30.2 二次函数的图像和性质
第1课时 二次函数y=ax2的图像和性质
1.会用描点法画出y=ax2的图像,理解抛物线的概念.
2.掌握形如y=ax2的二次函数图像和性质,并会应用.
一、情境导入
自由落体公式h=gt2(g为常量),h与t之间是什么关系呢?它是什么函数?它的图像是什么形状呢?
二、合作探究
探究点一:二次函数y=ax2的图像
【类型一】图像的识别
已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图像有可能是( )
解析:本题进行分类讨论:(1)当a>0时,函数y=ax2的图像开口向上,函数y=ax图像经过一、三象限,故排除选项B;(2)当a<0时,函数y=ax2的图像开口向下,函数y=ax图像经过二、四象限,故排除选项D;又因为在同一直角坐标系中,函数y=ax与y=ax2的图像必有除原点(0,0)以外的交点,故选择C.
方法总结:分a>0与a<0两种情况加以讨论,并且结合一些特殊点,采取“排除法”.
【类型二】实际问题中图像的识别
已知h关于t的函数关系式为h=gt2(g为正常数,t为时间),则函数图像为( )
解析:根据h关于t的函数关系式为h=gt2,其中g为正常数,t为时间,因此函数h=gt2图像是受一定实际范围限制的,图像应该在第一象限,是抛物线的一部分,故选A.
方法总结:在识别二次函数图像时,应该注意考虑函数的实际意义.
探究点二:二次函数y=ax2的性质
【类型一】利用图像判断二次函数的增减性
作出函数y=-x2的图像,观察图像,并利用图像回答下列问题:
(1)在y轴左侧图像上任取两点A(x1,y1),B(x2,y2),使x2
(2)在y轴右侧图像上任取两点C(x3,y3),D(x4,y4),使x3>x4>0,试比较y3与y4的大小;
(3)由(1)、(2)你能得出什么结论?
解析:根据画出的函数图像来确定有关数值的大小,是一种比较常用的方法.
解:(1)图像如图所示,由图像可知y1>y2,(2)由图像可知y3方法总结:解有关二次函数的性质问题,最好利用数形结合思想,在草稿纸上画出抛物线的草图进行观察和分析以免解题时产生错误.
【类型二】二次函数的图像与性质的综合题
已知函数y=(m+3)xm2+3m-2是关于x的二次函数.
(1)求m的值;
(2)当m为何值时,该函数图像的开口向下?
(3)当m为何值时,该函数有最小值?
(4)试说明函数的增减性.
解析:(1)由二次函数的定义可得故可求m的值.
(2)图像的开口向下,则m+3<0;
(3)函数有最小值,则m+3>0;
(4)函数的增减性由函数的开口方向及对称轴来确定.
解:(1)根据题意,得解得∴当m=-4或m=1时,原函数为二次函数.
(2)∵图像开口向下,∴m+3<0,∴m<-3,∴m=-4.∴当m=-4时,该函数图像的开口向下.
(3)∵函数有最小值,∴m+3>0,m>-3,∴m=1,∴当m=1时,原函数有最小值.
(4)当m=-4时,此函数为y=-x2,开口向下,对称轴为y轴,当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小.
当m=1时,此函数为y=4x2,开口向上,对称轴为y轴,当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.
方法总结:二次函数的最值是顶点的纵坐标,当a>0时,开口向上,顶点最低,此时纵坐标为最小值;当a<0时,开口向下,顶点最高,此时纵坐标为最大值.考虑二次函数的增减性要考虑开口方向和对称轴两方面的因素,因此最好画图观察.
探究点三:确定二次函数y=ax2的表达式
【类型一】利用图像确定y=ax2的解析式
一个二次函数y=ax2(a≠0)的图像经过点A(2,-2)关于坐标轴的对称点B,求其关系式.
解析:坐标轴包含x轴和y轴,故点A(2,-2)关于坐标轴的对称点不是一个点,而是两个点.点A(2,-2)关于x轴的对称点B1(2,2),点A(2,-2)关于y轴的对称点B2(-2,-2).
解:∵点B与点A(2,-2)关于坐标轴对称,∴B1(2,2),B2(-2,-2).当y=ax2的图像经过点B1(2,2)时,2=a×22,∴a=,∴y=x2;当y=ax2的图像经过点B1(-2,-2)时,-2=a×(-2)2,∴a=-,∴y=-x2.∴二次函数的关系式为y=x2或y=-x2.
方法总结:当题目给出的条件不止一个答案时,应运用分类讨论的方法逐一进行讨论,从而求得多个答案.
【类型二】二次函数y=ax2的图像与几何图形的综合应用
已知二次函数y=ax2(a≠0)与直线y=2x-3相交于点A(1,b),求:
(1)a,b的值;
(2)函数y=ax2的图像的顶点M的坐标及直线与抛物线的另一个交点B的坐标.
解析:直线与函数y=ax2的图像交点坐标可利用方程求解.
解:(1)∵点A(1,b)是直线与函数y=ax2图像的交点,∴点A的坐标满足二次函数和直线的关系式,∴∴
(2)由(1)知二次函数为y=-x2,顶点M(即坐标原点)的坐标为(0,0),由-x2=2x-3,解得x1=1,x2=-3,∴y1=-1,y2=-9,∴直线与抛物线的另一个交点B的坐标为(-3,-9).
【类型三】二次函数y=ax2的实际应用
如图所示,有一抛物线形状的桥洞.桥洞离水面最大距离OM为3m,跨度AB=6m.
(1)请你建立适当的直角坐标系,并求出在此坐标系下的抛物线的关系式;
(2)一艘小船上平放着一些长3m,宽2m且厚度均匀的矩形木板,要使小船能通过此桥洞,则这些木板最高可堆放多少米?
解析:可令O为坐标原点,平行于AB的直线为x轴,建立平面直角坐标系,则可设此抛物线函数关
系式为y=ax2.由题意可得B点的坐标为(3,-3),由此可求出抛物线的函数关系式,然后利用此抛物线的函数关系式去探究其他问题.
解:(1)以O点为坐标原点,平行于线段AB的直线为x轴,建立如图所示的平面直角坐标系,设抛物线的函数关系式为y=ax2.由题意可得B点坐标为(3,-3),∴-3=a×32,解得a=-,∴抛物线的函数关系式为y=-x2.
(2)当x=1时,y=-×12=-.∵OM=3,∴木板最高可堆放3-=(米).
方法总结:解决实际问题时,要善于把实际问题转化为数学问题,即建立数学模型解决实际问题的思想.
三、板书设计
教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=ax2的图像与性质,体会数学建模的数形结合的思想方法.
第2课时 二次函数y=a(x-h)2和y=a(x-h)2+k的图像和性质
1.会用描点法画出y=a(x-h)2和y=a(x-h)2+k的图像.
2.掌握形如y=a(x-h)2和y=a(x-h)2+k二次函数图像的性质,并会应用.
3.理解二次函数y=a(x-h)2及y=a(x-h)2+k与y=ax2之间的联系.
一、情境导入
涵洞是指在公路工程建设中,为了使公路顺利通过水渠不妨碍交通,修筑于路面以下的排水孔道(过水通道),通过这种结构可以让水从公路的下面流过.从如图所示的直角坐标系中,你能得到函数图像解析式吗?
二、合作探究
探究点一:二次函数y=a(x-h)2的图像和性质
【类型一】y=a(x-h)2的图像与性质的识别
已知抛物线y=a(x-h)2(a≠0)的顶点坐标是(-2,0),且图像经过点(-4,2),求a,h的值.
解:∵抛物线y=a(x-h)2(a≠0)的顶点坐标为(-2,0),∴h=-2.又∵抛物线y=a(x+2)2经过点(-4,2),∴(-4+2)2·a=2,∴a=.
方法总结:抛物线y=a(x-h)2的顶点坐标为(h,0),对称轴是直线x=h.
【类型二】二次函数y=a(x-h)2增减性的判断
对于二次函数y=9(x-1)2,下列结论正确的是( )
A.y随x的增大而增大
B.当x>0时,y随x的增大而增大
C.当x>-1时,y随x的增大而增大
D.当x>1时,y随x的增大而增大
解析:由于a=9>0,抛物线开口向上,而h=1,所以当x>1时,y随x的增大而增大.故选D.
【类型三】确定y=a(x-h)2与y=ax2的关系
能否向左或向右平移函数y=-x2的图像,使得到的新的图像过点(-9,-8)?若能,请求出平移的方向和距离;若不能,请说明理由.
解:能,设平移后的函数为y=-(x-h)2,将x=-9,y=-8代入得-8=-(-9-h)2,所以h=-5或h=-13,所以平移后的函数为y=-(x+5)2或y=-(x+13)2.即抛物线的顶点为(-5,0)或(-13,0),所以向左平移5或13个单位.
方法总结:根据抛物线平移的规律,向右平移h个单位后,a不变,括号内变“减去h”;若向左平移h个单位,括号内应“加上h”,即“左加右减”.
【类型四】y=a(x-h)2的图像与几何图形的综合
把函数y=x2的图像向右平移4个单位后,其顶点为C,并与直线y=x分别相交于A、B两点(点A在点B的左边),求△ABC的面积.
解析:利用二次函数平移规律先确定平移后抛物线解析式,确定C点坐标,再解由得到的二次函数解析式与y=x组成的方程组,确定A、B两点的坐标,最后求△ABC的面积.
解:平移后的函数为y=(x-4)2,顶点C的坐标为(4,0),解方程组得或∵点A在点B的左边,∴A(2,2),B(8,8).∴S△ABC=S△OBC-S△OAC=OC×8-OC×2=12.
方法总结:两个函数交点的横纵坐标与两个解析式组成的方程组的解是一致的.
探究点二:二次函数y=a(x-h)2+k的图像和性质
【类型一】利用平移确定y=a(x-h)2+k的解析式
将抛物线y=x2向右平移2个单位,再向下平移1个单位,所得的抛物线是( )
A.y=(x-2)2-1 B.y=(x-2)2+1
C.y=(x+2)2+1 D.y=(x+2)2-1
解析:由“上加下减”的平移规律可知,将抛物线y=x2向下平移1个单位所得抛物线的解析式为:y=x2-1;由“左加右减”的平移规律可知,将抛物线y=x2-1向右平移2个单位所得抛物线的解析式为y=(x-2)2-1,故选A.
【类型二】y=a(x-h)2+k的图像与几何图形的综合
如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=-2,点C在抛物线上,且位于点A、B之间(C不与A、B重合).若△ABC的周长为a,则四边形AOBC的周长为________.(用含a的式子表示)
解析:如图,∵对称轴为直线x=-2,抛物线经过原点,与x轴负半轴交于点B,∴OB=4,∵由抛物线的对称性知AB=AO,∴四边形AOBC的周长为AO+AC+BC+OB=△ABC的周长+OB=a+4.故答案是:a+4.
方法总结:二次函数的图像关于对称轴对称,本题利用抛物线的这一性质,将四边形的周长转化到已知的线段上去,在这里注意转化思想的应用.
三、板书设计
教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=a(x-h)2与y=a(x-h) 2+k图像与性质,体会数学建模的数形结合思想方法.
第3课时 二次函数y=ax2+bx+c的图像和性质
第1课时 二次函数y=ax2+bx+c的图像和性质
1.会画二次函数y=ax2+bx+c的图像.
2.熟记二次函数y=ax2+bx+c的顶点坐标与对称轴公式.
3.用配方法求二次函数y=ax2+bx+c的顶点坐标与对称轴.
一、情境导入
火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以近似用h=-5t2+150t+10表示.那么经过多长时间,火箭达到它的最高点?
二、合作探究
探究点一:二次函数y=ax2+bx+c的图像和性质
【类型一】二次函数图像的位置与系数符号互判
如图,二次函数y=ax2+bx+c的图像开口向上,图像经过点(-1,2)和(1,0)且与y轴交于负半轴.
(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确的结论的序号是________;
(2)给出四个结论:① abc<0;②2a+b>0;③a+c=1;④a>1.其中正确的结论的序号是________.
解析:由抛物线开口向上,得a>0;由抛物线y轴的交点在负半轴上,得c<0;由抛物线的顶点在第四象限,得->0,又a>0,所以b<0;由抛物线与x轴交点的横坐标是1,得a+b+c=0.因此,第(1)问中正确的结论是①④.在第(1)问的基础上,由a>0、b<0、c<0,可得abc>0;由-<1、a>0,可得2a+b>0;由点(-1,2)在抛物线上,可知a-b+c=2,又a+b+c=0,两式相加得2a+2c=2,所以a+c=1;由a+c=1,c<0,可得a>1.因此,第(2)问中正确的结论是②③④.
方法总结:观察抛物线的位置确定符号的方法:①根据抛物线的开口方向可以确定a的符号.开口向上,a>0;开口向下,a<0.②根据顶点所在象限可以确定b的符号.顶点在第一、四象限,->0,由此得a、b异号;顶点在第二、三象限,-<0,由此得a、b同号.再由①中a的符号,即可确定b的符号.
【类型二】二次函数y=ax2+bx+c的性质
如图,已知二次函数y=-x2+2x,当-1<x<a时,y随x的增大而增大,则实数a的取值范围是( )
A.a>1
B.-1<a≤1
C. a>0
D.-1<a<2
解析:抛物线的对称轴为直线x=-=1,∵函数图像开口向下,在对称轴左侧,y随x的增大而增大,∴a≤1.∵-1<x<a,∴a>-1,∴-1方法总结:抛物线的增减性:当a>0,开口向上时,对称轴左降右升;当a<0,开口向下时,对称轴左升右降.
【类型三】二次函数与一次函数的图像的综合识别
已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图像如图所示,其中正确的是( )
解析:∵A图和D图中直线y=ax+b过一、三、四象限,∴a>0,b<0,∴抛物线y=ax2+bx的开口向上,对称轴x=->0,∴选项A错,选项D正确;B图和C图中直线y=ax+b过二、三、四象限,∴a<0,b<0,∴抛物线的开口向下,且对称轴x=-<0,∴选项B,C错.故选择D.
方法总结:多种函数图像的识别,一般可以先确定其中一种函数的图像(如一次函数),再根据函数图像得到该函数解析式中字母的特点,最后结合二次函数图像的开口方向、对称轴或图像经过的特殊点对选项进行逐一考察,得出结论.
【类型四】抛物线y=ax2+bx+c的平移
在同一平面直角坐标系内,将函数y=2x2+4x-3的图像向右平移2个单位,再向下平移1个单位,得到图像的顶点坐标是( )
A.(-3,-6) B.(1,-4)
C.(1,-6) D.(-3,-4)
解析:二次函数y=2x2+4x-3配方得y=2(x2+2x)-3=2(x2+2x+1-1)-3=2(x+1)2-5,将抛物线y=2(x+1)2-5向右平移2个单位所得抛物线的解析式为y=2(x+1-2)2-5=2(x-1)2-5,再将抛物线y=2(x-1)2-5向下平移1个单位所得抛物线的解析式为y=2(x-1)2-5-1=2(x-1)2-6,此时二次函数图像的顶点为(1,-6),故选择C.
方法总结:二次函数的平移规律:将抛物线y=ax2(a≠0)向上平移k(k>0)个单位所得的函数关系式为y=ax2+k,向下平移k(k>0)个单位所得的函数关系式为y=ax2-k;向左平移h(h>0)个单位所得函数关系式为y=a(x+h)2;向右平移h(h>0)个单位所得函数关系式为y=a(x-h)2;这一规律可简记为“上加下减,左加右减”.
【类型五】二次函数的图像与几何图形的综合应用
如图,已知二次函数y=-x2+bx+c的图像经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图像的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.
解:(1)把A(2,0)、B(0,-6)代入y=-x2+bx+c得:解得∴这个二次函数的解析式为y=-x2+4x-6.
(2)∵该抛物线的对称轴为直线x=-=4,∴点C的坐标为(4,0).∴AC=OC-OA=4-2=2,∴S△ABC=×AC×OB=×2×6=6.
三、板书设计
教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=ax2+bx+c的图像与性质,体会数学建模的数形结合思想方法.