.
解 (1)设“每盘游戏中击鼓三次后,出现音乐的次数为ξ”.依题意,ξ的取值可能为0,1,2,3,且ξ~B,则P(ξ=k)=C=C·.
又每盘游戏得分X的取值为10,20,100,-200.根据题意
则P(X=10)=P(ξ=1)=C=,
P(X=20)=P(ξ=2)=C=,
P(X=100)=P(ξ=3)=C=,
P(X=-200)=P(ξ=0)=C=.
所以X的分布列为
X
10
20
100
-200
P
(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),
则P(A1)=P(A2)=P(A3)=P(X=-200)=.
所以,“三盘游戏中至少有一次出现音乐”的概率为
1-P(A1A2A3)=1-=1-=.
因此,玩三盘游戏至少有一盘出现音乐的概率是.
[思想方法]
1.古典概型中,A发生的条件下B发生的条件概率公式为P(B|A)==,其中,在实际应用中P(B|A)=是一种重要的求条件概率的方法.
2.相互独立事件与互斥事件的区别
相互独立事件是指两个事件发生的概率互不影响,计算公式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).
3.二项分布是概率论中最重要的几种分布之一,在实际应用和理论分析中都有重要的地位.
(1)判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n次.
(2)对于二项分布,如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(X=k)=Cpkqn-k.其中k=0,1,…,n,q=1-p.
[易错防范]
1.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A,B相互独立时,公式才成立.
2.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意恰好与至多(少)的关系,灵活运用对立事件.
3.注意二项分布与超几何分布的联系与区别.有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体数量很大时,超几何分布可近似为二项分布来处理.
第8讲 离散型随机变量的均值与方差
最新考纲 1.理解取有限个值的离散型随机变量的均值、方差的概念;2.能计算简单离散型随机变量的均值、方差,并能解决一些简单实际问题.
知 识 梳 理
1.离散型随机变量的均值与方差
若离散型随机变量X的分布列为
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
(1)均值
称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.
(2)方差
称D(X)=__(xi-E(X))2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根为随机变量X的标准差.
2.均值与方差的性质
(1)E(aX+b)=aE(X)+b.
(2)D(aX+b)=a2D(X)(a,b为常数).
3.两点分布与二项分布的均值、方差
(1)若X服从两点分布,则E(X)=p,D(X)=p(1-p).
(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)期望值就是算术平均数,与概率无关.( )
(2)随机变量的均值是常数,样本的平均值是随机变量.( )
(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.( )
(4)均值与方差都是从整体上刻画离散型随机变量的情况,因此它们是一回事.( )
解析 均值即期望值刻画了离散型随机变量取值的平均水平,而方差刻画了离散型随机变量的取值偏离期望值的平均程度,因此它们不是一回事,故(1)(4)均不正确.
答案 (1)× (2)√ (3)√ (4)×
2.(选修2-3P68T1改编)已知X的分布列为
X
-1
0
1
P
设Y=2X+3,则E(Y)的值为( )
A. B.4 C.-1 D.1
解析 E(X)=-+=-,
E(Y)=E(2X+3)=2E(X)+3=-+3=.
答案 A
3.已知某离散型随机变量X的分布列如下表,则随机变量X的方差D(X)等于( )
X
0
1
P
m
2m
A. B. C. D.
解析 由已知得m+2m=1得m=,由于X服从两点分布,所以D(X)=m·2m=.
答案 B
4.设随机变量X的分布列为P(X=k)=(k=2,4,6,8,10),则D(X)等于________.
解析 ∵E(X)=(2+4+6+8+10)=6,
∴D(X)=[(-4)2+(-2)2+02+22+42]=8.
答案 8
5.(2015·广东卷)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则p=________.
解析 由于X~B(n,p),且E(X)=30,D(X)=20.
所以解之得p=.
答案
6.某学校要从5名男生和2名女生中选出2人作为社区志愿者,若用随机变量X表示选出的志愿者中女生的人数,则随机变量X的数学期望E(X)=________(结果用最简分数表示).
解析 随机变量X只能取0,1,2三个数,
因为P(X=0)==,P(X=1)==,
P(X=2)==,故E(X)=1×+2×=.
答案
考点一 一般分布列的均值与方差
【例1】 (2017·台州调研)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.
(1)求甲、乙两人所付滑雪费用相同的概率;
(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E(ξ),方差D(ξ).
解 (1)两人所付费用相同,相同的费用可能为0,40,80元,
两人都付0元的概率为P1=×=,
两人都付40元的概率为P2=×=,
两人都付80元的概率为
P3=×=×=,
则两人所付费用相同的概率为P=P1+P2+P3=++=.
(2)设甲、乙所付费用之和为ξ,ξ可能取值为0,40,80,120,160,则:
P(ξ=0)=×=;
P(ξ=40)=×+×=;
P(ξ=80)=×+×+×=;
P(ξ=120)=×+×=;
P(ξ=160)=×=.
ξ的分布列为
ξ
0
40
80
120
160
P
E(ξ)=0×+40×+80×+120×+160×=80.
D(ξ)=(0-80)2×+(40-80)2×+(80-80)2×+(120-80)2×+(160-80)2×=.
规律方法 (1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.
(2)注意E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)的应用.
【训练1】 根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:
降水量X
X<300
300≤X<700
700≤X<900
X≥900
工期延误天数Y
0
2
6
10
历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(1)工程延误天数Y的均值与方差;
(2)在降水量X至少是300 mm的条件下,工期延误不超过6天的概率.
解 (1)由条件和概率的加法公式有:P(X<300)=0.3,
P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2,
P(X≥900)=1-P(X<900)=1-0.9=0.1.
所以Y的分布列为:
Y
0
2
6
10
P
0.3
0.4
0.2
0.1
于是,E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3;
D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.
故工期延误天数Y的均值为3,方差为9.8.
(2)由概率加法公式, 得P(X≥300)=1-P(X<300)=0.7,
又P(300≤X<900)=P(X<900)-P(X<300)=0.9-0.3=0.6.
由条件概率,得P(Y≤6|X≥300)=P(X<900|X≥300)===.
故在降水量X至少是300 mm的条件下,工期延误不超过6天的概率是.
考点二 与二项分布有关的均值、方差
【例2】 (2017·北京海淀区模拟)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?
解 (1)由已知得,小明中奖的概率为,小红中奖的概率为,且两人中奖与否互不影响.
记“这2人的累计得分X≤3”的事件为A,
则事件A的对立事件为“X=5”,
因为P(X=5)=×=,
所以P(A)=1-P(X=5)=,
即这2人的累计得分X≤3的概率为.
(2)法一 设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).
由已知可得,X1~B,X2~B,
所以E(X1)=2×=,E(X2)=2×=,
因此E(2X1)=2E(X1)=,
E(3X2)=3E(X2)=.
因为E(2X1)>E(3X2),
所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.
法二 设小明、小红都选择方案甲所获得的累计得分为Y1,都选择方案乙所获得的累计得分为Y2,则Y1,Y2的分布列为:
Y1
0
2
4
P
Y2
0
3
6
P
∴E(Y1)=0×+2×+4×=,
E(Y2)=0×+3×+6×=,
因为E(Y1)>E(Y2),
所以二人都选择方案甲抽奖,累计得分的数学期望较大.
规律方法 二项分布的期望与方差.
(1)如果ξ~B(n,p),则用公式E(ξ)=np;D(ξ)=np(1-p)求解,可大大减少计算量.
(2)有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(aξ+b)=aE(ξ)+b以及E(ξ)=np求出E(aξ+b),同样还可求出D(aξ+b).
【训练2】 (2017·诸暨模拟)甲、乙、丙三人准备报考某大学,假设甲考上的概率为,甲、丙都考不上的概率为,乙、丙都考上的概率为,且三人能否考上相互独立.
(1)求乙、丙两人各自考上的概率;
(2)设X表示甲、乙、丙三人中考上的人数与没考上的人数之差的绝对值,求X的分布列与数学期望.
解 (1)设A表示“甲考上”,B表示“乙考上”,C表示“丙考上”,
则P(A)=,且
解得P(C)=,P(B)=.
∴乙考上的概率为,丙考上的概率为.
(2)由题意X的可能取值为1,3,
P(X=1)=××+××+××+××+××+××=,
P(X=3)=××+××=,
∴X的分布列为:
X
1
3
P
EX=1×+3×=.
考点三 均值与方差在决策中的应用
【例3】 计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
年入流量X
4080≤X≤120
X>120
发电机最多可运行台数
1
2
3
若某台发电机运行,则该台年利润为5 000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?
解 (1)依题意,p1=P(40p2=P(80≤x≤120)==0.7,
p3=P(X>120)==0.1.
由二项分布,在未来4年中至多有1年的年入流量超过120的概率为
p=C(1-p3)4+C(1-p3)3p3=+4××=0.947 7.
(2)记水电站年总利润为Y(单位:万元).
①安装1台发电机的情形.
由于水库年入流量总大于40,故一台发电机运行的概率为1,
对应的年利润Y=5 000,E(Y)=5 000×1=5 000.
②安装2台发电机的情形.
依题意,当40Y
4 200
10 000
P
0.2
0.8
所以,E(Y)=4 200×0.2+10 000×0.8=8 840.
③安装3台发电机的情形.
依题意,当40当80≤X≤120时,两台发电机运行,此时Y=5 000×2-800=9 200,因此P(Y=9 200)=P(80≤X≤120)=p2=0.7;
当X>120时,三台发电机运行,此时Y=5 000×3=15 000,因此P(Y=15 000)=P(X>120)=p3=0.1.因此得Y的分布列如下:
Y
3 400
9 200
15 000
P
0.2
0.7
0.1
所以,E(Y)=3 400×0.2+9 200×0.7+15 000×0.1=8 620.
综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.
规律方法 随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.
【训练3】 (2017·贵州调研)某投资公司在2018年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:
项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为和;
项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为,和.
针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.
解 若按“项目一”投资,设获利为X1万元.则X1的分布列为
X1
300
-150
P
∴E(X1)=300×+(-150)×=200(万元).
若按“项目二”投资,设获利X2万元,
则X2的分布列为:
X2
500
-300
0
P
∴E(X2)=500×+(-300)×+0×=200(万元).
D(X1)=(300-200)2×+(-150-200)2×=35 000,
D(X2)=(500-200)2×+(-300-200)2×+(0-200)2×=140 000.
所以E(X1)=E(X2),D(X1)这说明虽然项目一、项目二获利相等,但项目一更稳妥.
综上所述,建议该投资公司选择项目一投资.
[思想方法]
1.掌握下述均值与方差有关性质,会给解题带来方便:
(1)E(aX+b)=aE(X)+b,E(X+Y)=E(X)+E(Y),
D(aX+b)=a2D(X);
(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).
2.基本方法
(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;
(2)已知随机变量X的均值、方差,求X的线性函数Y=aX+b的均值、方差和标准差,可直接用均值、方差的性质求解;
(3)如能分析所给随机变量服从常用的分布(如二项分布),可直接利用它们的均值、方差公式求解.
[易错防范]
1.在没有准确判断分布列模型之前不能乱套公式.
2.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.
专题探究课二 高考中三角函数问题的热点题型
高考导航 该部分解答题是高考得分的基本组成部分,不能掉以轻心.该部分的解答题考查的热点题型有:一考查三角函数的图象变换以及单调性、最值等;二考查解三角形问题;三是考查三角函数、解三角形与平面向量的交汇性问题,在解题过程中抓住平面向量作为解决问题的工具,要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.
热点一 三角函数的图象和性质(规范解答)
注意对基本三角函数y=sin x,y=cos x的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y=Asin(ωx+φ)的形式,然后利用整体代换的方法求解.
【例1】 (满分13分)(2015·北京卷)已知函数f(x)=sin x-2sin2.
(1)求f(x)的最小正周期;
(2)求f(x)在区间上的最小值.
满分解答 (1)解 因为f(x)=sin x+cos x-.
2分
=2sin-.4分
所以f(x)的最小正周期为2π.6分
(2)解 因为0≤x≤,所以≤x+≤π.8分
当x+=π,即x=时,f(x)取得最小值.11分
所以f(x)在区间上的最小值为f=-.
13分
?将f(x)化为asin x+bcos x+c形式得2分.
?将f(x)化为Asin(ωx+φ)+h形式得2分.
?求出最小正周期得2分.
?写出ωx+φ的取值范围得2分.
?利用单调性分析最值得3分.
?求出最值得2分.
求函数y=Asin(ωx+φ)+B周期与最值的模板
第一步:三角函数式的化简,一般化成y=Asin(ωx+φ)+h或y=Acos(ωx+φ)+h的形式;
第二步:由T=求最小正周期;
第三步:确定f(x)的单调性;
第四步:确定各单调区间端点处的函数值;
第五步:明确规范地表达结论.
【训练1】 设函数f(x)=-sin2ωx-sin ωxcos ωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为.
(1)求ω的值;
(2)求f(x)在区间上的最大值和最小值.
解 (1)f(x)=-sin2ωx-sin ωxcos ωx
=-·-sin 2ωx
=cos 2ωx-sin 2ωx=-sin.
因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为,故该函数的周期T=4×=π.又ω>0,所以=π,因此ω=1.
(2)由(1)知f(x)=-sin.设t=2x-,则函数f(x)可转化为y=-sin t.
当π≤x≤时,≤t=2x-≤ ,如图所示,作出函数y=sin t在 上的图象,
由图象可知,当t∈时,sin t∈,
故-1≤-sin t≤,因此-1≤f(x)=-sin≤.
故f(x)在区间上的最大值和最小值分别为,-1.
热点二 解三角形
高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.
【例2】 (2017·杭州模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,f(x)=2sin(x-A)cos x+sin(B+C)(x∈R),函数f(x)的图象关于点对称.
(1)当x∈时,求函数f(x)的值域;
(2)若a=7,且sin B+sin C=,求△ABC的面积.
解 (1)∵f(x)=2sin(x-A)cos x+sin(B+C)
=2(sin xcos A-cos xsin A)cos x+sin A
=2sin xcos Acos x-2cos2xsin A+sin A
=sin 2xcos A-cos 2xsin A=sin(2x-A),
又函数f(x)的图象关于点对称,
则f=0,即sin=0,
又A∈(0,π),则A=,
则f(x)=sin.
由于x∈,
则2x-∈,
即-则函数f(x)的值域为.
(2)由正弦定理,得===,
则sin B=b,sin C=c,
sin B+sin C=(b+c)=,即b+c=13.
由余弦定理,得a2=c2+b2-2bccos A,
即49=c2+b2-bc=(b+c)2-3bc,即bc=40.
则△ABC的面积S=bcsin A=×40×=10.
探究提高 三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和(差)角公式的灵活运用是解决此类问题的关键.
【训练2】 四边形ABCD的内角A与C互补,且AB=1,BC=3,CD=DA=2.
(1)求角C的大小和线段BD的长度;
(2)求四边形ABCD的面积.
解 (1)设BD=x,
在△ABD中,由余弦定理,得cos A=,
在△BCD中,由余弦定理,得cos C=,
∵A+C=π,∴cos A+cos C=0.
联立上式,解得x=,cos C=.
由于C∈(0,π).
∴C=,BD=.
(2)∵A+C=π,C=,∴sin A=sin C=.
又四边形ABCD的面积SABCD=S△ABD+S△BCD
=AB·ADsin A+CB·CDsin C=×(1+3)=2,
∴四边形ABCD的面积为2.
热点三 三角函数与平面向量结合
三角函数、解三角形与平面向量的结合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.
【例3】 (2016·浙江适应性考试)已知△ABC的三内角A,B,C所对的边分别是a,b,c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大小;
(2)若b=,求a+c的范围.
解 (1)∵m=(cos B,cos C),n=(2a+c,b),且m⊥n,
∴(2a+c)cos B+bcos C=0,
∴cos B(2sin A+sin C)+sin Bcos C=0,
∴2cos Bsin A+cos Bsin C+sin Bcos C=0.
即2cos Bsin A=-sin(B+C)=-sin A.
∵A∈(0,π),∴sin A≠0,
∴cos B=-.
∵0<B<π,∴B=.
(2)由余弦定理得
b2=a2+c2-2accosπ=a2+c2+ac=(a+c)2-ac≥(a+c)2-=(a+c)2,当且仅当a=c时取等号.
∴(a+c)2≤4,故a+c≤2.
又a+c>b=,∴a+c∈(,2].即a+c的取值范围是(,2].
探究提高 向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.
【训练3】 已知向量a=(m,cos 2x),b=(sin 2x,n),函数f(x)=a·b,且y=f(x)的图象过点和点.
(1)求m,n的值;
(2)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.
解 (1)由题意知f(x)=a·b=msin 2x+ncos 2x.
因为y=f(x)的图象过点和,
所以
即解得
(2)由(1)知f(x)=sin 2x+cos 2x=2sin.
由题意知g(x)=f(x+φ)=2sin.
设y=g(x)的图象上符合题意的最高点为(x0,2),
由题意知x+1=1,所以x0=0,
即到点(0,3)的距离为1的最高点为(0,2).
将其代入y=g(x)得sin=1,
因为0<φ<π,所以φ=,
因此g(x)=2sin=2cos 2x.
由2kπ-π≤2x≤2kπ,k∈Z得kπ-≤x≤kπ,k∈Z.
所以函数y=g(x)的单调递增区间为,k∈Z.
第1讲 任意角、弧度制及任意角的三角函数
最新考纲 1.了解任意角的概念和弧度制的概念;2.能进行弧度与角度的互化;3.理解任意角的三角函数(正弦、余弦、正切)的定义.
知 识 梳 理
1.角的概念的推广
(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.
(2)分类
(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.
2.弧度制的定义和公式
(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.
(2)公式
角α的弧度数公式
|α|=(弧长用l表示)
角度与弧度的换算
①1°= rad;②1 rad=°
弧长公式
弧长l=|α|r
扇形面积公式
S=lr=|α|r2
3.任意角的三角函数
三角函数
正弦
余弦
正切
定义
设α是一个任意角,它的终边与单位圆交于点P(x,y),那么
y叫做α的正弦,记作sin α
x叫做α的余弦,记作cos α
叫做α的正切,记作tan α
各象限符号
Ⅰ
+
+
+
Ⅱ
+
-
-
Ⅲ
-
-
+
Ⅳ
-
+
-
三角函数线
有向线段MP为正弦线
有向线段OM为余弦线
有向线段AT为正切线
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)小于90°的角是锐角.( )
(2)锐角是第一象限角,反之亦然.( )
(3)将表的分针拨快5分钟,则分针转过的角度是30°.( )
(4)若α∈,则tan α>α>sin α.( )
(5)相等的角终边一定相同,终边相同的角也一定相等.( )
解析 (1)锐角的取值范围是(0°,90°).
(2)第一象限角不一定是锐角.
(3)顺时针旋转得到的角是负角.
(5)终边相同的角不一定相等.
答案 (1)× (2)× (3)× (4)√ (5)×
2.角-870°的终边所在的象限是( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析 由-870°=-3×360°+210°,知-870°角和210°角的终边相同,在第三象限.
答案 C
3.下列与的终边相同的角的表达式中正确的是( )
A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)
C.k·360°-315°(k∈Z) D.kπ+(k∈Z)
解析 与的终边相同的角可以写成2kπ+(k∈Z),但是角度制与弧度制不能混用,所以只有C正确.
答案 C
4.已知角α的终边经过点(-4,3),则cos α=( )
A. B.
C.- D.-
解析 ∵角α的终边经过点(-4,3),
∴x=-4,y=3,r=5.
∴cos α==-,故选D.
答案 D
5.(必修4P10A6改编)一条弦的长等于半径,这条弦所对的圆心角大小为________弧度.
答案
6.(2017·绍兴调研)弧长为3π,圆心角为135°的扇形半径为________,面积为________.
解析 135°==(弧度),由α=,得r===4,S扇形=lr=×4×3π=6π.
答案 4 6π
考点一 角的概念及其集合表示
【例1】 (1)若角α是第二象限角,则是( )
A.第一象限角 B.第二象限角
C.第一或第三象限角 D.第二或第四象限角
(2)终边在直线y=x上,且在[-2π,2π)内的角α的集合为________.
解析 (1)∵α是第二象限角,
∴+2kπ<α<π+2kπ,k∈Z,
∴+kπ<<+kπ,k∈Z.
当k为偶数时,是第一象限角;
当k为奇数时,是第三象限角.
(2)如图,在坐标系中画出直线y=x,可以发现它与x轴的夹角是,在[0,2π)内,终边在直线y=x上的角有两个:,π;在[-2π,0)内满足条件的角有两个:-π,-π,故满足条件的角α构成的集合为.
答案 (1)C (2)
规律方法 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需的角.
(2)确定kα,(k∈N*)的终边位置的方法
先用终边相同角的形式表示出角α的范围,再写出kα或的范围,然后根据k的可能取值讨论确定kα或的终边所在位置.
【训练1】 (1)设集合M=,N=,那么( )
A.M=N B.M?N
C.N?M D.M∩N=?
(2)集合中的角所表示的范围(阴影部分)是( )
解析 (1)法一 由于M=={…,-45°,45°,135°,225°,…},
N=={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M?N,故选B.
法二 由于M中,x=·180°+45°=k·90°+45°=(2k+1)·45°,2k+1是奇数;
而N中,x=·180°+45°=k·45°+45°=(k+1)·45°,k+1是整数,因此必有M?N,故选B.
(2)当k=2n(n∈Z)时,2nπ+≤α≤2nπ+,此时α表示的范围与≤α≤表示的范围一样;
当k=2n+1(n∈Z)时,2nπ+≤α≤2nπ+,此时α表示的范围与≤α≤表示的范围一样,故选C.
答案 (1)B (2)C
考点二 弧度制及其应用
【例2】 已知一扇形的圆心角为α,半径为R,弧长为l.
(1)若α=60°,R=10 cm,求扇形的弧长l;
(2)已知扇形的周长为10 cm,面积是4 cm2,求扇形的圆心角;
(3)若扇形周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?
解 (1)α=60°= rad,∴l=α·R=×10=(cm).
(2)由题意得解得(舍去),
故扇形圆心角为.
(3)由已知得,l+2R=20.
所以S=lR=(20-2R)R=10R-R2=-(R-5)2+25,所以当R=5时,S取得最大值25,
此时l=10,α=2.
规律方法 应用弧度制解决问题的方法
(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.
(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.
(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.
【训练2】 已知一扇形的圆心角为α (α>0),所在圆的半径为R.
(1)若α=90°,R=10 cm,求扇形的弧长及该弧所在的弓形的面积;
(2)若扇形的周长是一定值C (C>0),当α为多少弧度时,该扇形有最大面积?
解 (1)设弧长为l,弓形面积为S弓,则
α=90°=,R=10,l=×10=5π(cm),
S弓=S扇-S△=×5π×10-×102=25π-50(cm2).
(2)扇形周长C=2R+l=2R+αR,
∴R=,
∴S扇=α·R2=α·
=·=·≤.
当且仅当α2=4,
即α=2时,扇形面积有最大值.
考点三 三角函数的概念
【例3】 (1)(2017·东阳一中月考)已知角α的终边与单位圆x2+y2=1交于点P,则cos 2α等于( )
A.- B. C.- D.1
(2)(2016·兰州模拟)已知角α的终边过点P(-8m,-6sin 30°),且cos α=-,则m的值为( )
A.- B. C.- D.
(3)若角θ同时满足sin θ<0且tan θ<0,则角θ的终边一定落在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析 (1)根据题意可知,cos α=,∴cos 2α=2cos2α-1=2×-1=-,故选A.
(2)∵r=,
∴cos α==-,
∴m>0,∴=,
即m=,故选B.
(3)由sin θ<0知θ的终边在第三、四象限或y轴负半轴上,由tan θ<0知θ的终边在第二、四象限,故选D.
答案 (1)A (2)B (3)D
规律方法 (1)利用三角函数的定义,求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r.
(2)根据三角函数定义中x,y的符号来确定各象限内三角函数的符号,理解并记忆:“一全正、二正弦、三正切、四余弦”.
(3)利用三角函数线解三角不等式时要注意边界角的取舍,结合三角函数的周期性正确写出角的范围.
【训练3】 (1)(2017·青岛模拟)已知角α的终边与单位圆的交点P,则sin α·tan α=( )
A.- B.± C.- D.±
(2)满足cos α≤-的角α的集合为________.
解析 (1)由|OP|2=+y2=1,
得y2=,y=±.
当y=时,sin α=,tan α=-,
此时,sin α·tan α=-.
当y=-时,sin α=-,tan α=,
此时,sin α·tan α=-.
(2)作直线x=-交单位圆于C,D两点,连接OC,OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为.
答案 (1)C (2)
[思想方法]
1.在利用三角函数定义时,点P可取终边上任一点,如有可能则取终边与单位圆的交点.|OP|=r一定是正值.
2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.
3.在解决简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.
[易错防范]
1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.
2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.
3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.
第2讲 同角三角函数的基本关系式与诱导公式
最新考纲 1.理解同角三角函数的基本关系式:sin2α+cos2α=1,=tan α;2.能利用单位圆中的三角函数线推导出±α,π±α的正弦、余弦、正切的诱导公式.
知 识 梳 理
1.同角三角函数的基本关系
(1)平方关系:sin2α+cos2α=1.
(2)商数关系:=tan__α.
2.三角函数的诱导公式
公式
一
二
三
四
五
六
角
2kπ+α(k∈Z)
π+α
-α
π-α
-α
+α
正弦
sin α
-sin__α
-sin__α
sin__α
cos__α
cos__α
余弦
cos α
-cos__α
cos__α
-cos__α
sin__α
-sin__α
正切
tan α
tan__α
-tan__α
-tan__α
口诀
函数名不变,符号看象限
函数名改变,
符号看象限
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)sin(π+α)=-sin α成立的条件是α为锐角.( )
(2)六组诱导公式中的角α可以是任意角.( )
(3)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指的奇数倍和偶数倍,变与不变指函数名称的变化.( )
(4)若sin(kπ-α)=(k∈Z),则sin α=.( )
解析 (1)对于α∈R,sin(π+α)=-sin α都成立.
(4)当k为奇数时,sin α=,
当k为偶数时,sin α=-.
答案 (1)× (2)√ (3)√ (4)×
2.(2017·泰安模拟)sin 600°的值为( )
A.- B.- C. D.
解析 sin 600°=sin(360°+240°)=sin 240°=sin(180°+60°)=-sin 60°=-.
答案 B
3.已知sin=,那么cos α=( )
A.- B.- C. D.
解析 ∵sin=sin=cos α,∴cos α=.故选C.
答案 C
4.已知sin θ+cos θ=,θ∈,则sin θ-cos θ的值为( )
A. B.- C. D.-
解析 ∵sin θ+cos θ=,∴sin θcos θ=.
又∵(sin θ-cos θ)2=1-2sin θcos θ=,
∴sin θ-cos θ=或-.
又∵θ∈,∴sin θ-cos θ=-.
答案 B
5.(必修4P22B3改编)已知tan α=2,则的值为________.
解析 原式===3.
答案 3
6.(2017·丽水调研)设a为常数,且a>1,0≤x≤2π,则当x=________时,函数f(x)=cos2x+2asin x-1的最大值为________.
解析 f(x)=cos2x+2asin x-1=1-sin2x+2asin x-1=-(sin x-a)2+a2,因为0≤x≤2π,所以-1≤sin x≤1,又因为a>1,所以f(x)max=-(1-a)2+a2=2a-1.
答案 2a-1
考点一 同角三角函数基本关系式的应用
【例1】 (1)(2015·福建卷)若sin α=-,且α为第四象限角,则tan α的值等于( )
A. B.- C. D.-
(2)(2017·东阳模拟)已知sin αcos α=,且<α<,则cos α-sin α的值为( )
A.- B. C.- D.
(3)(2016·全国Ⅲ卷)若tan α=,则cos2α+2sin 2α=( )
A. B. C.1 D.
解析 (1)∵sin α=-,且α为第四象限角,∴cos α==,∴tan α==-,故选D.
(2)∵<α<,
∴cos α<0,sin α<0且cos α>sin α,
∴cos α-sin α>0.
又(cos α-sin α)2=1-2sin αcos α=1-2×=,
∴cos α-sin α=.
(3)tan α=,则cos2α+2sin 2α===.
答案 (1)D (2)B (3)A
规律方法 (1)利用sin2α+cos2α=1可以实现角α的正弦、余弦的互化,利用=tan α可以实现角α的弦切互化.
(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.
(3)注意公式逆用及变形应用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.
【训练1】 (1)已知sin α-cos α=,α∈(0,π),则tan α=( )
A.-1 B.- C. D.1
(2)若3sin α+cos α=0,则的值为( )
A. B. C. D.-2
解析 (1)由
得:2cos2α+2cos α+1=0,
即=0,∴cos α=-.
又α∈(0,π),∴α=,
∴tan α=tan =-1.
(2)3sin α+cos α=0?cos α≠0?tan α=-,==
==.
答案 (1)A (2)A
考点二 诱导公式的应用
【例2】 (1)化简:sin(-1 200°)cos 1 290°+cos(-1 020°)·sin(-1 050°);
(2)设f(α)=(1+2sin α≠0),求f的值.
解 (1)原式=-sin 1 200°cos 1 290°-cos 1 020°sin 1 050°
=-sin(3×360°+120°)cos(3×360°+210°)-cos(2×360°+300°)sin(2×360°+330°)
=-sin 120°cos 210°-cos 300°sin 330°
=-sin(180°-60°)cos(180°+30°)-cos(360°-60°)·sin(360°-30°)=sin 60°cos 30°+cos 60°sin 30°=×+×=1.
(2)∵f(α)=
===,
∴f====.
规律方法 (1)诱导公式的两个应用
①求值:负化正,大化小,化到锐角为终了.
②化简:统一角,统一名,同角名少为终了.
(2)含2π整数倍的诱导公式的应用
由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.
【训练2】 (1)已知A=+(k∈Z),则A的值构成的集合是( )
A.{1,-1,2,-2} B.{-1,1}
C.{2,-2} D.{1,-1,0,2,-2}
(2)化简:=______.
解析 (1)当k为偶数时,A=+=2;
k为奇数时,A=-=-2.
(2)原式=
===-1.
答案 (1)C (2)-1
考点三 诱导公式、同角三角函数关系式的综合应用
【例3】 (1)已知tan=,则tan=________.
(2)(2017·温州模拟)已知cos=,且-π<α<-,则cos等于( )
A. B. C.- D.-
解析 (1)∵+=π,
∴tan=tan
=-tan=-.
(2)因为+=,
所以cos=sin=sin.
因为-π<α<-,所以-<α+<-.
又cos=>0,所以-<α+<-,
所以sin=-
=-=-.
答案 (1)- (2)D
规律方法 (1)常见的互余的角:-α与+α;+α与-α;+α与-α等.
(2)常见的互补的角:+θ与-θ;+θ与-θ等.
【训练3】 (1)已知sin=,则cos=________.
(2)设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x,当0≤x<π时,f(x)=0,则f=( )
A. B. C.0 D.-
解析 (1)∵+=,
∴cos=cos=sin=.
(2)由f(x+π)=f(x)+sin x,得f(x+2π)=f(x+π)+sin(x+π)=f(x)+sin x-sin x=f(x),
所以f=f
=f=f=f+sinπ.
因为当0≤x<π时,f(x)=0.
所以f=0+=.
答案 (1) (2)A
[思想方法]
1.同角三角函数基本关系可用于统一函数;诱导公式主要用于统一角,其主要作用是进行三角函数的求值、化简和证明,已知一个角的某一三角函数值,求这个角的其它三角函数值时,要特别注意平方关系的使用.
2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x=进行切化弦或弦化切,如,asin2x+bsin xcos x+ccos2x等类型可进行弦化切.(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=sin2θ=tan =….
[易错防范]
1.利用诱导公式进行化简求值时,可利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.
特别注意函数名称和符号的确定.
2.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.
3.注意求值与化简后的结果一般要尽可能有理化、整式化.
第3讲 三角函数的图象与性质
最新考纲 1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间内的单调性.
知 识 梳 理
1.用五点法作正弦函数和余弦函数的简图
(1)正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),,(π,0),,(2π,0).
(2)余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),,(π,-1),,(2π,1).
2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)
函数
y=sin x
y=cos x
y=tan x
图象
定义域
R
R
{x
值域
[-1,1]
[-1,1]
R
周期性
2π
2π
π
奇偶性
奇函数
偶函数
奇函数
递增区间
[2kπ-π,2kπ]
递减区间
[2kπ,2kπ+π]
无
对称中心
(kπ,0)
对称轴方程
x=kπ+
x=kπ
无
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)由sin=sin 知,是正弦函数y=sin x(x∈R)的一个周期.( )
(2)余弦函数y=cos x的对称轴是y轴.( )
(3)正切函数y=tan x在定义域内是增函数.( )
(4)已知y=ksin x+1,x∈R,则y的最大值为k+1.( )
(5)y=sin|x|是偶函数.( )
解析 (1)函数y=sin x的周期是2kπ(k∈Z).
(2)余弦函数y=cos x的对称轴有无穷多条,y轴只是其中的一条.
(3)正切函数y=tan x在每一个区间(k∈Z)上都是增函数,但在定义域内不是单调函数,故不是增函数.
(4)当k>0时,ymax=k+1;当k<0时,ymax=-k+1.
答案 (1)× (2)× (3)× (4)× (5)√
2.(2015·四川卷)下列函数中,最小正周期为π的奇函数是( )
A.y=sin B.y=cos
C.y=sin 2x+cos 2x D.y=sin x+cos x
解析 y=sin=cos 2x是最小正周期为π的偶函数;y=cos=-sin 2x是最小正周期为π的奇函数;y=sin 2x+cos 2x=sin是最小正周期为π的非奇非偶函数;y=sin x+cos x=sin是最小正周期为2π的非奇非偶函数.
答案 B
3.(2017·郑州模拟)若函数f(x)=sin(φ∈[0,2π])是偶函数,则φ=( )
A. B. C. D.
解析 由已知f(x)=sin是偶函数,可得=kπ+,即φ=3kπ+(k∈Z),又φ∈[0,2π],所以φ=.
答案 C
4.函数f(x)=sin在区间上的最小值为( )
A.-1 B.- C. D.0
解析 由已知x∈,得2x-∈,所以sin∈,故函数f(x)=sin在区间上的最小值为-.
答案 B
5.(必修4P47B2改编)函数y=-tan的单调递减区间为________.
解析 因为y=tan x的单调递增区间为(k∈Z),
所以由-+kπ<2x-<+kπ,
得+<x<+(k∈Z),
所以y=-tan的单调递减区间为(k∈Z).
答案 (k∈Z)
6.(2017·绍兴调研)设函数f(x)=2sin(ω>0,x∈R),最小正周期T=π,则实数ω=________,函数f(x)的图象的对称中心为________,单调递增区间是________.
解析 由T==π,∴ω=2,f(x)=2sin,令2sin=0,得2x+=kπ(k∈Z),∴x=-,对称中心为(k∈Z),由2kπ-≤2x+≤2kπ+(k∈Z),得kπ-≤x≤kπ+(k∈Z),∴单调递增区间为(k∈Z).
答案 2 (k∈Z) (k∈Z)
考点一 三角函数的定义域及简单的三角不等式
【例1】 (1)函数f(x)=-2tan的定义域是( )
A. B.
C. D.
(2)不等式+2cos x≥0的解集是________.
(3)函数f(x)=+log2(2sin x-1)的定义域是________.
解析 (1)由正切函数的定义域,得2x+≠kπ+,
即x≠+(k∈Z),故选D.
(2)由+2cos x≥0,得cos x≥-,
由余弦函数的图象,得在一个周期[-π,π]上,
不等式cos x≥-的解集为,
故原不等式的解集为.
(3)由题意,得
由①得-8≤x≤8,由②得sin x>,由正弦曲线得+2kπ所以不等式组的解集为∪∪.
答案 (1)D (2) (3)∪∪
规律方法 (1)三角函数定义域的求法
①以正切函数为例,应用正切函数y=tan x的定义域求函数y=Atan(ωx+φ)的定义域.
②转化为求解简单的三角不等式求复杂函数的定义域.
(2)简单三角不等式的解法
①利用三角函数线求解.
②利用三角函数的图象求解.
【训练1】 (1)函数y=tan 2x的定义域是( )
A. B.
C. D.
(2)函数y=的定义域为________.
解析 (1)由2x≠kπ+,k∈Z,得x≠+,k∈Z,
∴y=tan 2x的定义域为.
(2)法一 要使函数有意义,必须使sin x-cos x≥0.利用图象,在同一坐标系中画出[0,2π]上y=sin x和y=cos x的图象,如图所示.
在[0,2π]内,满足sin x=cos x的x为,,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为
.
法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).
所以定义域为
.
法三 sin x-cos x=sin≥0,将x-视为一个整体,由正弦函数y=sin x的图象和性质可知2kπ≤x-≤π+2kπ(k∈Z),
解得2kπ+≤x≤2kπ+(k∈Z).
所以定义域为.
答案 (1)D (2)
考点二 三角函数的值域
【例2】 (1)函数y=-2sin x-1,x∈的值域是( )
A.[-3,1] B.[-2,1] C.(-3,1] D.(-2,1]
(2)(2016·全国Ⅱ卷)函数f(x)=cos 2x+6cos的最大值为( )
A.4 B.5 C.6 D.7
(3)函数y=sin x-cos x+sin xcos x的值域为________.
解析 (1)由正弦曲线知y=sin x在上,-1≤sin x<,所以函数y=-2sin x-1,x∈的值域是(-2,1].
(2)由f(x)=cos 2x+6cos=1-2sin2x+6sin x=-2+,所以当sin x=1时函数的最大值为5,故选B.
(3)设t=sin x-cos x,
则t2=sin2x+cos2x-2sin xcos x,
sin xcos x=,且-≤t≤.
∴y=-+t+=-(t-1)2+1.
当t=1时,ymax=1;
当t=-时,ymin=--.
∴函数的值域为.
答案 (1)D (2)B (3)
规律方法 求解三角函数的值域(最值)常见到以下几种类型:
(1)形如y=asin x+bcos x+c的三角函数化为y=Asin(ωx+φ)+c的形式,再求值域(最值);
(2)形如y=asin2x+bsin x+c的三角函数,可先设sin x=t,化为关于t的二次函数求值域(最值);
(3)形如y=asin xcos x+b(sin x±cos x)+c的三角函数,可先设t=sin x±cos x,化为关于t的二次函数求值域(最值).
【训练2】 (1)(2017·杭州调研)函数y=2sin(0≤x≤9)的最大值与最小值之和为( )
A.2- B.0 C.-1 D.-1-
(2)(2017·金华检测)函数y=-2cos+1的最大值是________,此时x的取值集合为________.
解析 (1)因为0≤x≤9,所以-≤x-≤,
所以sin∈.
所以y∈[-,2],
所以ymax+ymin=2-.选A.
(2)ymax=-2×(-1)+1=3,
此时,x-=2kπ+π,
即x=4kπ+(k∈Z).
答案 (1)A (2)3
考点三 三角函数的性质(多维探究)
命题角度一 三角函数的奇偶性与周期性
【例3-1】 (1)(2017·宁波调研)函数y=2cos2-1是( )
A.最小正周期为π的奇函数
B.最小正周期为π的偶函数
C.最小正周期为的奇函数
D.最小正周期为的偶函数
(2)(2017·衡水中学金卷)设函数f(x)=sin-cos的图象关于y轴对称,则θ=( )
A.- B. C.- D.
解析 (1)y=2cos2-1
=cos2=cos
=cos=sin 2x,
则函数为最小正周期为π的奇函数.
(2)f(x)=sin-cos=
2sin,由题意可得f(0)=2sin=±2,即sin=±1,∴θ-=+kπ(k∈Z),∴θ=+kπ(k∈Z),∵|θ|<,∴k=-1时,θ=-.故选A.
答案 (1)A (2)A
规律方法 (1)若f(x)=Asin(ωx+φ)(A,ω≠0),则
①f(x)为偶函数的充要条件是φ=+kπ(k∈Z);
②f(x)为奇函数的充要条件是φ=kπ(k∈Z).
(2)函数y=Asin(ωx+φ)与y=Acos(ωx+φ)的最小正周期T=,y=Atan(ωx+φ)的最小正周期T=.
命题角度二 三角函数的单调性
【例3-2】 (1)函数f(x)=sin的单调递减区间为________.
(2)若f(x)=2sin ωx+1(ω>0)在区间上是增函数,则ω的取值范围是________.
解析 (1)由已知可得函数为y=-sin,欲求函数的单调减区间,只需求y=sin的单调增区间.
由2kπ-≤2x-≤2kπ+,k∈Z,
得kπ-≤x≤kπ+,k∈Z.
故所求函数的单调递减区间为(k∈Z).
(2)法一 由2kπ-≤ωx≤2kπ+,k∈Z,
得f(x)的增区间是(k∈Z).
因为f(x)在上是增函数,
所以?.
所以-≥-且≤,所以ω∈.
法二 因为x∈,ω>0.
所以ωx∈,
又f(x)在区间上是增函数,
所以?,则又ω>0,得0<ω≤.
法三 因为f(x)在区间上是增函数,故原点到-,的距离不超过,即得T≥,即≥,又ω>0,得0<ω≤.
答案 (1)(k∈Z) (2)
规律方法 (1)求较为复杂的三角函数的单调区间时,首先化简成y=Asin(ωx+φ)形式,再求y=Asin(ωx+φ)的单调区间,只需把ωx+φ看作一个整体代入y=sin x的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.
命题角度三 三角函数的对称轴或对称中心
【例3-3】 (1)(2017·浙江适应性测试)若函数f(x)=2sin(4x+φ)(φ<0)的图象关于直线x=对称,则φ的最大值为( )
A.- B.- C.- D.-
(2)(2016·全国Ⅰ卷)已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在上单调,则ω的最大值为( )
A.11 B.9 C.7 D.5
解析 (1)由题可得,4×+φ=+kπ,k∈Z,∴φ=+kπ,k∈Z,∵φ<0,∴φmax=-.
(2)因为x=-为f(x)的零点,x=为f(x)的图象的对称轴,所以-=+kT,即=T=·,所以ω=4k+1(k∈N*),又因为f(x)在上单调,所以-=≤=,即ω≤12,由此得ω的最大值为9,故选B.
答案 (1)B (2)B
规律方法 (1)对于可化为f(x)=Asin(ωx+φ)形式的函数,如果求f(x)的对称轴,只需令ωx+φ=+kπ(k∈Z),求x即可;如果求f(x)的对称中心的横坐标,只需令ωx+φ=kπ(k∈Z),求x即可.
(2)对于可化为f(x)=Acos(ωx+φ)形式的函数,如果求f(x)的对称轴,只需令ωx+φ=kπ(k∈Z),求x即可;如果求f(x)的对称中心的横坐标,只需令ωx+φ=+kπ(k∈Z),求x即可.
【训练3】 (1)(2017·昆明二检)函数f(x)=cos的图象关于( )
A.原点对称 B.y轴对称
C.直线x=对称 D.直线x=-对称
(2)已知ω>0,函数f(x)=cos在上单调递增,则ω的取值范围是( )
A. B.
C. D.
解析 (1)因为f(x)=cos=cos=-sin 2x,f(-x)=-sin(-2x)=sin 2x=-f(x),所以f(x)=-sin 2x是奇函数,所以f(x)的图象关于原点对称.故选A.
(2)函数y=cos x的单调递增区间为[-π+2kπ,2kπ],k∈Z,
则(k∈Z),
解得4k-≤ω≤2k-,k∈Z,
又由4k--≤0,k∈Z且2k->0,k∈Z,
得k=1,所以ω∈.
答案 (1)A (2)D
[思想方法]
1.讨论三角函数性质,应先把函数式化成y=Asin(ωx+φ)(ω>0)的形式.
2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t=ωx+φ,将其转化为研究y=sin t的性质.
3.数形结合是本讲的重要数学思想.
[易错防范]
1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.
2.要注意求函数y=Asin(ωx+φ)的单调区间时A和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.
第4讲 函数y=Asin(ωx+φ)的图象及应用
最新考纲 1.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响;2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.
知 识 梳 理
1.“五点法”作函数y=Asin(ωx+φ)(A>0,ω>0)的简图
“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:
(1)定点:如下表所示.
x
-
ωx+φ
0
π
2π
y=Asin(ωx+φ)
0
A
0
-A
0
(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=Asin(ωx+φ)在一个周期内的图象.
(3)扩展:将所得图象,按周期向两侧扩展可得y=Asin(ωx+φ)在R上的图象.
2.函数y=Asin(ωx+φ)中各量的物理意义
当函数y=Asin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示简谐振动时,几个相关的概念如下表:
简谐振动
振幅
周期
频率
相位
初相
y=Asin(ωx+φ)(A>0,ω>0),
x∈[0,+∞)
A
T=
f=
ωx+φ
φ
3.函数y=sin x的图象经变换得到y=Asin(ωx+φ)的图象的两种途径
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)将函数y=3sin 2x的图象左移个单位长度后所得图象的解析式是y=3sin.( )
(2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )
(3)函数y=Acos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.( )
(4)由图象求解析式时,振幅A的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )
解析 (1)将函数y=3sin 2x的图象向左平移个单位长度后所得图象的解析式是y=3cos 2x.
(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为.故当ω≠1时平移的长度不相等.
答案 (1)× (2)× (3)√ (4)√
2.y=2sin的振幅、频率和初相分别为( )
A.2,,- B.2,,-
C.2,,- D.2,,-
答案 A
3.(2016·全国Ⅰ卷)若将函数y=2sin的图象向右平移个周期后,所得图象对应的函数为( )
A.y=2sin B.y=2sin
C.y=2sin D.y=2sin
解析 函数y=2sin的周期为π,将函数y=2sin的图象向右平移个周期即个单位,所得函数为y=2sin=2sin,故选D.
答案 D
4.(2017·衡水中学金卷)将函数y=sin的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位,所得函数图象的一个对称中心是( )
A. B. C. D.
解析 将函数y=sin的图象上各点的横坐标伸长到原来的3倍,可得函数y=sin的图象,再向
右平移个单位长度,所得函数的解析式为y=sin 2x,
令2x=kπ,x=(k∈Z),故所得函数的对称中心为,(k∈Z),故所得函数的一个对称中心是,故选D.
答案 D
5.(2017·金华调研)函数f(x)=2sin(ωx+φ)
的图象如图所示,则ω=________,φ=________.
解析 由题中图象知T=π,∴ω=2,把(0,1)代入f(x)=2sin(2x+φ),得1=2sin φ,∴sin φ=,∵|φ|<,∴φ=.
答案 2
6.(必修4P60例1改编)如图,某地一天,从6~14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b(A>0,ω>0,0<φ<π),则这段曲线的函数解析式为________.
解析 从图中可以看出,从6~14时是函数y=Asin(ωx+φ)+b的半个周期,又×=14-6,
所以ω=.由图可得A=(30-10)=10,
b=(30+10)=20.又×10+φ=2π,解得φ=,
∴y=10sin+20,x∈[6,14].
答案 y=10sin+20,x∈[6,14]
考点一 函数y=Asin(ωx+φ)的图象及变换
【例1】 设函数f(x)=sin ωx+cos ωx(ω>0)的周期为π.
(1)用五点法作出它在长度为一个周期的闭区间上的图象;
(2)说明函数f(x)的图象可由y=sin x的图象经过怎样的变换而得到.
解 f(x)=sin ωx+cos ωx
=2=2sin,
又∵T=π,∴=π,
即ω=2,∴f(x)=2sin.
(1)令z=2x+,则y=2sin=2sin z.
列表,并描点画出图象:
x
-
z
0
π
2π
y=sin z
0
1
0
-1
0
y=2sin
0
2
0
-2
0
(2)法一 把y=sin x的图象上所有的点向左平移个单位,得到y=sin的图象;再把y=sin的图象上的点的横坐标缩短到原来的倍(纵坐标不变),得到y=sin的图象;最后把y=sin上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y=2sin的图象.
法二 将y=sin x的图象上每一点的横坐标缩短为原来的倍(纵坐标不变),得到y=sin 2x的图象;再将y=sin 2x的图象向左平移个单位,得到y=sin 2=sin的图象;再将y=sin的图象上每一点的纵坐标伸长到原来的2倍(横坐标不变),得到y=2sin的图象.
规律方法 作函数y=Asin(ωx+φ)(A>0,ω>0)的图象常用如下两种方法:
(1)五点法作图,用“五点法”作y=Asin(ωx+φ)的简图,主要是通过变量代换,设z=ωx+φ,由z取0,,π,π,2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象;
(2)图象的变换法,由函数y=sin x的图象通过变换得到y=Asin(ωx+φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.
【训练1】 设函数f(x)=cos(ωx+φ)的最小正周期为π,且f=.
(1)求ω和φ的值;
(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.
解 (1)∵T==π,ω=2,
又f=cos=,
∴sin φ=-,
又-<φ<0,∴=-.
(2)由(1)得f(x)=cos,列表:
2x-
-
0
π
π
π
x
0
π
π
π
π
f(x)
1
0
-1
0
描点画出图象(如图).
考点二 由图象求函数y=Asin(ωx+φ)的解析式
【例2】 (1)将函数f(x)=sin(2x+θ)的图象向右平移φ(0<φ<π)个单位长度后,得到函数g(x)的图象,若f(x),g(x)的图象都经过点P,则φ的值为________.
(2)函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.
解析 (1)将函数f(x)=sin(2x+θ)的图象向右平移φ(0<φ<π)个单位长度后,得到函数g(x)=sin[2(x-φ)+θ]=sin(2x-2φ+θ)的图象,若f(x),g(x)的图象都经过点P,
所以sin θ=,sin(-2φ+θ)=,
所以θ=,sin=.又0<φ<π,所以-<-2φ<,所以-2φ=-.
即φ=.
(2)由题图可知A=,
法一 =-=,
所以T=π,故ω=2,
因此f(x)=sin(2x+φ),
又对应五点法作图中的第三个点,
因此2×+φ=π,所以φ=,故f(x)=sin.
法二 以为第二个“零点”,为最小值点,
列方程组解得
故f(x)=sin.
答案 (1) (2)f(x)=sin
规律方法 已知f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:
(1)五点法,由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;
(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.
【训练2】 (2016·全国Ⅱ卷)函数y=Asin(ωx+φ)的部分图象如图所示,则( )
A.y=2sin B.y=2sin
C.y=2sin D.y=2sin
解析 由题图可知,T=2=π,所以ω=2,由五点作图法可知2×+φ=,所以φ=-,所以函数的解析式为y=2sin,故选A.
答案 A
考点三 三角函数模型及其应用
【例3】 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-sint,t∈[0,24).
(1)求实验室这一天的最大温差;
(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?
解 (1)因为f(t)=10-2
=10-2sin,
又0≤t<24,所以≤t+<,
当t=2时,sin=1;
当t=14时,sin=-1.
于是f(t)在[0,24)上取得最大值12 ℃,取得最小值8 ℃.
故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.
(2)依题意,当f(t)>11时实验室需要降温,
由(1)得f(t)=10-2sin,
故有10-2sin>11,
即sin<-.
又0≤t<24,因此在10时至18时实验室需要降温.
规律方法 三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题,二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题.
【训练3】 如图,某大风车的半径为2 m,每12 s旋转一周,它的最低点O离地面0.5 m.风车圆周上一点A从最低点O开始,运动t(s)后与地面的距离为h(m).
(1)求函数h=f(t)的关系式;
(2)画出函数h=f(t)(0≤t≤12)的大致图象.
解 (1)如图,以O为原点,过点O的圆的切线为x轴,建立直角坐标系.
设点A的坐标为(x,y),则h=y+0.5.
设∠OO1A=θ,则cos θ=,y=-2cos θ+2.
又θ=×t,即θ=t,所以y=-2cost+2,
h=f(t)=-2cost+2.5.
(2)函数h=-2cost+2.5(0≤t≤12)的大致图象如下.
考点四 y=Asin(ωx+φ)图象与性质的综合应用
【例4】 (2017·杭州质检)已知函数f(x)=4cos ωx·sin+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.
(1)求a和ω的值;
(2)求函数f(x)在[0,π]上的单调递减区间.
解 (1)f(x)=4cos ωx· sin+a
=4cos ωx·+a
=2sin ωxcos ωx+2cos2ωx-1+1+a
=sin 2ωx+cos 2ωx+1+a
=2sin+1+a.
当sin=1时,f(x)取得最大值2+1+a=3+a.
又f(x)最高点的纵坐标为2,∴3+a=2,即a=-1.
又f(x)图象上相邻两个最高点的距离为π,
∴f(x)的最小正周期为T=π,
∴2ω==2,ω=1.
(2)由(1)得f(x)=2sin,
由+2kπ≤2x+≤+2kπ,k∈Z,
得+kπ≤x≤+kπ,k∈Z.
令k=0,得≤x≤.
∴函数f(x)在[0,π]上的单调递减区间为.
规律方法 函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间和对称性的确定,基本思想是把ωx+φ看做一个整体.在单调性应用方面,比较大小是一类常见的题目,依据是同一区间内函数的单调性.对称性是三角函数图象的一个重要性质,因此要抓住其轴对称、中心对称的本质,同时还要会综合利用这些性质解决问题,解题时可利用数形结合思想.
【训练4】 已知函数f(x)=2sin·cos-sin(x+π).
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.
解 (1)f(x)=2sin·cos-sin(x+π)
=cos x+sin x=2sin,于是T==2π.
(2)由已知得g(x)=f=2sin,
∵x∈[0,π],∴x+∈,
∴sin∈,
∴g(x)=2sin∈[-1,2],
故函数g(x)在区间[0,π]上的最大值为2,最小值为-1.
[思想方法]
1.五点法作图及图象变换问题
(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;
(2)图象变换时的伸缩、平移总是针对自变量x而言,而不是看角ωx+φ的变化.
2.由图象确定函数解析式
解决由函数y=Asin(ωx+φ)的图象确定A,ω,φ的问题时,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准第一个“零点”和第二个“零点”的位置.要善于抓住特殊量和特殊点.
[易错防范]
1.由函数y=sin x的图象经过变换得到y=Asin(ωx+φ)的图象,如先伸缩再平移时,要把x前面的系数提取出来.
2.复合形式的三角函数的单调区间的求法.函数y=Asin(ωx+φ)(A>0,ω>0)的单调区间的确定,基本思想是把ωx+φ看做一个整体.若ω<0,要先根据诱导公式进行转化.
3.求函数y=Asin(ωx+φ)在x∈[m,n]上的最值,可先求t=ωx+φ的范围,再结合图象得出y=Asin t的值域.
第5讲 两角和与差的正弦、余弦和正切公式
最新考纲 1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).
知 识 梳 理
1.两角和与差的正弦、余弦和正切公式
sin(α±β)=sin__αcos__β±cos__αsin__β.
cos(α?β)=cos__αcos__β±sin__αsin__β.
tan(α±β)=.
2.二倍角的正弦、余弦、正切公式
sin 2α=2sin__αcos__α.
cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.
tan 2α=.
3.有关公式的逆用、变形等
(1)tan α±tan β=tan(α±β)(1?tan__αtan__β).
(2)cos2α=,sin2α=.
(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,
sin α±cos α=sin.
4.函数f(α)=asin α+bcos α(a,b为常数),可以化为f(α)=sin(α+φ)或f(α)=·cos(α-φ).
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( )
(2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )
(3)公式tan(α+β)=可以变形为tan α+tan β
=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )
(4)存在实数α,使tan 2α=2tan α.( )
解析 (3)变形可以,但不是对任意的α,β都成立,α,β,α+β≠+kπ,k∈Z.
答案 (1)√ (2)√ (3)× (4)√
2.(2016·全国Ⅲ卷)若tan θ=-,则cos 2θ=( )
A.- B.- C. D.
解析 cos 2θ=cos2θ-sin2θ===.
答案 D
3.(2015·重庆卷)若tan α=,tan(α+β)=,则tan β等于( )
A. B. C. D.
解析 tan β=tan[(α+β)-α]===,故选A.
答案 A
4.(2017·广州调研)已知sin α+cos α=,则sin2=( )
A. B. C. D.
解析 由sin α+cos α=两边平方得1+sin 2α=,解得sin 2α=-,所以sin2====,故选B.
答案 B
5.(必修4P137A13(5)改编)sin 347°cos 148°+sin 77°·cos 58°=________.
解析 sin 347°cos 148°+sin 77°cos 58°
=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°
=(-cos 77°)·(-sin 58°)+sin 77°cos 58°
=sin 58°cos 77°+cos 58°sin 77°
=sin(58°+77°)=sin 135°=.
答案
6.(2017·宁波调研)已知cos=-,θ为锐角,则sin 2θ=________,sin=________.
解析 由题意得,cos=-?(cos θ-sin θ)=-?(1-2sin θcos θ)=?sin 2θ=,∴(sin θ+cos θ)2=1+sin 2θ=?sin θ+cos θ=?cos 2θ=cos2θ-sin2θ=(cos θ+sin θ)·(cos θ-sin θ)=-·=-,∴sin=sin 2θcos+cos 2θsin=×+×=.
答案
考点一 三角函数式的化简
【例1】 (1)(2017·杭州模拟)cos(α+β)cos β+sin(α+β)sin β=( )
A.sin(α+2β) B.sin α
C.cos(α+2β) D.cos α
(2)化简:(0<α<π)=________.
解析 (1)cos(α+β)cos β+sin(α+β)sin β=cos[(α+β)-β]=cos α.
(2)原式=
==.
因为0<α<π,所以0<<,所以cos>0,所以原式=cos α.
答案 (1)D (2)cos α
规律方法 三角函数式的化简要遵循“三看”原则:一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;三看结构特征,找到变形的方向,常见的有“遇到分式要通分”、“遇到根式一般要升幂”等.
【训练1】 (1)+2的化简结果是________.
(2)化简:=________.
解析 (1)原式=+2
=2|cos 4|+2|sin 4-cos 4|,
因为π<4<π,所以cos 4<0,且sin 4所以原式=-2cos 4-2(sin 4-cos 4)=-2sin 4.
(2)原式=
==
==cos 2α.
答案 (1)-2sin 4 (2)cos 2α
考点二 三角函数式的求值
【例2】 (1)[2sin 50°+sin 10°(1+tan 10°)]·=________.
(2)已知cos=,<α<,则的值为________.
(3)已知α,β∈(0,π),且tan(α-β)=,tan β=-,则2α-β的值为________.
解析 (1)原式=·
sin 80°=(2sin 50°+2sin 10°·)·
cos 10°=2[sin 50°·cos 10°+sin 10°·cos(60°-10°)]
=2sin(50°+10°)=2×=.
(2)=
=
=sin 2α=sin 2α·tan.
由<α<得<α+<2π,又cos=,
所以sin=-,tan=-.
cos α=cos=-,sin α=-,sin 2α=.
所以=-.
(3)∵tan α=tan[(α-β)+β]=
==>0,又α∈(0,π),
∴0<α<,又∵tan 2α===>0,
∴0<2α<,
∴tan(2α-β)===1.
∵tan β=-<0,∴<β<π,-π<2α-β<0,
∴2α-β=-.
答案 (1) (2)- (3)-
规律方法 (1)已知条件下的求值问题常先化简需求值的式子,再观察已知条件与所求值的式子之间的联系(从三角函数名及角入手),最后将已知条件及其变形代入所求式子,化简求值.
(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,选正弦较好.
【训练2】 (1)4cos 50°-tan 40°=( )
A. B.
C. D.2-1
(2)已知sin+sin α=-,-<α<0,则cos α的值为________.
(3)(2017·绍兴月考)已知cos α=,cos(α-β)=(0<β<α<),则tan 2α=________,β=________.
解析 (1)原式=4sin 40°-
=
=
=
=
==,故选C.
(2)由sin+sin α=-,得sin α+cos α=-,sin=-.
又-<α<0,所以-<α+<,
于是cos=.
所以cos α=cos=.
(3)∵cos α=,0<α<,
∴sin α=,tan α=4,
∴tan 2α===-.
∵0<β<α<,∴0<α-β<,
∴sin(α-β)=,
∴cos β=cos[α-(α-β)]
=cos αcos(α-β)+sin αsin(α-β)
=×+×=,
∴β=.
答案 (1)C (2) (3)-
考点三 三角变换的简单应用
【例3】 已知△ABC为锐角三角形,若向量p=(2-2sin A,cos A+sin A)与向量q=(sin A-cos A,1+sin A)是共线向量.
(1)求角A;
(2)求函数y=2sin2B+cos的最大值.
解 (1)因为p,q共线,所以(2-2sin A)(1+sin A)=(cos A+sin A)(sin A-cos A),则sin2A=.
又A为锐角,所以sin A=,则A=.
(2)y=2sin2 B+cos=2sin2B+cos=2sin2B+cos=1-cos 2B+cos 2B+sin 2B=sin 2B-cos 2B+1=sin+1.
因为B∈,所以2B-∈,所以当2B-=时,函数y取得最大值,此时B=,ymax=2.
规律方法 解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两种,一种是变换函数的名称,一种是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.
【训练3】 (2017·合肥模拟)已知函数f(x)=(2cos2x-1)·sin 2x+cos 4x.
(1)求f(x)的最小正周期及单调减区间;
(2)若α∈(0,π),且f=,求tan的值.
解 (1)f(x)=(2cos2x-1)sin 2x+cos 4x
=cos 2xsin 2x+cos 4x
=(sin 4x+cos 4x)=sin,
∴f(x)的最小正周期T=.
令2kπ+≤4x+≤2kπ+π,k∈Z,
得+≤x≤+,k∈Z.
∴f(x)的单调减区间为,k∈Z.
(2)∵f=,即sin=1.
因为α∈(0,π),-<α-<,
所以α-=,故α=.
因此tan===2-.
[思想方法]
1.重视三角函数的“三变”:“三变”是指“变角、变名、变式”.
(1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等.
2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.
[易错防范]
1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升幂、降幂的灵活运用,要注意“1”的各种变通.
2.在(0,π)范围内,sin α=所对应的角α不是唯一的.
3.在三角求值时,往往要借助角的范围求值.
第6讲 正弦定理和余弦定理
最新考纲 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
知 识 梳 理
1.正、余弦定理
在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则
定理
正弦定理
余弦定理
公式
===2R
a2=b2+c2-2bccos__A;
b2=c2+a2-2cacos__B;
c2=a2+b2-2abcos__C
常见变形
(1)a=2Rsin A,b=2Rsin__B,c=2Rsin__C;
(2)sin A=,sin B=,sin C=;
(3)a∶b∶c=sin__A∶sin__B∶sin__C;
(4)asin B=bsin A,bsin C=csin B,asin C=csin A
cos A=;
cos B=;
cos C=
2.S△ABC=absin C=bcsin A=acsin B==(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r.
3.在△ABC中,已知a,b和A时,解的情况如下:
A为锐角
A为钝角或直角
图形
关系式
a=bsin A
bsin Aa≥b
a>b
a≤b
解的个数
一解
两解
一解
一解
无解
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)三角形中三边之比等于相应的三个内角之比.( )
(2)在△ABC中,若sin A>sin B,则A>B.( )
(3)在△ABC的六个元素中,已知任意三个元素可求其他元素.( )
(4)当b2+c2-a2>0时,△ABC为锐角三角形;当b2+c2-a2=0时,△ABC为直角三角形;当b2+c2-a2<0时,△ABC为钝角三角形.( )
(5)在三角形中,已知两边和一角就能求三角形的面积.( )
解析 (1)三角形中三边之比等于相应的三个内角的正弦值之比.
(3)已知三角时,不可求三边.
(4)当b2+c2-a2>0时,三角形ABC不一定为锐角三角形.
答案 (1)× (2)√ (3)× (4)× (5)√
2.(2016·全国Ⅰ卷)△ABC的内角A,B,C的对边分别为a,b,c.已知a=,c=2,cos A=,则b=( )
A. B. C.2 D.3
解析 由余弦定理,得5=b2+22-2×b×2×,解得b=3,故选D.
答案 D
3.(2017·湖州预测)在△ABC中,角A,B,C所对的边分别为a,b,c,若=,则cos B=( )
A.- B.
C.- D.
解析 由正弦定理知==1,即tan B=,由B∈(0,π),所以B=,所以cos B=cos=,故选B.
答案 B
4.在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为( )
A. B.
C.2 D.2
解析 因为S=×AB×ACsin A=×2×AC=,所以AC=1,
所以BC2=AB2+AC2-2AB·ACcos 60°=3,
所以BC=.
答案 B
5.(必修5P10B2改编)在△ABC中,acos A=bcos B,则这个三角形的形状为________.
解析 由正弦定理,得sin Acos A=sin Bcos B,
即sin 2A=sin 2B,所以2A=2B或2A=π-2B,
即A=B或A+B=,
所以这个三角形为等腰三角形或直角三角形.
答案 等腰三角形或直角三角形
6.(2017·绍兴调研)已知钝角△ABC的面积为,AB=1,BC=,则角B=________,AC=________.
解析 ∵钝角△ABC的面积为,AB=1,BC=,
∴=×1××sin B,解得sin B=,∴B=或,
∵当B=时,由余弦定理可得
AC=
==1,
此时,AB2+AC2=BC2,可得A=,此△ABC为直角三角形,与已知矛盾,舍去.
∴B=,由余弦定理可得AC=
==.
答案
考点一 利用正、余弦定理解三角形
【例1】 (1)在△ABC中,已知a=2,b=,A=45°,则满足条件的三角形有( )
A.1个 B.2个
C.0个 D.无法确定
(2)在△ABC中,已知sin A∶sin B=∶1,c2=b2+bc,则三内角A,B,C的度数依次是________.
(3)(2015·广东卷)设△ABC的内角A,B,C的对边分别为a,b,c,若a=,sin B=,C=,则b=________.
解析 (1)∵bsin A=×=,∴bsin A∴满足条件的三角形有2个.
(2)由题意知a=b,a2=b2+c2-2bccos A,
即2b2=b2+c2-2bccos A,又c2=b2+bc,
∴cos A=,∵A∈(0°,180°),∴A=45°,sin B=,又B∈(0°,180°),b<a,∴B=30°,∴C=105°.
(3)因为sin B=且B∈(0,π),所以B=或B=.
又C=,B+C<π,所以B=,A=π-B-C=.
又a=,由正弦定理得=,即=,
解得b=1.
答案 (1)B (2)45°,30°,105° (3)1
规律方法 (1)判断三角形解的个数的两种方法
①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断.
②几何图形法:根据条件画出图形,通过图形直观判断解的个数.
(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.
【训练1】 (1)(2017·金华模拟)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=3,A=60°,则边c=( )
A.1 B.2 C.4 D.6
(2)(2016·全国Ⅱ卷)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=________.
解析 (1)a2=c2+b2-2cbcos A?13=c2+9-2c×3×cos 60°,即c2-3c-4=0,解得c=4或c=-1(舍去).
(2)在△ABC中,由cos A=,cos C=,可得sin A=,sin C=,sin B=sin(A+C)=sin Acos C+cos Asin C=,由正弦定理得b==.
答案 (1)C (2)
考点二 利用正弦、余弦定理判定三角形的形状(典例迁移)
【例2】 (经典母题)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B=asin A,则△ABC的形状为( )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.不确定
解析 由正弦定理得sin Bcos C+sin Ccos B=sin2A,
∴sin(B+C)=sin2A,即sin(π-A)=sin2A,sin A=sin2A.
∵A∈(0,π),∴sin A>0,∴sin A=1,即A=.
答案 B
【迁移探究1】 将本例条件变为“若2sin Acos B=sin C”,那么△ABC一定是( )
A.直角三角形 B.等腰三角形
C.等腰直角三角形 D.等边三角形
解析 法一 由已知得2sin Acos B=sin C=sin(A+B)=sin Acos B+cos Asin B,即sin(A-B)=0,因为-π法二 由正弦定理得2acos B=c,再由余弦定理得2a·=c?a2=b2?a=b.
答案 B
【迁移探究2】 将本例条件变为“若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13”,则△ABC( )
A.一定是锐角三角形
B.一定是直角三角形
C.一定是钝角三角形
D.可能是锐角三角形,也可能是钝角三角形
解析 在△ABC中,sin A∶sin B∶sin C=5∶11∶13,
∴a∶b∶c=5∶11∶13,
故设a=5k,b=11k,c=13k(k>0),由余弦定理可得
cos C===-<0,
又∵C∈(0,π),∴C∈,∴△ABC为钝角三角形.
答案 C
【迁移探究3】 将本例条件变为“若a2+b2-c2=ab,且2cos Asin B=sin C”,试确定△ABC的形状.
解 法一 利用边的关系来判断:
由正弦定理得=,
由2cos Asin B=sin C,有cos A==.
又由余弦定理得cos A=,
∴=,
即c2=b2+c2-a2,所以a2=b2,所以a=b.
又∵a2+b2-c2=ab.∴2b2-c2=b2,所以b2=c2,
∴b=c,∴a=b=c.∴△ABC为等边三角形.
法二 利用角的关系来判断:
∵A+B+C=180°,∴sin C=sin(A+B),
又∵2cos Asin B=sin C,
∴2cos Asin B=sin Acos B+cos Asin B,
∴sin(A-B)=0,
又∵A与B均为△ABC的内角,所以A=B.
又由a2+b2-c2=ab,
由余弦定理,得cos C===,
又0°规律方法 (1)判定三角形形状的途径:①化边为角,通过三角变换找出角之间的关系;②化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.
(2)无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.
考点三 和三角形面积有关的问题
【例3】 (2016·全国Ⅰ卷)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.
(1)求C;
(2)若c=,△ABC的面积为,求△ABC的周长.
解 (1)由已知及正弦定理得,2cos C(sin Acos B+sin B·cos A)=sin C,2cos Csin(A+B)=sin C,
故2sin Ccos C=sin C.由C∈(0,π)知sin C≠0,
可得cos C=,所以C=.
(2)由已知,absin C=,又C=,所以ab=6,由已知及余弦定理得,a2+b2-2abcos C=7,故a2+b2=13,从而(a+b)2=25.所以△ABC的周长为5+.
规律方法 三角形面积公式的应用原则
(1)对于面积公式S=absin C=acsin B=bcsin A,一般是已知哪一个角就使用哪一个公式.
(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.
【训练2】 (2017·日照模拟)在△ABC中,角A,B,C的对边分别为a,b,c,满足(2a-b)cos C-ccos B=0.
(1)求角C的值;
(2)若三边a,b,c满足a+b=13,c=7,求△ABC的面积.
解 (1)根据正弦定理,(2a-b)cos C-ccos B=0可化为(2sin A-sin B)cos C-sin Ccos B=0.
整理得2sin Acos C=sin Bcos C+sin Ccos B=sin(B+C)=sin A.
∵0又∵0(2)由(1)知cos C=,又a+b=13,c=7,
∴由余弦定理得c2=a2+b2-2abcos C=(a+b)2-3ab=169-3ab=49,
解得ab=40.
∴S△ABC=absin C=×40×sin=10.
[思想方法]
1.应熟练掌握和运用内角和定理:A+B+C=π,++=中互补和互余的情况,结合诱导公式可以减少角的种数.
2.解题中要灵活使用正弦定理、余弦定理进行边、角的互化,一般要化到只含角或只含边.
[易错防范]
1.在利用正弦定理解有关已知三角形的两边和其中一边的对角三角形时,有时出现一解、两解,所以要进行分类讨论(此种类型也可利用余弦定理求解).
2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.
第7讲 解三角形应用举例
最新考纲 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题.
知 识 梳 理
1.仰角和俯角
在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).
2.方位角
从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).
3.方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.
4.坡度:坡面与水平面所成的二面角的正切值.
诊 断 自 测
1.判断正误(在括号内打“√”或“×”)
(1)东北方向就是北偏东45°的方向.( )
(2)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.( )
(3)俯角是铅垂线与视线所成的角,其范围为.( )
(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )
解析 (2)α=β.(3)俯角是视线与水平线所构成的角.
答案 (1)√ (2)× (3)× (4)√
2.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的( )
A.北偏东15° B.北偏西15°
C.北偏东10° D.北偏西10°
解析 如图所示,∠ACB=90°,
又AC=BC,
∴∠CBA=45°,而β=30°,
∴α=90°-45°-30°=15°.
∴点A在点B的北偏西15°.
答案 B
3.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km,速度为1 000 km/h,飞行员先看到山顶的俯角为30°,经过1 min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1 km,参考数据:≈1.732)( )
A.11.4 km B.6.6 km
C.6.5 km D.5.6 km
解析 ∵AB=1 000×=(km),∴BC=·sin 30°=(km).
∴航线离山顶h=×sin 75°=×sin(45°+30°)≈11.4(km).∴山高为18-11.4=6.6(km).
答案 B
4.(必修5P11例1改编)如图,设A,B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是m米,∠BAC=α,∠ACB=β,则A,B两点间的距离为( )
A. B.
C. D.
解析 在△ABC中,∠ABC=π-(α+β),AC=m,
由正弦定理,得=,
所以AB==.
答案 C
5.轮船A和轮船B在中午12时同时离开海港C,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h,15 n mile/h,则下午2时两船之间的距离是______n mile.
解析 设两船之间的距离为d,
则d2=502+302-2×50×30×cos 120°=4 900,
∴d=70,即两船相距70 n mile.
答案 70
6.(2017·湖州调研)一缉私艇发现在北偏东45°方向,距离12 n mile的海上有一走私船正以10 n mile/h的速度沿南偏东75°方向逃窜,若缉私艇的速度为14 n mile/h,缉私艇沿北偏东45°+α的方向追去,若要在最短的时间内追上走私船,则追上所需的时间为________h,α角的正弦值为________.
解析 如图所示,A,C分别表示缉私艇、走私船的位置,设经x小时后在B处追上走私船.则AB=14x,BC=10x,∠ACB=120°,在△ABC中,由余弦定理得(14x)2=122+(10x)2-240·x·cos 120°,解得x=2.故AB=28,sin α==,即所需时间为2小时,sin α=.
答案 2
考点一 测量高度问题
【例1】 (2015·湖北卷)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.
解析 在△ABC中,AB=600,∠BAC=30°,∠ACB=75°-30°=45°,由正弦定理得=,即=,所以BC=300(m).在Rt△BCD中,∠CBD=30°,
CD=BCtan∠CBD=300·tan 30°=100(m).
答案 100
规律方法 (1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.
(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.
(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.
【训练1】 (2017·郑州一中月考)如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,求山高CD.
解 由已知得,∠BCA=90°+β,∠ABC=90°-α,∠BAC=α-β,∠CAD=β.
在△ABC中,由正弦定理得=,
即=,
∴AC==.
在Rt△ACD中,CD=ACsin∠CAD=ACsin β=.
故山高CD为.
考点二 测量距离问题
【例2】 如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出AB的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.
若测得CD= km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.
解 ∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,
∴∠DAC=60°,∴AC=DC=(km).
在△BCD中,∠DBC=45°,
由正弦定理,得BC=·sin∠BDC=·sin 30°=(km).
在△ABC中,由余弦定理,得
AB2=AC2+BC2-2AC·BCcos 45°
=+-2×××=.
∴AB=(km).
∴A,B两点间的距离为 km.
规律方法 (1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.
(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.
【训练2】 如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离,即AB=.
若测得CA=400 m,CB=600 m,∠ACB=60°,试计算AB的长.
解 在△ABC中,由余弦定理得
AB2=AC2+BC2-2AC·BCcos∠ACB,
∴AB2=4002+6002-2×400×600cos 60°=280 000,
∴AB=200(m),
即A,B两点间的距离为200 m.
考点三 测量角度问题
【例3】 如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的________方向.
解析 由已知∠ACB=180°-40°-60°=80°,
又AC=BC,∴∠A=∠ABC=50°,60°-50°=10°,
∴灯塔A处于灯塔B的北偏西10°.
答案 北偏西10°
规律方法 解决测量角度问题的注意事项
(1)首先应明确方位角或方向角的含义.
(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.
(3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的结合使用.
【训练3】 如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角∠CAD等于( )
A.30° B.45°
C.60° D.75°
解析 依题意可得AD=20m,AC=30m,
又CD=50 m,所以在△ACD中,由余弦定理得cos∠CAD==
==,又0°<∠CAD<180°,所以∠CAD=45°,
所以从顶端A看建筑物CD的张角为45°.
答案 B
[思想方法]
1.利用解三角形解决实际问题时:(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型;(2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义.
2.在三角形和三角函数的综合问题中,要注意边角关系相互制约,推理题中的隐含条件.
[易错防范]
1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混.
2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误.