2017-2018学年[状元之路]高中物理人教版选修3-5(课件+学案+随堂检测)

文档属性

名称 2017-2018学年[状元之路]高中物理人教版选修3-5(课件+学案+随堂检测)
格式 zip
文件大小 55.8MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2017-12-13 08:42:25

文档简介

1 能量量子化
[学习目标] 1.了解热辐射和黑体辐射的概念,了解黑体辐射的实验规律.2.了解能量子的概念及其提出的科学过程.3.了解宏观物体和微观粒子的能量变化特点.
一、黑体与黑体辐射
[导学探究] 1.什么是热辐射?这种辐射与物体的温度有何关系?与材料种类及表面状况有关吗?
答案 (1)一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射.
(2)辐射强度按波长的分布情况是:随物体的温度的升高,热辐射中波长较短的电磁波成分越来越强.
(3)有关.
2.什么是黑体辐射?它与热辐射有什么不同?
答案 (1)能够完全吸收各种波长的电磁波的物体,叫做黑体.
(2)黑体辐射电磁波的强度按波长的分布只与温度有关.而热辐射还与其他因素有关(材料的种类和表面状况).
[知识梳理]
1.热辐射
(1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射.
(2)特点:热辐射强度按波长的分布情况随物体的温度而有所不同.
2.黑体
(1)定义:某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体.
(2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.
[即学即用] 判断下列说法的正误.
(1)黑体一定是黑色的物体.( × )
(2)能吸收各种电磁波而不反射电磁波的物体叫黑体.( √ )
(3)只有高温物体才能辐射电磁波.( × )
(4)温度越高,黑体辐射电磁波的强度越大.( √ )
二、黑体辐射的实验规律
[导学探究] 1.黑体辐射电磁波的强度按波长分布如图1所示,当温度从1300 K升高到1700 K时,各种波长的电磁波的辐射强度怎么变?辐射强度极大值对应的波长如何变化?
图1
答案 变强.辐射强度极大值向波长较短的方向移动,即变短.
2.你认为现实生活中存在理想的黑体吗?
答案 现实生活中不存在理想的黑体,实际的物体都能辐射红外线(电磁波),也都能吸收和反射红外线(电磁波),绝对黑体不存在,是理想化的模型.
[知识梳理] 黑体辐射的实验规律
1.随着温度的升高,各种波长的辐射强度都增加.
2.随着温度的升高,辐射强度的极大值向着波长较短的方向移动.
[即学即用] 判断下列说法的正误.
(1)黑体是一种客观存在的物质.( × )
(2)黑体辐射随温度升高强度变强.( √ )
三、能量子
[导学探究] 某激光器能发射波长为λ的激光,那么激光光量子的能量可以取任意值吗?是连续的还是一份一份的?设普朗克常量为h,那么每个激光光量子的能量是多少?如激光发射功率为P,那么每秒钟发射多少个光量子?
答案 光量子的能量不是连续的,而是一份一份的,E=h.个数n==.
[知识梳理] 能量子
1.定义:普朗克认为,振动着的带电微粒的能量只能是某一最小能量值ε的整数倍,当带电微粒辐射或吸收能量时,也是以这个最小能量值为单位一份一份地辐射或吸收的,这个不可再分的最小能量值ε叫做能量子.
2.能量子大小:ε=hν,其中ν是电磁波的频率,h称为普朗克常量.h=6.626×10-34J·s(一般取h=6.63×10-34 J·s).
3.能量的量子化:在微观世界中能量是量子化的,或者说微观粒子的能量是分立的.
[即学即用] 判断下列说法的正误.
(1)微观粒子的能量只能是能量子的整数倍.( √ )
(2)能量子的能量不是任意的,其大小与电磁波的频率成正比.( √ )
一、黑体辐射的规律
1.一般物体与黑体的比较
热辐射特点
吸收、反射特点
一般
物体
辐射电磁波的情况与温度、材料的种类及表面状况有关
既吸收又反射,其能力与材料的种类及入射波长等因素有关
黑体
辐射电磁波的强度按波长的分布只与黑体的温度有关
完全吸收各种入射电磁波,不反射
2.随着温度的升高,黑体辐射的各种波长的辐射强度都有增加,且辐射强度的极大值向波长较短的方向移动.
例1 (多选)黑体辐射的实验规律如图2所示,由图可知(  )
图2
A.随温度升高,各种波长的辐射强度都增加
B.随温度降低,各种波长的辐射强度都增加
C.随温度升高,辐射强度的极大值向波长较短的方向移动
D.随温度降低,辐射强度的极大值向波长较长的方向移动
答案 ACD
解析 由题图可知,随温度升高,各种波长的辐射强度都增加,且辐射强度的极大值向波长较短的方向移动,当温度降低时,上述变化都将反过来.
针对训练 关于对黑体的认识,下列说法正确的是(  )
A.黑体只吸收电磁波,不反射电磁波,看上去是黑的
B.黑体辐射电磁波的强度按波长的分布除与温度有关外,还与材料的种类及表面状况有关
C.黑体辐射电磁波的强度按波长的分布只与温度有关,与材料的种类及表面状况无关
D.如果在一个空腔壁上开一个很小的孔,射入小孔的电磁波在空腔内表面经多次反射和吸收,最终不能从小孔射出,这个空腔就成了一个黑体
答案 C
二、能量子的理解和计算
1.物体在发射或接收能量的时候,只能从某一状态“飞跃”地过渡到另一状态,而不可能停留在不符合这些能量的任何一个中间状态.
2.在宏观尺度内研究物体的运动时我们可以认为:物体的运动是连续的,能量变化是连续的,不必考虑量子化;在研究微观粒子时必须考虑能量量子化.
3.能量子的能量ε=hν,其中h是普朗克常量,ν是电磁波的频率.
例2 人眼对绿光较为敏感,正常人的眼睛接收到波长为530 nm的绿光时,只要每秒钟有6个绿光的光子射入瞳孔,眼睛就能察觉.普朗克常量为6.63×10-34 J·s,光速为3.0×108 m/s,则人眼能察觉到绿光时所接收到的最小功率是(  )
A.2.3×10-18 W B.3.8×10-19 W
C.7.0×10-10 W D.1.2×10-18 W
答案 A
解析 因只要每秒有6个绿光的光子射入瞳孔,眼睛就能察觉.所以察觉到绿光所接收的最小功率P=,式中E=6ε,又ε=hν=h,可解得P= W≈2.3×10-18 W.
例3 (多选)对于带电微粒的辐射和吸收能量时的特点,以下说法正确的是(  )
A.以某一个最小能量值一份一份地辐射或吸收
B.辐射和吸收的能量是某一最小值的整数倍
C.吸收的能量可以是连续的
D.辐射和吸收的能量是量子化的
答案 ABD
解析 带电微粒辐射或吸收能量时是以最小能量值——能量子ε的整数倍或一份一份地辐射或吸收的,是不连续的,故选项A、B、D正确,C错误.
1.在实验室或工厂的高温炉子上开一小孔,小孔可看做黑体,由小孔的热辐射特性,就可以确定炉内的温度.如图3所示是黑体的辐射强度与其辐射光波长的关系图象,则下列说法正确的是(  )
图3
A.T1>T2
B.T1C.随着温度的升高,黑体的辐射强度都有所降低
D.随着温度的升高,辐射强度的极大值向波长较长方向移动
答案 A
2.(多选)关于对普朗克能量子假说的认识,下列说法正确的是(  )
A.振动着的带电微粒的能量只能是某一能量值ε
B.带电微粒辐射或吸收的能量只能是某一最小能量值的整数倍
C.能量子与电磁波的频率成正比
D.这一假说与现实世界相矛盾,因而是错误的
答案 BC
解析 由普朗克能量子假说可知带电微粒辐射或吸收的能量只能是某一最小能量值的整数倍,A错误,B正确;最小能量值ε=hν,C正确.
3.小灯泡的功率P=1 W,设其发出的光向四周均匀辐射,平均波长λ=10-6 m,求小灯泡每秒钟辐射的光子数是多少?(h=6.63×10-34 J·s)
答案 5×1018(个)
解析 每秒钟小灯泡发出的能量为E=Pt=1 J
1个光子的能量:
ε=hν== J
=1.989×10-19 J
小灯泡每秒钟辐射的光子数:
n==≈5×1018(个)
一、选择题(1~6题为单选题,7~8题为多选题)
1.对黑体辐射电磁波的波长分布有影响的因素是(  )
A.温度 B.材料
C.表面状况 D.以上都正确
答案 A
解析 黑体辐射电磁波的强度按波长的分布只与黑体的温度有关.故A正确.
2.能正确解释黑体辐射实验规律的是(  )
A.能量的连续经典理论
B.普朗克提出的能量量子化理论
C.以上两种理论体系任何一种都能解释
D.牛顿提出的微粒说
答案 B
解析 根据黑体辐射的实验规律,随着温度的升高,一方面各种波长的辐射强度都有增加;另一方面,辐射强度的极大值向波长较短的方向移动,只能用普朗克提出的能量量子化理论才能正确解释黑体辐射实验规律,B对.
3.已知某种单色光的波长为λ,在真空中光速为c,普朗克常量为h,则电磁波辐射的能量子ε的值为(  )
A.h B.
C. D.以上均不正确
答案 A
解析 由波速公式c=λν可得:ν=,由光的能量子公式得ε=hν=h,故选项A正确.
4.下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射实验规律的是(  )
答案 A
解析 随着温度的升高,黑体辐射的强度与波长的关系:一方面,各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动.由此规律可知应选A.
5.硅光电池是利用光电效应将光辐射的能量转化为电能.若有N个波长为λ0的光子打在硅光电池极板上,这些光子的总能量为(h为普朗克常量)(  )
A.h B.Nh C.Nhλ0 D.2Nhλ0
答案 B
解析 一个光子的能量ε=hν=h,则N个光子的总能量E=Nh,选项B正确.
6.在自然界生态系统中,蛇与老鼠和其他生物通过营养关系构成食物链,在维持生态平衡方面发挥着重要作用.蛇是老鼠的天敌,它是通过接收热辐射来发现老鼠的.假设老鼠的体温约37 ℃,它发出的最强的热辐射的波长为λmin.根据热辐射理论,λmin与辐射源的绝对温度T的关系近似为Tλmin=2.90×10-3 m·K,则老鼠发出的最强的热辐射的波长为(  )
A.7.8×10-5 m B.9.4×10-6 m
C.1.16×10-4 m D.9.7×10-8 m
答案 B
解析 由Tλmin=2.90×10-3 m·K可得,老鼠发出最强的热辐射的波长为λmin= m= m≈9.4×10-6 m,B正确.
7.2006年度诺贝尔物理学奖授予了两名美国科学家,以表彰他们发现了宇宙微波背景辐射的黑体谱形状及其温度在不同方向上的微小变化.他们的出色工作被誉为是宇宙学研究进入精密科学时代的起点.下列与宇宙微波背景辐射黑体谱相关的说法中正确的是(  )
A.一切物体都在辐射电磁波
B.一般物体辐射电磁波的情况只与温度有关
C.黑体的热辐射实质上是电磁辐射
D.普朗克在研究黑体的热辐射问题中提出了能量子假说
答案 ACD
解析 根据热辐射的定义知,A正确;根据热辐射和黑体辐射的特点知一般物体辐射电磁波的情况除与温度有关外,还与材料种类和表面状况有关,而黑体辐射只与黑体的温度有关,B错误;普朗克在研究黑体辐射时最早提出了能量子假说,他认为能量是一份一份的,每一份是一个能量子,黑体辐射本质上是电磁辐射,故C、D正确.
8.以下关于辐射强度与波长的关系的说法中正确的是(  )
A.物体在某一温度下只能辐射某一固定波长的电磁波
B.当铁块呈现黑色时,说明它的温度不太高
C.当铁块的温度较高时会呈现赤红色,说明此时辐射的电磁波中该颜色的光强度最强
D.早、晚时分太阳呈现红色,而中午时分呈现白色,说明中午时分太阳温度最高
答案 BC
解析 由辐射强度随波长变化关系知:随着温度的升高各种波长的波的辐射强度都增加,而热辐射不是仅辐射一种波长的电磁波,故正确答案为B、C.
二、非选择题
9.二氧化碳能强烈吸收红外长波辐射,这种长波辐射的波长范围约是1.4×10-3~1.6×10-3m,求:(已知普朗克常量h=6.63×10-34 J·s,真空中的光速c=3.0×108 m/s.结果取两位有效数字)
(1)相应的频率范围;
(2)相应的光子能量的范围.
答案 (1)1.9×1011~2.1×1011 Hz (2)1.2×10-22~1.4×10-22 J
解析 (1)由c=λν得ν=.
则求得频率范围为1.9×1011~2.1×1011 Hz.
(2)由ε=hν得能量范围为1.2×10-22~1.4×10-22 J.
10.神光“Ⅱ”装置是我国规模最大的高功率固体激光系统,利用它可获得能量为2 400 J、波长λ=0.35 μm的紫外激光.已知普朗克常量h=6.63×10-34 J·s,则该紫外激光所含光子数为多少?(计算结果保留三位有效数字)
答案 4.23×1021(个)
解析 紫外激光能量子的值为
ε== J≈5.68×10-19 J.
则该紫外激光所含光子数
n==个≈4.23×1021个.
第1节 能量量子化 第2节 光的粒子性
1.(对应要点一)(2011·江苏高考)下列描绘两种温度下黑体辐射强度与波长关系的图17-1-5中,符合黑体辐射实验规律的是(  )
图17-1-5
解析:黑体辐射的强度随着温度的升高,一方面各种波长的辐射强度都增加,另一方面辐射强度的极大值向着波长较短的方向移动,所以A正确。
答案:A
2. (对应要点二)一束绿光照射某金属发生了光电效应,则下列说法正确的是(  )
A.若增加绿光的照射强度,则逸出的光电子数增加
B.若增加绿光的照射强度,则逸出的光电子最大初动能增加
C.若改用紫光照射,则可能不会发生光电效应
D.若改用紫光照射,则逸出的光电子的最大初动能增加
解析:光电效应的规律表明:入射光的频率决定着是否发生光电效应以及发生光电效应时产生的光电子的最大初动能大小,当入射光频率增加时,产生的光电子最大初动能增加;而入射光的强度增加,会使单位时间内逸出的光电子数增加,紫光频率高于绿光,故上述选项正确的是A、D。
答案:AD
3.(对应要点一)氦氖激光器发射波长为6 328 的单色光,则这种单色光的一个光子的能量为________J。若该激光器的发光功率为18 mW,那么该激光器每秒钟发射的光子数为________个。21·cn·jy·com
解析:光能量子ε=hν== J=3.14×10-19 J,1 s内发射的光能量子数:n==个=5.73×1016个。2·1·c·n·j·y
答案:3.14×10-19 5.73×1016
4.(对应要点三)用波长为λ的光照射金属的表面,当遏止电压取某个值时,光电流便被截止。当光的波长改变为原波长的1/n后,已查明使电流截止的遏止电压必须增大到原值的η倍。试计算原入射光的波长λ。(已知该金属的逸出功为W0)21教育网
解析:由爱因斯坦光电效应方程,光电子的初动能Ek=hν-W0,设遏止电压为Uc,eUc=Ek,故eUc=hν-W0。依题意列出:【来源:21·世纪·教育·网】
eUc=h-W0 ①
ηeUc=h-W0 ②
由②-①得:(η-1)eUc=h(n-1) ③
将①代入③得λ=(η-n)/(η-1)。
答案:(η-n)/(η-1)
课件26张PPT。第十七章 1 能量量子化学习目标 
1.了解热辐射和黑体辐射的概念,了解黑体辐射的实验规律.
2.了解能量子的概念及其提出的科学过程.
3.了解宏观物体和微观粒子的能量变化特点.内容索引
知识探究
题型探究
达标检测
知识探究一、黑体与黑体辐射1.什么是热辐射?这种辐射与物体的温度有何关系?与材料种类及表面状况有关吗?答案答案 (1)一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射.
(2)辐射强度按波长的分布情况是:随物体的温度的升高,热辐射中波长较短的电磁波成分越来越强.
(3)有关.2.什么是黑体辐射?它与热辐射有什么不同?答案答案 (1)能够完全吸收各种波长的电磁波的物体,叫做黑体.
(2)黑体辐射电磁波的强度按波长的分布只与温度有关.而热辐射还与其他因素有关(材料的种类和表面状况).1.热辐射
(1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与
有关,所以叫热辐射.
(2)特点:热辐射强度按波长的分布情况随物体的 而有所不同.
2.黑体
(1)定义:某种物体能够 入射的各种波长的电磁波而不发生
,这种物体就是绝对黑体,简称黑体.
(2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑体的 有关.物体的温度温度完全吸收反射温度判断下列说法的正误.
(1)黑体一定是黑色的物体.(  )
(2)能吸收各种电磁波而不反射电磁波的物体叫黑体.(  )
(3)只有高温物体才能辐射电磁波.(  )
(4)温度越高,黑体辐射电磁波的强度越大.(  )×√×√二、黑体辐射的实验规律1.黑体辐射电磁波的强度按波长分布如图1所示,当温度从1300 K升高到1700 K时,各种波长的电磁波的辐射强度怎么变?辐射强度极大值对应的波长如何变化?图1答案 变强.辐射强度极大值向波长较短的方向移动,即变短.答案2.你认为现实生活中存在理想的黑体吗?答案答案 现实生活中不存在理想的黑体,实际的物体都能辐射红外线(电磁波),也都能吸收和反射红外线(电磁波),绝对黑体不存在,是理想化的模型.黑体辐射的实验规律
1.随着温度的升高,各种波长的辐射强度都 .
2.随着温度的升高,辐射强度的极大值向着波长 的方向移动.增加较短判断下列说法的正误.
(1)黑体是一种客观存在的物质.(  )
(2)黑体辐射随温度升高强度变强.(  )×答案√三、能量子某激光器能发射波长为λ的激光,那么激光光量子的能量可以取任意值吗?是连续的还是一份一份的?设普朗克常量为h,那么每个激光光量子的能量是多少?如激光发射功率为P,那么每秒钟发射多少个光量子?答案能量子
1.定义:普朗克认为,振动着的带电微粒的能量只能是某一最小能量值ε的 ,当带电微粒辐射或吸收能量时,也是以这个最小能量值为单位 地辐射或吸收的,这个不可再分的最小能量值ε叫做 .
2.能量子大小:ε= ,其中ν是电磁波的频率,h称为 .h=6.626×10-34J·s(一般取h=6.63×10-34 J·s).
3.能量的量子化:在微观世界中能量是 的,或者说微观粒子的能量是 的.整数倍一份一份能量子hν量子化分立普朗克常量判断下列说法的正误.
(1)微观粒子的能量只能是能量子的整数倍.(  )
(2)能量子的能量不是任意的,其大小与电磁波的频率成正比.(  )√答案√
题型探究一、黑体辐射的规律1.一般物体与黑体的比较2.随着温度的升高,黑体辐射的各种波长的辐射强度都有增加,且辐射强度的极大值向波长较短的方向移动.例1 (多选)黑体辐射的实验规律如图2所示,由图
可知
A.随温度升高,各种波长的辐射强度都增加
B.随温度降低,各种波长的辐射强度都增加
C.随温度升高,辐射强度的极大值向波长较短的
方向移动
D.随温度降低,辐射强度的极大值向波长较长的方向移动图2√答案√√解析 由题图可知,随温度升高,各种波长的辐射强度都增加,且辐射强度的极大值向波长较短的方向移动,当温度降低时,上述变化都将反过来.解析针对训练 关于对黑体的认识,下列说法正确的是
A.黑体只吸收电磁波,不反射电磁波,看上去是黑的
B.黑体辐射电磁波的强度按波长的分布除与温度有关外,还与材料的种
类及表面状况有关
C.黑体辐射电磁波的强度按波长的分布只与温度有关,与材料的种类及
表面状况无关
D.如果在一个空腔壁上开一个很小的孔,射入小孔的电磁波在空腔内表面
经多次反射和吸收,最终不能从小孔射出,这个空腔就成了一个黑体√答案二、能量子的理解和计算1.物体在发射或接收能量的时候,只能从某一状态“飞跃”地过渡到另一状态,而不可能停留在不符合这些能量的任何一个中间状态.
2.在宏观尺度内研究物体的运动时我们可以认为:物体的运动是连续的,能量变化是连续的,不必考虑量子化;在研究微观粒子时必须考虑能量量子化.
3.能量子的能量ε=hν,其中h是普朗克常量,ν是电磁波的频率.例2 人眼对绿光较为敏感,正常人的眼睛接收到波长为530 nm的绿光时,只要每秒钟有6个绿光的光子射入瞳孔,眼睛就能察觉.普朗克常量为6.63×10-34 J·s,光速为3.0×108 m/s,则人眼能察觉到绿光时所接收到的最小功率是
A.2.3×10-18 W B.3.8×10-19 W
C.7.0×10-10 W D.1.2×10-18 W√?答案解析例3 (多选)对于带电微粒的辐射和吸收能量时的特点,以下说法正确的是
A.以某一个最小能量值一份一份地辐射或吸收
B.辐射和吸收的能量是某一最小值的整数倍
C.吸收的能量可以是连续的
D.辐射和吸收的能量是量子化的√答案√√解析 带电微粒辐射或吸收能量时是以最小能量值——能量子ε的整数倍或一份一份地辐射或吸收的,是不连续的,故选项A、B、D正确,C错误.解析
达标检测1.在实验室或工厂的高温炉子上开一小孔,小孔可看做黑体,由小孔的热辐射特性,就可以确定炉内的温度.如图3所示是黑体的辐射强度与其辐射光波长的关系图象,则下列说法正确的是
A.T1>T2
B.T1C.随着温度的升高,黑体的辐射强度都有所降低
D.随着温度的升高,辐射强度的极大值向波长较长
方向移动√123答案图32.(多选)关于对普朗克能量子假说的认识,下列说法正确的是
A.振动着的带电微粒的能量只能是某一能量值ε
B.带电微粒辐射或吸收的能量只能是某一最小能量值的整数倍
C.能量子与电磁波的频率成正比
D.这一假说与现实世界相矛盾,因而是错误的123√解析答案√解析 由普朗克能量子假说可知带电微粒辐射或吸收的能量只能是某一最小能量值的整数倍,A错误,B正确;
最小能量值ε=hν,C正确.3.小灯泡的功率P=1 W,设其发出的光向四周均匀辐射,平均波长λ=10-6 m,求小灯泡每秒钟辐射的光子数是多少?(h=6.63×10-34 J·s)答案 5×1018(个)解析 每秒钟小灯泡发出的能量为E=Pt=1 J
1个光子的能量:小灯泡每秒钟辐射的光子数:123解析答案2 光的粒子性
[学习目标] 1.了解光电效应及其实验规律,以及光电效应与电磁理论的矛盾.2.知道爱因斯坦光电效应方程及应用.3.了解康普顿效应及其意义,了解光子的动量.
一、光电效应及其实验规律
[导学探究] 如图1所示,取一块锌板,用砂纸将其一面擦一遍,去掉表面的氧化层,连接在验电器上(弧光灯发射紫外线).
图1
(1)用弧光灯照射锌板,看到的现象为_____________________________________________,
说明________________________________________________________________________.
(2)在弧光灯和锌板之间插入一块普通玻璃板,再用弧光灯照射,看到的现象为________________________________________________________________________,
说明________________________________________________________________________.
(3)撤去弧光灯,换用白炽灯发出的强光照射锌板,并且照射较长时间,看到的现象为________________________________________________________________________,
说明________________________________________________________________________.
答案 (1)验电器指针偏角张开 锌板带电了.弧光灯发出的紫外线照射到锌板上,在锌板表面发射出光电子,从而使锌板带上了正电
(2)指针偏角明显减小 锌板产生光电效应是光中紫外线照射的结果而不是可见光
(3)观察不到指针的偏转 可见光不能使锌板发生光电效应
[知识梳理]
1.光电效应:照射到金属表面的光,能使金属中的电子从表面逸出的现象.
2.光电子:光电效应中发射出来的电子.
3.光电效应的实验规律
(1)存在着饱和电流:在光的颜色不变的情况下,入射光越强,饱和电流越大.
(2)存在着遏止电压和截止频率:入射光的频率低于截止频率时不能(填“能”或“不能”)发生光电效应.
(3)光电效应具有瞬时性:光电效应中产生电流的时间不超过10-9s.
4.逸出功:使电子脱离某种金属所做功的最小值,用W0表示,不同金属的逸出功不同.
[即学即用] 判断下列说法的正误.
(1)光电效应中“光”指的是可见光.( × )
(2)能否发生光电效应,取决于光的强度.( × )
(3)光电子不是光子.( √ )
(4)逸出功的大小与入射光无关.( √ )
二、爱因斯坦的光电效应方程
[导学探究] 用如图2所示的装置研究光电效应现象.所用光子能量为2.75 eV的光照射到光电管上时发生了光电效应,电流表的示数不为零;移动滑动变阻器的滑动触头,发现当电压表的示数大于或等于1.7 V时,电流表示数为0.
图2
(1)光电子的最大初动能是多少?遏止电压为多少?
(2)光电管阴极的逸出功又是多少?
(3)当滑动触头向a端滑动时,光电流变大还是变小?
(4)当入射光的频率增大时,光电子最大初动能如何变化?遏止电压呢?
答案 (1)1.7 eV 1.7 V
(2)W0=hν-Ekm=2.75 eV-1.7 eV=1.05 eV
(3)变大 (4)变大 变大
[知识梳理]
1.光子说:在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν.其中h=6.63×10-34 J·s,称为普朗克常量.
2.最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值.
3.遏止电压与截止频率
(1)遏止电压:使光电流减小到零的反向电压Uc.
(2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率.
4.光电效应方程
(1)表达式:hν=Ek+W0或Ek=hν-W0.
(2)物理意义:金属中电子吸收一个光子获得的能量是hν,这些能量一部分用于克服金属的逸出功W0,剩下的表现为逸出后电子的最大初动能.
(3)光电效应方程说明了产生光电效应的条件
若有光电子逸出,则光电子的最大初动能必须大于零,即Ek=hν-W0>0,亦即hν>W0,ν>=νc,而νc=恰好是光电效应的截止频率.
5.Ek-ν曲线
如图3所示是光电子最大初动能Ek随入射光频率ν的变化曲线.这里,横轴上的截距是截止频率(或极限频率);纵轴上的截距是逸出功的负值;斜率为普朗克常量.
图3
[即学即用] 判断下列说法的正误.
(1)从金属表面出来的光电子的最大初动能越大,这种金属的逸出功越小.( × )
(2)光电子的最大初动能与入射光的频率成正比.( × )
(3)入射光若能使某金属发生光电效应,则入射光的强度越大,照射出的光电子越多.( √ )
(4)遏止电压的大小与入射光的频率有关,与入射光的光强无关.( √ )
三、康普顿效应
[导学探究] 太阳光从小孔射入室内时,我们从侧面可以看到这束光;白天的天空各处都是亮的;宇航员在太空中会发现尽管太阳光耀眼刺目,其他方向的天空却是黑的,为什么?
答案 在地球上存在着大气,太阳光经大气中微粒散射后传向各个方向,而在太空中的真空环境下光不再散射只向前传播.
[知识梳理]
1.光的散射
光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射.
2.康普顿效应
美国物理学家康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除了与入射波长λ0相同的成分外,还有波长大于λ0的成分,这个现象称为康普顿效应.
3.康普顿效应的意义
康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的粒子性的一面.
4.光子的动量
(1)表达式:p=.
(2)说明:在康普顿效应中,入射光子与晶体中电子碰撞时,把一部分动量转移给电子,光子的动量变小.因此,有些光子散射后波长变大.
[即学即用] 判断以下说法的正误.
(1)光子的动量与波长成反比.( √ )
(2)光子发生散射后,其动量大小发生变化,但光子的频率不发生变化.( × )
(3)有些光子发生散射后,其波长变大.( √ )
一、光电效应现象及其实验规律
1.光电效应的实质:光现象转化为,电现象.
2.光电效应中的光包括不可见光和可见光.
3.光电子:光电效应中发射出来的电子,其本质还是电子.
4.能不能发生光电效应由入射光的频率决定,与入射光的强度无关.
5.发生光电效应时,产生的光电子数与入射光的频率无关,与入射光的强度有关.
6.光电效应与光的电磁理论的矛盾
按光的电磁理论,应有:
(1)光越强,光电子的初动能越大,遏止电压与光的强弱有关.
(2)不存在截止频率,任何频率的光都能产生光电效应.
(3)在光很弱时,放出电子的时间应远大于10-9 s.
例1 一验电器与锌板相连(如图4所示),用一紫外线灯照射锌板,关灯后,验电器指针保持一定偏角.
图4
(1)现用一带负电的金属小球与锌板接触,则验电器指针偏角将________(填“增大”“减小”或“不变”).
(2)使验电器指针回到零,再用相同强度的钠灯发出的黄光照射锌板,验电器指针无偏转.那么,若改用强度更大的红外线灯照射锌板,可观察到验电器指针________(填“有”或“无”)偏转.
答案 (1)减小 (2)无
解析 (1)当用紫外线灯照射锌板时,锌板发生光电效应,锌板放出光电子而带上正电,此时与锌板连在一起的验电器也带上了正电,故指针发生了偏转.当带负电的金属小球与锌板接触后,中和了一部分正电荷,从而使验电器的指针偏角减小.(2)使验电器指针回到零,用钠灯发出的黄光照射锌板,验电器指针无偏转,说明钠灯发出的黄光的频率小于锌的极限频率,而红外线比黄光的频率还要低,更不可能使锌板发生光电效应.能否发生光电效应与入射光的强弱无关.
例2 入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么(  )
A.从光照至金属表面上到发射出光电子之间的时间间隔将明显增加
B.逸出的光电子的最大初动能将减小
C.单位时间内从金属表面逸出的光电子数目将减少
D.有可能不发生光电效应
答案 C
解析 发生光电效应几乎是瞬时的,选项A错误.入射光的强度减弱,说明单位时间内的入射光子数目减少;频率不变,说明光子能量不变,逸出的光电子的最大初动能也就不变,选项B错误.入射光子的数目减少,逸出的光电子数目也减少,故选项C正确.入射光照射到某金属上发生光电效应,说明入射光频率不低于这种金属的极限频率,入射光的强度减弱而频率不变,同样能发生光电效应,故选项D错误.
针对训练1 (多选)如图5所示,电路中所有元件完好,光照射到光电管上,灵敏电流计中没有电流通过.其原因可能是(  )
图5
A.入射光太弱
B.入射光波长太长
C.光照时间太短
D.电源正、负极接反
答案 BD
解析 金属存在截止频率,超过截止频率的光照射金属时才会有光电子射出.射出的光电子的动能随频率的增大而增大,动能小时不能克服反向电压,也不会有光电流.入射光的频率低于截止频率,不能产生光电效应,与光照强弱无关,选项B正确,A错误;电路中电源正、负极接反,对光电管加了反向电压,若该电压超过了遏止电压,也没有光电流产生,D正确;光电效应的产生与光照时间无关,C错误.
二、光电效应方程的理解与应用
1.光电效应方程实质上是能量守恒方程.
(1)能量为ε=hν的光子被电子所吸收,电子把这些能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面时的动能.
(2)如果克服吸引力做功最少为W0,则电子离开金属表面时动能最大为Ek,根据能量守恒定律可知:Ek=hν-W0.
2.光电效应规律中的两条线索、两个关系:
(1)两条线索:
(2)两个关系:
光强→光子数目多→发射光电子多→光电流大;
光子频率高→光子能量大→产生光电子的最大初动能大.
例3 在光电效应实验中,某金属的截止频率相应的波长为λ0,该金属的逸出功为______.若用波长为λ(λ<λ0)的单色光做该实验,则其遏止电压为______.已知电子的电荷量、真空中的光速和普朗克常量分别为e、c和h.
答案  
解析 由光电效应方程知,光电子的最大初动能Ek=hν-W0,其中金属的逸出功W0=hν0,又由c=λν知W0=,用波长为λ的单色光照射时,其Ek=-=hc.又因为eU=Ek,所以遏止电压U==.
例4 如图6所示,当开关K断开时,用光子能量为2.5 eV的一束光照射阴极P,发现电流表读数不为零.合上开关,调节滑动变阻器,发现当电压表读数小于0.6 V时,电流表读数仍不为零.当电压表读数大于或等于0.6 V时,电流表读数为零.由此可知阴极材料的逸出功为(  )
图6
A.1.9 eV B.0.6 eV
C.2.5 eV D.3.1 eV
答案 A
解析 由题意知光电子的最大初动能为
Ek=eUc=0.6 eV
所以根据光电效应方程Ek=hν-W0可得
W0=hν-Ek=(2.5-0.6) eV=1.9 eV.
针对训练2 (多选)一单色光照到某金属表面时,有光电子从金属表面逸出,下列说法中正确的是(  )
A.只增大入射光的频率,金属逸出功将减小
B.只延长入射光照射时间,光电子的最大初动能将不变
C.只增大入射光的频率,光电子的最大初动能将增大
D.只增大入射光的频率,光电子逸出所经历的时间将缩短
答案 BC
解析 金属的逸出功由金属本身的构成决定,与入射光的频率无关,选项A错误;根据爱因斯坦光电效应方程Ek=hν-W0可知,当金属的极限频率确定时,光电子的最大初动能取决于入射光的频率,与光照强度、照射时间、光子数目无关,选项B、C正确,D错误.
1.逸出功W0对应着某一截止频率νc,即W0=hνc,只有入射光的频率ν≥νc时才有光电子逸出,即才能发生光电效应.
2.对于某一金属(νc一定),入射光的频率决定着能否产生光电效应及光电子的最大初动能,而与入射光的强度无关.
3.逸出功和截止频率均由金属本身决定,与其他因素无关.
1.(多选)如图7所示,用弧光灯照射擦得很亮的锌板,验电器指针张开一个角度,则下列说法中正确的是(  )
图7
A.用紫外线照射锌板,验电器指针会发生偏转
B.用红光照射锌板,验电器指针会发生偏转
C.锌板带的是负电荷
D.使验电器指针发生偏转的是正电荷
答案 AD
解析 将擦得很亮的锌板与验电器连接,用弧光灯照射锌板(弧光灯发出紫外线),验电器指针张开一个角度,说明锌板带了电,进一步研究表明锌板带正电.这说明在紫外线的照射下,锌板中有一部分自由电子从表面飞出,锌板带正电,选项A、D正确.红光不能使锌板发生光电效应.
2.(多选)下列对光子的认识,正确的是(  )
A.光子说中的光子就是牛顿在微粒说中所说的微粒
B.光子说中的光子就是光电效应的光电子
C.在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光量子,简称光子
D.光子的能量跟光的频率成正比
答案 CD
解析 根据光子说,在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光量子,简称光子.而牛顿的“微粒说”中的微粒指宏观世界的微小颗粒.光电效应中,金属内的电子吸收光子后克服原子核的库仑引力等束缚,逸出金属表面,成为光电子,故A、B选项错误,C选项正确;由E=hν知,光子能量E与其频率ν成正比,故D选项正确.
3.利用光电管研究光电效应实验如图8所示,用频率为ν的可见光照射阴极K,电流表中有电流通过,则(  )
图8
A.用紫外线照射,电流表不一定有电流通过
B.用红光照射,电流表一定无电流通过
C.用频率为ν的可见光照射K,当滑动变阻器的滑动触头移到A端时,电流表中一定无电流通过
D.用频率为ν的可见光照射K,当滑动变阻器的滑动触头向B端滑动时,电流表示数可能不变
答案 D
解析 因紫外线的频率比可见光的频率高,所以用紫外线照射时,电流表中一定有电流通过,选项A错误.因不知阴极K的截止频率,所以用红光照射时,不一定发生光电效应,所以选项B错误.即使UAK=0,电流表中也可能有电流通过,所以选项C错误.当滑动触头向B端滑动时,UAK增大,阳极A吸收光电子的能力增强,光电流会增大,当所有光电子都到达阳极A时,电流达到最大,即饱和电流.若在滑动前,电流已经达到饱和电流,那么即使增大UAK,光电流也不会增大,所以选项D正确.
4.几种金属的逸出功W0见下表:
金属





W0(×10-19J)
7.26
5.12
3.66
3.60
3.41
用一束可见光照射上述金属的表面,请通过计算说明哪些能发生光电效应.已知该可见光的波长范围为4.0×10-7~7.6×10-7 m,普朗克常量h=6.63×10-34 J·s.
答案 钠、钾、铷能发生光电效应
解析 光子的能量E=,取λ=4.0×10-7 m,则E≈5.0×10-19J,根据E>W0判断,钠、钾、铷能发生光电效应.
一、选择题(1~8题为单选题,9~10题为多选题)
1.当用一束紫外线照射锌板时,产生了光电效应,这时(  )
A.锌板带负电
B.有正离子从锌板逸出
C.有电子从锌板逸出
D.锌板会吸附空气中的正离子
答案 C
解析 当用一束紫外线照射锌板时,产生了光电效应,有电子从锌板逸出,锌板带正电,选项C正确,A、B、D错误.
2.某单色光照射某金属时不能产生光电效应,则下述措施中可能使该金属产生光电效应的是(  )
A.延长光照时间
B.增大光的强度
C.换用波长较短的光照射
D.换用频率较低的光照射
答案 C
解析 光照射金属时能否产生光电效应,取决于入射光的频率是否大于等于金属的极限频率,与入射光的强度和照射时间无关,故选项A、B、D均错误;又因ν=,所以选项C正确.
3.如图1所示,在研究光电效应的实验中,发现用一定频率的A单色光照射光电管时,电流表指针会发生偏转,而用另一频率的B单色光照射光电管时不发生光电效应,则(  )
图1
A.A光的强度大于B光的强度
B.B光的频率大于A光的频率
C.用A光照射光电管时流过电流表G的电流方向是由a流向b
D.用A光照射光电管时流过电流表G的电流方向是由b流向a
答案 C
解析 根据产生光电效应的条件可知选项A、B均错误;电流的方向与正电荷定向移动的方向相同,与负电荷定向移动的方向相反,故选项C正确,D错误.
4.某金属的逸出功为2.3 eV,这意味着(  )
A.这种金属内部的电子克服原子核引力做2.3 eV的功即可脱离表面
B.这种金属表层的电子克服原子核引力做2.3 eV的功即可脱离表面
C.要使这种金属有电子逸出,入射光子的能量可能小于2.3 eV
D.这种金属受到光照时若有电子逸出,则电子离开金属表面时的动能至少等于2.3 eV
答案 B
解析 逸出功指原子的最外层电子脱离原子核克服引力做的功,选项B正确.
5.如图2所示是光电效应中光电子的最大初动能Ek与入射光频率ν的关系图象.从图中可知(  )
图2
A.Ek与ν成正比
B.入射光频率必须小于极限频率νc时,才能产生光电效应
C.对同一种金属而言,Ek仅与ν有关
D.Ek与入射光强度成正比
答案 C
解析 由Ek=hν-W0知C正确,A、B、D错误.
6.分别用波长为λ和λ的单色光照射同一金属板,发出的光电子的最大初动能之比为1∶2,以h表示普朗克常量,c表示真空中的光速,则此金属板的逸出功为(  )
A. B. C. D.
答案 A
解析 根据光电效应方程得
Ek1=h-W0①
Ek2=h-W0②
又Ek2=2Ek1③
联立①②③得W0=,A正确.
7.研究光电效应的电路如图3所示.用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K),钠极板发射出的光电子被阳极A吸收,在电路中形成光电流.下列光电流I与A、K之间的电压UAK的关系图象中,正确的是(  )
图3
答案 C
解析 用频率相同的光照射同一金属时,发射出的光电子的最大初动能相同,所以遏止电压相同;饱和光电流与光的强度有关,光的强度越大,饱和光电流越大,故选项C正确.
8.实验得到金属钙的光电子的最大初动能Ekm与入射光频率ν的关系如图4所示.下表中列出了几种金属的截止频率和逸出功,参照下表可以确定的是(  )
图4
金属



截止频率ν0/1014Hz
10.95
7.73
5.53
逸出功W0/eV
4.54
3.20
2.29
A.如用金属钨做实验得到的Ekm-ν图线也是一条直线,其斜率比图中直线的斜率大
B.如用金属钠做实验得到的Ekm-ν图线也是一条直线,其斜率比图中直线的斜率大
C.如用金属钠做实验得到的Ekm-ν图线也是一条直线,设其延长线与纵轴交点的坐标为(0,-Ek2),则Ek2<Ek1
D.如用金属钨做实验,当入射光的频率ν<ν1时,可能会有光电子逸出
答案 C
解析 由光电效应方程Ekm=hν-W0可知Ekm-ν图线是直线,且斜率相同,A、B项错;由表中所列的截止频率和逸出功数据可知C项正确,D项错误.
9.现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是(  )
A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大
B.入射光的频率变高,饱和光电流变大
C.入射光的频率变高,光电子的最大初动能变大
D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生
答案 AC
解析 在发生光电效应时,饱和光电流大小由光照强度来决定,与频率无关,光照强度越大饱和光电流越大,因此A正确,B错误;根据Ekm=hν-W0可知,对于同一光电管,逸出功W0不变,当频率变高时,最大初动能Ekm变大,因此C正确;由光电效应规律可知,当频率低于截止频率时无论光照强度多大,都不会有光电流产生,因此D错误.
10.图5为一真空光电管的应用电路,其阴极金属材料的极限频率为4.5×1014 Hz,则以下判断正确的是(  )
图5
A.发生光电效应时,电路中光电流的饱和值取决于入射光的频率
B.发生光电效应时,电路中光电流的饱和值取决于入射光的强度
C.用λ=0.5 μm的光照射光电管时,电路中有光电流产生
D.光照射时间越长,电路中的电流越大
答案 BC
解析 在光电管中若发生了光电效应,单位时间内发射光电子的数目只与入射光的强度有关,光电流的饱和值只与单位时间内发射光电子的数目有关.据此可判断A、D错误,B正确.波长λ=0.5 μm的光子的频率ν== Hz=6×1014 Hz>4.5×1014 Hz,可发生光电效应,所以C正确.
二、 非选择题
11.在某次光电效应实验中,得到的遏止电压Uc与入射光的频率ν的关系如图6所示.若该直线的斜率和纵截距分别为k和b,电子电荷量的绝对值为e,则普朗克常量可表示为________,所用材料的逸出功可表示为________.
图6
答案 ek -eb
解析 光电效应中,入射光子能量hν,克服逸出功W0后多余的能量转换为电子动能,eUc=hν-W0,整理得Uc=ν-,斜率即=k,所以普朗克常量h=ek,纵截距为b,即eb=-W0,所以逸出功W0=-eb.
12.小明用金属铷为阴极的光电管观测光电效应现象,实验装置示意图如图7甲所示.已知普朗克常量h=6.63×10-34 J·s.
图7
(1)图甲中电极A为光电管的____________(选填“阴极”或“阳极”);
(2)实验中测得铷的遏止电压Uc与入射光频率ν之间的关系如图乙所示,则铷的截止频率νc=________Hz,逸出功W0=________J;
(3)如果实验中入射光的频率ν=7.00×1014 Hz,则产生的光电子的最大初动能Ek=________J.
答案 (1)阳极
(2)5.15×1014 3.41×10-19 (3)1.23×10-19
解析 (1)在光电效应中,电子向A极运动,故电极A为光电管的阳极.(2)由题图可知,铷的截止频率νc为5.15×1014 Hz,逸出功W0=hνc=6.63×10-34×5.15×1014 J≈3.41×10-19 J.(3)当入射光的频率为ν=7.00×1014 Hz时,由Ek=hν-hνc得,光电子的最大初动能为Ek=6.63×10-34×(7.00-5.15)×1014 J≈1.23×10-19 J.
课件45张PPT。第十七章 2 光的粒子性学习目标 
1.了解光电效应及其实验规律,以及光电效应与电磁理论的矛盾.
2.知道爱因斯坦光电效应方程及应用.
3.了解康普顿效应及其意义,了解光子的动量.内容索引
知识探究
题型探究
达标检测
知识探究一、光电效应及其实验规律如图1所示,取一块锌板,用砂纸将其一面擦一遍,去掉表面的氧化层,连接在验电器上(弧光灯发射紫外线).
(1)用弧光灯照射锌板,看到的现象为_________
___________,说明________________________
______________________________________________________________.答案图1验电器指针偏角张开锌板带电了.弧光灯发出的紫外线照射到锌板上,在锌板表面发射出光电子,从而使锌板带上了正电(2)在弧光灯和锌板之间插入一块普通玻璃板,再用弧光灯照射,看到的现象为_____________
_____,说明______________________________
_______________________.答案减小锌板产生光电效应是光中紫外线照射的结果而不是可见光指针偏角明显(3)撤去弧光灯,换用白炽灯发出的强光照射锌
板,并且照射较长时间,看到的现象为_______
_____________,说明_____________________________.观察不到指针的偏转可见光不能使锌板发生光电效应1.光电效应:照射到金属表面的光,能使金属中的 从表面逸出的现象.
2.光电子:光电效应中发射出来的 .
3.光电效应的实验规律
(1)存在着 电流:在光的颜色不变的情况下,入射光越强,饱和电流 .电子电子饱和越大(2)存在着遏止电压和 频率:入射光的频率低于截止频率时 (填“能”或“不能”)发生光电效应.
(3)光电效应具有 性:光电效应中产生电流的时间不超过10-9s.
4.逸出功:使电子脱离某种金属所做功的 值,用W0表示,不同金属的逸出功 .截止不能瞬时最小不同判断下列说法的正误.
(1)光电效应中“光”指的是可见光.(  )
(2)能否发生光电效应,取决于光的强度.(  )
(3)光电子不是光子.(  )
(4)逸出功的大小与入射光无关.(  )××√√二、爱因斯坦的光电效应方程用如图2所示的装置研究光电效应现象.所用光子能量为2.75 eV的光照射到光电管上时发生了光电效应,电流表的示数不为零;移动滑动变阻器的滑动触头,发现当电压表的示数大于或等于1.7 V时,电流表示数为0.
(1)光电子的最大初动能是多少?遏止电压为多少?图2答案 1.7 eV 1.7 V答案(2)光电管阴极的逸出功又是多少?答案 W0=hν-Ekm=2.75 eV-1.7 eV=1.05 eV答案(3)当滑动触头向a端滑动时,光电流变大还是变小?答案 变大(4)当入射光的频率增大时,光电子最大初动能如何变化?遏止电压呢?答案 变大 变大1.光子说:在空间传播的光是不连续的,而是 的,每一份叫做一个光的能量子,简称光子,光子的能量ε= .其中h=6.63×10-34 J·s,称为普朗克常量.
2.最大初动能:发生光电效应时,金属表面上的 吸收光子后克服原子核的引力逸出时所具有的动能的 值.
3.遏止电压与截止频率
(1)遏止电压:使光电流减小到零的反向电压Uc.
(2)截止频率:能使某种金属发生光电效应的 频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率.一份一份hν电子最大最小4.光电效应方程
(1)表达式: 或 .
(2)物理意义:金属中电子吸收一个光子获得的能量是 ,这些能量一部分用于克服金属的 ,剩下的表现为逸出后电子的 .
(3)光电效应方程说明了产生光电效应的条件
若有光电子逸出,则光电子的最大初动能必须大于零,即Ek=hν-W0>0,
亦即hν> ,ν> =νc,而νc= 恰好是光电效应的截止频率.hν=Ek+W0Ek=hν-W0hν逸出功W0最大初动能W05.Ek-ν曲线
如图3所示是光电子最大初动能Ek随入射光频率ν的变化曲线.这里,横轴上的截距是 ;
纵轴上的截距是 ;斜率为 .图3截止频率(或极限频率)逸出功的负值普朗克常量判断下列说法的正误.
(1)从金属表面出来的光电子的最大初动能越大,这种金属的逸出功越小.(  )
(2)光电子的最大初动能与入射光的频率成正比.(  )
(3)入射光若能使某金属发生光电效应,则入射光的强度越大,照射出的光电子越多.(  )
(4)遏止电压的大小与入射光的频率有关,与入射光的光强无关.
(  )×答案×√√三、康普顿效应太阳光从小孔射入室内时,我们从侧面可以看到这束光;白天的天空各处都是亮的;宇航员在太空中会发现尽管太阳光耀眼刺目,其他方向的天空却是黑的,为什么?答案答案 在地球上存在着大气,太阳光经大气中微粒散射后传向各个方向,而在太空中的真空环境下光不再散射只向前传播.1.光的散射
光在介质中与 相互作用,因而传播方向 ,这种现象叫做光的散射.
2.康普顿效应
美国物理学家康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除了与入射波长λ0相同的成分外,还有波长 λ0的成分,这个现象称为康普顿效应.物质微粒发生改变大于3.康普顿效应的意义
康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的 的一面.
4.光子的动量
(1)表达式:p=__.
(2)说明:在康普顿效应中,入射光子与晶体中电子碰撞时,把一部分动量转移给电子,光子的动量变小.因此,有些光子散射后波长变大.粒子性?判断以下说法的正误.
(1)光子的动量与波长成反比.(  )
(2)光子发生散射后,其动量大小发生变化,但光子的频率不发生变化.
(  )
(3)有些光子发生散射后,其波长变大.(  )√答案×√
题型探究一、光电效应现象及其实验规律1.光电效应的实质:光现象 电现象.
2.光电效应中的光包括不可见光和可见光.
3.光电子:光电效应中发射出来的电子,其本质还是电子.
4.能不能发生光电效应由入射光的频率决定,与入射光的强度无关.
5.发生光电效应时,产生的光电子数与入射光的频率无关,与入射光的强度有关.6.光电效应与光的电磁理论的矛盾
按光的电磁理论,应有:
(1)光越强,光电子的初动能越大,遏止电压与光的强弱有关.
(2)不存在截止频率,任何频率的光都能产生光电效应.
(3)在光很弱时,放出电子的时间应远大于10-9 s.例1 一验电器与锌板相连(如图4所示),用一紫外线灯照射锌板,关灯后,验电器指针保持一定偏角.图4解析(1)现用一带负电的金属小球与锌板接触,则验电器指针偏角将_____(填“增大”“减小”或“不变”).减小答案解析 当用紫外线灯照射锌板时,锌板发生光电效应,锌板放出光电子而带上正电,此时与锌板连在一起的验电器也带上了正电,故指针发生了偏转.当带负电的金属小球与锌板接触后,中和了一部分正电荷,从而使验电器的指针偏角减小.(2)使验电器指针回到零,再用相同强度的钠灯发出的黄光照射锌板,验电器指针无偏转.那么,若改用强度更大的红外线灯照射锌板,可观察到验电器指针_____(填“有”或“无”)偏转.解析无答案解析 使验电器指针回到零,用钠灯发出的黄光照射锌板,验电器指针无偏转,说明钠灯发出的黄光的频率小于锌的极限频率,而红外线比黄光的频率还要低,更不可能使锌板发生光电效应.能否发生光电效应与入射光的强弱无关.例2 入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,那么
A.从光照至金属表面上到发射出光电子之间的时间间隔将明显增加
B.逸出的光电子的最大初动能将减小
C.单位时间内从金属表面逸出的光电子数目将减少
D.有可能不发生光电效应√答案解析解析 发生光电效应几乎是瞬时的,选项A错误.
入射光的强度减弱,说明单位时间内的入射光子数目减少;频率不变,说明光子能量不变,逸出的光电子的最大初动能也就不变,选项B错误.
入射光子的数目减少,逸出的光电子数目也减少,故选项C正确.
入射光照射到某金属上发生光电效应,说明入射光频率不低于这种金属的极限频率,入射光的强度减弱而频率不变,同样能发生光电效应,故选项D错误.针对训练1 (多选)如图5所示,电路中所有元件完好,光照射到光电管上,灵敏电流计中没有电流通过.其原因可能是
A.入射光太弱
B.入射光波长太长
C.光照时间太短
D.电源正、负极接反图5√答案解析√解析 金属存在截止频率,超过截止频率的光照射金属时才会有光电子射出.射出的光电子的动能随频率的增大而增大,动能小时不能克服反向电压,也不会有光电流.入射光的频率低于截止频率,不能产生光电效应,与光照强弱无关,选项B正确,A错误;
电路中电源正、负极接反,对光电管加了反向电压,若该电压超过了遏止电压,也没有光电流产生,D正确;
光电效应的产生与光照时间无关,C错误.二、光电效应方程的理解与应用
1.光电效应方程实质上是能量守恒方程.
(1)能量为ε=hν的光子被电子所吸收,电子把这些能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面时的动能.
(2)如果克服吸引力做功最少为W0,则电子离开金属表面时动能最大为Ek,根据能量守恒定律可知:Ek=hν-W0.2.光电效应规律中的两条线索、两个关系:
(1)两条线索:(2)两个关系:
光强→光子数目多→发射光电子多→光电流大;
光子频率高→光子能量大→产生光电子的最大初动能大.例3 在光电效应实验中,某金属的截止频率相应的波长为λ0,该金属
的逸出功为____.若用波长为λ(λ<λ0)的单色光做该实验,则其遏止电压为_________.已知电子的电荷量、真空中的光速和普朗克常量分别为e、c和h.答案解析例4 如图6所示,当开关K断开时,用光子能量为2.5 eV的一束光照射阴极P,发现电流表读数不为零.合上开关,调节滑动变阻器,发现当电压表读数小于0.6 V时,电流表读数仍不为零.当电压表读数大于或等于0.6 V时,电流表读数为零.由此可知阴极材料的逸出功为
A.1.9 eV B.0.6 eV
C.2.5 eV D.3.1 eV√答案图6解析 由题意知光电子的最大初动能为
Ek=eUc=0.6 eV
所以根据光电效应方程Ek=hν-W0可得
W0=hν-Ek=(2.5-0.6) eV=1.9 eV.解析针对训练2 (多选)一单色光照到某金属表面时,有光电子从金属表面逸出,下列说法中正确的是
A.只增大入射光的频率,金属逸出功将减小
B.只延长入射光照射时间,光电子的最大初动能将不变
C.只增大入射光的频率,光电子的最大初动能将增大
D.只增大入射光的频率,光电子逸出所经历的时间将缩短√解析 金属的逸出功由金属本身的构成决定,与入射光的频率无关,选项A错误;
根据爱因斯坦光电效应方程Ek=hν-W0可知,当金属的极限频率确定时,光电子的最大初动能取决于入射光的频率,与光照强度、照射时间、光子数目无关,选项B、C正确,D错误.√答案解析1.逸出功W0对应着某一截止频率νc,即W0=hνc,只有入射光的频率ν≥νc时才有光电子逸出,即才能发生光电效应.
2.对于某一金属(νc一定),入射光的频率决定着能否产生光电效应及光电子的最大初动能,而与入射光的强度无关.
3.逸出功和截止频率均由金属本身决定,与其他因素无关.
达标检测1.(多选)如图7所示,用弧光灯照射擦得很亮的锌板,验电器指针张开一个角度,则下列说法中正确的是
A.用紫外线照射锌板,验电器指针会发生偏转
B.用红光照射锌板,验电器指针会发生偏转
C.锌板带的是负电荷
D.使验电器指针发生偏转的是正电荷√123答案图7√解析4解析 将擦得很亮的锌板与验电器连接,用弧光灯照射锌板(弧光灯发出紫外线),验电器指针张开一个角度,说明锌板带了电,进一步研究表明锌板带正电.这说明在紫外线的照射下,锌板中有一部分自由电子从表面飞出,锌板带正电,选项A、D正确.
红光不能使锌板发生光电效应.12342.(多选)下列对光子的认识,正确的是
A.光子说中的光子就是牛顿在微粒说中所说的微粒
B.光子说中的光子就是光电效应的光电子
C.在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光量
子,简称光子
D.光子的能量跟光的频率成正比123√解析答案√4解析 根据光子说,在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光量子,简称光子.而牛顿的“微粒说”中的微粒指宏观世界的微小颗粒.光电效应中,金属内的电子吸收光子后克服原子核的库仑引力等束缚,逸出金属表面,成为光电子,故A、B选项错误,C选项正确;
由E=hν知,光子能量E与其频率ν成正比,故D选项正确.12343.利用光电管研究光电效应实验如图8所示,用频率
为ν的可见光照射阴极K,电流表中有电流通过,则
A.用紫外线照射,电流表不一定有电流通过
B.用红光照射,电流表一定无电流通过
C.用频率为ν的可见光照射K,当滑动变阻器的滑
动触头移到A端时,电流表中一定无电流通过
D.用频率为ν的可见光照射K,当滑动变阻器的滑动触头向B端滑动时,
电流表示数可能不变123图8√解析答案4解析 因紫外线的频率比可见光的频率高,所以用紫外线照射时,电流表中一定有电流通过,选项A错误.
因不知阴极K的截止频率,所以用红光照射时,不一定发生光电效应,所以选项B错误.
即使UAK=0,电流表中也可能有电流通过,所以选项C错误.
当滑动触头向B端滑动时,UAK增大,阳极A吸收光电子的能力增强,光电流会增大,当所有光电子都到达阳极A时,电流达到最大,即饱和电流.若在滑动前,电流已经达到饱和电流,那么即使增大UAK,光电流也不会增大,所以选项D正确.12344.几种金属的逸出功W0见下表:123解析用一束可见光照射上述金属的表面,请通过计算说明哪些能发生光电效应.已知该可见光的波长范围为4.0×10-7~7.6×10-7 m,普朗克常量h=6.63×10-34 J·s.答案 钠、钾、铷能发生光电效应答案4?12343 粒子的波动性
[学习目标] 1.知道光的本性的认识史.了解光的波粒二象性及其对立统一关系.2.了解粒子的波动性,知道物质波的概念.3.了解什么是德布罗意波,会解释有关现象.
一、光的波粒二象性
[导学探究] 人类对光的本性的认识的过程中先后进行了一系列实验,比如:
光的单缝衍射实验(图A)
光的双孔干涉实验(图B)
光电效应实验(图C)
光的薄膜干涉实验(图D)
康普顿效应实验等等.
(1)在以上实验中哪些体现了光的波动性?哪些体现了光的粒子性?
(2)光的波动性和光的粒子性是否矛盾?
  
   
答案 (1)单缝衍射、双孔干涉、薄膜干涉体现了光的波动性.
光电效应和康普顿效应体现了光的粒子性.
(2)不矛盾.大量光子在传播过程中显示出波动性,比如干涉和衍射.当光与物质发生作用时,显示出粒子性,如光电效应、康普顿效应.光具有波粒二象性.
[知识梳理]
(一)人类对光的本性的研究
学说
名称
微粒说
波动说
电磁说
光子说
波粒
二象性
代表
人物
牛顿
惠更斯
麦克斯韦
爱因
斯坦
实验
依据
光的直线传播、光的反射
光的干涉、衍射
能在真空中传播,是横波,光速等于电磁波的速度
光电效应、康普顿效应
光既有波动现象,又有粒子特征
内容
要点
光是一群弹性粒子
光是一种机械波
光是一种电磁波
光是由一份一份光子组成的
光是具有电磁本性的物质,既有波动性,又有粒子性
(二)光的波粒二象性
1.
2.光子的能量和动量
(1)能量:ε=hν.
(2)动量:p=.
3.意义:能量ε和动量p是描述物质的粒子性的重要物理量;波长λ和频率ν是描述物质的波动性的典型物理量.因此ε=hν和p=揭示了光的粒子性和波动性之间的密切关系.
[即学即用] 判断下列说法的正误.
(1)光的干涉、衍射、偏振现象说明光具有波动性.( √ )
(2)光子数量越大,其粒子性越明显.( × )
(3)光具有粒子性,但光子又不同于宏观观念的粒子.( √ )
(4)光在传播过程中,有的光是波,有的光是粒子.( × )
二、物质波
[导学探究] 德布罗意认为任何运动着的物体均具有波动性,可是我们观察运动着的汽车,并未感觉到它的波动性,你如何理解该问题?
答案 波粒二象性是微观粒子的特殊规律,一切微观粒子都存在波动性,宏观物体(汽车)也存在波动性,只是因为宏观物体质量大,动量大,波长短,难以观测.
[知识梳理] 对物质波的认识
1.粒子的波动性
(1)德布罗意波:任何运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与它相对应,这种波叫物质波,又叫德布罗意波.
(2)物质波波长、频率的计算公式为λ=,ν=.
(3)我们之所以看不到宏观物体的波动性,是因为宏观物体的动量太大,德布罗意波长太小的缘故.
2.物质波的实验验证
(1)实验探究思路:干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也应该发生干涉或衍射现象.
(2)实验验证:1927年戴维孙和汤姆孙分别利用晶体做了电子束衍射的实验,得到了电子的衍射图样,证实了电子的波动性.
(3)说明
①人们陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=和λ=关系同样正确.
②物质波也是一种概率波.
[即学即用] 判断下列说法的正误.
(1)一切宏观物体都伴随一种波,即物质波.( × )
(2)湖面上的水波就是物质波.( × )
(3)电子的衍射现象证实了实物粒子具有波动性.( √ )
一、光的波粒二象性的理解
1.大量光子产生的效果显示出波动性;个别光子产生的效果显示出粒子性.
2.光子和电子、质子等实物粒子一样,具有能量和动量.和其他物质相互作用时,粒子性起主导作用;在光的传播过程中,光子在空间各点出现的可能性的大小(概率),由波动性起主导作用,因此称光波为概率波.
3.频率低、波长长的光,波动性特征显著,而频率高、波长短的光,粒子性特征显著.
4.光子的能量与其对应的频率成正比,而频率是描述波动性特征的物理量,因此ε=hν揭示了光的粒子性和波动性之间的密切联系.
例1 (多选)对光的认识,以下说法中正确的是(  )
A.个别光子的行为表现出粒子性,大量光子的行为表现出波动性
B.高频光是粒子,低频光是波
C.光表现出波动性时,就不具有粒子性了;光表现出粒子性时,就不再具有波动性了
D.光的波粒二象性应理解为:在某种场合下光的波动性表现得明显,在另外某种场合下,光的粒子性表现得明显
答案 AD
解析 个别光子的行为表现为粒子性,大量光子的行为表现为波动性;光与物质相互作用,表现为粒子性,光的传播表现为波动性,光的波动性与粒子性都是光的本质属性,频率高的光粒子性强,频率低的光波动性强,光的粒子性表现明显时仍具有波动性,因为大量粒子的个别行为呈现出波动规律,故正确选项为A、D.
针对训练1 关于光的波粒二象性,下列理解正确的是(  )
A.当光子静止时有粒子性,光子传播时有波动性
B.光是一种宏观粒子,但它按波的方式传播
C.光子在空间各点出现的可能性大小(概率)可以用波动规律来描述
D.大量光子出现的时候表现为粒子性,个别光子出现的时候表现为波动性
答案 C
解析 光子是不会静止的,大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性,故A、D错误;光子不是宏观粒子,光在传播时有时看成粒子有时可看成波,故B错误;光子在空间各点出现的可能性大小(概率)可以用波动规律来描述,故C正确.
二、对物质波的理解
例2 质量为10 g、速度为300 m/s在空中飞行的子弹,其德布罗意波长是多少?为什么我们无法观察到其波动性?
答案 2.21×10-34 m 由于子弹的德布罗意波长极短,无法观察到其波动性
解析 由德布罗意波长公式可得
λ== m=2.21×10-34 m.
因子弹的德布罗意波长太短,故无法观察到其波动性.
针对训练2 (多选)下列说法中正确的是(  )
A.物质波也叫德布罗意波
B.物质波也是概率波
C.光波是一种概率波
D.光波也是物质波
答案 ABC
解析 物质波,又称德布罗意波,是概率波,指空间中某点某时刻可能出现的几率,其中概率的大小受波动规律的支配,故A、B正确.光波具有波粒二象性,波动性表明光波是一种概率波,故C正确.由于光子的特殊性,其静止质量为零,所以光不是物质波,故D错误.
德布罗意波长的计算
(1)首先计算物体的速度,再计算其动量.如果知道物体动能也可以直接用p=计算其动量.
(2)再根据λ=计算德布罗意波长.
(3)需要注意的是:德布罗意波长一般都很短,比一般的光波波长还要短,可以根据结果的数量级大致判断结果是否合理.
1.下列有关光的波粒二象性的说法中,正确的是(  )
A.有的光是波,有的光是粒子
B.光子与电子是同样的一种粒子
C.光的波长越长,其波动性越显著;光的波长越短,其粒子性越显著
D.大量光子的行为往往表现出粒子性
答案 C
解析 一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性,有些行为(如光电效应)表现出粒子性,A错误.虽然光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子不是实物粒子,没有静止质量,电子是以实物形式存在的物质,光子是以场形式存在的物质,所以B错误.光的波粒二象性的理论和实验表明,大量光子的行为表现出波动性,个别光子的行为表现出粒子性.光的波长越长,衍射性越好,即波动性越显著;光的波长越短,其粒子性越显著,故选项C正确,D错误.
2.下列关于德布罗意波的认识,正确的解释是(  )
A.任何一个物体都有波和它对应,这就是物质波
B.X光的衍射证实了物质波的假设是正确的
C.电子衍射证实了物质波的假设是正确的
D.宏观物体运动时,看不到它的衍射或干涉现象,所以宏观物体不具有波动性
答案 C
解析 运动的物体才具有波动性,A项错;宏观物体由于动量太大,德布罗意波长太小,所以看不到它的干涉、衍射现象,但仍具有波动性,D项错;X光是波长极短的电磁波,是光子,它的衍射不能证实物质波的存在,B项错.
3.关于光的本性,下列说法中正确的是(  )
A.关于光的本性,牛顿提出“微粒说”,惠更斯提出“波动说”,爱因斯坦提出“光子说”,它们都说明了光的本性
B.光具有波粒二象性是指:既可以把光看成宏观概念上的波,也可以看成微观概念上的粒子
C.光的干涉、衍射现象说明光具有波动性,光电效应说明光具有粒子性
D.光的波粒二象性是将牛顿的粒子说和惠更斯的波动说真正有机地统一起来
答案 C
解析 光的波动性指大量光子在空间各点出现的可能性的大小可以用波动规律来描述,不是惠更斯的波动说中宏观意义下的机械波.光的粒子性是指光的能量是一份一份的,每一份是一个光子,不是牛顿微粒说中的经典微粒.某现象说明光具有波动性,是指波动理论能解释这一现象.某现象说明光具有粒子性,是指能用粒子说解释这个现象.要区分题中说法和物理史实与波粒二象性之间的关系.C正确,A、B、D错误.
4.电子经电势差为U=200 V的电场加速,电子质量m0=9.1×10-31 kg,求此电子的德布罗意波长.
答案 8.69×10-2 nm
解析 已知m0v2=Ek=eU
p=
Ek=
所以λ==
把U=200 V,m0=9.1×10-31 kg,
代入上式解得λ≈8.69×10-2 nm.
一、选择题(1~7题为单选题,8~9题为多选题)
1.下列各组现象能说明光具有波粒二象性的是(  )
A.光的色散和光的干涉 B.光的干涉和光的衍射
C.泊松亮斑和光电效应 D.光的反射和光电效应
答案 C
解析 光的干涉、衍射、泊松亮斑是光的波动性的证据,光电效应说明光具有粒子性,光的反射和色散不能说明光具有波动性或粒子性,故选项C正确.
2.下列说法中正确的是(  )
A.物质波属于机械波
B.只有像电子、质子、中子这样的微观粒子才具有波动性
C.德布罗意认为任何一个运动的物体,小到电子、质子、中子,大到行星、太阳都有一种波与之相对应,这种波叫物质波
D.宏观物体运动时,看不到它的衍射和干涉现象,所以宏观物体运动时不具有波动性
答案 C
解析 任何一个运动的物体都具有波动性,但因为宏观物体的德布罗意波长很短,所以很难看到它的衍射和干涉现象,所以C项对,B、D项错;物质波不同于宏观意义上的波,故A项错.
3.关于物质波,下列说法正确的是(  )
A.速度相等的电子和质子,电子的波长长
B.动能相等的电子和质子,电子的波长短
C.动量相等的电子和中子,中子的波长短
D.甲电子的速度是乙电子的3倍,甲电子的波长也是乙电子的3倍
答案 A
解析 由λ=可知,动量大的波长短,电子与质子的速度相等时,电子动量小,波长长,A正确;电子与质子动能相等时,由动量与动能的关系p=可知,电子的动量小,波长长,B错误;动量相等的电子和中子,其波长应相等,C错误;如果甲、乙两电子的速度远小于光速,甲的速度是乙的3倍,甲的动量也是乙的3倍,则甲的波长应是乙的,D错误.
4.2002年诺贝尔物理学奖中的一项是奖励美国科学家贾科尼和日本科学家小柴昌俊发现了宇宙X射线源.X射线是一种高频电磁波,若X射线在真空中的波长为λ,以h表示普朗克常量,c表示真空中的光速,以ε和p分别表示X射线每个光子的能量和动量,则(  )
A.ε=,p=0 B.ε=,p=
C.ε=,p=0 D.ε=,p=
答案 D
解析 根据ε=hν,且λ=,c=λν可得X射线每个光子的能量为ε=,每个光子的动量为p=.
5.如果一个电子的德布罗意波长和一个中子的相等,则它们的(  )也相等.
A.速度 B.动能 C.动量 D.总能量
答案 C
解析 根据德布罗意波长公式λ=,选C.
6.关于光子和运动着的电子,下列论述正确的是(  )
A.光子和电子一样都是实物粒子
B.光子能发生衍射现象,电子不能发生衍射现象
C.光子和电子都具有波粒二象性
D.光子具有波粒二象性,而电子只具有粒子性
答案 C
解析 物质可分为两大类:一是质子、电子等实物;二是电场、磁场等,统称场.光是传播着的电磁场.根据物质波理论,一切运动的物体都具有波动性,故光子和电子都具有波粒二象性.综上所述,C选项正确.
7.利用金属晶格(大小约10-10 m)作为障碍物观察电子的衍射图样,方法是使电子通过电场加速后,让电子束照射到金属晶格上,从而得到电子的衍射图样.已知电子质量为m,电荷量为e,初速度为0,加速电压为U,普朗克常量为h,则下列说法中不正确的是(  )
A.该实验说明了电子具有波动性
B.实验中电子束的德布罗意波长为λ=
C.加速电压U越大,电子的衍射现象越不明显
D.若用相同动能的质子替代电子,衍射现象将更加明显
答案 D
解析 实验得到了电子的衍射图样,说明电子这种实物粒子发生了衍射,说明电子具有波动性,故A正确;由动能定理可得,eU=mv2-0,电子加速后的速度v=,电子德布罗意波的波长λ====,故B正确;由电子的德布罗意波的波长公式λ=可知,加速电压U越大,电子德布罗意波的波长越短,衍射现象越不明显,故C正确;物体动能与动量的关系是p=,由于质子的质量远大于电子的质量,所以动能相同的质子的动量远大于电子的动量,由λ=可知,相同动能的质子的德布罗意波的波长远小于电子德布罗意波的波长,波长越小,衍射现象越不明显,因此相同动能的质子代替电子,衍射现象将更加不明显,故D错误.
8.人类对光的本性的认识经历了曲折的过程.下列关于光的本性的陈述符合科学规律或历史事实的是(  )
A.牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的
B.光的双缝干涉实验显示了光具有波动性
C.麦克斯韦预言了光是一种电磁波
D.光具有波粒二象性
答案 BCD
解析 牛顿的“微粒说”认为光是一种物质微粒,爱因斯坦的“光子说”认为光是一份一份不连续的能量,显然A错;干涉、衍射是波的特性,光能发生干涉说明光具有波动性,B正确;麦克斯韦根据光的传播不需要介质,以及电磁波在真空中的传播速度与光速近似相等认为光是一种电磁波,后来赫兹用实验证实了光的电磁说,C正确;光具有波动性与粒子性,称为光的波粒二象性,D正确.
9.下表列出了几种不同物体在某种速度下的德布罗意波长和频率为1 MHz的无线电波的波长,根据表中数据可知(  )
质量/kg
速度/(m·s-1)
波长/m
弹子球
2.0×10-2
1.0×10-2
3.3×10-30
电子(100 eV)
9.1×10-31
6.0×106
1.2×10-10
无线电波(1 MHz)
3.0×108
3.0×102
A.要检测弹子球的波动性几乎不可能
B.无线电波通常只能表现出波动性
C.电子照射到金属晶体上能观察到它的波动性
D.只有可见光才有波粒二象性
答案 ABC
解析 弹子球的波长相对太小,所以检测其波动性几乎不可能,A正确;无线电波波长较长,所以通常表现为波动性,B正确;电子波长与金属晶体尺度差不多,所以能利用金属晶体观察电子的波动性,C正确;由物质波理论知,D错误.
二、非选择题
10.如图1所示为证实电子波存在的实验装置,从F上漂出来的热电子可认为初速度为零,所加的加速电压U=104 V,电子质量为m=9.1×10-31kg.电子被加速后通过小孔K1和K2后入射到薄的金箔上,发生衍射现象,结果在照相底片上形成同心圆明暗条纹.试计算电子的德布罗意波长.
图1
答案 1.23×10-11 m
解析 将eU=Ek=mv2,p=,λ=
联立,得λ=,
代入数据可得λ≈1.23×10-11 m.
11.任何一个运动着的物体,小到电子、质子、大到行星、太阳,都有一种波与之对应,波长是λ=,式中p是运动物体的动量,h是普朗克常量,人们把这种波叫做德布罗意波.现有一个德布罗意波长为λ1的物体1和一个德布罗意波长为λ2的物体2,二者相向正撞后粘在一起,已知|p1|<|p2|,则粘在一起的物体的德布罗意波长为多少?
答案 
解析 由动量守恒定律有
p2-p1=(m1+m2)v及p=
得-=,所以λ=.
课件34张PPT。第十七章 3 粒子的波动性学习目标 
1.知道光的本性的认识史.了解光的波粒二象性及其对立统一关系.
2.了解粒子的波动性,知道物质波的概念.
3.了解什么是德布罗意波,会解释有关现象.内容索引
知识探究
题型探究
达标检测
知识探究一、光的波粒二象性人类对光的本性的认识的过程中先后进行了一系列实验,比如:
光的单缝衍射实验(图A)光的双孔干涉实验(图B)光电效应实验(图C)光的薄膜干涉实验(图D)康普顿效应实验等等.(1)在以上实验中哪些体现了光的波动性?哪些体现了光的粒子性?答案答案 单缝衍射、双孔干涉、薄膜干涉体现了光的波动性.
光电效应和康普顿效应体现了光的粒子性.(2)光的波动性和光的粒子性是否矛盾?答案 不矛盾.大量光子在传播过程中显示出波动性,比如干涉和衍射.当光与物质发生作用时,显示出粒子性,如光电效应、康普顿效应.光具有波粒二象性.(一)人类对光的本性的研究(二)光的波粒二象性
1.波动性衍射粒子性光电效应波动性粒子性波粒二象性?hν粒子波动判断下列说法的正误.
(1)光的干涉、衍射、偏振现象说明光具有波动性.(  )
(2)光子数量越大,其粒子性越明显.(  )
(3)光具有粒子性,但光子又不同于宏观观念的粒子.(  )
(4)光在传播过程中,有的光是波,有的光是粒子.(  )√×√×二、物质波德布罗意认为任何运动着的物体均具有波动性,可是我们观察运动着的汽车,并未感觉到它的波动性,你如何理解该问题?答案 波粒二象性是微观粒子的特殊规律,一切微观粒子都存在波动性,宏观物体(汽车)也存在波动性,只是因为宏观物体质量大,动量大,波长短,难以观测.答案对物质波的认识
1.粒子的波动性
(1)德布罗意波:任何 着的物体,小到电子、质子,大到行星、太阳,都有一种波与它相对应,这种波叫 ,又叫德布罗意波.
(2)物质波波长、频率的计算公式为λ= ,ν= .
(3)我们之所以看不到宏观物体的波动性,是因为宏观物体的动量太 ,德布罗意波长太 的缘故.运动物质波大小?干涉干涉波动性波动性判断下列说法的正误.
(1)一切宏观物体都伴随一种波,即物质波.(  )
(2)湖面上的水波就是物质波.(  )
(3)电子的衍射现象证实了实物粒子具有波动性.(  )×答案×√
题型探究一、光的波粒二象性的理解1.大量光子产生的效果显示出波动性;个别光子产生的效果显示出粒子性.
2.光子和电子、质子等实物粒子一样,具有能量和动量.和其他物质相互作用时,粒子性起主导作用;在光的传播过程中,光子在空间各点出现的可能性的大小(概率),由波动性起主导作用,因此称光波为概率波.
3.频率低、波长长的光,波动性特征显著,而频率高、波长短的光,粒子性特征显著.
4.光子的能量与其对应的频率成正比,而频率是描述波动性特征的物理量,因此ε=hν揭示了光的粒子性和波动性之间的密切联系.例1 (多选)对光的认识,以下说法中正确的是
A.个别光子的行为表现出粒子性,大量光子的行为表现出波动性
B.高频光是粒子,低频光是波
C.光表现出波动性时,就不具有粒子性了;光表现出粒子性时,就不再
具有波动性了
D.光的波粒二象性应理解为:在某种场合下光的波动性表现得明显,在
另外某种场合下,光的粒子性表现得明显解析√√答案解析 个别光子的行为表现为粒子性,大量光子的行为表现为波动性;光与物质相互作用,表现为粒子性,光的传播表现为波动性,光的波动性与粒子性都是光的本质属性,频率高的光粒子性强,频率低的光波动性强,光的粒子性表现明显时仍具有波动性,因为大量粒子的个别行为呈现出波动规律,故正确选项为A、D.针对训练1 关于光的波粒二象性,下列理解正确的是
A.当光子静止时有粒子性,光子传播时有波动性
B.光是一种宏观粒子,但它按波的方式传播
C.光子在空间各点出现的可能性大小(概率)可以用波动规律来描述
D.大量光子出现的时候表现为粒子性,个别光子出现的时候表现为波动性√解析 光子是不会静止的,大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性,故A、D错误;
光子不是宏观粒子,光在传播时有时看成粒子有时可看成波,故B错误;
光子在空间各点出现的可能性大小(概率)可以用波动规律来描述,故C正确.答案解析二、对物质波的理解
例2 质量为10 g、速度为300 m/s在空中飞行的子弹,其德布罗意波长是多少?为什么我们无法观察到其波动性?答案 2.21×10-34 m 由于子弹的德布罗意波长极短,无法观察到其波动性?答案解析针对训练2 (多选)下列说法中正确的是
A.物质波也叫德布罗意波
B.物质波也是概率波
C.光波是一种概率波
D.光波也是物质波解析 物质波,又称德布罗意波,是概率波,指空间中某点某时刻可能出现的几率,其中概率的大小受波动规律的支配,故A、B正确.
光波具有波粒二象性,波动性表明光波是一种概率波,故C正确.
由于光子的特殊性,其静止质量为零,所以光不是物质波,故D错误.答案解析√√√?
达标检测1.下列有关光的波粒二象性的说法中,正确的是
A.有的光是波,有的光是粒子
B.光子与电子是同样的一种粒子
C.光的波长越长,其波动性越显著;光的波长越短,其粒子性越显著
D.大量光子的行为往往表现出粒子性√123答案解析4解析 一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性,有些行为(如光电效应)表现出粒子性,A错误.
虽然光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子不是实物粒子,没有静止质量,电子是以实物形式存在的物质,光子是以场形式存在的物质,所以B错误.
光的波粒二象性的理论和实验表明,大量光子的行为表现出波动性,个别光子的行为表现出粒子性.光的波长越长,衍射性越好,即波动性越显著;光的波长越短,其粒子性越显著,故选项C正确,D错误.12342.下列关于德布罗意波的认识,正确的解释是
A.任何一个物体都有波和它对应,这就是物质波
B.X光的衍射证实了物质波的假设是正确的
C.电子衍射证实了物质波的假设是正确的
D.宏观物体运动时,看不到它的衍射或干涉现象,所以宏观物体不具有
波动性123√解析答案4解析 运动的物体才具有波动性,A项错;
宏观物体由于动量太大,德布罗意波长太小,所以看不到它的干涉、衍射现象,但仍具有波动性,D项错;
X光是波长极短的电磁波,是光子,它的衍射不能证实物质波的存在,B项错.12343.关于光的本性,下列说法中正确的是
A.关于光的本性,牛顿提出“微粒说”,惠更斯提出“波动说”,爱因
斯坦提出“光子说”,它们都说明了光的本性
B.光具有波粒二象性是指:既可以把光看成宏观概念上的波,也可以看
成微观概念上的粒子
C.光的干涉、衍射现象说明光具有波动性,光电效应说明光具有粒子性
D.光的波粒二象性是将牛顿的粒子说和惠更斯的波动说真正有机地统一
起来123√解析答案4解析 光的波动性指大量光子在空间各点出现的可能性的大小可以用波动规律来描述,不是惠更斯的波动说中宏观意义下的机械波.光的粒子性是指光的能量是一份一份的,每一份是一个光子,不是牛顿微粒说中的经典微粒.某现象说明光具有波动性,是指波动理论能解释这一现象.某现象说明光具有粒子性,是指能用粒子说解释这个现象.要区分题中说法和物理史实与波粒二象性之间的关系.C正确,A、B、D错误.12344.电子经电势差为U=200 V的电场加速,电子质量m0=9.1×10-31 kg,求此电子的德布罗意波长.123解析答案 8.69×10-2 nm答案4123?把U=200 V,m0=9.1×10-31 kg,
代入上式解得λ≈8.69×10-2 nm.4第3节 粒子的波动性
1.(对应要点一)下列说法正确的是(  )
A.惠更斯提出的光的波动说与麦克斯韦的光的电磁说都是说光是一种波,其本质是相同的
B.牛顿提出的光的微粒说与爱因斯坦的光子说都是说光是一份一份不连续的,其实质是相同的
C.惠更斯的波动说与牛顿的微粒说都是说光具有波粒二象性
D.爱因斯坦的光子说与麦克斯韦的光的电磁说揭示了光既具有波动性又具有粒子性
解析:惠更斯提出的波动说和麦克斯韦的电磁说有着本质的不同,前者仍将光看作机械波,认为光在太空中是借助一种特殊介质“以太”传播的,而后者说光波只是电磁波而不是机械波,可以不借助于任何介质而传播,A选项错误。牛顿提出的微粒说和爱因斯坦的光子说也是有本质区别的。前者认为光是由一个个特殊的实物粒子构成的,而爱因斯坦提出的光子不是像宏观粒子那样有一定形状和体积的实物粒子,它只强调光的不连续性,光是由一份一份组成的,B选项错误。惠更斯的波动说和牛顿的微粒说都是以宏观物体或模型提出的,是对立的、不统一的。C选项错误。据光的波粒二象性知,D选项正确。
答案:D
2.(对应要点一)关于光的波粒二象性,正确的说法是(  )
A.光的频率越高,光子的能量越大,粒子性越明显
B.光的波长越长,光子的能量越小,波动性越明显
C.频率高的光子不具有波动性,波长较长的光子不具有粒子性
D.个别光子产生的效果往往显示粒子性,大量光子产生的效果往往显示波动性
解析:从光的波粒二象性可知:光是同时具有波粒二象性,只不过在有的情况下波动性显著,有的情况下粒子性显著。频率高、个数少时粒子性明显,波长长、量大时波动性明显。
答案:ABD
3.(对应要点二)关于物质波,下列认识错误的是(  )
A.任何运动的物体(质点)都伴随一种波,这种波叫物质波
B.X射线的衍射实验,证实了物质波假设是正确的
C.电子的衍射实验,证实了物质波假设是正确的
D.宏观物体尽管可以看作物质波,但它们不具有干涉、衍射等现象
解析:根据德布罗意物质波理论可知,任何一个运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与之相对应,这种波就叫物质波,可见,A选项是正确的;由于X射线本身就是一种波,而不是实物粒子,故X射线的衍射现象,并不能证实物质波理论的正确性,故B错误;电子是一种实物粒子,电子的衍射现象表明运动着的实物粒子具有波动性,故C选项正确;由电子穿过铝箔的衍射实验知少量电子穿过铝箔后所落的位置呈现出衍射图样以及大量电子的行为表现出电子的波动性,而且干涉、衍射是波的特有现象,只要是波,都会发生干涉、衍射现象,故D错误。
答案:BD
4.(对应要点二)现用电子显微镜观测线度为d的某生物大分子的结构。为满足测量要求,将显微镜工作时电子的德布罗意波长设定为,其中n>1。已知普朗克常量h、电子质量m和电子电荷量e,电子的初速度不计,则显微镜工作时电子的加速电压应为多少?
解析:由德布罗意波公式λ==,得p=,
而Ek===eU,解得U=。
答案:
4 概率波 5 不确定性关系
[学习目标] 1.了解经典物理学中的粒子和波的特点.2.了解概率波的内容.3.了解“不确定性关系”的含义.
一、概率波
[导学探究] 用极微弱的可见光做双缝干涉实验,随着时间的增加,在屏上先后出现如图1甲、乙、丙所示的图象.
图1
(1)图象甲是曝光时间很短的情况,光点的分布有什么特点?说明了什么问题?
(2)图象乙是曝光时间稍长情况,当光子数较多时落在哪些区域的概率较大?可用什么规律来确定?
(3)图象丙是曝光时间足够长的情况,体现了光的什么性?怎样解释上述现象?
答案 (1)当曝光时间很短时,屏上的光点是随机分布的,具有不确定性,说明了光具有粒子性.
(2)落在某些条形区域的概率较大,这种概率可用波动规律来确定.
(3)光的波动性.综合上面三个图象可知,少量光子呈现粒子性,大量光子呈现波动性,而且光是一种概率波.
[知识梳理]
1.光波是一种概率波:光的波动性不是光子之间的相互作用引起的,而是光子自身固有的性质,光子在空间出现的概率可以通过波动的规律确定,所以,光波是一种概率波.
2.物质波也是概率波:对于电子和其他微观粒子,单个粒子的位置是不确定的,但在某点附近出现的概率的大小可以由波动的规律确定,对于大量粒子,这种概率分布导致确定的宏观结果,所以物质波也是概率波.
3.经典的粒子
(1)含义:粒子有一定的空间大小,具有一定的质量,有的还带有电荷.
(2)运动的基本特征:遵从牛顿运动定律,任意时刻有确定的位置和速度,在时空中有确定的轨道.
4.经典的波
(1)含义:在空间是弥散开来的.
(2)特征:具有频率和波长,即具有时空的周期性.
[即学即用] 判断下列说法的正误.
(1)光子通过狭缝后落在屏上的位置是可以确定的.( × )
(2)光子通过狭缝后落在屏上亮条纹处的概率大些.( √ )
(3)电子通过狭缝后运动的轨迹是确定的.( × )
(4)经典的波在空间传播具有周期性.( √ )
二、不确定性关系
[知识梳理]
1.定义:在经典物理学中,可以同时用质点的位置和动量精确描述它的运动,在微观物理学中,要同时测出微观粒子的位置和动量是不太可能的,这种关系叫不确定性关系.
2.表达式:ΔxΔp≥.
其中以Δx表示粒子位置的不确定量,以Δp表示粒子在x方向上的动量的不确定量,h是普朗克常量.
3.微观粒子运动的基本特征:不再遵守牛顿运动定律,不可能同时准确地知道粒子的位置和动量,不可能用“轨迹”来描述粒子的运动,微观粒子的运动状态只能通过概率做统计性的描述.
[即学即用] 判断下列说法的正误.
(1)电子通过狭缝后运动的轨迹是确定的.( × )
(2)宏观物体的动量和位置可准确测定.( √ )
(3)微观粒子的动量和位置不可同时准确测定.( √ )
一、对概率波的理解
1.单个粒子运动的偶然性:我们可以知道粒子落在某点的概率,但不能预言粒子落在什么位置,即粒子到达什么位置是随机的,是预先不能确定的.
2.大量粒子运动的必然性:由波动规律我们可以准确地知道大量粒子运动时的统计规律,因此我们可以对宏观现象进行预言.
3.概率波体现了波粒二象性的和谐统一:概率波的主体是光子、实物粒子,体现了粒子性的一面;同时粒子在某一位置出现的概率受波动规律支配,体现了波动性的一面,所以说概率波将波动性和粒子性统一在一起.
例1 (多选)在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上,假设现在只让一个光子通过单缝,那么该光子(  )
A.一定落在中央亮纹处
B.一定落在亮纹处
C.可能落在暗纹处
D.落在中央亮纹处的可能性最大
答案 CD
解析 根据光波是概率波的概念,对于一个光子通过单缝落在何处,是不可确定的,但概率最大的是落在中央亮纹处,可达95%以上,当然也可落在其他亮纹处,还可能落在暗纹处,不过,落在暗纹处的概率很小,故C、D选项正确.
针对训练 (多选)在双缝干涉实验中出现的亮暗条纹说明了(  )
A.光具有波动性
B.光具有粒子性
C.光波是一种概率波
D.以上说法全都错误
答案 AC
解析 双缝干涉实验中出现的亮条纹和暗条纹,说明了光子落点具有一定的概率,即符合概率波的规律,并说明光具有波动性.
1.在双缝干涉和单缝衍射的暗条纹处也有光子到达,只是光子数量“特别少”,很难呈现出亮度.
2.要理解统计规律,对统计规律的正确认识是理解概率波的前提.
二、对不确定性关系的理解
1.单缝衍射现象中,粒子在挡板左侧的位置是完全不确定的,即通过挡板前粒子的位置具有不确定性.
2.单缝衍射现象中,粒子通过狭缝后,在垂直原来运动方向的动量是不确定的,即通过挡板后粒子的动量具有不确定性.
3.微观粒子运动的位置不确定量Δx和动量的不确定量Δp的关系式ΔxΔp≥,其中h是普朗克常量,这个关系式叫不确定性关系.
4.不确定性关系告诉我们,如果要更准确地确定粒子的位置(即Δx更小),那么动量的测量一定会更不准确(即Δp更大),也就是说,不可能同时准确地知道粒子的位置和动量,也不可能用“轨迹”来描述粒子的运动.
例2 (多选)根据不确定性关系ΔxΔp≥,判断下列说法正确的是(  )
A.采取办法提高测量Δx精度时,Δp的精度下降
B.采取办法提高测量Δx精度时,Δp的精度上升
C.Δx与Δp测量精度与测量仪器及测量方法是否完备有关
D.Δx与Δp测量精度与测量仪器及测量方法是否完备无关
答案 AD
解析 不确定性关系表明,无论采用什么方法试图确定位置坐标和相应动量中的一个,必然引起另一个较大的不确定性,这样的结果与测量仪器及测量方法是否完备无关,无论怎样改善测量仪器和测量方法,都不可能逾越不确定性关系所给出的限度.故A、D正确.
例3 质量为10 g的子弹与电子的速率相同,均为500 m/s,测量准确度为0.01%,若位置和速率在同一实验中同时测量,试问它们位置的最小不确定量各为多少?(电子质量为m=9.1×10-31kg,结果保留三位有效数字)
答案 1.06×10-31 m 1.16×10-3 m
解析 测量准确度也就是速度的不确定性,故子弹、电子的速度不确定量为Δv=0.05 m/s,子弹的动量的不确定量Δp1=5×10-4 kg·m/s,电子动量的不确定量Δp2=4.55×10-32 kg·m/s,由Δx≥,子弹位置的最小不确定量Δx1= m≈1.06×10-31 m,电子位置的最小不确定量Δx2= m≈1.16×10-3 m.
理解不确定性关系时应注意的问题
(1)对子弹这样的宏观物体,不确定量是微不足道的,对测量准确性没有任何限制,但对微观粒子却是不可忽略的.
(2)在微观世界中,粒子质量较小,不能同时精确地测出粒子的位置和动量,也就不能准确地把握粒子的运动状态.
1.(多选)下列各种波属于概率波的是(  )
A.声波 B.无线电波
C.光波 D.物质波
答案 CD
解析 光波的波动性具有概率波的规律,任一运动的物体均有一种物质波与之对应,且这种物质波也具有概率波的规律.概率波与机械波和电磁波的本质不同.
2.(多选)关于不确定性关系ΔxΔp≥有以下几种理解,正确的是(  )
A.微观粒子的动量不可确定
B.微观粒子的位置坐标不可确定
C.微观粒子的动量和位置不可能同时确定
D.不确定性关系不仅适用于电子和光子等微观粒子,也适用于其他宏观粒子
答案 CD
解析 不确定性关系表示位置、动量的精度相互制约,此长彼消,当粒子的位置不确定性更小时,粒子动量的不确定性更大;反之亦然,故不能同时准确确定粒子的位置和动量,不确定性关系是自然界中的普遍规律,对微观世界的影响显著,对宏观世界的影响可忽略,故C、D正确.
3.已知=5.3×10-35 J·s,试求下列情况中速度测定的不确定量,并根据计算结果,讨论在宏观和微观世界中进行测量的不同情况.
(1)一个球的质量 m=1.0 kg,测定其位置的不确定量为10-6 m.
(2)电子的质量me=9.1×10-31 kg,测定其位置的不确定量为10-10 m.
答案 见解析
解析 (1)由Δx·Δp≥得:球的速度测定的不确定量
Δv≥= m/s=5.3×10-29 m/s
这个速度不确定量在宏观世界中微不足道,可认为球的速度是确定的,其运动遵从经典物理学理论.
(2)电子的速度测定的不确定量
Δv≥= m/s
≈5.8×105 m/s
这个速度不确定量不可忽略,不能认为电子具有确定的速度,其运动不能用经典物理学理论处理.
一、选择题(1~5题为单选题,6~9题为多选题)
1.在做双缝干涉实验时,发现100个光子中有96个通过双缝后打到了观察屏上的b处,则b处是(  )
A.亮纹
B.暗纹
C.既有可能是亮纹也有可能是暗纹
D.以上各种情况均有可能
答案 A
解析 由光子按波的概率分布的特点去判断,由于大部分光子都落在b点,故b处一定是亮纹,选项A正确.
2.关于电子云,下列说法正确的是(  )
A.电子云是真实存在的实体
B.电子云周围的小黑点就是电子的真实位置
C.电子云上的小黑点表示的是电子的概率分布
D.电子云说明电子在绕原子核运动时有固定轨道
答案 C
解析 由电子云的定义我们知道,电子云不是一种稳定的概率分布,人们常用小黑点表示这种概率,小黑点的密疏代表电子在这一位置出现的概率大小,故只有C正确.
3.从衍射的规律可以知道,狭缝越窄,屏上中央亮条纹就越宽,由不确定性关系ΔxΔp≥,判断下列说法正确的是(  )
A.入射的粒子有确定的动量,射到屏上粒子就有准确的位置
B.狭缝的宽度变小了,因此粒子的不确定性也变小了
C.更窄的狭缝可以更准确地测得粒子的位置,但粒子动量的不确定性却更大了
D.可以同时确定粒子的位置和动量
答案 C
解析 由ΔxΔp≥知,狭缝变小了,即Δx减小了,Δp变大,即动量的不确定性变大,故C正确,A、B、D错误.
4.1927年戴维孙和革末完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一.如图1所示的是该实验装置的简化图.下列说法不正确的是(  )
图1
A.亮条纹是电子到达概率大的地方
B.该实验说明物质波理论是正确的
C.该实验说明了光子具有波动性
D.该实验说明实物粒子具有波动性
答案 C
解析 该实验说明物质波理论是正确的,实物粒子也具有波动性,亮条纹是电子到达概率大的地方,不能说明光子具有波动性,故选C.
5.显微镜观看细微结构时,由于受到衍射现象的影响而观察不清,因此观察越细小的结构,就要求波长越短,波动性越弱.在加速电压值相同的情况下,电子显微镜与质子显微镜的分辨本领,下列判定正确的是(  )
A.电子显微镜分辨本领较强
B.质子显微镜分辨本领较强
C.两种显微镜分辨本领相同
D.两种显微镜分辨本领无法比较
答案 B
解析 在电场中加速eU=mv2=,又由物质波公式λ=得λ=,所以经相同电压加速后的质子与电子相比,质子的物质波波长短,波动性弱,从而质子显微镜分辨本领较强,即B选项正确.
6.关于光的波动性与粒子性,以下说法正确的是(  )
A.爱因斯坦的光子说否定了光的电磁说
B.光电效应现象说明了光的粒子性
C.光波不同于机械波,它是一种概率波
D.光的波动性和粒子性是相互矛盾的,无法统一
答案 BC
解析 爱因斯坦的光子说并没有否定电磁说,只是在一定条件下光是体现粒子性的,A错;光电效应说明光具有粒子性,说明光的能量是一份一份的,B对;光波在少量的情况下体现粒子性,大量的情况下体现波动性,所以C对;光的波动性和粒子性不是孤立的,而是有机的统一体,D错.
7.以下说法正确的是(  )
A.微观粒子不能用“轨道”观点来描述粒子的运动
B.微观粒子能用“轨道”观点来描述粒子的运动
C.微观粒子位置不能精确确定
D.微观粒子位置能精确确定
答案 AC
解析 微观粒子的动量和位置是不能同时确定的,这也就决定不能用“轨道”的观点来描述粒子的运动(轨道上运动的粒子在某时刻具有确定的位置和动量),故A正确.由微观粒子的波粒二象性可知微观粒子位置不能精确确定,故C正确.
8.为了验证光的波粒二象性,在双缝干涉实验中将光屏换成照相底片,并设法减弱光的强度,下列说法正确的是(  )
A.使光子一个一个地通过双缝干涉实验装置的狭缝,如果时间足够长,底片上将出现双缝干涉图样
B.使光子一个一个地通过双缝干涉实验装置的狭缝,如果时间足够长,底片上将出现不太清晰的双缝干涉图样
C.大量光子的运动规律显示出光的粒子性
D.个别光子的运动显示出光的粒子性
答案 AD
解析 单个光子运动具有不确定性,大量光子落点的概率分布遵循一定规律,显示出光的波动性.使光子一个一个地通过双缝,如果时间足够长,底片上会出现明显的干涉图样,A正确,B、C错误;由光的波粒二象性知,个别光子的运动显示出光的粒子性,D正确.
9.电子的运动受波动性的支配,对于氢原子的核外电子,下列说法正确的是(  )
A.氢原子的核外电子可以用确定的坐标描述它们在原子中的位置
B.电子绕核运动时,可以运用牛顿运动定律确定它的轨道
C.电子绕核运动的“轨道”其实是没有意义的
D.电子轨道只不过是电子出现的概率比较大的位置
答案 CD
解析 微观粒子的波动性是一种概率波,对于微观粒子的运动,牛顿运动定律已经不适用了,所以氢原子的核外电子不能用确定的坐标描述它们在原子中的位置,电子的“轨道”其实是没有意义的,电子轨道只不过是电子出现的概率比较大的位置,综上所述,C、D正确.
二、非选择题
10.一辆摩托车以20 m/s的速度向墙冲去,车身和人共重100 kg,则车撞墙时的不确定范围是怎样的?
答案 大于等于2.64×10-38 m
解析 根据不确定性关系ΔxΔp≥得:Δx≥= m≈2.64×10-38 m.
11.(1)以下说法中正确的是________.
A.光的波粒二象性,就是由牛顿的微粒说和惠更斯的波动说组成的
B.光的波粒二象性彻底推翻了麦克斯韦的光的电磁说
C.光子说并没有否定光的电磁说,在光子能量ε=hν中,频率ν表示波的特征,ε表示粒子的特征
D.光波和物质波都是概率波
E.光的波动性是光子本身固有的性质,不是光子之间相互作用引起的
(2)如图2所示为示波管示意图,电子的加速电压U=104 V,打在荧光屏上电子的位置确定在0.1 mm范围内,可以认为令人满意,则电子的速度是否可以完全确定?是否可以用经典力学来处理?电子质量m=9.1×10-31 kg.
图2
答案 (1)CDE (2)可以完全确定 可以用经典力学来处理
解析 (1)牛顿的微粒说认为光是由物质微粒组成的,惠更斯的波动说认为光是机械波,都是从宏观现象中形成的观念,故A错误;光子说并没有否定光的电磁说,光子能量公式ε=hν,体现了其粒子性和波动性,B错误,C正确;光波和物质波都是概率波,D正确;光的波动性是光子本身固有的性质,不是光子之间相互作用引起的,E正确.
(2)Δx=10-4 m,由ΔxΔp≥得,动量的不确定量最小值Δp≈5×10-31 kg·m/s,其速度不确定量最小值Δv≈0.55 m/s.mv2=eU=1.6×10-19×104 J=1.6×10-15 J,v≈6×107 m/s,Δv远小于v,电子的速度可以完全确定,可以用经典力学来处理.
课件31张PPT。第十七章 4 概率波
5 不确定性关系学习目标 
1.了解经典物理学中的粒子和波的特点.
2.了解概率波的内容.
3.了解“不确定性关系”的含义.内容索引
知识探究
题型探究
达标检测
知识探究一、概率波用极微弱的可见光做双缝干涉实验,随着时间的增加,在屏上先后出现如图1甲、乙、丙所示的图象.图1(1)图象甲是曝光时间很短的情况,光点的分布有什么特点?说明了什么问题?答案 当曝光时间很短时,屏上的光点是随机分布的,具有不确定性,说明了光具有粒子性.答案(2)图象乙是曝光时间稍长情况,当光子数较多时落在哪些区域的概率较大?可用什么规律来确定?答案 落在某些条形区域的概率较大,这种概率可用波动规律来确定.答案(3)图象丙是曝光时间足够长的情况,体现了光的什么性?怎样解释上述现象?答案 光的波动性.综合上面三个图象可知,少量光子呈现粒子性,大量光子呈现波动性,而且光是一种概率波.答案1.光波是一种概率波:光的波动性不是光子之间的 引起的,而是光子自身 的性质,光子在空间出现的概率可以通过波动的规律确定,所以,光波是一种概率波.
2.物质波也是概率波:对于电子和其他微观粒子,单个粒子的位置是 ,但在某点附近出现的概率的大小可以由 的规律确定,对于大量粒子,这种概率分布导致确定的宏观结果,所以物质波也是概率波.相互作用固有不确定的波动3.经典的粒子
(1)含义:粒子有一定的 ,具有一定的 ,有的还带有 .
(2)运动的基本特征:遵从 ,任意时刻有确定的位置和
,在时空中有确定的 .
4.经典的波
(1)含义:在空间是 的.
(2)特征:具有 和 ,即具有时空的周期性.空间大小质量电荷牛顿运动定律速度轨道弥散开来频率波长判断下列说法的正误.
(1)光子通过狭缝后落在屏上的位置是可以确定的.(  )
(2)光子通过狭缝后落在屏上亮条纹处的概率大些.(  )
(3)电子通过狭缝后运动的轨迹是确定的.(  )
(4)经典的波在空间传播具有周期性.(  )×√×√二、不确定性关系?不确定性ΔxΔp位置动量普朗克常量3.微观粒子运动的基本特征:不再遵守 定律,不可能同时准确地知道粒子的 和 ,不可能用“轨迹”来描述粒子的运动,微观粒子的运动状态只能通过 做统计性的描述.牛顿运动位置动量概率判断下列说法的正误.
(1)电子通过狭缝后运动的轨迹是确定的.(  )
(2)宏观物体的动量和位置可准确测定.(  )
(3)微观粒子的动量和位置不可同时准确测定.(  )×答案√√
题型探究一、对概率波的理解1.单个粒子运动的偶然性:我们可以知道粒子落在某点的概率,但不能预言粒子落在什么位置,即粒子到达什么位置是随机的,是预先不能确定的.
2.大量粒子运动的必然性:由波动规律我们可以准确地知道大量粒子运动时的统计规律,因此我们可以对宏观现象进行预言.
3.概率波体现了波粒二象性的和谐统一:概率波的主体是光子、实物粒子,体现了粒子性的一面;同时粒子在某一位置出现的概率受波动规律支配,体现了波动性的一面,所以说概率波将波动性和粒子性统一在一起.例1 (多选)在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上,假设现在只让一个光子通过单缝,那么该光子
A.一定落在中央亮纹处
B.一定落在亮纹处
C.可能落在暗纹处
D.落在中央亮纹处的可能性最大√√答案解析 根据光波是概率波的概念,对于一个光子通过单缝落在何处,是不可确定的,但概率最大的是落在中央亮纹处,可达95%以上,当然也可落在其他亮纹处,还可能落在暗纹处,不过,落在暗纹处的概率很小,故C、D选项正确.解析针对训练 (多选)在双缝干涉实验中出现的亮暗条纹说明了
A.光具有波动性
B.光具有粒子性
C.光波是一种概率波
D.以上说法全都错误√解析 双缝干涉实验中出现的亮条纹和暗条纹,说明了光子落点具有一定的概率,即符合概率波的规律,并说明光具有波动性.答案解析√1.在双缝干涉和单缝衍射的暗条纹处也有光子到达,只是光子数量“特别少”,很难呈现出亮度.
2.要理解统计规律,对统计规律的正确认识是理解概率波的前提.二、对不确定性关系的理解?4.不确定性关系告诉我们,如果要更准确地确定粒子的位置(即Δx更小),那么动量的测量一定会更不准确(即Δp更大),也就是说,不可能同时准确地知道粒子的位置和动量,也不可能用“轨迹”来描述粒子的运动.?√√答案解析 不确定性关系表明,无论采用什么方法试图确定位置坐标和相应动量中的一个,必然引起另一个较大的不确定性,这样的结果与测量仪器及测量方法是否完备无关,无论怎样改善测量仪器和测量方法,都不可能逾越不确定性关系所给出的限度.故A、D正确.解析例3 质量为10 g的子弹与电子的速率相同,均为500 m/s,测量准确度为0.01%,若位置和速率在同一实验中同时测量,试问它们位置的最小不确定量各为多少?(电子质量为m=9.1×10-31kg,结果保留三位有效数字)答案 1.06×10-31 m 1.16×10-3 m答案解析理解不确定性关系时应注意的问题
(1)对子弹这样的宏观物体,不确定量是微不足道的,对测量准确性没有任何限制,但对微观粒子却是不可忽略的.
(2)在微观世界中,粒子质量较小,不能同时精确地测出粒子的位置和动量,也就不能准确地把握粒子的运动状态.
达标检测1.(多选)下列各种波属于概率波的是
A.声波 B.无线电波
C.光波 D.物质波√123答案解析解析 光波的波动性具有概率波的规律,任一运动的物体均有一种物质波与之对应,且这种物质波也具有概率波的规律.概率波与机械波和电磁波的本质不同.√?123√解析答案√解析 不确定性关系表示位置、动量的精度相互制约,此长彼消,当粒子的位置不确定性更小时,粒子动量的不确定性更大;反之亦然,故不能同时准确确定粒子的位置和动量,不确定性关系是自然界中的普遍规律,对微观世界的影响显著,对宏观世界的影响可忽略,故C、D正确.123?123解析答案 见解析答案123这个速度不确定量在宏观世界中微不足道,可认为球的速度是确定的,其运动遵从经典物理学理论.(2)电子的质量me=9.1×10-31 kg,测定其位置的不确定量为10-10 m.123答案 见解析答案解析 电子的速度测定的不确定量≈5.8×105 m/s
这个速度不确定量不可忽略,不能认为电子具有确定的速度,其运动不能用经典物理学理论处理.解析第4节 概率波 第5节 不确定性关系
1.(对应要点一)一个电子被加速后,以极高的速度在空间运动,关于它的运动,下列说法中正确的是(  )
A.电子在空间做匀速直线运动
B.电子上下左右颤动着前进
C.电子运动轨迹是正弦曲线
D.无法预言它的路径
解析:根据概率波的知识可知,某个电子在空间中运动的路径我们无法确定,只能根据统计规律确定大量电子的运动区域。故选项D正确。
答案:D
2.(对应要点一)如图17-4-1所示,用单色光做双缝干涉实验。P处为亮条纹,Q处为暗条纹,不改变单色光的频率,而调整光源使其极微弱,并把单缝调至只能使光子一个一个地过去,那么过去的某一光子
A.一定到达P处       B.一定到达Q处 图17-4-1
C.可能到达Q处 D.都不正确
解析:单个光子的运动路径是不可预测的,只知道落在P处的概率大,落在Q处的概率小,因此,一个光子从狭缝通过后可能落在P处也可能落在Q处,C选项正确。
答案:C
3.(对应要点二)根据不确定关系ΔxΔp≥,判断下列说法正确的是(  )
A.采取办法提高测量Δx的精度时,Δp的精度下降
B.采取办法提高测量Δx的精度时,Δp的精度上升
C.Δx与Δp测量精度与测量仪器及测量方法是否完备有关
D.Δx与Δp测量精度与测量仪器与测量方法是否完备无关
解析:不确定性关系表明无论采用什么方法试图精确测定坐标和相应动量中的一个,必然引起另一个量较大的不确定性。这样的结果与测量仪器与测量方法是否完备无关,无论怎样改善测量仪器和测量方法,都不可能超越不确定性关系给出的限度,故A、D正确。
答案:AD
4.(对应要点二)设子弹的质量为0.01 kg,枪口直径为0.5 cm,试求子弹射出枪口时横向速度的不确定量。
解析:枪口直径可以当作子弹射出枪口位置的不确定量Δx,由于Δpx=mΔvx,由不确定关系式得子弹射出枪口时横向速度的不确定量
Δvx≥= m/s=1.05×10-30 m/s。
答案:1.05×10-30 m/s
1 电子的发现 2 原子的核式结构模型
[学习目标] 1.知道阴极射线是由电子组成的,电子是原子的组成部分,知道电子的电荷量和比荷.2.了解汤姆孙发现电子的研究方法及蕴含的科学思想,领会电子的发现对揭示原子结构的重大意义.3.知道α粒子散射实验的实验器材、实验原理和实验现象.4.知道卢瑟福的原子核式结构模型的主要内容,能说出原子核的数量级.
一、阴极射线 电子的发现
[导学探究] 
1.在如图1所示的演示实验中,K是金属板制成的阴极,A是金属环制成的阳极.K和A之间加上近万伏的高电压后,管端玻璃壁上能观察到什么现象?该现象说明了什么问题?
图1
答案 能看到玻璃壁上淡淡的荧光及管中物体在玻璃壁上的影,这说明阴极能够发出某种射线,并且撞击玻璃引起荧光.
2.人们对阴极射线的本质的认识有两种观点,一种观点认为是一种电磁波,另一种观点认为是带电微粒,你认为应如何判断哪种观点正确?
答案 可以让阴极射线通过电场或磁场,若射线垂直于磁场(电场)方向射入之后发生了偏转,则该射线是由带电微粒组成的.
[知识梳理]
1.阴极射线
科学家用真空度很高的真空管做放电实验时,发现真空管阴极发射出的一种射线,叫做阴极射线.
2.阴极射线的特点
(1)在真空中沿直线传播;
(2)碰到物体可使物体发出荧光.
3.电子的发现
汤姆孙让阴极射线分别通过电场或磁场,根据偏转情况,证明了它的本质是带负电的粒子流并求出了其比荷.
4.密立根通过著名的“油滴实验”精确地测出了电子电荷.电子电荷量一般取e=1.6×10-19 C,电子质量me=9.1×10-31 kg.
[即学即用] 判断下列说法的正误.
(1)阴极射线在真空中沿直线传播.( √ )
(2)英国物理学家汤姆孙认为阴极射线是一种电磁辐射.( × )
(3)组成阴极射线的粒子是电子.( √ )
(4)电子是原子的组成部分,电子电荷量可以取任意数值.( × )
二、α粒子散射实验
[导学探究] 如图2所示为1909年英籍物理学家卢瑟福指导他的学生盖革和马斯顿进行α粒子散射实验的实验装置,阅读课本,回答以下问题:
图2
(1)什么是α粒子?
答案 α粒子(He)是从放射性物质中发射出来的快速运动的粒子,实质是失去两个电子的氦原子核,带有两个单位的正电荷,质量为氢原子质量的4倍、电子质量的7 300倍.
(2)实验装置中各部件的作用是什么?实验过程是怎样的?
答案 ①α粒子源:把放射性元素钋放在带小孔的铅盒中,放射出高能的α粒子.
②带荧光屏的放大镜:观察α粒子打在荧光屏上发出的微弱闪光.
实验过程:α粒子经过一条细通道,形成一束射线,打在很薄的金箔上,由于金原子中的带电粒子对α粒子有库仑力的作用,一些α粒子会改变原来的运动方向.带有放大镜的荧光屏可以沿图中虚线转动,以统计向不同方向散射的α粒子的数目.
(3)实验现象如何?
答案 α粒子散射实验的实验现象:绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°.
(4)少数α粒子发生大角度散射的原因是什么?
答案 α粒子带正电,α粒子受原子中带正电的部分的排斥力发生了大角度散射.
[知识梳理]
1.α粒子散射实验装置由α粒子源、金箔、带有荧光屏的放大镜等几部分组成,实验时从α粒子源到荧光屏这段路程应处于真空中.
2.实验现象:绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°.
3.α粒子散射实验的结果用汤姆孙的“枣糕模型”无法解释.
[即学即用] 判断下列说法的正误.
(1)α粒子散射实验证明了汤姆孙的原子模型是符合事实的.( × )
(2)α粒子散射实验中大多数α粒子发生了大角度偏转或反弹.( × )
(3)α粒子大角度的偏转是电子造成的.( × )
(4)α粒子带有两个单位的正电荷,质量为氢原子质量的四倍.( √ )
三、原子的核式结构模型 原子核的电荷与尺度
[导学探究] 1.原子中的原子核所带电荷量有何特点?
答案 原子核带正电,所带电荷量与核外电子所带的电荷量相等.
2.核式结构模型是如何解释α粒子散射实验结果的?
答案 ①由于原子核很小,大多数α粒子穿过金箔时都离核很远,受到的斥力很小,它们的运动方向几乎不改变.
②只有极少数α粒子有机会与原子核接近,受到原子核较大的斥力而发生明显的偏转.
[知识梳理]
1.核式结构模型:1911年由卢瑟福提出.在原子中心有一个很小的核,叫原子核.它集中了全部的正电荷和几乎全部的质量,电子在核外空间运动.
2.原子核的电荷与尺度
[即学即用] 判断下列说法的正误.
(1)卢瑟福的核式结构模型认为原子中带正电的部分体积很小,电子在正电体外面运动.( √ )
(2)原子核的电荷数等于核中的中子数.( × )
(3)对于一般的原子,由于原子核很小,所以内部十分空旷.( √ )
一、对阴极射线的认识
例1 (多选)下面对阴极射线的认识正确的是(  )
A.阴极射线是由阴极发出的粒子撞击玻璃管壁上的荧光粉而产生的
B.只要阴阳两极间加有电压,就会有阴极射线产生
C.阴极射线是真空玻璃管内由阴极发出的射线
D.阴阳两极间加有高压时,电场很强,阴极中的电子受到很强的库仑力作用而脱离阴极
答案 CD
解析 阴极射线是真空玻璃管内由阴极直接发出的射线,故A错误,C正确;只有当两极间有高压且阴极接电源负极时,阴极中的电子才会受到足够大的库仑力作用而脱离阴极成为阴极射线,故B错误,D正确.
二、带电粒子比荷的测定
1.利用磁偏转测量
(1)让带电粒子通过相互垂直的电场和磁场(如图3),让其做匀速直线运动,根据二力平衡,即F洛=F电(Bqv=qE),得到粒子的运动速度v=.
图3
(2)撤去电场(如图4),保留磁场,让粒子单纯地在磁场中运动,由洛伦兹力提供向心力,即Bqv=m,根据轨迹偏转情况,由几何知识求出其半径r.
图4
(3)由以上两式确定粒子的比荷表达式:=.
2.利用电偏转测量
带电粒子在匀强电场中运动,偏转量y=at2=·()2,故=,所以在偏转电场中,U、d、L已知时,只需测量v和y即可.
例2 在再现汤姆孙测阴极射线比荷的实验中,采用了如图5所示的阴极射线管,从C出来的阴极射线经过A、B间的电场加速后,水平射入长度为L的D、G平行板间,接着在荧光屏F中心出现荧光斑.若在D、G间加上方向向上、场强为E的匀强电场,阴极射线将向下偏转;如果再利用通电线圈在D、G电场区加上一垂直纸面的磁感应强度为B的匀强磁场(图中未画),荧光斑恰好回到荧光屏中心,接着再去掉电场,阴极射线向上偏转,偏转角为θ,试解决下列问题:
图5
(1)说明阴极射线的电性.
(2)说明图中磁场沿什么方向.
(3)根据L、E、B和θ,求出阴极射线的比荷.
答案 (1)负电 (2)垂直纸面向外 (3)
解析 (1)由于阴极射线在电场中向下偏转,因此阴极射线受电场力方向向下,又由于匀强电场方向向上,则电场力的方向与电场方向相反,所以阴极射线带负电.
(2)由于所加磁场使阴极射线受到向上的洛伦兹力,而与电场力平衡,由左手定则得磁场的方向垂直纸面向外.
(3)设此射线带电量为q,质量为m,当射线在D、G间做匀速直线运动时,有qE=Bqv.当射线在D、G间的磁场中偏转时,有Bqv=.同时又有L=r·sin θ,如图所示,解得=.
解决带电粒子在电场中运动的三个步骤
(1)确定研究对象,并根据题意判断是否可以忽略带电粒子的重力.
(2)对研究对象进行受力分析,必要时要画出力的示意图;分析判断粒子的运动性质和过程,画出运动轨迹示意图.
(3)选用恰当的物理规律列方程求解.
三、对α粒子散射实验的理解
1.实验现象
(1)绝大多数的α粒子穿过金箔后仍沿原来的方向前进.
(2)少数α粒子发生较大的偏转.
(3)极少数α粒子偏转角度超过90°,有的几乎达到180°.
2.理解
(1)核外电子不会使α粒子的速度发生明显改变.
(2)汤姆孙的原子模型不能解释α粒子的大角度散射.
(3)少数α粒子发生了大角度偏转,甚至反弹回来,表明这些α粒子在原子中的某个地方受到了质量、电荷量均比它本身大得多的物体的作用.
(4)绝大多数α粒子在穿过厚厚的金原子层时运动方向没有明显变化,说明原子中绝大部分是空的,原子的质量、电荷量都集中在体积很小的核内.
例3 如图6所示为卢瑟福α粒子散射实验装置的示意图,图中的显微镜可在圆周轨道上转动,通过显微镜前相连的荧光屏可观察α粒子在各个角度的散射情况.下列说法中正确的是(  )
图6
A.在图中的A、B两位置分别进行观察,相同时间内观察到屏上的闪光次数一样多
B.在图中的B位置进行观察,屏上观察不到任何闪光
C.卢瑟福选用不同金属箔片作为α粒子散射的靶,观察到的实验结果基本相似
D.α粒子发生散射的主要原因是α粒子撞击到金箔原子后产生的反弹
答案 C
解析 α粒子散射实验现象:绝大多数α粒子沿原方向前进,少数α粒子有大角度散射.所以A处观察到的粒子数多,B处观察到的粒子数少,所以选项A、B错误.α粒子发生散射的主要原因是受到原子核库仑斥力的作用,所以选项D错误,C正确.
解决这类问题的关键是理解并熟记以下两点:
(1)明确实验装置中各部分的组成及作用.
(2)弄清实验现象,知道“绝大多数”、“少数”和“极少数”α粒子的运动情况及原因.
四、原子的核式结构分析
1.原子内的电荷关系:原子核的电荷数与核外的电子数相等,非常接近原子序数.
2.原子核的组成:原子核由质子和中子组成,原子核的电荷数等于原子核的质子数.
3.原子的核式结构模型对α粒子散射实验结果的解释:
(1)当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,α粒子就像穿过“一片空地”一样,无遮无挡,运动方向改变很小.因为原子核很小,所以绝大多数α粒子不发生偏转.
(2)只有当α粒子十分接近原子核穿过时,才受到很大的库仑力作用,发生大角度偏转,而这种机会很少,所以有少数粒子发生了大角度偏转.
(3)如果α粒子正对着原子核射来,偏转角几乎达到180°,这种机会极少,如图7所示,所以极少数粒子的偏转角度甚至大于90°.
图7
例4 (多选)下列对原子结构的认识中,正确的是(  )
A.原子中绝大部分是空的,原子核很小
B.电子在核外运动,库仑力提供向心力
C.原子的全部正电荷都集中在原子核里
D.原子核的直径大约为10-10 m
答案 ABC
解析 卢瑟福α粒子散射实验的结果否定了关于原子结构的汤姆孙模型,提出了关于原子的核式结构学说,并估算出原子核直径的数量级为10-15 m,原子直径的数量级为10-10 m,原子直径是原子核直径的十万倍,所以原子内部是十分“空旷”的,核外带负电的电子由于受到带正电的原子核的吸引而绕核旋转,所以A、B、C正确,D错误.
1.(多选)英国物理学家汤姆孙通过对阴极射线的实验研究发现(  )
A.阴极射线在电场中偏向正极板一侧
B.阴极射线在磁场中受力情况跟正电荷受力情况相同
C.不同材料所产生的阴极射线的比荷不同
D.汤姆孙并未精确得出阴极射线粒子的电荷量
答案 AD
解析 阴极射线实质上就是高速电子流,所以在电场中偏向正极板一侧,A正确.由于电子带负电,所以其在磁场中受力情况与正电荷不同,B错误.不同材料所产生的阴极射线都是电子流,所以它们的比荷是相同的,C错误.最早精确测出电子电荷量的是美国物理学家密立根,D正确.
2.(多选)关于α粒子散射实验,下列说法正确的是(  )
A.在实验中,观察到的现象是:绝大多数α粒子穿过金箔后,仍沿原来的方向前进,极少数发生了较大角度的偏转
B.使α粒子发生明显偏转的力来自带正电的核和核外电子,当α粒子接近核时,是核的斥力使α粒子发生明显偏转;当α粒子接近电子时,是电子的吸引力使之发生明显偏转
C.实验表明:原子中心有一个极小的核,它占有原子体积极小的一部分
D.实验表明:原子中心的核带有原子的全部正电荷和全部原子的质量
答案 AC
3.X表示金原子核,α粒子射向金核被散射,若它们入射时的动能相同,其偏转轨道可能是下图中的(  )
答案 D
解析 α粒子离金核越远其所受斥力越小,轨道弯曲程度就越小,故选项D正确.
4.如图8所示,电子以初速度v0从O点进入长为l、板间距离为d、电势差为U的平行板电容器中,出电场时打在屏上P点,经测量O′P距离为Y0,求电子的比荷.
图8
答案 
解析 由于电子在电场中做类平抛运动,沿电场线方向做初速度为零的匀加速直线运动,满足
Y0=at2=()2=,
则=.
一、选择题(1~7题为单选题,8~9题为多选题)
1.关于阴极射线的本质,下列说法正确的是(  )
A.阴极射线本质是氢原子
B.阴极射线本质是电磁波
C.阴极射线本质是电子
D.阴极射线本质是X射线
答案 C
2.卢瑟福提出原子的核式结构模型的依据是用α粒子轰击金箔,实验中发现α粒子(  )
A.全部穿过或发生很小偏转
B.绝大多数穿过,只有少数发生较大偏转,有的甚至被弹回
C.绝大多数发生很大偏转,甚至被弹回,只有少数穿过
D.全部发生很大偏转
答案 B
解析 卢瑟福的α粒子散射实验结果是绝大多数α粒子穿过金箔后仍沿原来的方向前进,故选项A错误.α粒子被散射时只有少数发生了较大角度偏转,并且有极少数α粒子偏转角超过了90°,有的甚至被弹回,故选项B正确,C、D错误.
3.α粒子散射实验中,使α粒子散射的原因是(  )
A.α粒子与原子核外电子碰撞
B.α粒子与原子核发生接触碰撞
C.α粒子发生明显衍射
D.α粒子与原子核的库仑斥力的作用
答案 D
解析 α粒子与原子核外的电子的作用是很微弱的,A错误.α粒子与原子核很近时,库仑斥力很强,足以使α粒子发生大角度偏转甚至反向弹回,使α粒子散射的原因是库仑斥力的作用,B、C错误,D正确.
4.在卢瑟福的α粒子散射实验中,某一α粒子经过某一原子核附近时的轨迹如图1所示,图中P、Q两点为轨迹上的点,虚线是过P、Q两点并与轨道相切的直线.两虚线和轨迹将平面分成四个区域,不考虑其他原子核对α粒子的作用,那么关于该原子核的位置,下列说法正确的是(  )
图1
A.可能在①区域 B.可能在②区域
C.可能在③区域 D.可能在④区域
答案 A
解析 因为α粒子与此原子核之间存在着斥力,如果原子核在②、③或④区,α粒子均应向①区偏折,所以不可能.
5.如图2所示是阴极射线管示意图,接通电源后,阴极射线由阴极沿x轴正方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,在下列措施中可采用的是(  )
图2
A.加一磁场,磁场方向沿z轴负方向
B.加一磁场,磁场方向沿y轴正方向
C.加一电场,电场方向沿z轴负方向
D.加一电场,电场方向沿y轴正方向
答案 B
6.密立根油滴实验原理如图3所示,两块水平放置的金属板分别与电源的正负极相接,板间电压为U,形成竖直向下、场强为E的匀强电场.用喷雾器从上板中间的小孔喷入大小、质量和电荷量各不相同的油滴.通过显微镜可找到悬浮不动的油滴,若此悬浮油滴的质量为m,重力加速度为g,则下列说法正确的是(  )
图3
A.悬浮油滴带正电
B.悬浮油滴的电荷量为
C.增大场强,悬浮油滴将向上运动
D.油滴的电荷量不一定是电子电荷量的整数倍
答案 C
解析 带电油滴在两板间静止时,电场力向上,应带负电,A错;qE=mg,即q=mg,所以q=,B项错误;当E变大时,qE变大,合力向上,油滴向上运动,任何带电物体的电荷量都是电子电荷量的整数倍,D项错.
7.如图4所示,根据α粒子散射实验,卢瑟福提出了原子的核式结构模型.图中虚线表示原子核所形成的电场的等势线,实线表示一个α粒子的运动轨迹.在α粒子从a运动到b再运动到c的过程中,下列说法中正确的是(  )
图4
A.动能先增大后减小
B.电势能先减小后增大
C.电场力先做负功后做正功,总功等于零
D.加速度先减小后增大
答案 C
解析 α粒子及原子核均带正电,故α粒子受到原子核的斥力,α粒子从a运动到b,电场力做负功,动能减小,电势能增大,从b运动到c,电场力做正功,动能增大,电势能减小,a、c在同一条等势线上,a、c两点的电势差为零,则α粒子从a到c的过程中电场力做的总功等于零,A、B错误,C正确;α粒子所受的库仑力F=,b点离原子核最近,所以α粒子在b点时所受的库仑力最大,加速度最大,故加速度先增大后减小,D错误.
8.关于原子核式结构理论,下列说法正确的是(  )
A.是通过天然放射性现象得出来的
B.原子的中心有个核,叫做原子核
C.原子的正电荷均匀分布在整个原子中
D.原子的全部正电荷和几乎全部质量都集中在原子核上,带负电的电子在核外旋转
答案 BD
解析 原子的核式结构理论是在α粒子散射实验的基础上提出的,A错;原子所带的正电荷都集中在一个很小的核里面,不是均匀分布在原子中,C错,所以选B、D.
9.下列说法中正确的是(  )
A.汤姆孙精确地测出了电子电荷量e=1.602 177 33(49)×10-19 C
B.电子电荷量的精确值是密立根通过“油滴实验”测出的
C.汤姆孙油滴实验更重要的发现是:电荷是量子化的,即任何电荷量只能是e的整数倍
D.通过实验测出电子的比荷和电子电荷量e的值,就可以确定电子的质量
答案 BD
解析 电子电荷量的精确值是密立根通过“油滴实验”测出的,电荷是量子化的也是密立根发现的,A、C错误,B正确;测出电子比荷的值和电子电荷量e的值,可以确定电子的质量,故D正确.
二、非选择题
10.假设α粒子以速率v0与静止的电子或金原子核发生弹性正碰,α粒子的质量为mα,电子的质量me=mα,金原子核的质量mAu=49mα.求:
(1)α粒子与电子碰撞后的速度变化;
(2)α粒子与金原子核碰撞后的速度变化.
答案 (1)-2.7×10-4v0 (2)-1.96v0
解析 α粒子与静止的粒子发生弹性碰撞,系统的动量和能量均守恒,由动量守恒定律有
mαv0=mαv1′+mv2′
由能量守恒定律有
mαv02=mαv1′2+mv2′2
解得v1′=v0
速度变化Δv=v1′-v0=-v0
(1)若α粒子与电子碰撞,将me=mα代入,得
Δv1≈-2.7×10-4v0
(2)若α粒子与金原子核碰撞,将mAu=49mα代入,得
Δv2=-1.96v0.
11.电子的比荷最早由美国科学家密立根通过油滴实验测出,如图5所示,两块水平放置的平行金属板上、下极板与电源正负极相接,上、下极板分别带正、负电荷,油滴从喷雾器喷出后,由于摩擦而带负电,油滴进入上极板中央小孔后落到匀强电场中,通过显微镜可以观察到油滴的运动,两金属板间距为d,不计空气阻力和浮力.
图5
(1)调节两板的电势差u,当u=U0时,使得某个质量为m1的油滴恰好做匀速直线运动,求油滴所带的电荷量q为多少?
(2)若油滴进入电场时的速度可以忽略,当两金属板间的电势差u=U时,观察到某个质量为m2的油滴进入电场后做匀加速运动,经过时间t运动到下极板,求此油滴的电荷量Q.
答案 (1) (2)(g-)
解析 (1)油滴匀速下落过程受到的电场力和重力平衡,由平衡条件得:q=m1g,得q=m1g.
(2)油滴加速下落,其所带电荷量为Q,因油滴带负电,则油滴所受的电场力方向向上,设此时的加速度大小为a,由牛顿第二定律和运动学公式得:m2g-Q=m2a,d=at2,解得Q=(g-).
第1节 电子的发现
1.(对应要点一)关于阴极射线,下列说法正确的是(  )
A.阴极射线就是稀薄气体导电的辉光放电现象
B.阴极射线是在真空管内由阴极发出的电子流
C.阴极射线是组成物体的原子
D.阴极射线可以直线传播,也可被电场、磁场偏转
解析:阴极射线是在真空管中由阴极发出的电子流,B正确。电子是原子的组成部分,C错。电子可被电场、磁场偏转,D正确。
答案:BD
2.(对应要点一)如图18-1-11所示是汤姆孙的气体放电管的示意图,下列说法中正确的是(  )
图18-1-11
A.若在D1、D2之间不加电场和磁场,则阴极射线应打到最右端的P1点
B.若在D1、D2之间加上竖直向下的电场,则阴极射线应向下偏转
C.若在D1、D2之间加上竖直向下的电场,则阴极射线应向上偏转
D.若在D1、D2之间加上垂直纸面向里的磁场,则阴极射线不偏转
解析:实验证明,阴极射线是电子,它在电场中偏转时应偏向带正电的极板一侧,可知选项C正确,选项B的说法错误。加上磁场时,电子在磁场中受洛伦兹力作用,要发生偏转,因而选项D错误。当不加电场和磁场时,电子所受的重力可以忽略不计,因而不发生偏转,选项A的说法正确。
答案:AC
3.(对应要点二)如图18-1-12所示,让一束均匀的阴极射线垂直穿过正交的电磁场,选择合适的磁感应强度B和电场强度E,带电粒子将不发生偏转,然后撤去电场,粒子将做匀速圆周运动,测得其半径为R,则阴极射线中带电粒子的比荷为________。 图18-1-12
解析:因为带电粒子不偏转,所以受到的电场力与洛伦兹力平衡,即qE=qBv,所以v=E/B。
粒子进入磁场后做匀速圆周运动,由洛伦兹力提供向心力qvB=mv2/R,所以,其半径为R=mv/qB,
所以=。
答案:
4.(对应要点三)电子所带电荷量的精确数值最早是由美国物理学家密立根通过油滴实验测得的。他测定了数千个带电油滴的电荷量,发现这些电荷都等于某个最小电荷量的整数倍。这个最小电荷量就是电子所带的电荷量。密立根实验的原理如图18-1-13所示,A、B是两块平行放置的水平金属板,A板带正电, 图18-1-13
B板带负电。从喷雾器嘴喷出的小油滴,落到A、B两板之间的电场中。小油滴由于摩擦而带负电,调节A、B两板间的电压,可使小油滴受到的电场力和重力平衡。已知小油滴静止处的电场强度E=1.92×105 N/C,油滴半径r=1.64×10-4 cm,油的密度ρ=0.851 g/cm3,求油滴所带的电荷量。这个电荷量是电子电荷量的多少倍?(g取9.8 m/s2)
解析:小油滴质量:
m=ρV=ρ·πr 3 ①
由题意知mg-Eq=0 ②
由①②两式可得:
q=
= C
≈8.02×10-19 C。
小油滴所带电荷量q是电子电荷量e的倍数为
n=倍≈5倍。
答案:8.02×10-19 C 5倍
第2节 原子的核式结构模型
1.(对应要点一)(2011·上海高考)卢瑟福利用α粒子轰击金箔的实验研究原子结构,正确反映实验结果的示意图是(  )
图18-2-4
解析:α粒子轰击金箔后偏转,越靠近金箔,偏转的角度越大,所以A、B、C错误,D正确。
答案:D
2.(对应要点一)卢瑟福对α粒子散射实验的解释是(  )
A.使α粒子产生偏转的力主要是原子中电子对α粒子的作用力
B.使α粒子产生偏转的力是库仑力
C.原子核很小,α粒子接近它的机会很小,所以绝大多数的α粒子仍沿原来的方向前进
D.能产生大角度偏转的α粒子是穿过原子时离原子核较远的α粒子
解析:原子核带正电,与α粒子间存在库仑力,当α粒子靠近原子核时受库仑力而偏转,故B对,A错;由于原子核非常小,绝大多数粒子经过时离核较远,因而运动方向几乎不变,只有离核较近的α粒子受到的库仑力较大,方向改变较多,故C对,D错。
答案:BC
3.(对应要点二)根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。图18-2-5中虚线表示原子核所形成的电场等势面,实线表示一个α粒子的运动轨迹。在α粒子从a运动到b、再运动到c的过程中,下列说法中正确的是(  )
A.电场力先做负功,后做正功,总功等于零 图18-2-5
B.加速度先变小,后变大
C.a、c两点的动能不相等
D.动能与电势能的和不变
解析:α粒子与原子核的力为库仑斥力,从a→b库仑力做负功,动能减少,电势能增加,从b→c库仑力做正功,动能增加,且a→b与b→c库仑力所做的总功为0,则a、c两点动能相等,因此A正确,C错。因为只有电场力做功,故动能与电势能和不变,故D正确。α粒子与原子核相距越近,库仑力越大,加速度越大,故从a→c加速度先增大后减小,B错。
答案:AD
4.(对应要点二)已知电子质量为9.1×10-31 kg、带电荷量为-1.6×10-19 C,当氢原子核外电子绕核旋转时的轨道半径为0.53×10-10 m时,求电子绕核运动的速度、频率、动能和等效的电流。
解析:根据库仑力提供电子绕核旋转的向心力,可知=m
v=e=1.6×10-19× m/s=2.19×106 m/s
而v=2πfr0,即f== Hz=6.58×1015 Hz
Ek=mv2=·
=× J
=2.17×10-18 J
设电子运动周期为T,则
T== s=1.5×10-16 s
电子绕核运动的等效电流:I=== A=1.07×10-3 A。
答案:2.19×106 m/s 6.58×1015 Hz 2.17×10-18 J 1.07×10-3 A
3 氢原子光谱
[学习目标] 1.知道什么是光谱,能说出连续谱和线状谱的区别.2.能记住氢原子光谱的实验规律.3.能说出经典物理学在解释原子的稳定性和原子光谱分立特性上的困难.
一、光谱和光谱分析
[知识梳理]
1.定义:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录.
2.分类
(1)线状谱:光谱是一条条的亮线.
(2)连续谱:光谱是连在一起的光带.
3.特征谱线:各种原子的发射光谱都是线状谱,说明原子只发出几种特定频率的光,不同原子的亮线位置不同,说明不同原子的发光频率不一样,光谱中的亮线称为原子的特征谱线.
4.应用:利用原子的特征谱线,可以鉴别物质和确定物质的组成成分,这种方法称为光谱分析,它的优点是灵敏度高,样本中一种元素的含量达到10-10 g时就可以被检测到.
[即学即用] 判断下列说法的正误.
(1)各种原子的发射光谱都是连续谱.( × )
(2)不同原子的发光频率是不一样的.( √ )
(3)线状谱和连续谱都可以用来鉴别物质.( × )
二、氢原子光谱的实验规律
[导学探究] 如图1所示为氢原子的光谱.
图1
1.仔细观察,氢原子光谱具有什么特点?
答案 从右至左,相邻谱线间的距离越来越小.
2.阅读课本,指出氢原子光谱的谱线波长具有什么规律?
答案 可见光区域的四条谱线的波长满足巴耳末公式:=R(-),n=3,4,5,…
[知识梳理]
1.氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性.
2.巴耳末公式
(1)巴耳末对氢原子光谱的谱线进行研究得到了下面的公式:=R(-)(n=3,4,5,…),该公式称为巴耳末公式.式中R叫做里德伯常量,实验值为R=1.10×107 m-1.
(2)巴耳末公式说明氢原子光谱的波长只能取分立值,不能取连续值.巴耳末公式以简洁的形式反映了氢原子的线状光谱,即辐射波长的分立特征.
3.其他谱线:除了巴耳末系,氢原子光谱在红外和紫外光区的其他谱线,也都满足与巴耳末公式类似的关系式.
[即学即用] 判断下列说法的正误.
(1)光是由原子核内部的电子运动产生的,光谱研究是探索原子核内部结构的一条重要途径.( × )
(2)稀薄气体的分子在强电场的作用下会电离,使气体变成导体.( √ )
(3)巴耳末公式中的n既可以取整数也可以取小数.( × )
三、经典理论的困难
[导学探究] 卢瑟福的原子结构很好地解释了α粒子散射实验,核外的电子绕核高速旋转,这个结构和经典的电磁理论有什么矛盾?
答案 核外电子被库仑力吸引→电子以很大速度绕核运动(绕核运动的加速度不为零)→电磁场周期性变化→向外辐射电磁波(绕核运动的能量以电磁波的形式辐射出去)→能量减少→电子绕核运动的轨道半径减小→电子做螺旋线运动,最后落入原子核中,但是实际上原子是稳定的,并没有原子核外的电子落入原子核内.所以,经典的电磁理论不能解释原子核外的电子的运动情况和原子的稳定性.
[知识梳理]
1.核式结构模型的成就:正确地指出了原子核的存在,很好地解释了α粒子散射实验.
2.经典理论的困难:经典物理学既无法解释原子的稳定性,又无法解释原子光谱的分立特征.
一、光谱和光谱分析
1.光谱的分类
光谱
2.几种光谱的比较
比较
光谱  
产生条件
光谱形式及应用
线状
光谱
稀薄气体发光形成的光谱
一些不连续的明线组成,不同元素的明线光谱不同(又叫特征光谱),可用于光谱分析
连续
光谱
炽热的固体、液体和高压气体发光形成的
连续分布,一切波长的光都有
吸收
光谱
炽热的白光通过温度较白光低的气体后,再色散形成的
用分光镜观察时,见到连续光谱背景上出现一些暗线(与特征谱线相对应),可用于光谱分析
3.太阳光谱
(1)太阳光谱的特点:在连续谱的背景上出现一些不连续的暗线,是一种吸收光谱.
(2)对太阳光谱的解释:阳光中含有各种颜色的光,但当阳光透过太阳的高层大气射向地球时,太阳高层大气中含有的元素会吸收它自己特征谱线的光,然后再向四面八方发射出去,到达地球的这些谱线看起来就暗了,这就形成了明亮背景下的暗线.
4.光谱分析
(1)优点:灵敏度高,分析物质的最低量达10-10 g.
(2)应用:a.发现新元素;b.鉴别物体的物质成分.
(3)用于光谱分析的光谱:线状光谱和吸收光谱.
例1 (多选)下列关于光谱和光谱分析的说法中,正确的是(  )
A.太阳光谱和白炽灯光谱都是线状谱
B.煤气灯火焰中燃烧的钠蒸气或霓虹灯产生的光谱都是线状谱
C.进行光谱分析时,可以用线状谱,不能用连续光谱
D.我们能通过光谱分析鉴别月球的物质成分
答案 BC
解析 太阳光谱中的暗线是太阳发出的连续谱经过太阳大气层时产生的吸收光谱,正是太阳发出的光谱被太阳大气层中存在的对应元素吸收所致,白炽灯发出的是连续谱,选项A错误;月球本身不会发光,靠反射太阳光才能使我们看到它,所以不能通过光谱分析鉴别月球的物质成分,选项D错误;光谱分析只能是线状谱或吸收光谱,连续谱是不能用来进行光谱分析的,所以选项C正确;煤气灯火焰中燃烧的钠蒸气或霓虹灯产生的光谱都是线状谱,选项B正确.
针对训练1 关于光谱,下列说法正确的是(  )
A.一切光源发出的光谱都是连续谱
B.一切光源发出的光谱都是线状谱
C.稀薄气体发光形成的光谱是线状谱
D.白光通过钠蒸气产生的光谱是线状谱
答案 C
解析 由于物质发光的条件不同,得到的光谱不同,故A、B错误;稀薄气体发光形成的光谱为线状谱,C正确;白光通过钠蒸气产生的光谱是吸收光谱,D错误.
二、氢原子光谱的实验规律
例2 (多选)巴耳末通过对氢原子光谱的研究总结出巴耳末公式=R(-),n=3,4,5,…,对此,下列说法正确的是(  )
A.巴耳末依据核式结构理论总结出巴耳末公式
B.巴耳末公式反映了氢原子发光的连续性
C.巴耳末依据氢原子光谱的分析总结出巴耳末公式
D.巴耳末公式反映了氢原子发光的分立性,其波长的分立值并不是人为规定的
答案 CD
解析 巴耳末公式是根据氢原子光谱总结出来的.氢原子光谱的不连续性反映了氢原子发光的分立性,即辐射波长的分立特征,选项C、D正确.
针对训练2 氢原子光谱巴耳末系最小波长与最大波长之比为(  )
A. B. C. D.
答案 A
解析 由巴耳末公式=R n=3,4,5,…
当n→∞时,有最小波长λ1,=R,
当n=3时,有最大波长λ2,=R,得=.
1.(多选)关于光谱,下列说法中正确的是(  )
A.炽热的液体发射连续谱
B.线状谱和吸收光谱都可以对物质进行光谱分析
C.太阳光谱中的暗线,说明太阳中缺少与这些暗线相对应的元素
D.发射光谱一定是连续谱
答案 AB
解析 炽热的固体、液体和高压气体的发射光谱是连续光谱,故A正确;线状谱和吸收光谱都可以用来进行光谱分析,B正确;太阳光谱中的暗线说明太阳大气中含有与这些暗线相对应的元素,C错误;发射光谱有连续谱和线状谱,D错误.
2.(多选)下列光谱中属于原子光谱的是(  )
A.太阳光谱
B.放电管中稀薄汞蒸气产生的光谱
C.白炽灯的光谱
D.酒精灯中燃烧的钠蒸气所产生的光谱
答案 BD
解析 放电管中稀薄汞蒸气产生的光谱,燃烧的钠蒸气产生的光谱分别是由汞蒸气、钠蒸气发光产生的,均是原子光谱,故选项B、D对.
3.(多选)下列关于巴耳末公式=R的理解,正确的是(  )
A.此公式是巴耳末在研究氢原子光谱特征时发现的
B.公式中n可取任意值,故氢原子光谱是连续谱
C.公式中n只能取大于或等于3的整数值,故氢原子光谱是线状谱
D.公式不仅适用于氢原子光谱的分析,还适用于其他原子光谱的分析
答案 AC
解析 巴耳末公式是巴耳末在研究氢光谱特征时发现的,故A选项正确;公式中的n只能取大于或等于3的整数值,故氢光谱是线状谱,B选项错误,C选项正确;巴耳末公式只适用于氢光谱的分析,不适用于其他原子光谱的分析,D选项错误.
4.根据巴耳末公式,可求出氢原子光谱在可见光的范围内波长最长的2条谱线,其波长分别为654.55×10-9 m和484.85×10-9 m,求所对应的n值.
答案 n1=3 n2=4
解析 据巴耳末公式=R,n=3,4,5,…得
=1.10×107×,
=1.10×107×,
解得n1=3,n2=4.
一、选择题(1~6题为单选题,7~9题为多选题)
1.关于原子光谱,下列说法中不正确的是(  )
A.原子光谱是不连续的
B.由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的
C.由于各种原子的原子结构不同,所以各种原子的原子光谱也不相同
D.分析物质发光的光谱,可以鉴别物质中含哪些元素
答案 B
解析 原子光谱为线状谱,A正确;各种原子都有自己的特征谱线,故B错,C对;根据各种原子的特征谱线进行光谱分析可鉴别物质组成.由此知A、C、D说法正确,B说法错误.
2.下列关于光谱的说法正确的是(  )
A.炽热固体、液体和高压气体发出的光形成连续谱
B.对月光作光谱分析可以确定月亮的化学组成
C.气体发出的光只能产生线状谱
D.甲物质发出的光通过低温的乙物质蒸气可得到甲物质的吸收光谱
答案 A
3.太阳光谱中有许多暗线,它们对应着某些元素的特征谱线,产生这些暗线是由于(  )
A.太阳表面大气层中缺少相应的元素
B.太阳内部缺少相应的元素
C.太阳表面大气层中存在着相应的元素
D.太阳内部存在着相应的元素
答案 C
解析 太阳光谱中的暗线是由于太阳发出的连续谱通过太阳表面大气层时某些光被吸收造成的,因此,太阳光谱中的暗线是由于太阳表面大气层中存在着相应的元素,故C正确,A、B、D均错误.
4.利用光谱分析的方法能够鉴别物质和确定物质的组成成分,关于光谱分析,下列说法正确的是(  )
A.利用高温物体的连续谱就可鉴别其组成成分
B.利用物质的线状谱就可鉴别其组成成分
C.高温物体发出的光通过物质后的光谱上的暗线反映了高温物体的组成成分
D.同一种物质的线状谱与吸收光谱上的暗线由于光谱的不同,它们没有关系
答案 B
解析 由于高温物体的光谱包括了各种频率的光,与其组成成分无关,故A项错误;某种物质发光的线状谱中的明线是与某种原子发出的某频率的光有关,通过这些亮线与原子的特征谱线对照,即可确定物质的组成成分,B项正确;高温物体发出的光通过物质后某些频率的光被吸收而形成暗线,这些暗线由所经过的物质决定,C项错误;某种物质发出某种频率的光,当光通过这种物质时它也会吸收这种频率的光,因此线状谱中的亮线与吸收光谱中的暗线相对应,D项错误.
5.氢原子光谱的巴耳末系中波长最长的光波的光子能量为E1,其次为E2,则为(  )
A. B.
C. D.
答案 A
解析 由=R得:
当n=3时,波长最长,=R,
当n=4时,波长次之,=R,
解得:=,由E=h得:==.
6.如图1甲所示的a、b、c、d为四种元素的特征谱线,图乙是某矿物的线状谱,通过光谱分析可以确定该矿物中缺少的元素为(  )
图1
A.a元素
B.b元素
C.c元素
D.d元素
答案 B
解析 把矿物的线状谱与几种元素的特征谱线进行对照,b元素的谱线在该线状谱中不存在,故选项B正确,与几个元素的特征谱线不对应的线说明该矿物中还有其他元素.
7.关于光谱和光谱分析,下列说法中正确的是(  )
A.发射光谱包括连续谱和线状谱
B.太阳光谱是连续谱,氢光谱是线状谱
C.只有线状谱可用作光谱分析
D.光谱分析帮助人们发现了许多新元素
答案 AD
解析 光谱分为发射光谱和吸收光谱,发射光谱分为连续谱和线状谱,A正确;太阳光谱是吸收光谱,B错误;线状谱和吸收光谱都可用作光谱分析,C错误;光谱分析可以精确分析物质中所含元素,并能帮助人们发现新元素,D正确.
8.要得到钠元素的特征谱线,下列做法正确的是(  )
A.使固体钠在空气中燃烧
B.将固体钠高温加热成稀薄钠蒸气
C.使炽热固体发出的白光通过低温钠蒸气
D.使炽热固体发出的白光通过高温钠蒸气
答案 BC
解析 炽热固体发出的是连续谱,燃烧固体钠不能得到特征谱线,A错误;稀薄气体发光产生线状谱,B正确;强烈的白光通过低温钠蒸气时,某些波长的光被吸收产生钠的吸收光谱,C正确,D错误.
9.关于经典电磁理论与氢原子光谱之间的关系,下列说法正确的是(  )
A.经典电磁理论很容易解释原子的稳定性
B.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上
C.根据经典电磁理论,原子光谱应该是连续的
D.氢原子光谱彻底否定了经典电磁理论
答案 BC
解析 根据经典电磁理论:电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上,原子不应该是稳定的,并且发射的光谱应该是连续的.氢原子光谱并没有完全否定经典电磁理论,而是引入了新的概念.故正确答案为B、C.
二、非选择题
10.氢原子光谱除了巴耳末系外,还有赖曼系、帕邢系等,其中帕邢系的公式为=R,n=4、5、6…,R=1.10×107 m-1.若已知帕邢系的氢原子光谱在红外线区域,试求:
(1)n=6时,对应的波长;
(2)帕邢系形成的谱线在真空中的波速为多大?n=6时,传播频率为多大?
答案 (1)1.09×10-6 m (2)3×108 m/s 2.75×1014 Hz
解析 (1)由帕邢系公式=R,当n=6时,得λ≈1.09×10-6 m.
(2)帕邢系形成的谱线在红外区域,而红外线属于电磁波,在真空中以光速传播,故波速为光速c=3×108 m/s,
由v==λf,得f=== Hz≈2.75×1014 Hz.
课件29张PPT。第十八章 3 氢原子光谱学习目标 
1.知道什么是光谱,能说出连续谱和线状谱的区别.
2.能记住氢原子光谱的实验规律.
3.能说出经典物理学在解释原子的稳定性和原子光谱分立特性上的困难.内容索引
知识探究
题型探究
达标检测
知识探究一、光谱和光谱分析1.定义:用 或棱镜可以把各种颜色的光按 展开,获得光的波长(频率)和 的记录.
2.分类
(1)线状谱:光谱是一条条的 .
(2)连续谱:光谱是 的光带.
3.特征谱线:各种原子的发射光谱都是 ,说明原子只发出几种 的光,不同原子的亮线位置 ,说明不同原子的 不一样,光谱中的亮线称为原子的 .光栅波长强度分布亮线连在一起线状谱特定频率不同发光频率特征谱线4.应用:利用原子的 ,可以鉴别物质和确定物质的 ,
这种方法称为 ,它的优点是灵敏度高,样本中一种元素的含量达到10-10 g时就可以被检测到.特征谱线组成成分光谱分析判断下列说法的正误.
(1)各种原子的发射光谱都是连续谱.(  )
(2)不同原子的发光频率是不一样的.(  )
(3)线状谱和连续谱都可以用来鉴别物质.(  )×√×二、氢原子光谱的实验规律如图1所示为氢原子的光谱.1.仔细观察,氢原子光谱具有什么特点?答案 从右至左,相邻谱线间的距离越来越小.图1答案2.阅读课本,指出氢原子光谱的谱线波长具有什么规律??答案?小(2)巴耳末公式说明氢原子光谱的波长只能取 ,不能取 .巴耳末公式以简洁的形式反映了氢原子的线状光谱,即辐射波长的 特征.
3.其他谱线:除了巴耳末系,氢原子光谱在红外和紫外光区的其他谱线,也都满足与巴耳末公式类似的关系式.分立值连续值分立判断下列说法的正误.
(1)光是由原子核内部的电子运动产生的,光谱研究是探索原子核内部结构的一条重要途径.(  )
(2)稀薄气体的分子在强电场的作用下会电离,使气体变成导体.
(  )
(3)巴耳末公式中的n既可以取整数也可以取小数.(  )×√×三、经典理论的困难卢瑟福的原子结构很好地解释了α粒子散射实验,核外的电子绕核高速旋转,这个结构和经典的电磁理论有什么矛盾?答案 核外电子被库仑力吸引→电子以很大速度绕核运动(绕核运动的加速度不为零)→电磁场周期性变化→向外辐射电磁波(绕核运动的能量以电磁波的形式辐射出去)→能量减少→电子绕核运动的轨道半径减小→电子做螺旋线运动,最后落入原子核中,但是实际上原子是稳定的,并没有原子核外的电子落入原子核内.所以,经典的电磁理论不能解释原子核外的电子的运动情况和原子的稳定性.1.核式结构模型的成就:正确地指出了 的存在,很好地解释了 .
2.经典理论的困难:经典物理学既无法解释原子的 ,又无法解释原子光谱的 .原子核α粒子散射实验稳定性分立特征
题型探究一、光谱和光谱分析1.光谱的分类2.几种光谱的比较3.太阳光谱
(1)太阳光谱的特点:在连续谱的背景上出现一些不连续的暗线,是一种吸收光谱.
(2)对太阳光谱的解释:阳光中含有各种颜色的光,但当阳光透过太阳的高层大气射向地球时,太阳高层大气中含有的元素会吸收它自己特征谱线的光,然后再向四面八方发射出去,到达地球的这些谱线看起来就暗了,这就形成了明亮背景下的暗线.
4.光谱分析
(1)优点:灵敏度高,分析物质的最低量达10-10 g.
(2)应用:a.发现新元素;b.鉴别物体的物质成分.
(3)用于光谱分析的光谱:线状光谱和吸收光谱.例1 (多选)下列关于光谱和光谱分析的说法中,正确的是
A.太阳光谱和白炽灯光谱都是线状谱
B.煤气灯火焰中燃烧的钠蒸气或霓虹灯产生的光谱都是线状谱
C.进行光谱分析时,可以用线状谱,不能用连续光谱
D.我们能通过光谱分析鉴别月球的物质成分√√答案解析解析 太阳光谱中的暗线是太阳发出的连续谱经过太阳大气层时产生的吸收光谱,正是太阳发出的光谱被太阳大气层中存在的对应元素吸收所致,白炽灯发出的是连续谱,选项A错误;
月球本身不会发光,靠反射太阳光才能使我们看到它,所以不能通过光谱分析鉴别月球的物质成分,选项D错误;
光谱分析只能是线状谱或吸收光谱,连续谱是不能用来进行光谱分析的,所以选项C正确;
煤气灯火焰中燃烧的钠蒸气或霓虹灯产生的光谱都是线状谱,选项B正确.针对训练1 关于光谱,下列说法正确的是
A.一切光源发出的光谱都是连续谱
B.一切光源发出的光谱都是线状谱
C.稀薄气体发光形成的光谱是线状谱
D.白光通过钠蒸气产生的光谱是线状谱√答案解析解析 由于物质发光的条件不同,得到的光谱不同,故A、B错误;
稀薄气体发光形成的光谱为线状谱,C正确;
白光通过钠蒸气产生的光谱是吸收光谱,D错误.?√√答案解析解析 巴耳末公式是根据氢原子光谱总结出来的.氢原子光谱的不连续性反映了氢原子发光的分立性,即辐射波长的分立特征,选项C、D正确.针对训练2 氢原子光谱巴耳末系最小波长与最大波长之比为答案√解析
达标检测1.(多选)关于光谱,下列说法中正确的是
A.炽热的液体发射连续谱
B.线状谱和吸收光谱都可以对物质进行光谱分析
C.太阳光谱中的暗线,说明太阳中缺少与这些暗线相对应的元素
D.发射光谱一定是连续谱√123答案√4解析 炽热的固体、液体和高压气体的发射光谱是连续光谱,故A正确;
线状谱和吸收光谱都可以用来进行光谱分析,B正确;
太阳光谱中的暗线说明太阳大气中含有与这些暗线相对应的元素,C错误;
发射光谱有连续谱和线状谱,D错误.解析2.(多选)下列光谱中属于原子光谱的是
A.太阳光谱
B.放电管中稀薄汞蒸气产生的光谱
C.白炽灯的光谱
D.酒精灯中燃烧的钠蒸气所产生的光谱123√答案√4解析 放电管中稀薄汞蒸气产生的光谱,燃烧的钠蒸气产生的光谱分别是由汞蒸气、钠蒸气发光产生的,均是原子光谱,故选项B、D对.解析解析 巴耳末公式是巴耳末在研究氢光谱特征时发现的,故A选项正确;
公式中的n只能取大于或等于3的整数值,故氢光谱是线状谱,B选项错误,C选项正确;
巴耳末公式只适用于氢光谱的分析,不适用于其他原子光谱的分析,D选项错误.答案解析A.此公式是巴耳末在研究氢原子光谱特征时发现的
B.公式中n可取任意值,故氢原子光谱是连续谱
C.公式中n只能取大于或等于3的整数值,故氢原子光谱是线状谱
D.公式不仅适用于氢原子光谱的分析,还适用于其他原子光谱的分析√√12344.根据巴耳末公式,可求出氢原子光谱在可见光的范围内波长最长的2条谱线,其波长分别为654.55×10-9 m和484.85×10-9 m,求所对应的n值.1234答案 n1=3 n2=4解得n1=3,n2=4.答案解析第3节 氢原子光谱
1.(对应要点一)下列物质中产生线状谱的是(  )
A.炽热的钢水       B.发光的日光灯管
C.点燃的蜡烛 D.极光
解析:选项A、C产生的都是连续谱,B产生水银蒸气的特征谱线,D是宇宙射线激发的气体发光,能产生线状谱,故B、D选项正确。
答案:BD
2.(对应要点一)关于太阳光谱,下列说法正确的是(  )
A.太阳光谱是吸收光谱
B.太阳光谱中的暗线,是太阳光经过太阳大气层时某些特定频率的光被吸收后而产生的
C.太阳光谱中的暗线是太阳光经过地球大气层时形成的
D.根据太阳光谱中的暗线,可以分析地球大气层中含有哪些元素
解析:太阳光谱是吸收光谱,因为太阳是一个高温物体,它发出的白光通过温度较低的太阳大气层时,会被太阳大气层中的某些元素的原子吸收,从而使我们观察到的太阳光谱是吸收光谱,所以分析太阳的吸收光谱,可知太阳大气的物质组成,而某种物质要观察到它的吸收光谱,要求它的温度不能太低,但也不能太高,否则会直接发光,由于地球大气层的温度很低,所以太阳光通过地球大气层时不会被地球大气层中的物质的原子吸收。故A、B正确。
答案:AB
3.(对应要点二)巴耳末通过对氢光谱的研究总结出巴耳末公式=R(-),n=3,4,5,…,对此,下列说法正确的是(  )
A.巴耳末依据核式结构理论总结出巴耳末公式
B.巴耳末公式反映了氢原子发光的连续性
C.巴耳末依据氢光谱的分析总结出巴耳末公式
D.巴耳末公式准确反映了氢原子发光的分立性,其波长的分立值并不是人为规定的
解析:由于巴耳末是利用当时已知的、在可见光区的14条谱线做了分析总结出的巴耳末公式,并不是依据核式结构理论总结出来的,巴耳末公式反映了氢原子发光的分立性,也就是氢原子实际只有若干特定频率的光,由此可知,C、D正确。
答案:CD
4.(对应要点二)氢原子光谱的巴耳末系中波长最长的谱线的波长为λ1,其次为λ2。求:
(1)λ1/λ2的比值等于多少?
(2)其中最长波长的光子能量是多少?
解析:(1)由巴耳末公式可得:
=R(-)
=R(-)
所以==。
(2)当n=3时,对应的波长最长,代入巴耳末公式有:
=1.10×107×(-)m-1
解得λ1≈6.5×10-7 m
光子能量为ε1=hν1=h= J
=3.06×10-19J。
答案:(1) (2)3.06×10-19J
4 玻尔的原子模型
[学习目标] 1.知道玻尔原子理论的基本假设的主要内容.2.了解能级、跃迁、能量量子化以及基态、激发态等概念,会计算原子跃迁时吸收或辐射光子的能量.3.能用玻尔原子理论简单解释氢原子光谱.
一、玻尔原子理论的基本假设
[导学探究] 1.按照经典理论,核外电子在库仑引力作用下绕原子核做圆周运动.我们知道,库仑引力和万有引力形式上有相似之处,电子绕原子核的运动与卫星绕地球的运动也一定有某些相似之处,那么若将卫星—地球模型缩小是否就可以变为电子—原子核模型呢?
答案 不可以.在玻尔理论中,电子的轨道半径只可能是某些分立的数值,而卫星的轨道半径可按需要任意取值.
2.氢原子吸收或辐射光子的频率条件是什么?它和氢原子核外的电子的跃迁有什么关系?
答案 电子从能量较高的定态轨道(其能量记为Em)跃迁到能量较低的定态轨道(其能量记为En)时,会放出能量为hν的光子(h是普朗克常量),这个光子的能量由前后两个能级的能量差决定,即hν=Em-En(m>n).这个式子称为频率条件,又称辐射条件.
当电子从较低的能量态跃迁到较高的能量态,吸收的光子的能量同样由频率条件决定.
[知识梳理] 玻尔原子理论的基本假设
1.轨道量子化
(1)原子中的电子在库仑引力的作用下,绕原子核做圆周运动.
(2)电子运行轨道的半径不是任意的,也就是说电子的轨道是量子化的(填“连续变化”或“量子化”).
(3)电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射.
2.定态
(1)当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫做能级.
(2)原子中这些具有确定能量的稳定状态,称为定态.
(3)基态:原子能量最低的状态称为基态,对应的电子在离核最近的轨道上运动,氢原子基态能量E1=-13.6 eV.
(4)激发态:较高的能量状态称为激发态,对应的电子在离核较远的轨道上运动.
氢原子各能级的关系为:En=E1.(E1=-13.6 eV,n=1,2,3,…)
3.频率条件与跃迁
当电子从能量较高的定态轨道(其能量记为Em)跃迁到能量较低的定态轨道(能量记为En,m>n)时,会放出能量为hν的光子,该光子的能量hν=Em-En,该式称为频率条件,又称辐射条件.
[即学即用] 判断下列说法的正误.
(1)玻尔认为电子运行轨道半径是任意的,就像人造地球卫星,能量大一些,轨道半径就会大点.( × )
(2)玻尔认为原子的能量是量子化的,不能连续取值.( √ )
(3)当电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出任意能量的光子.( × )
二、玻尔理论对氢光谱的解释
[导学探究] 如图1所示是氢原子的能级图,一群处于n=4的激发态的氢原子向低能级跃迁时能辐射出多少种频率不同的光子?从n=4的激发态跃迁到基态时,放出光子的能量多大?
图1
答案 氢原子能级跃迁图如图所示.从图中可以看出能辐射出6种频率不同的光子,它们分别是n=4→n=3,n=4→n=2,n=4→n=1,n=3→n=2,n=3→n=1,n=2→n=1.
从n=4的激发态跃迁到基态辐射光子能量ΔE=E4-E1=-0.85 eV-(-13.6 eV)=12.75 eV.
[知识梳理]
1.氢原子能级图(如图2所示)

图2
2.解释巴耳末公式
按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=Em-En.巴耳末公式中的正整数n和2正好代表能级跃迁之前和跃迁之后所处的定态轨道的量子数n和2.
3.解释气体导电发光
通常情况下,原子处于基态,基态是最稳定的,原子受到电子的撞击,有可能向上跃迁到激发态,处于激发态的原子是不稳定的,会自发地向能量较低的能级跃迁,放出光子,最终回到基态.
4.解释氢原子光谱的不连续性
原子从高能级向低能级跃迁时放出的光子的能量等于前后两个能级之差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.
5.解释不同原子具有不同的特征谱线
不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不相同.
[即学即用] 判断下列说法的正误.
(1)玻尔理论能很好地解释氢原子的巴耳末线系.( √ )
(2)处于基态的原子是不稳定的,会自发地向其他能级跃迁,放出光子.( × )
(3)不同的原子具有相同的能级,原子跃迁时辐射的光子频率是相同的.( × )
三、玻尔理论的局限性
[导学探究] 玻尔理论的成功之处在哪儿?为什么说它又有局限性?
答案 (1)玻尔理论成功之处在于第一次将量子化的思想引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱.
(2)它的局限性在于过多的保留了经典粒子的观念.
[知识梳理]
1.成功之处
玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律.
2.局限性
保留了经典粒子的观念,把电子的运动仍然看做经典力学描述下的轨道运动.
3.电子云
原子中的电子没有确定的坐标值,我们只能描述电子在某个位置出现概率的多少,把电子这种概率分布用疏密不同的点表示时,这种图象就像云雾一样分布在原子核周围,故称电子云.
[即学即用] 判断下列说法的正误.
(1)玻尔第一次提出了量子化的观念.( × )
(2)玻尔的原子理论模型可以很好地解释氦原子的光谱现象.( × )
(3)电子的实际运动并不是具有确定坐标的质点的轨道运动.( √ )
一、对玻尔原子模型的理解
1.轨道量子化
(1)轨道半径只能够是一些不连续的、某些分立的数值.
(2)氢原子中电子轨道的最小半径为r1=0.053 nm,其余轨道半径满足rn=n2r1,式中n称为量子数,对应不同的轨道,只能取正整数.
2.能量量子化
(1)不同轨道对应不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的,原子在不同状态有不同的能量,所以原子的能量也是量子化的.
(2)基态:电子在离核最近的轨道上运动的能量状态,基态能量E1=-13.6 eV.
(3)激发态:电子在离核较远的轨道上运动时的能量状态,其能量值En=E1(E1=-13.6 eV,n=1,2,3,…)
3.跃迁与频率条件
原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两种定态的能量差决定,即高能级Em低能级En.
例1 (多选)玻尔在他提出的原子模型中所作的假设有(  )
A.原子处在具有一定能量的定态中,虽然电子做变速运动,但不向外辐射能量
B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的
C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子
D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率
答案 ABC
解析 A、B、C三项都是玻尔提出来的假设,其核心是原子定态概念的引入与能级跃迁学说的提出,也就是“量子化”的概念.原子的不同能量状态与电子绕核运动时不同的圆轨道相对应,是经典理论与量子化概念的结合.原子辐射的能量与电子在某一可能轨道上绕核的运动无关.
例2 氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中(  )
A.原子要吸收光子,电子的动能增大,原子的电势能增大
B.原子要放出光子,电子的动能减小,原子的电势能减小
C.原子要吸收光子,电子的动能增大,原子的电势能减小
D.原子要吸收光子,电子的动能减小,原子的电势能增大
答案 D
解析 根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B错;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即:k=m,又Ek=mv2,所以Ek=.由此式可知:电子离核越远,即r越大时,电子的动能越小,故A、C错;由r变大时,库仑力对核外电子做负功,因此电势能增大,从而判断D正确.
针对训练1 (多选)按照玻尔原子理论,下列表述正确的是(  )
A.核外电子运动轨道半径可取任意值
B.氢原子中的电子离原子核越远,氢原子的能量越大
C.电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=Em-En(m>n)
D.氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量
答案 BC
解析 根据玻尔理论,核外电子运动的轨道半径是确定的值,而不是任意值,A错误;氢原子中的电子离原子核越远,能级越高,能量越大,B正确;由跃迁规律可知C正确;氢原子从激发态向基态跃迁的过程中,应辐射能量,D错误.
原子的能量及变化规律
(1)原子的能量:En=Ekn+Epn.
(2)电子绕核运动时:k=m,
故Ekn=mvn2=
电子轨道半径越大,电子绕核运动的动能越小.
(3)当电子的轨道半径增大时,库仑引力做负功,原子的电势能增大,反之,电势能减小.
(4)电子的轨道半径增大时,说明原子吸收了光子,从能量较低的轨道跃迁到了能量较高的轨道上.即电子轨道半径越大,原子的能量越大.
二、氢原子的跃迁规律分析
1.对能级图的理解
由En=知,量子数越大,能级差越小,能级横线间的距离越小.n=1是原子的基态,n→∞是原子电离时对应的状态.
2.跃迁过程中吸收或辐射光子的频率和波长满足hν=|Em-En|,h=|Em-En|.
3.大量处于n激发态的氢原子向基态跃迁时,最多可辐射种不同频率的光,一个处于激发态的氢原子向基态跃迁时,最多可辐射(n-1)种频率的光子.
例3 (多选)氢原子能级图如图3所示,当氢原子从n=3跃迁到n=2的能级时,辐射光的波长为656 nm.以下判断正确的是(  )
图3
A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656 nm
B.用波长为325 nm的光照射,可使氢原子从n=1跃迁到n=2的能级
C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线
D.用波长为633 nm的光照射,不能使氢原子从n=2跃迁到n=3的能级
答案 CD
解析 能级间跃迁辐射的光子能量等于两能级间的能级差,能级差越大,辐射的光子频率越大,波长越小,A错误;由Em-En=hν可知,B错误,D正确;根据C=3可知,C正确.
针对训练2 如图4所示为氢原子的能级图.用光子能量为13.06 eV的光照射一群处于基态的氢原子,则可能观测到氢原子发射的不同波长的光有(  )
图4
A.15种 B.10种
C.4种 D.1种
答案 B
解析 基态的氢原子的能级值为-13.6 eV,吸收13.06 eV的能量后变成-0.54 eV,原子跃迁到n=5能级,由于氢原子是大量的,故辐射的光子种类是=种=10种.
原子跃迁时需要注意的两个问题
(1)注意一群原子和一个原子:氢原子核外只有一个电子,在某段时间内,由某一轨道跃迁到另一个轨道时,只能出现所有可能情况中的一种,但是如果有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.
(2)注意跃迁与电离:hν=Em-En只适用于光子和原子作用使原子在各定态之间跃迁的情况,对于光子和原子作用使原子电离的情况,则不受此条件的限制.如基态氢原子的电离能为13.6 eV,只要大于或等于13.6 eV的光子都能被基态的氢原子吸收而发生电离,只不过入射光子的能量越大,原子电离后产生的自由电子的动能越大.
1.根据玻尔理论,关于氢原子的能量,下列说法中正确的是(  )
A.是一系列不连续的任意值
B.是一系列不连续的特定值
C.可以取任意值
D.可以在某一范围内取任意值
答案 B
2.氢原子辐射出一个光子后,根据玻尔理论,下列判断正确的是(  )
A.电子绕核旋转的轨道半径增大
B.电子的动能减少
C.氢原子的电势能增大
D.氢原子的能级减小
答案 D
解析 氢原子辐射出光子后,由高能级跃迁到低能级,轨道半径减小,电子动能增大,此过程中库仑力做正功,电势能减小.
3.(多选)如图5所示为氢原子的能级图,A、B、C分别表示电子在三种不同能级跃迁时放出的光子,则下列判断中正确的是(  )
图5
A.能量和频率最大、波长最短的是B光子
B.能量和频率最小、波长最长的是C光子
C.频率关系为νB>νA>νC,所以B的粒子性最强
D.波长关系为λB>λA>λC
答案 ABC
解析 从图中可以看出电子在三种不同能级跃迁时,能级差由大到小依次是B、A、C,所以B光子的能量和频率最大,波长最短,能量和频率最小、波长最长的是C光子,所以频率关系是νB>νA>νC,波长关系是λB<λA<λC,所以B光子的粒子性最强,故选项A、B、C正确,D错误.
4.氢原子处于基态时,原子能量E1=-13.6 eV,普朗克常量取h=6.6×10-34 J·s.
(1)处于n=2激发态的氢原子,至少要吸收多大能量的光子才能电离?
(2)今有一群处于n=4激发态的氢原子,最多可以辐射几种不同频率的光子?其中最小的频率是多少?(结果保留2位有效数字)
答案 (1)3.4 eV (2)6种 1.6×1014 Hz
解析 (1)E2=E1=-3.4 eV
则处于n=2激发态的氢原子,至少要吸收3.4 eV能量的光子才能电离.
(2)根据C=6知,一群处于n=4激发态的氢原子最多能辐射出的光子种类为6种.
n=4→n=3时,光子频率最小为νmin,则E4-E3=hνmin,
代入数据,解得νmin=1.6×1014 Hz.
一、选择题(1~7题为单选题,8~10题为多选题)
1.根据玻尔理论,氢原子有一系列能级,以下说法正确的是(  )
A.当氢原子处于第2能级且不发生跃迁时,会向外辐射光子
B.电子绕核旋转的轨道半径可取任意值
C.处于基态的氢原子可以吸收10 eV的光子
D.大量氢原子处于第4能级,向低能级跃迁时最多会出现6条谱线
答案 D
解析 氢原子处于第2能级且向基态发生跃迁时,才会向外辐射光子.故A错误.根据玻尔原子理论可知,电子绕核旋转的轨道半径是特定值.故B错误.10 eV的能量不等于基态与其他能级间的能级差,所以该光子能量不能被吸收.故C错误.根据C=6知,大量处于n=4能级的氢原子向低能级跃迁时最多能辐射出6种不同频率的光子.故D正确.
2.一个氢原子从n=3能级跃迁到n=2能级,该氢原子(  )
A.放出光子,能量增加 B.放出光子,能量减少
C.吸收光子,能量增加 D.吸收光子,能量减少
答案 B
解析 氢原子从高能级向低能级跃迁时,放出光子,能量减少,故选项B正确.
3.氢原子的能级图如图1所示,已知可见光的光子能量范围约为1.62~3.11 eV.下列说法错误的是(  )
图1
A.处于n=3能级的氢原子可以吸收任意频率的紫外线,并发生电离
B.大量氢原子从高能级向n=3能级跃迁时,发出的光具有显著的热效应
C.大量处于n=4能级的氢原子向低能级跃迁时,可能发出2种不同频率的可见光
D.大量处于n=4能级的氢原子向低能级跃迁时,可能发出3种不同频率的可见光
答案 D
解析 紫外线的频率比可见光的高,因此紫外线光子的能量应大于3.11 eV,而处于n=3能级的氢原子其电离能仅为1.51 eV<3.11 eV,所以处于n=3能级的氢原子可以吸收任意频率的紫外线,并发生电离.
4.根据玻尔理论,某原子从能量为E的轨道跃迁到能量为E′的轨道,辐射出波长为λ的光.以h表示普朗克常量,c表示真空中的光速,E′等于(  )
A.E-h B.E+h
C.E-h D.E+h
答案 C
解析 释放的光子能量为hν=h,所以E′=E-hν=E-h.
5.如图2所示是某原子的能级图,a、b、c为原子跃迁所发出的三种波长的光.选项图所示的该原子光谱中,谱线从左向右的波长依次增大,则正确的是(  )
图2
答案 C
解析 由能级图可知,三种光的能量大小依次为Ea>Ec>Eb,又E=h,可知b光的能量最小,波长最长,a光的能量最大,波长最短,C项正确.
6.氢原子从能级m跃迁到能级n时辐射红光的频率为ν1,从能级n跃迁到能级k时吸收紫光的频率为ν2,已知普朗克常量为h,若氢原子从能级k跃迁到能级m,则(  )
A.吸收光子的能量为hν1+hν2
B.辐射光子的能量为hν1+hν2
C.吸收光子的能量为hν2-hν1
D.辐射光子的能量为hν2-hν1
答案 D
解析 由于氢原子从能级m跃迁到能级n时辐射红光的频率为ν1,从能级n跃迁到能级k时吸收紫光的频率为ν2,可知能级k最高、n最低,所以氢原子从能级k跃迁到能级m,要辐射光子的能量为hν2-hν1,选项D正确,A、B、C错误.
7.处于n=3能级的大量氢原子,向低能级跃迁时,辐射光的频率有(  )
A.1种 B.2种 C.3种 D.4种
答案 C
8.关于玻尔的原子模型,下列说法中正确的是(  )
A.它彻底否定了卢瑟福的核式结构学说
B.它发展了卢瑟福的核式结构学说
C.它完全抛弃了经典的电磁理论
D.它引入了普朗克的量子理论
答案 BD
解析 玻尔的原子模型在核式结构模型的前提下提出轨道量子化、能量量子化及能级跃迁,故A错误,B正确,它的成功就在于引入了量子化理论,缺点是被过多引入的经典力学所困,故C错误,D正确.
9.关于玻尔原子理论的基本假设,下列说法中正确的是(  )
A.原子中的电子绕原子核做圆周运动,库仑力提供向心力
B.氢原子光谱的不连续性,表明了氢原子的能级是不连续的
C.原子的能量包括电子的动能和势能,电子动能可取任意值,势能只能取某些分立值
D.电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)光子频率等于电子绕核运动的频率
答案 AB
解析 根据玻尔理论的基本假设知,原子中的电子绕原子核做圆周运动,库仑力提供向心力,故A正确.玻尔原子模型结合氢原子光谱,可知氢原子的能量是不连续的.故B正确.原子的能量包括电子的动能和势能,由于轨道是量子化的,则电子动能也是特定的值,故C错误.电子由一条轨道跃迁到另一条轨道上时,辐射(或吸收)的光子能量等于两能级间的能级差,D错误.
10.如图3所示,用光子能量为E的单色光照射容器中处于基态的氢原子,发现该容器内的氢能够释放出三种不同频率的光子,它们的频率由低到高依次为ν1、ν2、ν3,由此可知,开始用来照射容器的单色光的光子能量可以表示为(  )
图3
A.hν1 B.hν3
C.hν1+hν2 D.hν1+hν2+hν3
答案 BC
解析 氢原子吸收光子能向外辐射三种不同频率的光子,可知氢原子被单色光照射后跃迁到第3能级,吸收的光子能量等于两能级间的能级差,即单色光的能量E=hν3,又hν3=hν1+hν2,故B、C正确,A、D错误.
二、非选择题
11.如图4所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时,
图4
(1)最多有可能放出几种能量的光子?
(2)在哪两个能级间跃迁时,所发出的光子波长最长?最长波长是多少?
答案 (1)6种 (2)第4能级向第3能级 1.88×10-6 m
解析 (1)由N=C,可得N=C=6种.
(2)氢原子由第4能级向第3能级跃迁时,能级差最小,辐射的光子能量最小,波长最长,根据hν==E4-E3=-0.85-(-1.51) eV=0.66 eV,λ== m≈1.88×10-6 m.
12.氦原子被电离一个核外电子,形成类氢结构的氦离子.已知基态的氦离子能量为E1=-54.4 eV,氦离子能级的示意图如图5所示,用一群处于第4能级的氦离子发出的光照射处于基态的氢原子.求:
图5
(1)氦离子发出的光子中,有几种能使氢原子发生光电效应?
(2)发生光电效应时,光电子的最大初动能最大是多少?
答案 (1)3种 (2)37.4 eV
解析 (1)一群处于n=4能级的氦离子跃迁时,一共发出N==6种光子.
由频率条件hν=Em-En知6种光子的能量分别是
由n=4到n=3,hν1=E4-E3=2.6 eV,
由n=4到n=2,hν2=E4-E2=10.2 eV,
由n=4到n=1,hν3=E4-E1=51.0 eV,
由n=3到n=2,hν4=E3-E2=7.6 eV,
由n=3到n=1,hν5=E3-E1=48.4 eV,
由n=2到n=1,hν6=E2-E1=40.8 eV,
由发生光电效应的条件知,hν3、hν5、hν6三种光子可使处于基态的氢原子发生光电效应.
(2)由光电效应方程Ek=hν-W0知,能量为51.0 eV的光子使氢原子逸出的光电子最大初动能最大,将W0=13.6 eV代入,Ek=hν-W0得Ek=37.4 eV.
课件41张PPT。第十八章 4 玻尔的原子模型学习目标 
1.知道玻尔原子理论的基本假设的主要内容.
2.了解能级、跃迁、能量量子化以及基态、激发态等概念,会计算原子跃迁时吸收或辐射光子的能量.
3.能用玻尔原子理论简单解释氢原子光谱.内容索引
知识探究
题型探究
达标检测
知识探究一、玻尔原子理论的基本假设1.按照经典理论,核外电子在库仑引力作用下绕原子核做圆周运动.我们知道,库仑引力和万有引力形式上有相似之处,电子绕原子核的运动与卫星绕地球的运动也一定有某些相似之处,那么若将卫星—地球模型缩小是否就可以变为电子—原子核模型呢?答案答案 不可以.在玻尔理论中,电子的轨道半径只可能是某些分立的数值,而卫星的轨道半径可按需要任意取值.2.氢原子吸收或辐射光子的频率条件是什么?它和氢原子核外的电子的跃迁有什么关系?答案答案 电子从能量较高的定态轨道(其能量记为Em)跃迁到能量较低的定态轨道(其能量记为En)时,会放出能量为hν的光子(h是普朗克常量),这个光子的能量由前后两个能级的能量差决定,即hν=Em-En(m>n).这个式子称为频率条件,又称辐射条件.
当电子从较低的能量态跃迁到较高的能量态,吸收的光子的能量同样由频率条件决定.玻尔原子理论的基本假设
1.轨道量子化
(1)原子中的电子在 的作用下,绕原子核做 .
(2)电子运行轨道的半径不是任意的,也就是说电子的轨道是 的(填“连续变化”或“量子化”).
(3)电子在这些轨道上绕核的转动是 的,不产生 .库仑引力圆周运动量子化稳定电磁辐射2.定态
(1)当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是 的,这些量子化的能量值叫做 .
(2)原子中这些具有确定能量的稳定状态,称为 .
(3)基态:原子能量 的状态称为基态,对应的电子在离核最 的轨道上运动,氢原子基态能量E1= .量子化能级定态最低近-13.6 eV(4)激发态:较高的能量状态称为激发态,对应的电子在离核较远的轨道上运动.
氢原子各能级的关系为:En= .(E1=-13.6 eV,n=1,2,3,…)
3.频率条件与跃迁
当电子从能量较高的定态轨道(其能量记为Em)跃迁到能量较低的定态轨道(能量记为En,m>n)时,会放出能量为hν的光子,该光子的能量hν=
,该式称为频率条件,又称辐射条件.Em-En判断下列说法的正误.
(1)玻尔认为电子运行轨道半径是任意的,就像人造地球卫星,能量大一些,轨道半径就会大点.(  )
(2)玻尔认为原子的能量是量子化的,不能连续取值.(  )
(3)当电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出任意能量的光子.(  )×√×二、玻尔理论对氢光谱的解释如图1所示是氢原子的能级图,一群处于n=4的激发态的氢原子向低能级跃迁时能辐射出多少种频率不同的光子?从n=4的激发态跃迁到基态时,放出光子的能量多大?答案图1答案 氢原子能级跃迁图如图所示.从图中可以看出能辐射出6种频率不同的光子,它们分别是n=4→n=3,n=4→n=2,n=4→n=1,n=3→n=2,n=3→n=1,n=2→n=1.从n=4的激发态跃迁到基态辐射光子能量ΔE=E4-E1=-0.85 eV-(-13.6 eV)=12.75 eV.1.氢原子能级图(如图2所示)图22.解释巴耳末公式
按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=
.巴耳末公式中的正整数n和2正好代表能级跃迁之前和跃迁之后所处的 的量子数n和2.
3.解释气体导电发光
通常情况下,原子处于基态,基态是最稳定的,原子受到电子的撞击,有可能向上跃迁到 ,处于激发态的原子是 的,会自发地向能量较低的能级跃迁,放出 ,最终回到基态.Em-En定态轨道激发态不稳定光子4.解释氢原子光谱的不连续性
原子从高能级向低能级跃迁时放出的光子的能量等于前后 ,由于原子的能级是 的,所以放出的光子的能量也是 的,因此原子的发射光谱只有一些分立的亮线.
5.解释不同原子具有不同的特征谱线
不同的原子具有不同的结构, 各不相同,因此辐射(或吸收)的
也不相同.两个能级之差分立分立能级光子频率判断下列说法的正误.
(1)玻尔理论能很好地解释氢原子的巴耳末线系.(  )
(2)处于基态的原子是不稳定的,会自发地向其他能级跃迁,放出光子.
(  )
(3)不同的原子具有相同的能级,原子跃迁时辐射的光子频率是相同的.
(  )√××三、玻尔理论的局限性玻尔理论的成功之处在哪儿?为什么说它又有局限性?答案 (1)玻尔理论成功之处在于第一次将量子化的思想引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱.
(2)它的局限性在于过多的保留了经典粒子的观念.答案1.成功之处
玻尔理论第一次将 引入原子领域,提出了 的概念,成功解释了 光谱的实验规律.
2.局限性
保留了 的观念,把电子的运动仍然看做经典力学描述下的 运动.量子观念定态和跃迁氢原子经典粒子轨道3.电子云
原子中的电子没有确定的坐标值,我们只能描述电子在某个位置出现 的多少,把电子这种概率分布用疏密不同的点表示时,这种图象就像 一样分布在原子核周围,故称 .概率云雾电子云判断下列说法的正误.
(1)玻尔第一次提出了量子化的观念.(  )
(2)玻尔的原子理论模型可以很好地解释氦原子的光谱现象.(  )
(3)电子的实际运动并不是具有确定坐标的质点的轨道运动.(  )××√
题型探究一、对玻尔原子模型的理解
1.轨道量子化
(1)轨道半径只能够是一些不连续的、某些分立的数值.
(2)氢原子中电子轨道的最小半径为r1=0.053 nm,其余轨道半径满足rn=n2r1,式中n称为量子数,对应不同的轨道,只能取正整数.
2.能量量子化
(1)不同轨道对应不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的,原子在不同状态有不同的能量,所以原子的能量也是量子化的.?例1 (多选)玻尔在他提出的原子模型中所作的假设有
A.原子处在具有一定能量的定态中,虽然电子做变速运动,但不向外辐
射能量
B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子
的可能轨道的分布是不连续的
C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子
D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率√√答案解析√解析 A、B、C三项都是玻尔提出来的假设,其核心是原子定态概念的引入与能级跃迁学说的提出,也就是“量子化”的概念.原子的不同能量状态与电子绕核运动时不同的圆轨道相对应,是经典理论与量子化概念的结合.原子辐射的能量与电子在某一可能轨道上绕核的运动无关.例2 氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中
A.原子要吸收光子,电子的动能增大,原子的电势能增大
B.原子要放出光子,电子的动能减小,原子的电势能减小
C.原子要吸收光子,电子的动能增大,原子的电势能减小
D.原子要吸收光子,电子的动能减小,原子的电势能增大√答案解析?针对训练1 (多选)按照玻尔原子理论,下列表述正确的是
A.核外电子运动轨道半径可取任意值
B.氢原子中的电子离原子核越远,氢原子的能量越大
C.电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=Em
-En(m>n)
D.氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量√√解析 根据玻尔理论,核外电子运动的轨道半径是确定的值,而不是任意值,A错误;
氢原子中的电子离原子核越远,能级越高,能量越大,B正确;
由跃迁规律可知C正确;
氢原子从激发态向基态跃迁的过程中,应辐射能量,D错误.答案解析??例3 (多选)氢原子能级图如图3所示,当氢原子从
n=3跃迁到n=2的能级时,辐射光的波长为656 nm.
以下判断正确的是
A.氢原子从n=2跃迁到n=1的能级时,辐射光的波
长大于656 nm
B.用波长为325 nm的光照射,可使氢原子从n=1跃
迁到n=2的能级
C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线
D.用波长为633 nm的光照射,不能使氢原子从n=2跃迁到n=3的能级√√图3答案解析解析 能级间跃迁辐射的光子能量等于两能级间的能级差,能级差越大,辐射的光子频率越大,波长越小,A错误;
由Em-En=hν可知,B错误,D正确;针对训练2 如图4所示为氢原子的能级图.用光子
能量为13.06 eV的光照射一群处于基态的氢原子,
则可能观测到氢原子发射的不同波长的光有
A.15种 B.10种
C.4种 D.1种√图4?答案解析原子跃迁时需要注意的两个问题
(1)注意一群原子和一个原子:氢原子核外只有一个电子,在某段时间内,由某一轨道跃迁到另一个轨道时,只能出现所有可能情况中的一种,但是如果有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现.
(2)注意跃迁与电离:hν=Em-En只适用于光子和原子作用使原子在各定态之间跃迁的情况,对于光子和原子作用使原子电离的情况,则不受此条件的限制.如基态氢原子的电离能为13.6 eV,只要大于或等于13.6 eV的光子都能被基态的氢原子吸收而发生电离,只不过入射光子的能量越大,原子电离后产生的自由电子的动能越大.
达标检测1.根据玻尔理论,关于氢原子的能量,下列说法中正确的是
A.是一系列不连续的任意值
B.是一系列不连续的特定值
C.可以取任意值
D.可以在某一范围内取任意值√123答案42.氢原子辐射出一个光子后,根据玻尔理论,下列判断正确的是
A.电子绕核旋转的轨道半径增大
B.电子的动能减少
C.氢原子的电势能增大
D.氢原子的能级减小123√答案4解析 氢原子辐射出光子后,由高能级跃迁到低能级,轨道半径减小,电子动能增大,此过程中库仑力做正功,电势能减小.解析3.(多选)如图5所示为氢原子的能级图,A、B、C分别表示电子在三种不同能级跃迁时放出的光子,则下列判断中正确的是
A.能量和频率最大、波长最短的是B光子
B.能量和频率最小、波长最长的是C光子
C.频率关系为νB>νA>νC,所以B的粒子性最强
D.波长关系为λB>λA>λC√√1234图5√答案解析解析 从图中可以看出电子在三种不同能级跃迁时,能级差由大到小依次是B、A、C,所以B光子的能量和频率最大,波长最短,能量和频率最小、波长最长的是C光子,所以频率关系是νB>νA>νC,波长关系是λB<λA<λC,所以B光子的粒子性最强,故选项A、B、C正确,D错误.12344.氢原子处于基态时,原子能量E1=-13.6 eV,普朗克常量取h=6.6×10-34 J·s.
(1)处于n=2激发态的氢原子,至少要吸收多大能量的光子才能电离?1234答案 3.4 eV则处于n=2激发态的氢原子,至少要吸收3.4 eV能量的光子才能电离.答案解析(2)今有一群处于n=4激发态的氢原子,最多可以辐射几种不同频率的光子?其中最小的频率是多少?(结果保留2位有效数字)1234答案 6种 1.6×1014 Hzn=4→n=3时,光子频率最小为νmin,则E4-E3=hνmin,
代入数据,解得νmin=1.6×1014 Hz.答案解析第4节 玻尔的原子模型
1.(对应要点一)氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中
(  )
A.原子要吸收光子,电子的动能增大,原子的电势能增大
B.原子要放出光子,电子的动能减小,原子的电势能减小
C.原子要吸收光子,电子的动能增大,原子的电势能减小
D.原子要吸收光子,电子的动能减小,原子的电势能增大
解析:根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B错;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即k=m,又Ek=mv2,则k=mv2即Ek=k。由此式可知:电子离核越远,r越大时,电子的动能越小,故A、C错;r变大时,库仑力对核外电子做负功,因此电势能增大,故D正确。
答案:D
2.(对应要点二)欲使处于基态的氢原子激发或电离,下列措施可行的是(  )
A.用10.2 eV的光子照射  B.用11 eV的光子照射
C.用14 eV的光子照射 D.用11 eV的电子碰撞
解析:此题容易在使处于基态氢原子受激发的方式上认识不全面而导致错误。由氢原子能级图算出只有10.2 eV为第2能级与基态之间的能量差,处于基态的氢原子吸收10.2 eV的光子后将跃迁到第一激发态,而大于13.6 eV的光子能使氢原子电离,原子还可吸收电子的能量而被激发或电离,由于电子的动能可全部或部分地被氢原子吸收,所以只要入射电子的动能大于或等于两能级的能量差值,均可认为原子发生能级跃迁或电离。故选A、C、D。
答案:ACD
3.(对应要点一)(2012·山东高考)氢原子第n能级的能量为En=,其中E1为基态能量。当氢原子由第4能级跃迁到第2能级时,发出光子的频率为ν1;若氢原子由第2能级跃迁到基态,发出光子的频率为ν2,则=________。
解析:根据En=可得hν1=-,hν2=-E1,两式联立解得=。
答案:
4.(对应要点二)有一群氢原子处于n=4的能级上,已知氢原子的基态能量E1=-13.6 eV,普朗克常量h=6.63×10-34 J·s,求:
(1)这群氢原子的光谱共有几条谱线?
(2)这群氢原子发出的光子的最大频率是多少?
(3)这群氢原子发出的光子的最长波长是多少?
解析:(1)这群氢原子的能级如图所示,由图可以判断,这群氢原子可能发生的跃迁共有6种,所以它们的谱线共有6条。也可由C=6直接求得。
(2)频率最大的光子能量最大,对应的跃迁能级差也最大,即从n=4跃迁到n=1发出的光子能量最大,根据玻尔第二假设,发出光子的能量:
hν=-E1(-)
代入数据,解得:ν≈3.1×1015 Hz。
(3)波长最长的光子能量最小。对应的跃迁的能级差也最小。即从n=4跃迁到n=3
所以h=E4-E3
λ== m=1.884×10-6 m
答案: (1)6条 (2)3.1×1015 Hz (3)1.884×10-6 m
1 原子核的组成
[学习目标] 1.了解什么是放射性和天然放射现象.2.知道原子核的组成及三种射线的特征.
一、天然放射现象和三种射线
[导学探究] 1.1896年法国物理学家贝可勒尔发现了放射性元素自发地发出射线的现象,即天然放射现象.是否所有的元素都具有放射性?放射性物质发出的射线有哪些种类?
答案 原子序数大于或等于83的元素,都能自发地发出射线,原子序数小于83的元素,有的也能放出射线.放射性物质发出的射线有三种:α射线、β射线、γ射线.
2.怎样用电场或磁场判断三种射线粒子的带电性质?
答案 让三种射线通过匀强电场,则γ射线不偏转,说明γ射线不带电.α射线偏转方向和电场方向相同,带正电,β射线偏转方向和电场方向相反,带负电.或者让三种射线通过匀强磁场,则γ射线不偏转,说明γ射线不带电,α射线和β射线可根据偏转方向和左手定则确定带电性质.
[知识梳理]
1.对天然放射现象的认识
(1)1896年,法国物理学家贝可勒尔发现某些物质具有放射性.
(2)物质发射射线的性质称为放射性,具有放射性的元素称为放射性元素,放射性元素自发地发出射线的现象叫做天然放射现象.
(3)原子序数大于或等于83的元素,都能自发地发出射线,原子序数小于83的元素,有的也能放出射线.
2.对三种射线的认识
种类
α射线
β射线
γ射线
组成
高速氦核流
高速电子流
光子流(高频电磁波)
带电
荷量
2e
-e
0
速率
0.1c
0.99c
c
贯穿
本领
最弱,用一张纸就能挡住
较强,能穿透几毫米厚的铝板
最强,能穿透几厘米厚的铅板和几十厘米厚的混凝土
电离
作用
很强
较强
很弱
[即学即用] 判断下列说法的正误.
(1)1896年,法国的玛丽·居里首先发现了天然放射现象.( × )
(2)原子序数大于83的元素都是放射性元素.( √ )
(3)原子序数小于83的元素都不能放出射线.( × )
(4)α射线实际上就是氦原子核,α射线具有较强的穿透能力.( × )
(5)β射线是高速电子流,很容易穿透黑纸,也能穿透几毫米厚的铝板.( √ )
(6)γ射线是能量很高的电磁波,电离作用很强.( × )
二、原子核的组成
[知识梳理]
1.质子的发现
1919年,卢瑟福用镭放射出的α粒子轰击氮原子核,从氮核中打出了一种新的粒子,测定了它的电荷和质量,确定它是氢原子核,叫做质子,用p或H表示,其质量为mp=1.67×10-27 kg.
2.中子的发现
(1)卢瑟福的预言:原子核内可能还有一种不带电的粒子,名字叫中子.
(2)查德威克的发现:用实验证明了中子的存在,用n表示,中子的质量非常接近质子的质量.
3.原子核的组成
(1)核子数:质子和中子质量差别非常微小,二者统称为核子,所以质子数和中子数之和叫核子数.
(2)电荷数(Z):原子核所带的电荷总是质子电荷的整数倍,通常用这个整数表示原子核的电荷量,叫做原子核的电荷数.
(3)质量数(A):原子核的质量等于核内质子和中子的质量的总和,而质子与中子的质量几乎相等,所以原子核的质量几乎等于单个核子质量的整数倍,这个倍数叫做原子核的质量数.
4.同位素
具有相同的质子数而中子数不同的原子核,在元素周期表中处于同一位置,它们互称为同位素.例如:氢有三种同位素,分别是H、H、H.
[即学即用] 判断下列说法的正误.
(1)质子和中子都不带电,是原子核的组成成分,统称为核子.( × )
(2)原子核的电荷数就是核内的质子数,也就是这种元素的原子序数.( √ )
(3)同位素具有不同的化学性质.( × )
(4)原子核内的核子数与它的核电荷数不可能相等.( × )
一、天然放射现象和三种射线
1.三种射线的实质
α射线:高速氦核流,带2e的正电荷;
β射线:高速电子流,带e的负电荷;
γ射线:光子流(高频电磁波),不带电.
2.三种射线在电场中和磁场中的偏转
(1)在匀强电场中,γ射线不发生偏转,做匀速直线运动,α粒子和β粒子沿相反方向做类平抛运动,在同样的条件下,β粒子的偏移大,如图1所示.
图1
(2)在匀强磁场中,γ射线不发生偏转,仍做匀速直线运动,α粒子和β粒子沿相反方向做匀速圆周运动,且在同样条件下,β粒子的轨道半径小,如图2所示.
图2
3.元素的放射性
(1)一种元素的放射性与是单质还是化合物无关,这就说明射线跟原子核外电子无关.
(2)射线来自于原子核说明原子核内部是有结构的.
例1 如图3所示,R是一种放射性物质,虚线框内是匀强磁场,LL′是厚纸板,MM′是荧光屏,实验时,发现在荧光屏的O、P两点处有亮斑,由此可知磁场的方向、到达O点的射线种类、到达P点的射线种类应属于下表中的(  )
图3
选项
磁场方向
到达O点
的射线
到达P点
的射线
A
竖直向上
β
α
B
竖直向下
α
β
C
垂直纸面向里
γ
β
D
垂直纸面向外
γ
α
答案 C
解析 R放射出来的射线共有α、β、γ三种,其中α、β射线垂直于磁场方向进入磁场区域时将受到洛伦兹力作用而偏转,γ射线不偏转,故打在O点的应为γ射线;由于α射线贯穿本领弱,不能射穿厚纸板,故到达P点的应是β射线;依据β射线的偏转方向及左手定则可知磁场方向垂直纸面向里.
例2 (多选)将α、β、γ三种射线分别射入匀强磁场和匀强电场,图中表示射线偏转情况正确的是(  )
答案 AD
解析 已知α粒子带正电,β粒子带负电,γ射线不带电,根据正、负电荷在磁场中运动受洛伦兹力方向和正、负电荷在电场中受电场力方向可知,A、B、C、D四幅图中α、β粒子的偏转方向都是正确的,但偏转的程度需进一步判断.
带电粒子在磁场中做匀速圆周运动,其半径r=,
将数据代入,则α粒子与β粒子的半径之比
=··=××≈371,
A对,B错;
带电粒子垂直进入匀强电场,设初速度为v0,垂直电场线方向位移为x,沿电场线方向位移为y,则有
x=v0t,y=t2,
消去t可得y=.
对某一确定的x值,α、β粒子沿电场线偏转距离之比
=··=××≈,
C错,D对.
三种射线的鉴别:
(1)α射线带正电、β射线带负电、γ射线不带电.α射线、β射线是实物粒子,而γ射线是光子流,属于电磁波的一种.
(2)α射线、β射线都可以在电场或磁场中偏转,但偏转方向不同,γ射线则不发生偏转.
(3)α射线穿透能力弱,β射线穿透能力较强,γ射线穿透能力最强,而电离本领相反.
二、原子核的组成
1.原子核(符号X)
原子核
2.基本关系
核电荷数=质子数(Z)=元素的原子序数=核外电子数,质量数(A)=核子数=质子数+中子数.
例3 已知镭的原子序数是88,原子核的质量数是226.试问:
(1)镭核中有几个质子?几个中子?
(2)镭核所带电荷量是多少?(保留三位有效数字)
(3)呈电中性的镭原子,核外有几个电子?
答案 (1)88 138 (2)1.41×10-17 C (3)88
解析 (1)镭核中的质子数等于其原子序数,故质子数为88,中子数N等于原子核的质量数A与质子数Z之差,即N=A-Z=226-88=138.
(2)镭核所带电荷量
Q=Ze=88×1.6×10-19 C≈1.41×10-17 C.
(3)核外电子数等于核电荷数,故核外电子数为88.
针对训练 在α粒子轰击金箔的散射实验中,α粒子可以表示为He,He中的4和2分别表示(  )
A.4为核子数,2为中子数
B.4为质子数和中子数之和,2为质子数
C.4为核外电子数,2为中子数
D.4为中子数,2为质子数
答案 B
解析 根据X所表示的物理意义,原子核的质子数决定核外电子数,原子核的核电荷数就是核内的质子数,也就是这种元素的原子序数.原子核的质量数就是核内质子数和中子数之和,即为核内的核子数.He符号的左下角表示的是质子数或核外电子数,即为2,He符号左上角表示的是核子数,即为4,故选项B正确.
1.下列现象中,与原子核内部变化有关的是(  )
A.α粒子散射现象
B.天然放射现象
C.光电效应现象
D.原子发光现象
答案 B
解析 α粒子散射现象说明了金箔原子中有一个很小的核;光电效应现象说明了光的粒子性,原子发光现象说明核外电子跃迁具有量子化的特征;只有天然放射现象才能说明原子核具有内部结构,选项B正确.
2.下列说法正确的是(  )
A.α射线是由高速运动的氦核组成的,其运行速度接近光速
B.β射线能穿透几毫米厚的铅板
C.γ射线的穿透能力最强,电离能力最弱
D.β射线的粒子和电子是两种不同的粒子
答案 C
3.以下说法正确的是(  )
A.Rn为氡核,由此可知,氡核的质量数为86,氡核的质子数为222
B.Be为铍核,由此可知,铍核的质量数为9,铍核的中子数为4
C.同一元素的两种同位素具有相同的质量数
D.同一元素的两种同位素具有不同的中子数
答案 D
解析 A项氡核的质量数为222,质子数为86,所以A错误;B项铍核的质量数为9,中子数为5,所以B错误;由于质子数相同而中子数不同的原子核互称为同位素,即它们的质量数不同,因而C错误,D正确.
一、选择题(1~6题为单选题,7~10题为多选题)
1.在天然放射性物质附近放置一带电体,带电体所带的电荷很快消失的根本原因是(  )
A.γ射线的贯穿作用
B.α射线的电离作用
C.β射线的贯穿作用
D.β射线的中和作用
答案 B
解析 由于α粒子电离作用较强,能使空气分子电离,电离产生的电荷与带电体的电荷中和,使带电体所带的电荷很快消失.
2.放射性元素放出的射线,在电场中分成A、B、C三束,如图1所示,其中(  )
图1
A.C为氦原子核组成的粒子流
B.B为比X射线波长更长的光子流
C.B为比X射线波长更短的光子流
D.A为高速电子组成的电子流
答案 C
解析 根据射线在电场中的偏转情况,可以判断,A射线向电场线方向偏转,应为带正电的粒子组成的射线,所以是α射线;B射线在电场中不偏转,所以是γ射线;C射线在电场中受到与电场方向相反的作用力,应为带负电的粒子,所以是β射线.
3.据最新报道,放射性同位素钬Ho,可有效治疗癌症,该同位素原子核内中子数与核外电子数之差是(  )
A.32 B.67
C.99 D.166
答案 A
解析 根据原子核的表示方法得核外电子数=质子数=67,中子数为166-67=99,故核内中子数与核外电子数之差为99-67=32,故A对.
4.下列关于He的叙述正确的是(  )
A.He与H互为同位素
B.He原子核内中子数为2
C.He原子核内质子数为2
D.He代表原子核内有2个质子和3个中子的氦原子核
答案 C
解析 He核内质子数为2,H核内质子数为1.两者质子数不等,不是同位素,A错误;He原子核内中子数为1,B错误;He代表原子核内有2个质子和1个中子的氦原子核,核外电子数为2,故C正确,D错误.
5.若用x代表一个中性原子中核外的电子数,y代表此原子的原子核内的质子数,z代表此原子的原子核内的中子数,则对U的原子来说(  )
A.x=92 y=92 z=235
B.x=92 y=92 z=143
C.x=143 y=143 z=92
D.x=235 y=235 z=325
答案 B
解析 在U中,左下标为质子数,左上标为质量数,则y=92;中性原子的核外电子数等于质子数,所以x=92;中子数等于质量数减去质子数,z=235-92=143,所以B选项正确.
6.物理学重视逻辑,崇尚理性,其理论总是建立在对事实观察的基础上.下列说法正确的是(  )
A.天然放射现象说明原子核内部是有结构的
B.电子的发现使人们认识到原子具有核式结构
C.α粒子散射实验的重要发现是电荷是量子化的
D.密立根油滴实验表明核外电子的轨道是不连续的
答案 A
解析 放射现象中释放出了其他粒子,说明原子核内部具有一定的结构,A正确;电子的发现使人们认识到原子是可以分割的,是由更小的微粒组成的,B错误;α粒子散射实验否定了汤姆孙提出的枣糕式原子模型,建立了核式结构模型,C错误;密立根油滴实验测定了电子的电荷量,D错误.
7.天然放射性物质的放射线包括三种成分,下列说法正确的是(  )
A.一张厚的黑纸能挡住α射线,但不能挡住β射线和γ射线
B.某原子核在放出γ射线后会变成另一种元素的原子核
C.三种射线中对气体电离作用最强的是α射线
D.β粒子是电子,但不是原来绕核旋转的核外电子
答案 ACD
8.氢有三种同位素,分别是氕(H)、氘(H)、氚(H),则(  )
A.它们的质子数相等
B.它们的核外电子数相等
C.它们的核子数相等
D.它们的中子数相等
答案 AB
解析 氕、氘、氚的核子数分别为1、2、3,质子数和核外电子数相同,都为1,中子数等于核子数减去质子数,故中子数各不相同,所以A、B选项正确.
9.下列关于放射性元素发出的三种射线的说法中正确的是(  )
A.α粒子就是氢原子核,它的穿透本领和电离本领都很强
B.β射线是电子流,其速度接近光速
C.γ射线是一种频率很高的电磁波,它可以穿过几厘米厚的铅板
D.以上三种说法均正确
答案 BC
解析 α粒子是氦原子核,它的穿透本领很弱而电离本领很强,A项错误;β射线是电子流,其速度接近光速,B项正确;γ射线的穿透能力很强,可以穿透几厘米厚的铅板,C项正确.
10.如图2所示,铅盒A中装有天然放射性物质,放射线从其右端小孔中水平向右射出,在小孔和荧光屏之间有垂直于纸面向里的匀强磁场,则下列说法中正确的是(  )
图2
A.打在图中a、b、c三点的依次是α射线、γ射线和β射线
B.α射线和β射线的轨迹是抛物线
C.α射线和β射线的轨迹是圆弧
D.如果在铅盒和荧光屏间再加一个竖直向下的场强适当的匀强电场,可能使屏上的亮斑只剩下b
答案 AC
解析 由左手定则可知粒子向右射出,在题图所示匀强磁场中α粒子受到的洛伦兹力向上,β粒子受到的洛伦兹力向下,轨迹都是圆弧.由于α粒子的速度是光速的,而β粒子速度接近光速,所以在同样的混合场中不可能都做直线运动,本题应选A、C.
二、非选择题
11.有关O、O、O三种同位素的比较,试回答下列问题:
(1)三种同位素中哪一种粒子数是不相同的? .
A.质子 B.中子 C.核外电子
(2)三种同位素中,哪一个质量最大? .
(3)三种同位素的化学性质是否相同? .
答案 (1)B (2)O (3)相同
解析 (1)同位素质子数相同,中子数不同,核外电子数与质子数相同,故不相同的是中子.
(2)O、O、O的质量数分别是16、17、18、,故O质量最大.
(3)三种同位素质子数相同,故化学性质相同.
12.在暗室的真空装置中做如下实验:
在竖直放置的平行金属板间的匀强电场中,有一个能产生α、β、γ三种射线的放射源.从放射源射出的一束射线垂直于电场方向射入电场,如图3所示,在与放射源距离为H高处,水平放置两张叠放着的、涂药品面朝下的印像纸(比一般纸厚且涂有感光药品的纸),经射线照射一段时间后两张印像纸显影.(已知mα=4 u,mβ= u,vα=,vβ=c)
图3
(1)上面的印像纸有几个暗斑?各是什么射线的痕迹?
(2)下面的印像纸显出一串三个暗斑,试估算中间暗斑与两边暗斑的距离之比?
(3)若在此空间再加上与电场方向垂直的匀强磁场,一次使α射线不偏转,一次使β射线不偏转,则两次所加匀强磁场的磁感应强度之比是多少?
答案 (1)两个暗斑 β射线和γ射线 (2)5∶184 (3)10∶1
解析 (1)因α粒子穿透本领弱,穿过下层纸的只有β射线和γ射线,β射线、γ射线在上面的印像纸上留下两个暗斑.
(2)下面印像纸上从左向右依次是β射线、γ射线、α射线留下的暗斑.设α射线、β射线留下的暗斑到中央γ射线留下暗斑的距离分别为xα、xβ.
则对α粒子,有xα=aαt2=aα·2,aα=
对β粒子,有xβ==aβ·2,aβ=
联立解得=.
(3)若使α射线不偏转,则qαE=qαvαBα,所以Bα=,
同理,若使β射线不偏转,则Bβ=.故==.
课件34张PPT。第十九章 1 原子核的组成学习目标 
1.了解什么是放射性和天然放射现象.
2.知道原子核的组成及三种射线的特征.内容索引
知识探究
题型探究
达标检测
知识探究一、天然放射现象和三种射线1.1896年法国物理学家贝可勒尔发现了放射性元素自发地发出射线的现象,即天然放射现象.是否所有的元素都具有放射性?放射性物质发出的射线有哪些种类?答案答案 原子序数大于或等于83的元素,都能自发地发出射线,原子序数小于83的元素,有的也能放出射线.放射性物质发出的射线有三种:α射线、β射线、γ射线.2.怎样用电场或磁场判断三种射线粒子的带电性质?答案答案 让三种射线通过匀强电场,则γ射线不偏转,说明γ射线不带电.α射线偏转方向和电场方向相同,带正电,β射线偏转方向和电场方向相反,带负电.或者让三种射线通过匀强磁场,则γ射线不偏转,说明γ射线不带电,α射线和β射线可根据偏转方向和左手定则确定带电性质.1.对天然放射现象的认识
(1)1896年,法国物理学家 发现某些物质具有放射性.
(2)物质发射 的性质称为放射性,具有 的元素称为放射性元素,放射性元素自发地发出 的现象叫做天然放射现象.
(3)原子序数 或 83的元素,都能自发地发出射线,原子序数 83的元素,有的也能放出射线.贝可勒尔射线放射性射线大于等于小于2.对三种射线的认识氦核电子光子c弱铝板强铅板强弱判断下列说法的正误.
(1)1896年,法国的玛丽·居里首先发现了天然放射现象.(  )
(2)原子序数大于83的元素都是放射性元素.(  )
(3)原子序数小于83的元素都不能放出射线.(  )
(4)α射线实际上就是氦原子核,α射线具有较强的穿透能力.(  )
(5)β射线是高速电子流,很容易穿透黑纸,也能穿透几毫米厚的铝板.
(  )
(6)γ射线是能量很高的电磁波,电离作用很强.(  )×√××√×二、原子核的组成1.质子的发现
1919年, 用镭放射出的α粒子轰击氮原子核,从氮核中打出了一种新的粒子,测定了它的电荷和质量,确定它是氢原子核,叫做 ,用 或 表示,其质量为mp= .
2.中子的发现
(1)卢瑟福的预言:原子核内可能还有一种 的粒子,名字叫中子.
(2)查德威克的发现:用实验证明了中子的存在,用 表示,中子的质量非常接近质子的质量.卢瑟福质子p1.67×10-27 kg不带电n3.原子核的组成
(1)核子数:质子和中子质量差别非常微小,二者统称为核子,所以 数和 数之和叫核子数.
(2)电荷数(Z):原子核所带的电荷总是质子电荷的 倍,通常用这个整数表示原子核的电荷量,叫做原子核的电荷数.
(3)质量数(A):原子核的质量等于核内 和 的质量的总和,而质子与中子的质量几乎相等,所以原子核的质量几乎等于单个核子质量的整数倍,这个倍数叫做原子核的 .质子中子整数质子中子质量数(4)原子核的质量数= +______元素符号核电荷数=原子核的 ,即元素的原子序数质子数中子数质子数4.同位素
具有相同的 而 不同的原子核,在元素周期表中处于 ,它们互称为同位素.例如:氢有三种同位素,分别是 H、 H、 H.质子数中子数同一位置判断下列说法的正误.
(1)质子和中子都不带电,是原子核的组成成分,统称为核子.
(  )
(2)原子核的电荷数就是核内的质子数,也就是这种元素的原子序数.
(  )
(3)同位素具有不同的化学性质.(  )
(4)原子核内的核子数与它的核电荷数不可能相等.(  )×答案√××
题型探究一、天然放射现象和三种射线1.三种射线的实质
α射线:高速氦核流,带2e的正电荷;
β射线:高速电子流,带e的负电荷;
γ射线:光子流(高频电磁波),不带电.2.三种射线在电场中和磁场中的偏转
(1)在匀强电场中,γ射线不发生偏转,做匀速直线运动,α粒子和β粒子沿相反方向做类平抛运动,在同样的条件下,β粒子的偏移大,如图1所示.图1(2)在匀强磁场中,γ射线不发生偏转,仍做匀速直线运动,α粒子和β粒子沿相反方向做匀速圆周运动,且在同样条件下,β粒子的轨道半径小,如图2所示.图23.元素的放射性
(1)一种元素的放射性与是单质还是化合物无关,这就说明射线跟原子核外电子无关.
(2)射线来自于原子核说明原子核内部是有结构的.例1 如图3所示,R是一种放射性物质,虚线框内是匀强磁场,LL′是厚纸板,MM′是荧光屏,实验时,发现在荧光屏的O、P两点处有亮斑,由此可知磁场的方向、到达O点的射线种类、到达P点的射线种类应属于下表中的图3解析√答案解析 R放射出来的射线共有α、β、γ三种,其中α、β射线垂直于磁场方向进入磁场区域时将受到洛伦兹力作用而偏转,γ射线不偏转,故打在O点的应为γ射线;由于α射线贯穿本领弱,不能射穿厚纸板,故到达P点的应是β射线;依据β射线的偏转方向及左手定则可知磁场方向垂直纸面向里.例2 (多选)将α、β、γ三种射线分别射入匀强磁场和匀强电场,图中表示射线偏转情况正确的是解析√√答案??三种射线的鉴别:
(1)α射线带正电、β射线带负电、γ射线不带电.α射线、β射线是实物粒子,而γ射线是光子流,属于电磁波的一种.
(2)α射线、β射线都可以在电场或磁场中偏转,但偏转方向不同,γ射线则不发生偏转.
(3)α射线穿透能力弱,β射线穿透能力较强,γ射线穿透能力最强,而电离本领相反.二、原子核的组成
1.原子核(符号 X)2.基本关系
核电荷数=质子数(Z)=元素的原子序数=核外电子数,质量数(A)=核子数=质子数+中子数.例3 已知镭的原子序数是88,原子核的质量数是226.试问:
(1)镭核中有几个质子?几个中子?解析答案 88 138解析 镭核中的质子数等于其原子序数,故质子数为88,中子数N等于原子核的质量数A与质子数Z之差,即N=A-Z=226-88=138.答案(2)镭核所带电荷量是多少?(保留三位有效数字)解析答案 1.41×10-17 C解析 镭核所带电荷量
Q=Ze=88×1.6×10-19 C≈1.41×10-17 C.答案(3)呈电中性的镭原子,核外有几个电子?答案 88解析 核外电子数等于核电荷数,故核外电子数为88.针对训练 在α粒子轰击金箔的散射实验中,α粒子可以表示为 He, He中的4和2分别表示
A.4为核子数,2为中子数
B.4为质子数和中子数之和,2为质子数
C.4为核外电子数,2为中子数
D.4为中子数,2为质子数√答案解析
达标检测1.下列现象中,与原子核内部变化有关的是
A.α粒子散射现象 B.天然放射现象
C.光电效应现象 D.原子发光现象√123答案解析 α粒子散射现象说明了金箔原子中有一个很小的核;光电效应现象说明了光的粒子性,原子发光现象说明核外电子跃迁具有量子化的特征;只有天然放射现象才能说明原子核具有内部结构,选项B正确.解析2.下列说法正确的是
A.α射线是由高速运动的氦核组成的,其运行速度接近光速
B.β射线能穿透几毫米厚的铅板
C.γ射线的穿透能力最强,电离能力最弱
D.β射线的粒子和电子是两种不同的粒子123√答案3.以下说法正确的是
A. Rn为氡核,由此可知,氡核的质量数为86,氡核的质子数为222
B. Be为铍核,由此可知,铍核的质量数为9,铍核的中子数为4
C.同一元素的两种同位素具有相同的质量数
D.同一元素的两种同位素具有不同的中子数123√答案解析 A项氡核的质量数为222,质子数为86,所以A错误;
B项铍核的质量数为9,中子数为5,所以B错误;
由于质子数相同而中子数不同的原子核互称为同位素,即它们的质量数不同,因而C错误,D正确.解析第1节 原子核的组成
1.(对应要点一)(2012·南宁模拟)如图19-1-4所示装置处于真空中,S为能放出α、β和γ三种射线的放射源,虚线框内是方向垂直纸面的匀强磁场,L是1 mm厚的纸板,M是荧光屏,实验时发现在荧光屏上O、P处有亮斑。则以下判断正确的是(  ) 图19-1-4
A.如果磁场方向垂直纸面向里,则O点和P点分别为β和α射线形成的亮斑
B.如果磁场方向垂直纸面向外,则O点和P点分别为γ和β射线形成的亮斑
C.如果磁场方向垂直纸面向里,则O点和P点分别为α和β射线形成的亮斑
D.如果磁场方向垂直纸面向外,则O点和P点分别为γ和α射线形成的亮斑
解析:由于一张纸就可把α射线挡住,如果磁场方向垂直纸面向里,则O点为γ射线形成的亮斑,β射线形成亮斑应在O点下方。如果磁场方向垂直纸面向外,则O点和P点分别为γ和β射线形成的亮斑,选项B正确。
答案:B
2.(对应要点二)原子核中能放出α、β、γ射线,关于原子核的组成,下列说法正确的是(  )
A.原子核中,有质子、中子,还有α粒子
B.原子核中,有质子、中子、还有β粒子
C.原子核中,有质子、中子、还有γ粒子
D.原子核中,只有质子和中子
解析:在放射性元素的原子核中,2个质子和2个中子结合得较紧密,有时作为一个整体放出,这就是α粒子的来源,不能据此认为α粒子是原子核的组成部分。原子核里是没有电子的,但中子可以转化成质子,并向核外释放一个电子,这就是β粒子。原子核发出射线后处于高能级,在回到低能级时多余的能量以γ光子的形式辐射出来,形成γ射线,故原子核里也没有γ粒子,故D对。
答案:D
3.(对应要点二)据最新报道,放射性同位素钬Ho,可有效治疗癌症,该同位素原子核内中子数与核外电子数之差是(  )
A.32         B.67
C.99 D.166
解析:根据原子核的表示方法得核外电子数=质子数=67,中子数为166-67=99,故核内中子数与核外电子数之差为99-67=32,故A对,B、C、D错。
答案:A
4.(对应要点一)在暗室的真空装置中做如下实验:在竖直放置的平行金属板间的匀强电场中,有一个能产生α、β、γ三种射线的射线源,从射线源射出的一束射线垂直于电场方向射入电场,如图19-1-5所示,在与射线源距离为H高处,水平放置两张叠放着的、涂药面朝下的印像纸(比一般纸厚且涂有感光药的纸),经射线照射一段时间后两张印像纸显影。 图19-1-5
(1)上面的印像纸有几个暗斑?各是什么射线的痕迹?
(2)下面的印像纸显出一串三个暗斑,试估算中间暗斑与两边暗斑的距离之比?
(3)若在此空间再加上与电场方向垂直的匀强磁场,一次使α射线不偏转,一次使β射线不偏转,则两次所加匀强磁场的磁感应强度之比是多少?(已知mα=4u,mβ= u,vα=,vβ=c)
解析:(1)因α粒子贯穿本领弱,穿过下层纸的只有β、γ射线,β、γ射线在上面的印像纸上留下两个暗斑。
(2)下面印像纸从左向右依次是β射线、γ射线、α射线留下的暗斑。设α射线、β射线暗斑到中央γ射线暗斑的距离分别为sα、sβ则
sα=aα()2,sβ=aβ()2,
aα=,aβ= 。
由以上四式得= 。
(3)若使α射线不偏转,qαE=qαvαBα,所以Bα=,同理若使β射线不偏转,应加磁场Bβ=,故
==10∶1。
答案:(1)两个暗斑 β射线,γ射线 (2)5∶184 (3)10∶1
2 放射性元素的衰变
[学习目标] 1.知道衰变的概念.2.知道α、β衰变的实质,知道γ射线是怎样产生的,会写α、β衰变方程.3.知道什么是半衰期,会利用半衰期解决相关问题.
一、原子核的衰变
[导学探究] 如图1为α衰变、β衰变示意图.
图1
1.当原子核发生α衰变时,原子核的质子数和中子数如何变化?
答案 α衰变时,质子数减少2,中子数减少2.
2.当发生β衰变时,新核的核电荷数相对原来的原子核变化了多少?新核在元素周期表中的位置怎样变化?
答案 β衰变时,核电荷数增加1.新核在元素周期表中的位置向后移动一位.
[知识梳理] 原子核的衰变
1.定义:原子核放出α粒子或β粒子,变成另一种原子核的过程.
2.衰变类型
(1)α衰变:放射性元素放出α粒子的衰变过程.放出一个α粒子后,核的质量数减少4,电荷数减少2,成为新核.
(2)β衰变:放射性元素放出β粒子的衰变过程.放出一个β粒子后,核的质量数不变,电荷数增加1.
3.衰变规律:原子核衰变时电荷数和质量数都守恒.
4.衰变的实质
(1)α衰变的实质:2个中子和2个质子结合在一起形成α粒子.
(2)β衰变的实质:核内的中子转化为了一个电子和一个质子.
(3)γ射线经常是伴随α衰变和β衰变产生的.
[即学即用] 判断下列说法的正误.
(1)原子核在衰变时,它在元素周期表中的位置不变.( × )
(2)发生β衰变是原子核中的电子发射到核外.( × )
二、半衰期
[导学探究] 1.什么是半衰期?对于某个或选定的几个原子核能根据该种元素的半衰期预测它的衰变时间吗?
答案 半衰期是一个时间,是某种放射性元素的大量原子核有半数发生衰变所用的时间的统计规律,故无法预测单个原子核或几个特定原子核的衰变时间.
2.某放射性元素的半衰期为4天,若有10个这样的原子核,经过4天后还剩5个,这种说法对吗?
答案 半衰期是大量放射性元素的原子核衰变时所遵循的统计规律,不能用于少量的原子核发生衰变的情况,因此,经过4天后,10个原子核有多少发生衰变是不能确定的,所以这种说法不对.
[知识梳理] 半衰期
1.定义:放射性元素的原子核有半数发生衰变所需的时间.
2.特点
(1)不同的放射性元素,半衰期不同,甚至差别非常大.
(2)放射性元素衰变的快慢是由核内部自身因素决定的,跟原子所处的化学状态和外部条件无关.
3.适用条件:半衰期描述的是统计规律,不适用于单个原子核的衰变.
4.半衰期公式:N余=N原(),m余=m原(),其中τ为半衰期.
[即学即用] 判断下列说法的正误.
(1)同种放射性元素,在化合物中的半衰期比在单质中长.( × )
(2)把放射性元素放在低温处,可以减缓放射性元素的衰变.( × )
(3)放射性元素的半衰期与元素所处的物理和化学状态无关,它是一个统计规律,只对大量的原子核才适用.( √ )
(4)氡的半衰期是3.8天,若有4个氡原子核,则经过7.6天后只剩下一个氡原子核.( × )
一、原子核的衰变规律和衰变方程
1.衰变种类、实质与方程
(1)α衰变:X―→Y+He
实质:原子核中,2个中子和2个质子结合得比较牢固,有时会作为一个整体从较大的原子核中被释放出来,这就是放射性元素发生的α衰变现象.
如:U―→Th+He.
(2)β衰变:X―→Y+e.
实质:原子核中的中子转化成一个质子且放出一个电子即β粒子,使电荷数增加1,β衰变不改变原子核的质量数,其转化方程为:n―→H+e.
如:Th―→Pa+e.
2.确定原子核衰变次数的方法与技巧
(1)方法:设放射性元素X经过n次α衰变和m次β衰变后,变成稳定的新元素Y,则衰变方程为:
X―→Y+nHe+me
根据电荷数守恒和质量数守恒可列方程:
A=A′+4n,Z=Z′+2n-m.
以上两式联立解得:n=,m=+Z′-Z.
由此可见,确定衰变次数可归结为解一个二元一次方程组.
(2)技巧:为了确定衰变次数,一般先由质量数的改变确定α衰变的次数(这是因为β衰变的次数多少对质量数没有影响),然后根据衰变规律确定β衰变的次数.
例1 U核经一系列的衰变后变为Pb核,问:
(1)一共经过几次α衰变和几次β衰变?
(2)Pb与U相比,质子数和中子数各少了多少?
(3)综合写出这一衰变过程的方程.
答案 (1)8 6 (2)10 22
(3)U―→Pb+8He+6e
解析 (1)设U衰变为Pb经过x次α衰变和y次β衰变,由质量数守恒和电荷数守恒可得
238=206+4x①
92=82+2x-y②
联立①②解得x=8,y=6.即一共经过8次α衰变和6次β衰变.
(2)由于每发生一次α衰变质子数和中子数均减少2,每发生一次β衰变中子数少1,而质子数增加1,故Pb较U质子数少10,中子数少22.
(3)衰变方程为U―→Pb+8He+6e.
针对训练1 原子核U经放射性衰变①变为原子核Th,继而经放射性衰变②变为原子核Pa,再经放射性衰变③变为原子核U.放射性衰变①、②和③依次为(  )
A.α衰变、β衰变和β衰变
B.β衰变、α衰变和β衰变
C.β衰变、β衰变和α衰变
D.α衰变、β衰变和α衰变
答案 A
解析 根据衰变反应前后的质量数守恒和电荷数守恒特点,U核与Th核比较可知,衰变①的另一产物为He,所以衰变①为α衰变,选项B、C错误;Pa核与U核比较可知,衰变③的另一产物为e,所以衰变③为β衰变,选项A正确,D错误.
衰变方程的书写:衰变方程用“―→”,而不用“=”表示,因为衰变方程表示的是原子核的变化,而不是原子的变化.
二、对半衰期的理解及有关计算
例2 放射性同位素14C被考古学家称为“碳钟”,它可以用来判定古生物体的年代,此项研究获得1960年诺贝尔化学奖.
(1)宇宙射线中高能量的中子碰到空气中的氮原子后,会形成不稳定的C,它很容易发生衰变,放出β射线变成一个新核,其半衰期为5 730年,试写出14C的衰变方程.
(2)若测得一古生物遗骸中的C含量只有活体中的25%,则此遗骸距今约有多少年?
答案 (1)C―→e+N (2)11 460年
解析 (1)C的β衰变方程为:C―→e+N.
(2)C的半衰期τ=5 730年.
生物死亡后,遗骸中的C按其半衰期变化,设活体中C的含量为N0,遗骸中的C含量为N,则N=()N0,
即0.25N0=()N0,故=2,t=11 460年.
针对训练2 氡222是一种天然放射性气体,被吸入后,会对人的呼吸系统造成辐射损伤,它是世界卫生组织公布的主要环境致癌物质之一.其衰变方程是Rn―→Po+ .已知Rn的半衰期约为3.8天,则约经过 天,16 g的Rn衰变后还剩1 g.
答案 He 15.2
解析 根据核反应过程中电荷数守恒和质量数守恒可推得该反应的另一种生成物为He.根据m余=m原得=4,代入τ=3.8天,解得t=3.8×4天=15.2天.
1.(多选)以下关于天然放射现象,叙述正确的是(  )
A.若使某放射性物质的温度升高,其半衰期将变短
B.β衰变所释放的电子是原子核外的电子电离形成的
C.α射线是原子核衰变产生的,它有很强的电离作用
D.γ射线是原子核产生的,它是能量很大的光子流
答案 CD
解析 半衰期与元素的物理状态无关,若使某放射性物质的温度升高,半衰期不变,故A错误;β衰变所释放的电子是从原子核内释放出的电子,故B错误;α射线是原子核衰变产生的,是氦的原子核,它有很强的电离作用,穿透能力很弱,选项C正确;γ射线是原子核发生α或β衰变时产生的,它是能量很大的光子流,选项D正确.
2.下列有关半衰期的说法正确的是(  )
A.放射性元素的半衰期越短,表明有半数原子核发生衰变所需的时间越短,衰变速度越快
B.放射性元素的样品不断衰变,随着剩下未衰变的原子核的减少,元素半衰期也变长
C.把放射性元素放在密封的容器中,可以减慢放射性元素的衰变速度
D.降低温度或增大压强,让该元素与其他物质形成化合物,均可减小衰变速度
答案 A
解析 放射性元素的半衰期是指放射性元素的原子核半数发生衰变所需的时间,它反映了放射性元素衰变速度的快慢,半衰期越短,则衰变越快;某种元素的半衰期长短由其自身因素决定,与它所处的物理、化学状态无关,故A正确,B、C、D错误.
3.某原子核A先进行一次β衰变变成原子核B,再进行一次α衰变变成原子核C,则(  )
A.核C的质子数比核A的质子数少2
B.核A的质量数减核C的质量数等于3
C.核A的中子数减核C的中子数等于3
D.核A的中子数减核C的中子数等于5
答案 C
解析 原子核A进行一次β衰变后,一个中子转变为一个质子并释放一个电子,再进行一次α衰变,又释放两个中子和两个质子,所以核A比核C多3个中子、1个质子,选项C正确,A、B、D错误.
4.(多选)14C发生放射性衰变成为14N,半衰期约5 700年.已知植物存活期间,其体内14C与12C的比例不变;生命活动结束后,14C的比例持续减小.现通过测量得知,某古木样品中14C的比例正好是现代植物所制样品的二分之一.下列说法正确的是(  )
A.该古木的年代距今约5 700年
B.12C、13C、14C具有相同的中子数
C.14C衰变为14N的过程中放出β射线
D.增加样品测量环境的压强将加速14C的衰变
答案 AC
解析 因古木样品中14C的比例正好是现代植物所制样品的二分之一,则可知经过的时间为一个半衰期,即该古木的年代距今约为5 700年,选项A正确;12C、13C、14C具有相同的质子数,由于质量数不同,故中子数不同,选项B错误;根据核反应方程可知,14C衰变为14N的过程中放出电子,即发出β射线,选项C正确;外界环境不影响放射性元素的半衰期,选项D错误.
一、选择题(1~5题为单选题,6~9题为多选题)
1.关于原子核的衰变和半衰期,下列说法正确的是(  )
A.半衰期是指原子核的质量减少一半所需要的时间
B.半衰期是指原子核有半数发生衰变所需要的时间
C.发生α衰变时产生的新原子核在周期表中的位置向后移动2位
D.发生β衰变时产生的新原子核在周期表中的位置向前移动1位
答案 B
2.碘131的半衰期约为8天,若某药物含有质量为m的碘131,经过32天后,该药物中碘131的含量大约还有(  )
A. B. C. D.
答案 C
解析 根据半衰期公式m余=m原,将题目中的数据代入可得C正确,A、B、D错误.
3.人们在海水中发现了放射性元素钚(Pu). Pu可由铀239(U)经过n次β衰变而产生,则n为(  )
A.2 B.239 C.145 D.92
答案 A
解析 β衰变规律是质量数不变,质子数增加1,Pu比U质子数增加2,所以发生了2次β衰变,A正确.
4.放射性同位素钍232经α、β衰变会生成氡,其衰变方程为Th―→Rn+xα+yβ,其中(  )
A.x=1,y=3 B.x=2,y=3
C.x=3,y=1 D.x=3,y=2
答案 D
解析 根据衰变方程左右两边的质量数和电荷数守恒可列方程解得x=3,y=2.故答案为D.
5.钍Th具有放射性,它能放出一个新的粒子而变为镤Pa,同时伴随有γ射线产生,其方程为Th→Pa+X,钍的半衰期为24天.则下列说法中正确的是(  )
A.X为质子
B.X是钍核中的一个中子转化成一个质子时产生的
C.γ射线是钍原子核放出的
D.1 g钍Th经过120天后还剩0.2 g钍
答案 B
解析 根据电荷数和质量数守恒知钍核衰变过程中放出了一个电子,即X为电子,故A错误;β衰变的实质:β衰变时释放的电子是由核内一个中子转化成一个质子同时产生的,故B正确;γ射线是镤原子核放出的,故C错误;钍的半衰期为24天,1 g钍Th经过120天后,还剩1 g×()5=0.031 25 g,故D错误.
6.由原子核的衰变规律可知(  )
A.放射性元素一次衰变就同时产生α射线和β射线
B.放射性元素发生β衰变,产生的新核的化学性质与原来的核的化学性质相同
C.放射性元素衰变的快慢跟它所处的物理、化学状态无关
D.放射性元素发生正电子衰变时,产生的新核质量数不变,电荷数减少1
答案 CD
解析 由放射性元素的衰变实质可知,不可能同时发生α衰变和β衰变,故A错;衰变后变为新元素,化学性质不同,故B错;衰变快慢与所处的物理、化学状态无关,C对;正电子电荷数为1,质量数为0,故D对.
7.天然放射性元素Th(钍)经过一系列α衰变和β衰变之后,变成Pb(铅).下列说法中正确的是(  )
A.衰变的过程共有6次α衰变和4次β衰变
B.铅核比钍核少8个质子
C.β衰变所放出的电子来自原子核核外轨道
D.钍核比铅核多24个中子
答案 AB
解析 由于β衰变不会引起质量数的减少,故可先根据质量数的减少确定α衰变的次数为:x==6,再结合核电荷数的变化情况和衰变规律来判定β衰变的次数应满足:2x-y=90-82=8,y=2x-8=4.钍232核中的中子数为232-90=142,铅208核中的中子数为208-82=126,所以钍核比铅核多16个中子,铅核比钍核少8个质子.由于物质的衰变与元素的化学状态无关,所以β衰变所放出的电子来自原子核内,所以选项A、B正确.
8.某原子核的衰变过程ABC,下列说法正确的是(  )
A.核C比核A的质子数少1
B.核C比核A的质量数少5
C.原子核为A的中性原子的电子数比原子核为B的中性原子的电子数多2
D.核C比核B的中子数少2
答案 AD
解析 由衰变方程可写出关系式ABC可得A、D项正确.
9.在匀强磁场中,一个原来静止的原子核发生了衰变,得到两条如图1所示的径迹,图中箭头表示衰变后粒子的运动方向.不计放出的光子的能量,则下列说法正确的是(  )
图1
A.发生的是β衰变,b为β粒子的径迹
B.发生的是α衰变,b为α粒子的径迹
C.磁场方向垂直于纸面向外
D.磁场方向垂直于纸面向内
答案 AD
二、非选择题
10.在匀强磁场中,一个原来静止的原子核,由于放出一个α粒子,结果得到一张两个相切圆的径迹照片(如图2所示),今测得两个相切圆半径之比r1∶r2=1∶44.求:
图2
(1)这个原子核原来所含的质子数是多少?
(2)图中哪一个圆是α粒子的径迹?(说明理由)
答案 (1)90 (2)见解析
解析 (1)设衰变后新生核的电荷量为q1,α粒子的电荷量为q2=2e,它们的质量分别为m1和m2,衰变后的速度分别为v1和v2,
所以原来原子核的电荷量q=q1+q2.
根据轨道半径公式有==,
又由于衰变过程中遵循动量守恒定律,则m1v1=m2v2,
以上三式联立解得q=90e.
即这个原子核原来所含的质子数为90.
(2)因为动量相等,所以轨道半径与粒子的电荷量成反比,所以圆轨道2是α粒子的径迹,圆轨道1是新生核的径迹.
11.天然放射性铀(U)发生衰变后产生钍(Th)和另一个原子核.
(1)请写出衰变方程;
(2)若衰变前铀(U)核的速度为v,衰变产生的钍(Th)核的速度为,且与铀核速度方向相同,试估算产生的另一种新核的速度.
答案 (1)U―→Th+He (2)v,方向与铀核速度方向相同
解析 (1)原子核衰变时电荷数和质量数都守恒,有
U―→Th+He.
(2)由(1)知新核为氦核,设一个核子的质量为m,则氦核的质量为4m、铀核的质量为238m、钍核的质量为234m,氦核的速度为v′,
由动量守恒定律,得238mv=234m·+4mv′,
解得v′=v,方向与铀核速度方向相同.
课件36张PPT。第十九章 2 放射性元素的衰变学习目标 
1.知道衰变的概念.
2.知道α、β衰变的实质,知道γ射线是怎样产生的,会写α、β衰变方程.
3.知道什么是半衰期,会利用半衰期解决相关问题.内容索引
知识探究
题型探究
达标检测
知识探究一、原子核的衰变如图1为α衰变、β衰变示意图.图11.当原子核发生α衰变时,原子核的质子数和中子数如何变化?答案答案 α衰变时,质子数减少2,中子数减少2.2.当发生β衰变时,新核的核电荷数相对原来的原子核变化了多少?新核在元素周期表中的位置怎样变化?答案 β衰变时,核电荷数增加1.新核在元素周期表中的位置向后移动一位.原子核的衰变
1.定义:原子核放出 或 ,变成另一种原子核的过程.
2.衰变类型
(1)α衰变:放射性元素放出α粒子的衰变过程.放出一个α粒子后,核的质量数 ,电荷数 ,成为新核.
(2)β衰变:放射性元素放出β粒子的衰变过程.放出一个β粒子后,核的质量数 ,电荷数 .α粒子β粒子减少4减少2不变增加13.衰变规律:原子核衰变时 和 都守恒.
4.衰变的实质
(1)α衰变的实质:2个 和2个 结合在一起形成α粒子.
(2)β衰变的实质:核内的 转化为了一个 和一个 .
(3)γ射线经常是伴随α衰变和β衰变产生的.电荷数质量数中子质子中子电子质子判断下列说法的正误.
(1)原子核在衰变时,它在元素周期表中的位置不变.(  )
(2)发生β衰变是原子核中的电子发射到核外.(  )××二、半衰期1.什么是半衰期?对于某个或选定的几个原子核能根据该种元素的半衰期预测它的衰变时间吗?答案 半衰期是一个时间,是某种放射性元素的大量原子核有半数发生衰变所用的时间的统计规律,故无法预测单个原子核或几个特定原子核的衰变时间.答案2.某放射性元素的半衰期为4天,若有10个这样的原子核,经过4天后还剩5个,这种说法对吗?答案 半衰期是大量放射性元素的原子核衰变时所遵循的统计规律,不能用于少量的原子核发生衰变的情况,因此,经过4天后,10个原子核有多少发生衰变是不能确定的,所以这种说法不对.答案半衰期
1.定义:放射性元素的原子核有 发生衰变所需的时间.
2.特点
(1)不同的放射性元素,半衰期 ,甚至差别非常大.
(2)放射性元素衰变的快慢是由 决定的,跟原子所处的化学状态和外部条件 .半数不同核内部自身因素无关3.适用条件:半衰期描述的是 ,不适用于单个原子核的衰变.
4.半衰期公式:N余= ,m余= ,其中τ为半衰期.统计规律判断下列说法的正误.
(1)同种放射性元素,在化合物中的半衰期比在单质中长.(  )
(2)把放射性元素放在低温处,可以减缓放射性元素的衰变.(  )
(3)放射性元素的半衰期与元素所处的物理和化学状态无关,它是一个统计规律,只对大量的原子核才适用.(  )
(4)氡的半衰期是3.8天,若有4个氡原子核,则经过7.6天后只剩下一个氡原子核.(  )××√×
题型探究一、原子核的衰变规律和衰变方程(2)技巧:为了确定衰变次数,一般先由质量数的改变确定α衰变的次数(这是因为β衰变的次数多少对质量数没有影响),然后根据衰变规律确定β衰变的次数.答案 8 6答案238=206+4x ①
92=82+2x-y ②
联立①②解得x=8,y=6.即一共经过8次α衰变和6次β衰变.解析答案 10 22答案解析(3)综合写出这一衰变过程的方程.答案解析解析答案A.α衰变、β衰变和β衰变
B.β衰变、α衰变和β衰变
C.β衰变、β衰变和α衰变
D.α衰变、β衰变和α衰变√衰变方程的书写:衰变方程用“―→ ”,而不用“=”表示,因为衰变方程表示的是原子核的变化,而不是原子的变化.二、对半衰期的理解及有关计算例2 放射性同位素14C被考古学家称为“碳钟”,它可以用来判定古生物体的年代,此项研究获得1960年诺贝尔化学奖.
(1)宇宙射线中高能量的中子碰到空气中的氮原子后,会形成不稳定的 C,它很容易发生衰变,放出β射线变成一个新核,其半衰期为5 730年,试写出14C的衰变方程.解析答案(2)若测得一古生物遗骸中的 C含量只有活体中的25%,则此遗骸距今约有多少年?解析答案 11 460年答案解析答案15.2
达标检测1.(多选)以下关于天然放射现象,叙述正确的是
A.若使某放射性物质的温度升高,其半衰期将变短
B.β衰变所释放的电子是原子核外的电子电离形成的
C.α射线是原子核衰变产生的,它有很强的电离作用
D.γ射线是原子核产生的,它是能量很大的光子流√123答案解析√4123解析 半衰期与元素的物理状态无关,若使某放射性物质的温度升高,半衰期不变,故A错误;
β衰变所释放的电子是从原子核内释放出的电子,故B错误;
α射线是原子核衰变产生的,是氦的原子核,它有很强的电离作用,穿透能力很弱,选项C正确;
γ射线是原子核发生α或β衰变时产生的,它是能量很大的光子流,选项D正确.42.下列有关半衰期的说法正确的是
A.放射性元素的半衰期越短,表明有半数原子核发生衰变所需的时间越
短,衰变速度越快
B.放射性元素的样品不断衰变,随着剩下未衰变的原子核的减少,元素
半衰期也变长
C.把放射性元素放在密封的容器中,可以减慢放射性元素的衰变速度
D.降低温度或增大压强,让该元素与其他物质形成化合物,均可减小衰
变速度123√答案解析4解析 放射性元素的半衰期是指放射性元素的原子核半数发生衰变所需的时间,它反映了放射性元素衰变速度的快慢,半衰期越短,则衰变越快;某种元素的半衰期长短由其自身因素决定,与它所处的物理、化学状态无关,故A正确,B、C、D错误.12343.某原子核A先进行一次β衰变变成原子核B,再进行一次α衰变变成原子核C,则
A.核C的质子数比核A的质子数少2
B.核A的质量数减核C的质量数等于3
C.核A的中子数减核C的中子数等于3
D.核A的中子数减核C的中子数等于5123√答案解析 原子核A进行一次β衰变后,一个中子转变为一个质子并释放一个电子,再进行一次α衰变,又释放两个中子和两个质子,所以核A比核C多3个中子、1个质子,选项C正确,A、B、D错误.解析44.(多选)14C发生放射性衰变成为14N,半衰期约5 700年.已知植物存活期间,其体内14C与12C的比例不变;生命活动结束后,14C的比例持续减小.现通过测量得知,某古木样品中14C的比例正好是现代植物所制样品的二分之一.下列说法正确的是
A.该古木的年代距今约5 700年
B.12C、13C、14C具有相同的中子数
C.14C衰变为14N的过程中放出β射线
D.增加样品测量环境的压强将加速14C的衰变123√答案解析√4解析 因古木样品中14C的比例正好是现代植物所制样品的二分之一,则可知经过的时间为一个半衰期,即该古木的年代距今约为5 700年,选项A正确;
12C、13C、14C具有相同的质子数,由于质量数不同,故中子数不同,选项B错误;
根据核反应方程可知,14C衰变为14N的过程中放出电子,即发出β射线,选项C正确;
外界环境不影响放射性元素的半衰期,选项D错误.1234第2节 放射性元素的衰变
1.(对应要点一)美国科研人员正在研制一种新型镍铜长效电池,它是采用半衰期长达100年的放射性同位素镍63(Ni)和铜两种金属作为长寿命电池的材料,利用镍63发生β衰变时释放电子给铜片,把镍63和铜片作电池两极,外接负载为负载提供电能.下面有关该电池的说法正确的是(  )
A.镍63的衰变方程是Ni→e+Cu
B.镍63的衰变方程是Ni→e+Cu
C.外接负载时镍63的电势比铜片高
D.该电池内电流方向是从镍到铜片
解析:Ni的衰变方程为Ni→e+Cu,选项A、B错;电流方向为正电荷定向移动方向,在电池内部电流从铜片到镍片,镍片电势高,选项C对D错。
答案:C
2.(对应要点一)(2012·甘肃省兰州月考)放射性同位素钍232经α、β衰变会生成氡,其衰变方程为Th→Rn+xα+yβ,其中(  )
A.x=1,y=3         B. x=2,y=3
C.x=3,y=1 D.x=3,y=2
解析:核反应方程中的α、β分别为He和e,根据电荷数守恒和质量数守恒有90=86+2x-y,232=220+4x,联立解得:x=3,y=2,选项D正确。
答案:D
3.(对应要点二)如图19-2-1所示,纵坐标表示某放射性物质中未衰变的原子核数(N)与原来总原子核数(N0)的比值,横坐标表示衰变的时间,则由图线可知该放射性物质的半衰期为________天;若将该放射性物质放在高温、高压或强磁场等环境中,则它的半衰期将________(填“变长”“不变”或“变短”)。 图19-2-1
解析:从图中知每经过3.8天,原子核数目减半,故半衰期为3.8天,半衰期跟原子所处的物理状态无关。
答案:3.8 不变
4.(对应要点二)放射性同位素C被考古学家称为“碳钟”,它可用来断定古生物体的年代,此项研究获得1960年诺贝尔化学奖。
(1)宇宙射线中高能量的中子碰到空气中的氮原子后,会形成C,C很不稳定,易发生衰变,其半衰期为5 730年,放出β射线,试写出有关核反应方程。
(2)若测得一古生物遗骸中C含量只有活体中的12.5%,则此遗骸的年代约有多少年?
解析:(1)中子碰到氮原子发生核反应,方程为n+N→C+H,C的衰变的方程为C→N+e。
(2)由于生物活体通过新陈代谢,生物体C与C的比例和空气相同,都是固定不变的,但生物遗骸由于新陈代谢停止,C发生衰变,C与C的比值将不断减小,由半衰期的定义得
12.5%M0=M0(),则=3,
t=3T=3×5 730年=17 190年。
答案:(1)n+N→C+H
C→N+e
(2)17 190年
第3节 探测射线的方法 第4节 放射性的应用与防护
1.(对应要点一)关于气泡室,下列说法错误的是(  )
A.气泡室里装的是液体
B.气泡室的工作原理是刚开始压强很大,以后压强突然降低,液体沸点变低,粒子通过液体时在它周围有气泡生成
C.气泡室的原理同云室相似
D.粒子在气泡室中运行轨迹可用来分析带电粒子动能等情况,不能用来分析动量
解析:根据气泡室的工作原理可知A、B、C三选项正确。把气泡室放在磁场中,粒子在洛伦兹力的作用下径迹为曲线,根据照片可分析粒子的带电情况、动量和能量,故D选项是错误的说法。
答案:D
2.(对应要点一)下列关于盖革—米勒计数器的说法正确的是(  )
A.射线的电离作用使计数器计数
B.α射线电离作用强,而β射线电离作用弱,故计数器只能记录α粒子
C.无论是α、β射线都能用计数器计数
D.计数器不能区分时间间隔小于200 μs的两个粒子
解析:根据盖革—米勒计数器的计数原理可知,当射线进入管内时,它使管内气体电离,产生的电子在电场中加速到达阳极,正离子到达阴极,产生脉冲放电,使计数器计数。选项A、C正确,B错误;两个射来的粒子如果时间间隔小于200 μs,计数器不能区分,故选项D正确。
答案:ACD
3.(对应要点三)放射性同位素钴60能放出较强的γ射线,其强度容易控制,这使得γ射线得以广泛应用。下列选项中,属于γ射线的应用的是(  )
A.医学上制成γ刀,无需开颅即可治疗脑肿瘤
B.机器运转时常产生很多静电,用γ射线照射机器可将电荷导入大地
C.铝加工厂将接收到的γ射线信号输入计算机,可对薄铝板的厚度进行自动控制
D.用γ射线照射草莓、荔枝等水果,可延长保存期
解析:γ射线的电离作用很弱,不能使空气电离成为导体,B错误;γ射线的穿透能力很强,薄铝板的厚度变化时,接收到的信号强度变化很小,不能控制铝板厚度, C错误。
答案:AD
4.(对应要点二)1993年,中国科学院上海原子核研究所制得了一种新的铂元素的同位素Pt。制取过程如下:
(1)用质子轰击铍靶Be产生快中子;
(2)用快中子轰击汞Hg,反应过程可能有两种:
①生成Pt,放出氦原子核;
②生成Pt,放出质子和中子。
(3)生成的Pt发生两次衰变,变成稳定的原子核汞Hg。写出上述核反应方程。
解析:根据质量数守恒和电荷数守恒,算出新生核的电荷数和质量数,然后写出上述核反应方程如下:
(1)Be+H→B+n
(2)①Hg+n→Pt+He
②Hg+n→Pt+2H+n
(3)Pt→Au+e Au→Hg+e
答案:见解析
5 核力与结合能
[学习目标] 1.知道核力的概念、特点和四种基本相互作用.2.了解结合能和比结合能的概念.3.认识原子核的结合能及质量亏损,并能应用质能方程进行相关的计算.
一、核力与四种基本相互作用
[导学探究] 1.有的同学认为:“原子核内质子间的库仑斥力,与质子、中子间的万有引力平衡而使原子达到稳定状态”,这种说法正确吗?
答案 不正确.在相同的距离上,质子之间的库仑力的大小大约比万有引力强1035倍,两者相差悬殊,不可能平衡.
2.是什么力克服质子之间的库仑斥力,使核子结合成一个稳固的原子核的?
答案 核子间(质子与质子、中子与中子、质子与中子)存在着一种比库仑力大得多的核力.
[知识梳理] 核力及特点
1.核力:原子核里的核子间存在着相互作用的核力,核力把核子紧紧地束缚在核内,形成稳定的原子核.
2.核力特点
(1)核力是核子间的强相互作用的一种表现,在原子核的尺度内,核力比库仑力大得多.
(2)核力是短程力,作用范围在1.5×10-15 m之内.
在大于0.8×10-15 m时表现为吸引力,超过1.5×10-15 m时,核力急剧下降几乎消失;而距离小于0.8×10-15 m时,核力表现为斥力.
(3)每个核子只跟邻近的核子发生核力作用,这种性质称为核力的饱和性.
(4)核力与核子是否带电无关,质子与质子间、质子与中子间、中子与中子间都可以有核力作用.
3.四种基本相互作用
[即学即用] 判断下列说法的正误.
(1)原子核中的质子是靠自身的万有引力聚在一起的.( × )
(2)核力是强相互作用力,在原子核的尺度内,核力比库仑力大得多.( √ )
(3)弱相互作用的力程比强力更短.( √ )
(4)弱相互作用是引起原子核β衰变的原因.( √ )
二、原子核中质子与中子的比例
[导学探究] 1.一些较轻的原子核如He、O、C、N中质子数和中子数有什么关系?
答案 质子数与中子数相等.
2.U、Th等重核中各有多少个中子、多少个质子?较重的原子核中中子数和质子数有什么关系?
答案 U中含有92个质子、146个中子;Th中含有90个质子,144个中子.较重的原子核中中子数大于质子数.
3.试从核力的特点及核力的饱和性对上述现象做出解释,并说明原子核能无限地增大吗?
答案 稳定的重原子核里,中子数要比质子数多,由于核力作用范围有限,以及核力的饱和性,如果继续增大原子核,一些核子间距离会大到其间根本没有核力作用,这时即使再增加中子,形成的核也一定是不稳定的,所以原子核不能无限地增大.
[知识梳理]
由于核力是短程力及核力的饱和性,自然界中较轻的原子核,质子数与中子数大致相等,但较重的原子核,中子数大于质子数,越重的原子核,两者相差越多.
[即学即用] 判断下列说法的正误.
(1)在原子核的组成中,质子数等于中子数.( × )
(2)原子核大到一定程度,原子核就不稳定了.( √ )
(3)在宇宙演化过程中,只有稳定的原子核长久地留了下来.( √ )
(4)稳定的重原子核里,质子数比中子数多.( × )
三、结合能和质量亏损
[导学探究] 1.设有一个质子和一个中子在核力作用下靠近碰撞并结合成一个氘核.质子和中子结合成氘核的过程中是释放能量还是吸收能量?使氘核分解为质子和中子的过程中呢?
答案 质子和中子结合成原子核的过程中要释放能量;氘核分解成质子和中子时要吸收能量.
2.如图1所示是不同原子核的比结合能随质量数变化的曲线.
图1
(1)从图中看出,中等质量的原子核与重核、轻核相比比结合能有什么特点?比结合能的大小反映了什么?
(2)比结合能较小的原子核转化为比结合能较大的原子核时是吸收能量还是释放能量?
答案 (1)中等质量的原子核比结合能较大,比结合能的大小反映了原子核的稳定性,比结合能越大,原子核越稳定.
(2)释放能量.
[知识梳理]
1.对结合能的理解
(1)结合能:原子核是核子凭借核力结合在一起构成的,要把它们分开,需要能量,这就是原子核的结合能.
(2)比结合能:原子核的结合能与核子数之比称为比结合能.比结合能越大,表示原子核中核子结合得越牢固,原子核越稳定.
(3)核子数较小的轻核和核子数较大的重核,比结合能较小,中等核子数的原子核,比结合能较大.当比结合能较小的原子核转化为比结合能较大的原子核时会释放核能.
2.对质能方程和质量亏损的理解
(1)质能方程
爱因斯坦的相对论指出,物体的能量和质量之间存在着密切的联系,其关系是E=mc2.
(2)质量亏损:质量亏损,并不是质量消失,减少的质量在核子结合成核的过程中以能量的形式辐射出去了.物体质量增加,则总能量随之增加;质量减少,总能量也随之减少,这时质能方程也写作ΔE=Δmc2.
[即学即用] 判断下列说法的正误.
(1)一切原子核均具有结合能.( √ )
(2)组成原子核的核子越多,它的结合能就越高.( √ )
(3)结合能越大,核子结合得越牢固,原子越稳定.( × )
(4)自由核子结合为原子核时,可能吸收能量.( × )
一、对结合能的理解
1.中等质量原子核的比结合能最大,轻核和重核的比结合能都比中等质量的原子核要小.
2.比结合能与原子核稳定的关系
(1)比结合能的大小能够反映原子核的稳定程度,比结合能越大,原子核就越难拆开,表示该原子核就越稳定.
(2)核子数较小的轻核与核子数较大的重核,比结合能都比较小,表示原子核不太稳定;中等核子数的原子核,比结合能较大,表示原子核较稳定.
(3)当比结合能较小的原子核转化成比结合能较大的原子核时,就能释放核能.例如,一个核子数较大的重核分裂成两个核子数小一些的核,或者两个核子数很小的轻核结合成一个核子数大一些的核,都能释放出巨大的核能.
例1 下列关于结合能和比结合能的说法中,正确的是(  )
A.核子结合成原子核吸收的能量或原子核拆解成核子放出的能量称为结合能
B.比结合能越大的原子核越稳定,因此它的结合能也一定越大
C.重核与中等质量原子核相比较,重核的结合能和比结合能都大
D.中等质量原子核的结合能和比结合能均比轻核的要大
答案 D
解析 核子结合成原子核是放出能量,原子核拆解成核子是吸收能量,A选项错误;比结合能越大的原子核越稳定,但比结合能越大的原子核,其结合能不一定大,例如中等质量原子核的比结合能比重核大,但由于核子数比重核少,其结合能比重核小,B、C选项错误;中等质量原子核的比结合能比轻核的大,它的原子核内核子数又比轻核多,因此它的结合能也比轻核大,D选项正确.
1.核子结合成原子核时一定释放能量,原子核分开成核子时一定吸收能量,吸收或释放的能量越大,表明原子核的结合能越大.
2.比结合能越大表明原子核越稳定.一般情况下,中等质量的原子核比轻核和重核的比结合能大.
二、质量亏损和核能的计算
例2 H的质量是3.016 050 u,质子的质量是1.007 277 u,中子的质量为1.008 665 u.求:(质量亏损1 u相当于释放931.5 MeV的能量)
(1)一个质子和两个中子结合为氚核时,是吸收还是放出能量?该能量为多少?
(2)氚核的结合能和比结合能各是多少?
答案 (1)放出 7.97 MeV (2)7.97 MeV 2.66 MeV
解析 (1)一个质子和两个中子结合成氚核的反应方程式是H+2n―→H,
反应前各核子总质量为
mp+2mn=(1.007 277+2×1.008 665) u=3.024 607 u,
反应后新核的质量为mH=3.016 050 u,
质量亏损为Δm=(3.016 050-3.024 607) u=-0.008 557 u.
因反应前的总质量大于反应后的总质量,故此核反应放出能量.
释放的核能为ΔE=0.008 557×931.5 MeV≈7.97 MeV.
(2)氚核的结合能即为ΔE=7.97 MeV,
它的比结合能为≈2.66 MeV.
针对训练 一个锂核(Li)受到一个质子的轰击,变成两个α粒子.已知质子的质量是1.673 6×10-27 kg,锂核的质量是11.650 5×10-27 kg,氦核的质量是6.646 6×10-27 kg.
(1)写出上述核反应的方程;
(2)计算上述核反应释放出的能量.
答案 (1)Li+H→2He (2)2.781×10-12 J
解析 (1)Li+H→2He
(2)核反应的质量亏损Δm=mLi+mp-2mα
=(11.650 5×10-27+1.673 6×10-27-2×6.646 6×10-27) kg
=3.09×10-29 kg
释放的能量
ΔE=Δmc2=3.09×10-29×(3×108)2 J=2.781×10-12 J
1.计算过程中Δm的单位是kg,ΔE的单位是J.
2.若Δm的单位是u,ΔE的单位是MeV,可直接利用公式ΔE=Δm×931.5 MeV来计算核能.
1.下列关于核力的说法正确的是(  )
A.核力同万有引力没有区别,都是物体间的相互作用
B.核力就是电磁力
C.核力是短程力,作用范围在1.5×10-15 m之内
D.核力与电荷有关
答案 C
解析 核力是短程力,超过1.5×10-15 m,核力急剧下降几乎消失,故选项C正确;核力与万有引力、电磁力不同,故选项A、B错误;核力与电荷无关,故选项D错误.
2.(多选)关于原子核中质子和中子的比例,下列说法正确的是(  )
A.原子核中质子和中子的个数一定相等
B.稳定的重原子核里,中子数要比质子数多
C.原子核大到一定程度时,相距较远的质子间的核力不足以平衡它们之间的库仑力,这个原子核就不稳定了
D.质子和中子可以组合成任意稳定的核
答案 BC
3.(多选)关于原子核的结合能,下列说法正确的是(  )
A.原子核的结合能等于使其完全分解成自由核子所需的最小能量
B.一重原子核衰变成α粒子和另一原子核,衰变产物的结合能之和一定大于原来重核的结合能
C.铯原子核(Cs)的结合能小于铅原子核(Pb)的结合能
D.比结合能越大,原子核越不稳定
答案 ABC
解析 结合能是把核子分开所需的最小能量,选项A正确;一重原子核衰变成α粒子和另一原子核,存在质量亏损,核子比结合能增大,衰变产物的结合能之和一定大于原来重核的结合能,选项B正确;核子数越多,结合能越大,选项C正确;比结合能也叫平均结合能,比结合能越大,分开核子所需的能量越大,原子核越稳定,选项D错误.
4.已知氮核质量MN=14.007 53 u,氧17核的质量MO=17.004 54 u,氦核质量MHe=4.003 87 u,氢核质量MH=1.008 15 u,试判断:N+He→O+H这一核反应是吸收能量还是放出能量?能量变化是多少?(已知1 u相当于931.5 MeV的能量)
答案 吸收能量 1.2 MeV
解析 反应前总质量:MN+MHe=18.011 40 u,
反应后总质量:MO+MH=18.012 69 u.
可以看出:反应后总质量增加,故该反应是吸收能量的反应.
故ΔE=(18.012 69-18.011 40)×931.5 MeV≈1.2 MeV.
一、选择题(1~8题为单选题,9~10题为多选题)
1.下列对核力的认识正确的是(  )
A.任何物体之间均存在核力
B.核力广泛存在于自然界中的核子之间
C.核力只存在于质子之间
D.核力只发生在相距1.5×10-15 m内的核子之间,大于0.8×10-15 m为吸引力,而小于0.8×10-15 m为斥力
答案 D
解析 由核力的特点知道,只有相距1.5×10-15 m内的核子之间才存在核力,核力发生在质子与质子、质子与中子及中子与中子之间,由此知D正确,A、B、C错误.
2.核子结合成原子核或原子核分解为核子时,都伴随着巨大的能量变化,这是因为(  )
A.原子核带正电,电子带负电,电荷间存在很大的库仑力
B.核子具有质量且相距很近,存在很大的万有引力
C.核子间存在着强大的核力
D.核子间存在着复杂磁力
答案 C
解析 核子之间存在核力作用,核子结合成原子核或原子核分解为核子时,都有核力作用,故伴随着巨大的能量变化,故选C.
3.原子质量单位为u,1 u相当于931.5 MeV的能量,真空中光速为c,当质量分别为m1和m2的原子核结合为质量为M的原子核时释放出的能量是(  )
A.(M-m1-m2) u×c2
B.(m1+m2-M) u×931.5 J
C.(m1+m2-M)c
D.(m1+m2-M)×931.5 MeV
答案 D
4.为纪念爱因斯坦对物理学的巨大贡献,联合国将2005年定为“国际物理年”.对于爱因斯坦提出的质能方程E=mc2,下列说法中不正确的是(  )
A.E=mc2定量地指出了物体具有的能量与其质量之间的关系
B.根据ΔE=Δmc2可以计算核反应中释放的核能
C.一个中子和一个质子结合成氘核时,释放出核能,表明此过程中出现了质量亏损
D.E=mc2中的E是发生核反应时释放的核能
答案 D
解析 爱因斯坦质能方程E=mc2定量的指出了物体具有的能量与其质量之间的关系,A正确;由质能方程知,当物体的质量减少时,物体的能量降低,向外释放了能量;反之,若物体的质量增加了,则物体的能量升高,表明它从外界吸收了能量,所以由物体的质量变化能算出物体的能量变化,故B、C正确,D错误.
5.某核反应方程为H+H→He+X.已知H的质量为2.013 6 u,H的质量为3.018 0 u,He的质量为4.002 6 u,X的质量为1.008 7 u.则下列说法中正确的是(  )
A.X是质子,该反应释放能量
B.X是中子,该反应释放能量
C.X是质子,该反应吸收能量
D.X是中子,该反应吸收能量
答案 B
解析 根据核反应过程质量数、电荷数守恒,可得H+H→He+X,X为中子,在该反应发生前反应物的总质量m1=2.013 6 u+3.018 0 u=5.031 6 u,反应后产物总质量m2=4.002 6 u+1.008 7 u=5.011 3 u.总质量减少,出现了质量亏损,故该反应释放能量.
6.当两个中子和两个质子结合成一个α粒子时,放出28.30 MeV的能量,当三个α粒子结合成一个碳核时,放出7.26 MeV的能量,则当6个中子和6个质子结合成一个碳核时,释放的能量为(  )
A.21.04 MeV B.35.56 MeV
C.92.16 MeV D.77.64 MeV
答案 C
解析 设中子的质量为mn,质子的质量为mp,α粒子的质量为mα,碳原子核的质量为mC.根据质能方程:
ΔE1=28.30 MeV=[2(mn+mp)-mα]c2
ΔE2=7.26 MeV=[3mα-mC]c2
ΔE3=[6mn+6mp-mC]c2
由以上各式得ΔE3=92.16 MeV.
7.如图1所示是描述原子核核子的平均质量与原子序数Z的关系曲线,由图可知下列说法正确的是(  )
图1
A.将原子核A分解为原子核B、C可能吸收能量
B.将原子核D、E结合成原子核F可能吸收能量
C.将原子核A分解为原子核B、F一定释放能量
D.将原子核F、C结合成原子核B一定释放能量
答案 C
解析 因B、C核子平均质量小于A的核子平均质量,故A分解为B、C时,会出现质量亏损,故放出核能,故A错误,同理可得B、D错误,C正确.
8.中子n、质子p、氘核D的质量分别为mn、mp、mD.现用光子能量为E的γ射线照射静止氘核使之分解,核反应方程为γ+D→p+n,若分解后中子、质子的动能可视为相等,则中子的动能是(  )
A.[(mD-mp-mn)c2-E]
B.[(mD+mn-mp)c2+E]
C.[(mD-mp-mn)c2+E]
D.[(mD+mn-mp)c2-E]
答案 C
解析 因为轻核聚变时放出能量,质量亏损,所以氘核分解为核子时,要吸收能量,质量增加,本题核反应过程中γ射线能量E对应质量的增加和中子与质子动能的产生,即E=Δmc2+2Ek=(mp+mn-mD)c2+2Ek得Ek=[E-(mp+mn-mD)c2]=[(mD-mp-mn)c2+E],故选C.
9.一个质子和一个中子结合成氘核,同时放出γ光子,核反应方程是H+n―→H+γ,以下说法中正确的是(  )
A.反应后氘核的质量一定小于反应前质子和中子的质量之和
B.反应前后的质量数不变,因而质量不变
C.γ光子的能量为Δmc2,Δm为反应中的质量亏损,c为光在真空中的速度
D.因存在质量亏损Δm,所以“物质不灭”的说法不正确
答案 AC
解析 核反应中质量数与电荷数及能量均守恒,由于反应中要释放核能,会出现质量亏损,反应后氘核的质量一定小于反应前质子和中子的质量之和,所以质量不守恒,但质量数不变,且能量守恒,释放的能量会以光子的形式向外释放,故正确答案为A、C.
10.中子和质子结合成氘核时,质量亏损为Δm,相应的能量ΔE=Δmc2=2.2 MeV是氘核的结合能.下列说法正确的是(  )
A.用能量小于2.2 MeV的光子照射静止氘核时,氘核不能分解为一个质子和一个中子
B.用能量小于2.2 MeV的光子照射静止氘核时,氘核可能分解为一个质子和一个中子,它们的动能之和为零
C.用能量大于2.2 MeV的光子照射静止氘核时,氘核可能分解为一个质子和一个中子,它们的动能之和为零
D.用能量大于2.2 MeV的光子照射静止氘核时,氘核可能分解为一个质子和一个中子,它们的动能之和不为零
答案 AD
解析 用能量小于结合能的光子照射氘核时,氘核一定不能分解,所以A正确,B错误;用能量大于结合能的光子照射氘核时,氘核可能分解,只要分解,分解出的质子和中子动能之和一定不为零(若动能之和为零就分不开了),所以C错误,D正确.
二、非选择题
11.一个静止的镭核Ra发生衰变放出一个粒子变为氡核Rn.已知镭核226质量为226.025 4 u,氡核222质量为222.016 3 u,放出粒子的质量为4.002 6 u,1 u相当于931.5 MeV的能量.
(1)写出核反应方程;
(2)求镭核衰变放出的能量;
(3)若衰变放出的能量均转变为氡核和放出粒子的动能,求放出粒子的动能.
答案 (1)Ra→Rn+He (2)6.05 MeV (3)5.94 MeV
解析 (1)核反应方程为Ra→Rn+He.
(2)镭核衰变放出的能量为ΔE=Δm·c2
=(226.025 4-4.002 6-222.016 3)×931.5 MeV
≈6.05 MeV.
(3)镭核衰变前静止,镭核衰变时动量守恒,则由动量守恒定律可得mRnvRn-mαvα=0①
又因为衰变放出的能量转变为氡核和α粒子的动能,则
ΔE=mRnvRn2+mαvα2②
由①②可得
Ekα=·ΔE=×6.05 MeV≈5.94 MeV.
课件36张PPT。第十九章 5 核力与结合能学习目标 
1.知道核力的概念、特点和四种基本相互作用.
2.了解结合能和比结合能的概念.
3.认识原子核的结合能及质量亏损,并能应用质能方程进行相关的计算.内容索引
知识探究
题型探究
达标检测
知识探究一、核力与四种基本相互作用1.有的同学认为:“原子核内质子间的库仑斥力,与质子、中子间的万有引力平衡而使原子达到稳定状态”,这种说法正确吗?答案 不正确.在相同的距离上,质子之间的库仑力的大小大约比万有引力强1035倍,两者相差悬殊,不可能平衡.2.是什么力克服质子之间的库仑斥力,使核子结合成一个稳固的原子核的?答案 核子间(质子与质子、中子与中子、质子与中子)存在着一种比库仑力大得多的核力.答案核力及特点
1.核力:原子核里的 间存在着相互作用的核力, 把核子紧紧地束缚在核内,形成稳定的原子核.
2.核力特点
(1)核力是核子间的 的一种表现,在原子核的尺度内,核力比库仑力 .
(2)核力是 ,作用范围在 之内.
在大于0.8×10-15 m时表现为 ,超过1.5×10-15 m时,核力急剧下降几乎消失;而距离小于0.8×10-15 m时,核力表现为 .核子核力强相互作用大得多短程力吸引力斥力1.5×10-15 m(3)每个核子只跟 的核子发生核力作用,这种性质称为核力的 .
(4)核力与核子是否带电无关,质子与质子间、质子与中子间、中子与中子间都可以有核力作用.
3.四种基本相互作用饱和性邻近更短电磁力万有引力判断下列说法的正误.
(1)原子核中的质子是靠自身的万有引力聚在一起的.(  )
(2)核力是强相互作用力,在原子核的尺度内,核力比库仑力大得多.
(  )
(3)弱相互作用的力程比强力更短.(  )
(4)弱相互作用是引起原子核β衰变的原因.(  )×√√√二、原子核中质子与中子的比例答案 质子数与中子数相等.答案3.试从核力的特点及核力的饱和性对上述现象做出解释,并说明原子核能无限地增大吗?答案 稳定的重原子核里,中子数要比质子数多,由于核力作用范围有限,以及核力的饱和性,如果继续增大原子核,一些核子间距离会大到其间根本没有核力作用,这时即使再增加中子,形成的核也一定是不稳定的,所以原子核不能无限地增大.答案由于核力是 力及核力的饱和性,自然界中较轻的原子核,质子数与中子数大致相等,但较重的原子核,中子数 质子数,越重的原子核,两者相差越 .短程大于多判断下列说法的正误.
(1)在原子核的组成中,质子数等于中子数.(  )
(2)原子核大到一定程度,原子核就不稳定了.(  )
(3)在宇宙演化过程中,只有稳定的原子核长久地留了下来.(  )
(4)稳定的重原子核里,质子数比中子数多.(  )×√√×三、结合能和质量亏损答案 质子和中子结合成原子核的过程中要释放能量;氘核分解成质子和中子时要吸收能量.答案1.设有一个质子和一个中子在核力作用下靠近碰撞并结合成一个氘核.质子和中子结合成氘核的过程中是释放能量还是吸收能量?使氘核分解为质子和中子的过程中呢?2.如图1所示是不同原子核的比结合能随质量数变化的曲线.图1(1)从图中看出,中等质量的原子核与重核、轻核相比比结合能有什么特点?比结合能的大小反映了什么?答案 中等质量的原子核比结合能较大,比结合能的大小反映了原子核的稳定性,比结合能越大,原子核越稳定.答案(2)比结合能较小的原子核转化为比结合能较大的原子核时是吸收能量还是释放能量?答案 释放能量.答案1.对结合能的理解
(1)结合能:原子核是核子凭借核力结合在一起构成的,要把它们 ,需要能量,这就是原子核的结合能.
(2)比结合能:原子核的结合能与 之比称为比结合能.比结合能越大,表示原子核中核子结合得越 ,原子核越 .
(3)核子数较小的轻核和核子数较大的重核,比结合能 ,________
的原子核,比结合能较大.当比结合能较小的原子核转化为比结合能较大的原子核时会 核能.分开核子数牢固稳定较小中等核子数释放2.对质能方程和质量亏损的理解
(1)质能方程
爱因斯坦的相对论指出,物体的能量和质量之间存在着密切的联系,其关系是E= .
(2)质量亏损:质量亏损,并不是质量消失,减少的质量在核子结合成核的过程中以能量的形式辐射出去了.物体质量增加,则总能量随之 ;质量减少,总能量也随之 ,这时质能方程也写作ΔE= .mc2增加减少Δmc2判断下列说法的正误.
(1)一切原子核均具有结合能.(  )
(2)组成原子核的核子越多,它的结合能就越高.(  )
(3)结合能越大,核子结合得越牢固,原子越稳定.(  )
(4)自由核子结合为原子核时,可能吸收能量.(  )√√××
题型探究一、对结合能的理解
1.中等质量原子核的比结合能最大,轻核和重核的比结合能都比中等质量的原子核要小.
2.比结合能与原子核稳定的关系
(1)比结合能的大小能够反映原子核的稳定程度,比结合能越大,原子核就越难拆开,表示该原子核就越稳定.
(2)核子数较小的轻核与核子数较大的重核,比结合能都比较小,表示原子核不太稳定;中等核子数的原子核,比结合能较大,表示原子核较稳定.(3)当比结合能较小的原子核转化成比结合能较大的原子核时,就能释放核能.例如,一个核子数较大的重核分裂成两个核子数小一些的核,或者两个核子数很小的轻核结合成一个核子数大一些的核,都能释放出巨大的核能.解析例1 下列关于结合能和比结合能的说法中,正确的是
A.核子结合成原子核吸收的能量或原子核拆解成核子放出的能量称为结
合能
B.比结合能越大的原子核越稳定,因此它的结合能也一定越大
C.重核与中等质量原子核相比较,重核的结合能和比结合能都大
D.中等质量原子核的结合能和比结合能均比轻核的要大√答案解析 核子结合成原子核是放出能量,原子核拆解成核子是吸收能量,A选项错误;
比结合能越大的原子核越稳定,但比结合能越大的原子核,其结合能不一定大,例如中等质量原子核的比结合能比重核大,但由于核子数比重核少,其结合能比重核小,B、C选项错误;
中等质量原子核的比结合能比轻核的大,它的原子核内核子数又比轻核多,因此它的结合能也比轻核大,D选项正确.1.核子结合成原子核时一定释放能量,原子核分开成核子时一定吸收能量,吸收或释放的能量越大,表明原子核的结合能越大.
2.比结合能越大表明原子核越稳定.一般情况下,中等质量的原子核比轻核和重核的比结合能大.二、质量亏损和核能的计算例2  H的质量是3.016 050 u,质子的质量是1.007 277 u,中子的质量为1.008 665 u.求:(质量亏损1 u相当于释放931.5 MeV的能量)
(1)一个质子和两个中子结合为氚核时,是吸收还是放出能量?该能量为多少?解析答案 放出 7.97 MeV答案反应前各核子总质量为
mp+2mn=(1.007 277+2×1.008 665) u=3.024 607 u,
反应后新核的质量为mH=3.016 050 u,
质量亏损为Δm=(3.016 050-3.024 607) u=-0.008 557 u.
因反应前的总质量大于反应后的总质量,故此核反应放出能量.
释放的核能为ΔE=0.008 557×931.5 MeV≈7.97 MeV.(2)氚核的结合能和比结合能各是多少?解析答案 7.97 MeV 2.66 MeV答案?针对训练 一个锂核( Li)受到一个质子的轰击,变成两个α粒子.已知质子的质量是1.673 6×10-27 kg,锂核的质量是11.650 5×10-27 kg,氦核的质量是6.646 6×10-27 kg.
(1)写出上述核反应的方程;解析答案(2)计算上述核反应释放出的能量.解析答案答案 2.781×10-12 J解析 核反应的质量亏损Δm=mLi+mp-2mα
=(11.650 5×10-27+1.673 6×10-27-2×6.646 6×10-27) kg
=3.09×10-29 kg
释放的能量
ΔE=Δmc2=3.09×10-29×(3×108)2 J=2.781×10-12 J1.计算过程中Δm的单位是kg,ΔE的单位是J.
2.若Δm的单位是u,ΔE的单位是MeV,可直接利用公式ΔE=Δm×931.5 MeV来计算核能.
达标检测1.下列关于核力的说法正确的是
A.核力同万有引力没有区别,都是物体间的相互作用
B.核力就是电磁力
C.核力是短程力,作用范围在1.5×10-15 m之内
D.核力与电荷有关√123答案解析4解析 核力是短程力,超过1.5×10-15 m,核力急剧下降几乎消失,故选项C正确;
核力与万有引力、电磁力不同,故选项A、B错误;
核力与电荷无关,故选项D错误.2.(多选)关于原子核中质子和中子的比例,下列说法正确的是
A.原子核中质子和中子的个数一定相等
B.稳定的重原子核里,中子数要比质子数多
C.原子核大到一定程度时,相距较远的质子间的核力不足以平衡它们之
间的库仑力,这个原子核就不稳定了
D.质子和中子可以组合成任意稳定的核123√答案4√3.(多选)关于原子核的结合能,下列说法正确的是
A.原子核的结合能等于使其完全分解成自由核子所需的最小能量
B.一重原子核衰变成α粒子和另一原子核,衰变产物的结合能之和一定
大于原来重核的结合能
C.铯原子核( Cs)的结合能小于铅原子核( Pb)的结合能
D.比结合能越大,原子核越不稳定123√答案解析4√√123解析 结合能是把核子分开所需的最小能量,选项A正确;
一重原子核衰变成α粒子和另一原子核,存在质量亏损,核子比结合能增大,衰变产物的结合能之和一定大于原来重核的结合能,选项B正确;
核子数越多,结合能越大,选项C正确;
比结合能也叫平均结合能,比结合能越大,分开核子所需的能量越大,原子核越稳定,选项D错误.4123答案4答案 吸收能量 1.2 MeV解析 反应前总质量:MN+MHe=18.011 40 u,
反应后总质量:MO+MH=18.012 69 u.
可以看出:反应后总质量增加,故该反应是吸收能量的反应.
故ΔE=(18.012 69-18.011 40)×931.5 MeV≈1.2 MeV.解析第5节 核力与结合能
1.(对应要点一)铁的比结合能比铀核的比结合能大,下列关于它们的说法正确的是
(  )
A.铁的结合能大于铀核的结合能
B.铁核比铀核稳定
C.铀核发生核变化变成铁核要放出能量
D.铀核发生核变化变成铁核质量要亏损
解析:铁核的比结合能大,则它稳定些,铀核比结合能小变成铁核会放出核能,出现质量亏损,B、C、D正确。
答案:BCD
2.(对应要点二)对于爱因斯坦提出的质能方程E=mc2,下列说法中不正确的是(  )
A.E=mc2表明物体具有的能量与其质量成正比
B.根据ΔE=Δmc2可计算核反应的能量
C.一个质子和一个中子结合成一个氘核时释放能量,表明此过程出现了质量亏损
D.E=mc2中的E是发生核反应中释放的核能
解析:质能方程E=mc2中E表示物体具有的总能量,m表示物体的质量,故A项对,D项错;根据ΔE=Δmc2,可以计算释放的核能,物体的质量增加或减小Δm对应着其能量增加或减少ΔE,故B、C正确,所以选D。
答案:D
3.(对应要点二)(2012·江苏高考)一个中子与某原子核发生核反应,生成一个氘核,其核反应方程式为________。该反应放出的能量为Q,则氘核的比结合能为________。
解析:氘核可表示为H,根据质量数守恒和核电荷数守恒可知未知原子核的质量数是1,核电荷数是1,应该是氢原子核H,则核反应方程为n+H→H。释放的核能ΔE=Δmc2,则ΔE=Q,氘核的比结合能是。
答案:n+H→H 
4.(对应要点二)两个中子和两个质子结合成一个氦核,同时释放一定的核能,若已知中子质量为1.008 7 u,质子质量为1.007 3 u,氦核质量为4.002 6 u。试计算用中子和质子生成1 kg氦时,要释放的核能。
解析:两个质子和两个中子结合成氦核的反应为:
2n+2H→He
质量亏损
Δm=2×1.008 7 u+2×1.007 3 u-4.002 6 u=0.029 4 u
放出的核能ΔE=Δmc2=Δm×931.5 MeV=0.029 4×931.5 MeV=27.386 MeV
生成1 kg氦释放的总核能
E=NΔE==×6.02×1023×27.368×106×1.6×10-19 J=6.59×1014 J。
答案:6.59×1014 J
6 核裂变
[学习目标] 1.知道什么是核裂变.2.知道链式反应及链式反应的条件,并能计算裂变释放的核能.3.了解裂变反应堆的工作原理,知道如何控制核反应的速度以及如何防止核污染.
                   
一、核裂变和链式反应
[导学探究] 如图1为铀核裂变示意图.
图1
1.铀核裂变是如何发生的?
答案 铀核的裂变
(1)核子受激发:当中子进入铀235后,便形成了处于激发状态的复核,复核中由于核子的激烈运动,使核变成不规则的形状.
(2)核子分裂:核子间的距离增大,因而核力迅速减弱,使得原子核由于质子间的斥力作用而分裂成几块,同时放出中子,这些中子又引起其他铀核裂变,这样,裂变反应一代接一代继续下去,形成链式反应.
2.铀核裂变在自然界中能自发进行吗?
答案 重核的裂变只能发生在人为控制的核反应中,在自然界中不会自发地发生,故铀核裂变不会自发地进行.要使铀核裂变,首先要利用中子轰击铀核,使铀核分裂,分裂产生更多的中子,这些中子继续与其他铀核发生反应,再引起新的裂变,这样就形成了链式反应.
[知识梳理] 对核裂变和链式反应的理解
1.核裂变
重核被中子轰击后分裂成两个质量差不多的新原子核,并放出核能的过程.
2.铀核裂变
用中子轰击铀核时,铀核发生裂变,其产物是多种多样的,其中一种典型的反应是U+n→Ba+Kr+3n.
3.链式反应
由重核裂变产生的中子使裂变反应一代接一代继续下去的过程,叫做核裂变的链式反应.
4.链式反应的条件
(1)铀块的体积大于或等于临界体积或铀块的质量大于或等于临界质量.
(2)有足够数量的慢中子.
[即学即用] 判断下列说法的正误.
(1)铀核的裂变是一种天然放射现象.( × )
(2)铀块的质量大于临界质量时链式反应才能不停地进行下去.( √ )
(3)中子的速度越快,越容易发生铀核裂变.( × )
(4)铀核裂变的产物是钡和氪,且固定不变,同时放出三个中子.( × )
二、核电站
[知识梳理]
1.核电站是利用核能发电,它的核心设施是反应堆,它主要由以下几部分组成:
(1)燃料:铀棒.
(2)慢化剂:铀235容易捕获慢中子发生反应,采用石墨、重水或普通水作慢化剂;
(3)控制棒:采用在反应堆中插入镉棒的方法,利用镉吸收中子的能力很强的特性,控制链式反应的速度.
2.工作原理
核燃料裂变释放能量,使反应区温度升高.
3.能量输出
利用水或液态的金属钠等流体在反应堆内外循环流动,把反应堆内的热量传输出去,用于发电,同时也使反应堆冷却.
4.核污染的处理
在反应堆的外面需要修建很厚的水泥层,用来屏蔽裂变产物放出的各种射线.核废料具有很强的放射性,需要装入特制的容器,深埋地下.
[即学即用] 判断下列说法的正误.
(1)核反应堆是通过调节中子数目以控制反应速度.( √ )
(2)核反应堆用过的核废料无毒无害.( × )
一、重核裂变与其释放核能的计算
1.常见的裂变方程
(1)U+n―→Xe+Sr+2n
(2)U+n―→Ba+Kr+3n
2.链式反应发生的条件
(1)铀块的体积大于或等于临界体积.体积超过临界体积时,保证中子能够碰到铀核.
(2)有足够浓度的铀235.
(3)有足够数量的慢中子.
3.裂变反应的能量
铀核裂变为中等质量的原子核,发生质量亏损,所以放出能量.一个铀235核裂变时释放的能量如果按200 MeV估算,1 kg铀235全部裂变放出的能量相当于2 800 t标准煤完全燃烧释放的化学能,裂变时能产生几百万度的高温.
4.铀的同位素中铀235比铀238更容易发生链式反应.
例1 关于重核的裂变,下列说法正确的是(  )
A.核裂变释放的能量等于它俘获中子时得到的能量
B.中子从铀块中通过时,一定发生链式反应
C.重核裂变释放出大量的能量,产生明显的质量亏损,所以核子数减少
D.重核裂变为中等质量的核时,要发生质量亏损,放出核能
答案 D
解析 核裂变释放的能量来源于裂变过程的质量亏损,是核能转化为其他形式能的过程,其能量远大于俘获中子时吸收的能量,A错误,D正确;发生链式反应是有条件的,铀块的体积必须大于或等于临界体积,否则中子从铀块中穿过时,可能碰不到原子核,则不会发生链式反应,B错误;重核裂变时,核子数守恒,C错误.
重核裂变的实质:
(1)重核裂变是中子轰击质量数较大的原子核,使之分裂成中等质量的原子核,同时释放大量的能量,放出更多中子的过程.
(2)重核的裂变是放能核反应,原因是核反应前后质量有亏损,根本原因是重核的比结合能比中等质量的核的比结合能要小.所以在重核分解为两个中等质量核的过程中要释放能量,而且释放的能量远大于它俘获中子时得到的能量.
例2 用中子轰击铀核(U),其中的一个可能反应是分裂成钡(Ba)和氪(Kr)两部分,放出3个中子.各个核和中子的质量如下:
mU=390.313 9×10-27 kg,mn=1.674 9×10-27 kg;
mBa=234.001 6×10-27 kg,mKr=152.604 7×10-27 kg.
试写出核反应方程,求出反应中释放的核能.
答案 n+U―→Ba+Kr+3n 3.220 2×10-11 J
解析 根据反应前后质量数守恒、电荷数守恒,就可以写出核反应方程.根据核反应前后的质量亏损,用爱因斯坦质能方程就可求出释放的核能.
铀核裂变方程为n+U―→Ba+Kr+3n,
则核反应前后的质量亏损为
Δm=mU+mn-mBa-mKr-3mn=3.578×10-28 kg,
由爱因斯坦质能方程可得释放的核能为ΔE=Δmc2=3.578×10-28×(3×108)2 J=3.220 2×10-11 J.
铀核裂变释放核能的计算
(1)首先算出裂变反应中的质量亏损Δm.
(2)根据ΔE=Δmc2计算释放的核能.
(3)若计算一定质量的铀块完全裂变时放出的核能,应先算出铀块中有多少个铀核(设为n),则铀块裂变释放的核能E=nΔE.
二、核电站
1.核电站的主要部件及作用如下表:
   部件
 名称
项目
慢化剂
控制棒
热循环
介质
保护层
采用的
材料
石墨、重水或普通水(也叫轻水)

水或液态的金属钠
很厚的水泥外壳
作用
降低中子速度,便于铀235吸收
吸收中子,控制反应速度
把反应堆内的热量传输出去
屏蔽射线,防止放射性污染
2.核电站发电的优点
(1)消耗的核燃料少.
(2)作为核燃料的铀、钍等在地球上可采储量大,所能提供的能量大.
(3)对环境的污染要比火力发电小.
例3 如图2是慢中子反应堆的示意图,对该反应堆的下列说法中正确的是(  )
图2
A.铀235容易吸收快中子后发生裂变反应
B.快中子跟慢化剂的原子核碰撞后的能量减少,变成慢中子,慢中子容易被铀235俘获而引起裂变反应
C.控制棒由镉做成,当反应过于激烈时,使控制棒插入浅一些,让它少吸收一些中子,链式反应的速度就会慢一些
D.要使裂变反应更激烈一些,应使控制棒插入深一些,使大量快中子碰撞控制棒后变成慢中子,链式反应的速度就会快一些
答案 B
解析 快中子容易与铀235擦肩而过,快中子跟慢化剂的原子核碰撞后能量减少,变成慢中子,慢中子容易被铀235俘获而引起裂变反应,选项B正确,A错误;控制棒由镉做成,镉吸收中子的能力很强,当反应过于激烈时,使控制棒插入深一些,让它多吸收一些中子,链式反应的速度就会慢一些,选项C、D都错误.
1.(多选)关于核反应堆,下列说法正确的是(  )
A.铀棒是核燃料,裂变时释放核能
B.镉棒的作用是控制反应堆的功率
C.石墨的作用是吸收中子
D.冷却剂的作用是控制反应堆的温度和输出热能
答案 ABD
解析 铀棒是核燃料,裂变时可放出能量,故A正确;镉棒吸收中子的能力很强,作用是调节中子数目以控制反应速度,即控制反应堆功率,故B正确;慢中子最容易引发核裂变,所以在快中子碰到铀棒前要进行减速,石墨的作用是使中子减速,故C错误;水或液态金属钠等流体在反应堆内外循环流动,把反应堆内的热量传输出去,用于发电,同时也使反应堆冷却,控制温度,故D正确.
2.一个U原子核在中子的轰击下发生一种可能的裂变反应的裂变方程为U+n→X+Sr+2n,则下列叙述正确的是(  )
A.X原子核中含有86个中子
B.X原子核中含有141个核子
C.因为裂变时释放能量,根据E=mc2,所以裂变后的总质量数增加
D.因为裂变时释放能量,出现质量亏损,所以生成物的总质量数减少
答案 A
解析 X原子核中的核子数为(235+1)-(94+2)=140个,B错误;中子数为140-(92-38)=86个,A正确;裂变时释放能量,出现质量亏损,但是其总质量数是不变的,C、D错误.
3.(多选)秦山核电站第三期工程的两个6×105 kW发电机组已实现并网发电.发电站的核能来源于U的裂变,下列说法正确的是(  )
A.反应堆中核反应速度通常是采用调节U的体积来控制的
B.U的一种可能的裂变是U+n―→Xe+Sr+2n
C.U是天然放射性元素,升高温度后它的半衰期会缩短
D.一个U裂变能放出200 MeV的能量,即3.2×10-11 J
答案 BD
解析 反应堆中核反应速度由控制棒(镉棒)吸收中子的多少来控制,A错;U裂变有多种可能性,B对;放射性元素的半衰期由原子核本身决定,与温度、压强等外界条件无关,C错;通过计算知,D正确.
4.一个铀235吸收一个中子后发生的一种核反应方程是U+n→Xe+Sr+10n,放出的能量为E,铀235核的质量为M,中子的质量为m,氙136核的质量为m1,锶90核的质量为m2,真空中光速为c,则释放的能量E等于(  )
A.(M-m1-m2)c2 B.(M+m-m1-m2)c2
C.(M-m1-m2-9m)c2 D.(m1+m2+9m-M)c2
答案 C
解析 铀235裂变时的质量亏损Δm=M+m-m1-m2-10m=M-m1-m2-9m,由质能方程可得E=Δmc2=(M-9m-m1-m2)c2.
一、选择题(1~4题为单选题,5~6题为多选题)
1.链式反应中,重核裂变时放出的可使裂变不断进行下去的粒子是(  )
A.质子 B.中子 C.β粒子 D.α粒子
答案 B
解析 在重核的裂变中,铀235需要吸收一个慢中子后才可以发生裂变,所以重核裂变时放出的可使裂变反应不断进行下去的粒子是中子.
2.中国承诺到2020年碳排放量下降40%~45%,为了实现负责任大国的承诺,我们将新建核电站项目.目前关于核电站获取核能的基本核反应方程可能是(  )
A.U+n→Sr+Xe+10n
B.Na―→Mg+e
C.N+He―→O+H
D.U―→Th+He
答案 A
解析 重核的裂变是指质量数较大的原子核分裂成两个中等质量的原子核,A是裂变反应,A正确;B为β衰变,C是发现质子的反应,D是α衰变.
3.在众多的裂变反应中,有一种反应方程为U+n→Ba+Kr+aX,其中X为某种粒子,a为X的个数,则(  )
A.X为中子,a=2
B.X为中子,a=3
C.X为质子,a=2
D.X为质子,a=3
答案 B
解析 根据核电荷数守恒可知,X的电荷数为0,X必为中子n,由质量数守恒可知,a=3,选项B正确.
4.1938年哈恩用中子轰击铀核,发现产物中有原子核钡(Ba)、氪(Kr)、中子和一些γ射线.下列关于这个实验的说法中正确的是(  )
A.这个实验的核反应方程是U+n→Ba+Kr+n
B.这是一个核裂变过程,反应后粒子质量之和大于反应前粒子质量之和
C.这个反应中释放出的能量不可以用爱因斯坦的质能方程来计算
D实验中产生的γ射线穿透能力极强
答案 D
解析 根据质量数守恒、电荷数守恒,铀核裂变的核反应方程应为:U+n→Ba+Kr+3n,选项A不正确;铀核裂变过程中产生γ射线,放出能量,发生质量亏损,释放的能量可根据爱因斯坦的质能方程计算,选项B、C不正确;核反应中产生的γ射线,穿透能力极强,是能量极高的光子,选项D正确.
5.当一个重核裂变时,它所产生的两个核(  )
A.含有的质子数比裂变前重核的质子数少
B.含有的中子数比裂变前重核的中子数少
C.裂变时释放的能量等于俘获中子时得到的能量
D.可能是多种形式的两个核的组合
答案 BD
解析 一个重核裂变时,在产生两个核的同时,也放出中子,所以新产生的两个核的中子数比裂变前重核的要少,选项B正确;裂变时放出的能量主要是反应前后质量亏损而产生的能量,要远大于俘获中子时得到的能量,C项错;重核裂变的产物是多种多样的,D项正确.
6.日本福岛第一核电站在地震后,数秒内就将控制棒插入核反应堆芯,终止了铀的裂变链式反应.但海啸摧毁了机组的冷却系统,因裂变遗留的产物铯、钡等继续衰变不断释放能量,核燃料棒温度不断上升,对周边环境产生了巨大的危害.则下列说法正确的是(  )
A.控制棒通过吸收中子来实现对核反应的控制
B.日本后来向反应堆灌注海水,可以降温,但大量的被污染的海水外泄,对周边环境产生了巨大的危害
C.核裂变遗留物铯、钡等原子的质量可能比铀原子质量大
D.核泄漏中放射性物质对人类是有害的
答案 ABD
解析 控制棒通过吸收中子来实现对核反应速度的控制,选项A正确;日本后来向反应堆灌注海水,大量的被污染的海水外泄,泄漏中放射性物质对周边环境产生了巨大的危害,选项B、D正确;因为核反应有能量释放,可知铯、钡等原子的质量比铀原子质量小,故C错误.
二、非选择题
7.裂变反应是目前核能利用中常用的反应,以原子核U为燃料的反应堆中,当U俘获一个慢中子后发生的裂变反应可以有多种方式,其中一种可表示为
U  +  n  →  Xe  +  Sr + 3n
235.043 9 1.008 7 138.917 8 93.915 4
反应方程下方的数字是中子及有关原子的静止质量(以原子质量单位u为单位),已知1 u的质量对应的能量为931.5 MeV,此裂变反应释放出的能量是________ MeV.
答案 180
解析 此裂变反应的质量亏损为:
(235.043 9+1.008 7) u-(138.917 8+93.915 4+3×1.008 7) u=0.193 3 u,
由于1 u的质量对应的能量为931.5 MeV,
ΔE=931.5×0.193 3 MeV≈180 MeV.
8.现有的核电站常用的核反应之一是:
U+n―→Nd+Zr+3n+8e+
(1)核反应方程中的是反中微子,它不带电,质量数为零,试确定生成物锆(Zr)的电荷数与质量数;
(2)已知铀核的质量为235.043 9 u,中子的质量为1.008 7 u,钕(Nd)核的质量为142.909 8 u,锆核的质量为89.904 7 u,1 u=1.660 6×10-27 kg,1 u相当于931.5 MeV的能量.试计算1 kg铀235裂变释放的能量为多少?
答案 (1)40 90 (2)8.1×1013 J
解析 (1)锆的电荷数Z=92-60+8=40,质量数A=236-146=90.
(2)1 kg铀235中铀核的个数为
n=≈2.56×1024(个).
不考虑核反应中生成的电子质量,1个铀235核裂变产生的质量亏损为Δm=0.212 u,
释放的能量为ΔE=0.212×931.5 MeV≈197.5 MeV,
则1 kg铀235完全裂变释放的能量为E=nΔE=2.56×1024×197.5 MeV≈8.1×1013 J.
课件32张PPT。第十九章 6 核裂变学习目标 
1.知道什么是核裂变.
2.知道链式反应及链式反应的条件,并能计算裂变释放的核能.
3.了解裂变反应堆的工作原理,知道如何控制核反应的速度以及如何防止核污染.内容索引
知识探究
题型探究
达标检测
知识探究一、核裂变和链式反应如图1为铀核裂变示意图.图11.铀核裂变是如何发生的?答案答案 铀核的裂变
(1)核子受激发:当中子进入铀235后,便形成了处于激发状态的复核,复核中由于核子的激烈运动,使核变成不规则的形状.
(2)核子分裂:核子间的距离增大,因而核力迅速减弱,使得原子核由于质子间的斥力作用而分裂成几块,同时放出中子,这些中子又引起其他铀核裂变,这样,裂变反应一代接一代继续下去,形成链式反应.2.铀核裂变在自然界中能自发进行吗?答案答案 重核的裂变只能发生在人为控制的核反应中,在自然界中不会自发地发生,故铀核裂变不会自发地进行.要使铀核裂变,首先要利用中子轰击铀核,使铀核分裂,分裂产生更多的中子,这些中子继续与其他铀核发生反应,再引起新的裂变,这样就形成了链式反应.对核裂变和链式反应的理解
1.核裂变
重核被中子轰击后分裂成两个质量差不多的 ,并放出 的过程.新原子核核能中子3.链式反应
由重核裂变产生的 使裂变反应一代接一代继续下去的过程,叫做核裂变的链式反应.
4.链式反应的条件
(1)铀块的体积 或等于临界体积或铀块的质量 或等于临界质量.
(2)有足够数量的 中子.中子大于大于慢判断下列说法的正误.
(1)铀核的裂变是一种天然放射现象.(  )
(2)铀块的质量大于临界质量时链式反应才能不停地进行下去.(  )
(3)中子的速度越快,越容易发生铀核裂变.(  )
(4)铀核裂变的产物是钡和氪,且固定不变,同时放出三个中子.(  )×√××二、核电站1.核电站是利用核能发电,它的核心设施是 ,它主要由以下几部分组成:
(1)燃料: .
(2)慢化剂:铀235容易捕获慢中子发生反应,采用 、重水或普通水作慢化剂;
(3)控制棒:采用在反应堆中插入镉棒的方法,利用镉 的能力很强的特性,控制链式反应的速度.反应堆铀棒石墨吸收中子2.工作原理
核燃料 释放能量,使反应区温度升高.
3.能量输出
利用水或液态的金属钠等流体在反应堆内外 ,把反应堆内的热量传输出去,用于发电,同时也使反应堆冷却.
4.核污染的处理
在反应堆的外面需要修建很厚的 ,用来屏蔽裂变产物放出的各种射线.核废料具有很强的 ,需要装入特制的容器, .裂变循环流动水泥层放射性深埋地下判断下列说法的正误.
(1)核反应堆是通过调节中子数目以控制反应速度.(  )
(2)核反应堆用过的核废料无毒无害.(  )√×
题型探究一、重核裂变与其释放核能的计算
1.常见的裂变方程2.链式反应发生的条件
(1)铀块的体积大于或等于临界体积.体积超过临界体积时,保证中子能够碰到铀核.
(2)有足够浓度的铀235.
(3)有足够数量的慢中子.3.裂变反应的能量
铀核裂变为中等质量的原子核,发生质量亏损,所以放出能量.一个铀235核裂变时释放的能量如果按200 MeV估算,1 kg铀235全部裂变放出的能量相当于2 800 t标准煤完全燃烧释放的化学能,裂变时能产生几百万度的高温.
4.铀的同位素中铀235比铀238更容易发生链式反应.例1 关于重核的裂变,下列说法正确的是
A.核裂变释放的能量等于它俘获中子时得到的能量
B.中子从铀块中通过时,一定发生链式反应
C.重核裂变释放出大量的能量,产生明显的质量亏损,所以核子数减少
D.重核裂变为中等质量的核时,要发生质量亏损,放出核能√解析 核裂变释放的能量来源于裂变过程的质量亏损,是核能转化为其他形式能的过程,其能量远大于俘获中子时吸收的能量,A错误,D正确;
发生链式反应是有条件的,铀块的体积必须大于或等于临界体积,否则中子从铀块中穿过时,可能碰不到原子核,则不会发生链式反应,B错误;
重核裂变时,核子数守恒,C错误.解析答案重核裂变的实质:
(1)重核裂变是中子轰击质量数较大的原子核,使之分裂成中等质量的原子核,同时释放大量的能量,放出更多中子的过程.
(2)重核的裂变是放能核反应,原因是核反应前后质量有亏损,根本原因是重核的比结合能比中等质量的核的比结合能要小.所以在重核分解为两个中等质量核的过程中要释放能量,而且释放的能量远大于它俘获中子时得到的能量.解析答案解析 根据反应前后质量数守恒、电荷数守恒,就可以写出核反应方程.根据核反应前后的质量亏损,用爱因斯坦质能方程就可求出释放的核能.则核反应前后的质量亏损为
Δm=mU+mn-mBa-mKr-3mn=3.578×10-28 kg,
由爱因斯坦质能方程可得释放的核能为ΔE=Δmc2=3.578×10-28×(3×108)2 J=3.220 2×10-11 J.铀核裂变释放核能的计算
(1)首先算出裂变反应中的质量亏损Δm.
(2)根据ΔE=Δmc2计算释放的核能.
(3)若计算一定质量的铀块完全裂变时放出的核能,应先算出铀块中有多少个铀核(设为n),则铀块裂变释放的核能E=nΔE.二、核电站
1.核电站的主要部件及作用如下表:2.核电站发电的优点
(1)消耗的核燃料少.
(2)作为核燃料的铀、钍等在地球上可采储量大,所能提供的能量大.
(3)对环境的污染要比火力发电小.例3 如图2是慢中子反应堆的示意图,对该反应堆
的下列说法中正确的是
A.铀235容易吸收快中子后发生裂变反应
B.快中子跟慢化剂的原子核碰撞后的能量减少,变
成慢中子,慢中子容易被铀235俘获而引起裂变
反应
C.控制棒由镉做成,当反应过于激烈时,使控制棒插入浅一些,让它少吸
收一些中子,链式反应的速度就会慢一些
D.要使裂变反应更激烈一些,应使控制棒插入深一些,使大量快中子碰撞
控制棒后变成慢中子,链式反应的速度就会快一些√图2解析答案解析 快中子容易与铀235擦肩而过,快中子跟慢化剂的原子核碰撞后能量减少,变成慢中子,慢中子容易被铀235俘获而引起裂变反应,选项B正确,A错误;
控制棒由镉做成,镉吸收中子的能力很强,当反应过于激烈时,使控制棒插入深一些,让它多吸收一些中子,链式反应的速度就会慢一些,选项C、D都错误.
达标检测1.(多选)关于核反应堆,下列说法正确的是
A.铀棒是核燃料,裂变时释放核能
B.镉棒的作用是控制反应堆的功率
C.石墨的作用是吸收中子
D.冷却剂的作用是控制反应堆的温度和输出热能√123答案解析4√√1234解析 铀棒是核燃料,裂变时可放出能量,故A正确;
镉棒吸收中子的能力很强,作用是调节中子数目以控制反应速度,即控制反应堆功率,故B正确;
慢中子最容易引发核裂变,所以在快中子碰到铀棒前要进行减速,石墨的作用是使中子减速,故C错误;
水或液态金属钠等流体在反应堆内外循环流动,把反应堆内的热量传输出去,用于发电,同时也使反应堆冷却,控制温度,故D正确.A.X原子核中含有86个中子
B.X原子核中含有141个核子
C.因为裂变时释放能量,根据E=mc2,所以裂变后的总质量数增加
D.因为裂变时释放能量,出现质量亏损,所以生成物的总质量数减少123√答案4解析 X原子核中的核子数为(235+1)-(94+2)=140个,B错误;
中子数为140-(92-38)=86个,A正确;
裂变时释放能量,出现质量亏损,但是其总质量数是不变的,C、D错误.解析123答案解析4√√123解析 反应堆中核反应速度由控制棒(镉棒)吸收中子的多少来控制,A错;
U裂变有多种可能性,B对;
放射性元素的半衰期由原子核本身决定,与温度、压强等外界条件无关,C错;
通过计算知,D正确.41234√答案解析 铀235裂变时的质量亏损Δm=M+m-m1-m2-10m=M-m1-m2-9m,由质能方程可得E=Δmc2=(M-9m-m1-m2)c2.解析第6节 重核的裂变
1.(对应要点一)利用重核裂变释放核能时选用铀235,主要因为(  )
A.它比较容易发生链式反应
B.能自动裂变,与体积无关
C.铀核比较容易分裂成为三部分或四部分,因而放出更多的核能
D.铀235价格比较便宜,而且它裂变时放出的核能比其他重核裂变时放出的核能要多
解析:铀235容易吸收慢中子,发生裂变的概率很大,裂变后又释放出中子,使裂变反应比较容易继续下去,故A正确。
答案:A
2.(对应要点一)铀核裂变时,对于产生链式反应的重要因素,下列说法中正确的是(  )
A.铀块的质量是重要因素,与体积无关
B.为了使铀235裂变的链式反应容易发生,最好直接利用裂变时产生的快中子
C.若铀235的体积超过它的临界体积,裂变的链式反应就能够发生
D.裂变能否发生链式反应与铀块的质量无关
解析:要发生链式反应必须使铀块体积(或质量)大于临界体积(或临界质量),故A、D错,C对;铀235俘获慢中子发生裂变的概率大,快中子使铀235发生裂变的几率小,故B错。
答案:C
3.(对应要点二)关于原子核反应堆,下列说法正确的是(  )
A.铀棒是核燃料,裂变时释放核能
B.镉棒的作用是控制反应堆的功率
C.石墨的作用是吸收中子
D.冷却剂的作用是控制反应堆的温度和输出热能
解析:铀棒是核燃料,裂变时可放出能量,A正确;镉棒吸收中子的能力很强,作用是调节中子数目以控制反应速度,即控制反应堆功率,B正确;慢中子最容易引发核裂变,所以在快中子碰到铀棒前要进行减速,石墨的作用是使中子减速,C错误;水或液态金属钠等流体在反应堆内外循环流动,把反应堆内的热量传输出去,用于发电,同时也使反应堆冷却,控制温度,D正确。
答案:ABD
4.(对应要点二)现有的核电站比较广泛采用的核反应之一是:U+n―→Nd+Zr+3n+8e+。
(1)核反应方程中的是中微子,它不带电,质量数为零。试确定生成物锆(Zr)的电荷数Z与质量数A;
(2)已知铀核的质量为235.0439 u,中子质量为1.0087 u,钕(Nd)核的质量为142.9098 u,锆核的质量为89.9047 u;又知1 u相当于931.5 MeV,试计算1 kg铀235大约能产生的能量是多少。
解析:(1)锆的电荷数Z=92-60+8=40,
质量数A=236-146=90,
核反应方程中应用符号Zr表示。
(2)1 kg铀235的铀核数为n=×6. 02×1023个。
不考虑核反应中生成的电子质量,1个铀核反应发生的质量亏损为
Δm=235.0439 u-142.9098 u-89.9047 u-2×
1.0087 u=0.212 u,
1 kg铀235完全裂变产生的能量约为
E=nΔmc2=×6.02×1023×0.212×931.5×106×1.6×10-19 J≈8.09×1013 J.
答案:(1)40 90 (2)8.09×1013 J
7 核聚变 8 粒子和宇宙
[学习目标] 1.了解核聚变及其特点和条件.2.会判断和书写核聚变反应方程,能计算核聚变释放的能量.3.知道粒子的分类及其作用,了解夸克模型.4.了解宇宙起源的大爆炸学说及恒星的演化.
一、核聚变
[导学探究] 1.为什么实现核聚变要使聚变的燃料加热到几百万开尔文的高温?
答案 轻核的聚变反应,是较轻的核子聚合成较重的核子,要使得核子的强相互作用发挥作用,必须使核子间接近到发生相互作用的距离,约为10-15 m;同时由于原子核之间在此距离时的库仑斥力十分巨大,因而需要核子有很大的动能,表现在宏观上就是核燃料需要达到极高的温度.
2.目前人们实现的核聚变是什么?实现热核反应存在的困难是什么?如何实现对热核反应的控制?
答案 (1)目前人们能实现的热核反应是氢弹的爆炸,是由普通炸药引爆原子弹,再由原子弹爆炸产生的高温高压引发热核反应,但这是不可控制的.
(2)实现热核反应存在的困难是:地球上没有任何容器能够经受住热核反应所需要的高温.
(3)可能实现对热核反应的控制方法:
磁约束:利用磁场来约束参与反应的物质.环流器是目前性能最好的一种磁约束装置.
惯性约束:利用强激光从各个方向照射参加反应的物质,使它们由于惯性还来不及扩散就完成了核反应.
[知识梳理] 对核聚变的认识
1.聚变
两个轻核结合成质量较大的核,释放出核能的反应,称为核聚变,聚变反应又称为热核反应.
2.聚变方程
H+H―→He+n+17.6 MeV.
3.聚变发生的条件
要使轻核聚变,必须使轻核接近核力发生作用的距离10-15 m,这要克服电荷间巨大的库仑斥力作用,要求使轻核具有足够大的动能.要使原子核具有足够大的动能,有一种方法就是给它们加热,使物质达到几百万开尔文的高温.
[即学即用] 判断下列说法的正误.
(1)核聚变时吸收能量.( × )
(2)核聚变平均每个核子放出的能量,比裂变反应中平均每个核子放出的能量大.( √ )
(3)轻核聚变比裂变更完全、清洁.( √ )
(4)实现核聚变的难点是地球上没有任何容器能够经受如此高的温度.( √ )
二、粒子和宇宙
[导学探究] 强子和夸克的关系是怎样的?夸克分多少种?它的带电性是怎样的?什么是夸克的“禁闭”?
答案 夸克是强子的基本组成成分;夸克有6种:上夸克、下夸克、奇异夸克、粲夸克、底夸克、顶夸克;它们带的电荷分别为元电荷的+或-,每种夸克都有对应的反夸克;夸克不能以自由的状态单个出现的性质,叫夸克的“禁闭”.
[知识梳理] 对粒子和宇宙的理解
1.“基本粒子”不基本
(1)直到19世纪末,人们都认为原子是组成物质的不可再分的最小微粒,后来人们发现了光子、电子、质子、中子,并把它们叫做“基本粒子”.
(2)随着科学的发展,科学们发现了很多的新粒子并不是由以上基本粒子组成的,并发现质子、中子等本身也有复杂结构.
2.发现新粒子
(1)新粒子:1932年发现了正电子,1937年发现了μ子,1947年发现了K介子和π介子及以后的超子等.
(2)粒子的分类:按照粒子与各种相互作用的关系,可将粒子分为三大类:强子、轻子和媒介子.
3.夸克模型的提出
1964年美国物理学家盖尔曼提出了强子的夸克模型,认为强子是由夸克构成的.
[即学即用] 判断下列说法的正误.
(1)质子、中子不能再分.( × )
(2)夸克的带电荷量是电子电荷的整数倍.( × )
一、核聚变的特点及应用
1.核聚变的特点
(1)轻核聚变是放能反应:从比结合能的图线看,轻核聚变后比结合能增加,因此聚变反应是一个放能反应.
(2)在消耗相同质量的核燃料时,轻核聚变比重核裂变释放更多的能量.
(3)热核反应一旦发生,就不再需要外界给它能量,靠自身产生的热就可以使反应进行下去.
(4)普遍性:热核反应在宇宙中时时刻刻地进行着,太阳就是一个巨大的热核反应堆.
2.核聚变的应用
(1)核武器——氢弹:一种不需要人工控制的轻核聚变反应装置.它利用弹体内的原子弹爆炸产生的高温高压引发热核聚变爆炸.
(2)可控热核反应:目前处于探索阶段.
3.重核裂变与轻核聚变的区别
重核裂变
轻核聚变
放能
原理
重核分裂成两个或多个中等质量的原子核,放出核能
两个轻核结合成质量较大的原子核,放出核能
放能
多少
聚变反应比裂变反应平均每个核子放出的能量要大3~4倍
核废料
处理难度
聚变反应的核废料处理要比裂变反应简单得多
原料的
蕴藏量
核裂变燃料铀在地球上储量有限,尤其用于核裂变的铀235在铀矿石中只占0.7%
主要原料是氘,氘在地球上的储量非常丰富.1 L水中大约有0.03 g氘,如果用来进行热核反应,放出的能量约与燃烧300 L汽油释放的能量相当
可控性
速度比较容易进行人工控制,现在的核电站都是用核裂变反应释放核能
目前,除氢弹以外,人们还不能控制它
例1 氘核和氚核可发生热核聚变而释放出巨大的能量,该反应方程为:H+H―→He+x,式中x是某种粒子.已知:H、H、He和粒子x的质量分别为2.014 1 u、3.016 1 u、4.002 6 u和1.008 7 u;1 u=,c是真空中的光速.由上述反应方程和数据可知,粒子x是________,该反应释放出的能量为________ MeV(结果保留3位有效数字).
答案 n(或中子) 17.6
解析 根据质量数和电荷数守恒可得x是n(中子).
核反应中的质量亏损为Δm=2.014 1 u+3.016 1 u-4.002 6 u-1.008 7 u=0.018 9 u
所以该反应释放出的能量为
ΔE=Δm·c2≈17.6 MeV.
针对训练1 (多选)据新华社报道,由我国自行设计、研制的世界第一套全超导核聚变实验装置(又称“人造太阳”)已完成了首次工程调试.下列关于“人造太阳”的说法正确的是(  )
A.“人造太阳”的核反应方程是H+H→He+n
B.“人造太阳”的核反应方程是U+n→Ba+Kr+3n
C.根据公式E=mc2可知,核燃料的质量相同时,聚变反应释放的能量比裂变反应大得多
D.根据公式E=mc2可知,核燃料的质量相同时,聚变反应释放的能量与裂变反应相同
答案 AC
解析 H+H→He+n是轻核聚变方程,故A项正确;根据轻核聚变特点,相同质量的核燃料,轻核聚变释放的能量比裂变反应大得多,故选项C正确.
二、粒子的分类和夸克模型
1.粒子的分类
分类
参与的相
互作用
发现的粒子
备注
强子
参与强相互作用
质子、中子、介子、超子
强子有内部结构,由“夸克”构成;强子又可分为介子和重子
轻子
不参与强
相互作用
电子、电子中微子、μ子、μ子中微子、τ子、τ子中微子
未发现内部结构
媒介子
传递各种
相互作用
光子、中间玻色子、胶子
光子、中间玻色子、胶子分别传递电磁、弱、强相互作用
2.夸克模型
(1)夸克的提出:1964年美国物理学家盖尔曼提出了强子的夸克模型,认为强子是由夸克构成的.
(2)夸克的种类:上夸克(u)、下夸克(d)、奇异夸克(s)、粲夸克(c)、底夸克(b)和顶夸克(t).
(3)夸克所带电荷:夸克所带的电荷量是分数电荷量,即其电荷量为元电荷的+或-.例如,上夸克带的电荷量为+,下夸克带的电荷量为-.
(4)意义:电子电荷不再是电荷的最小单位,即存在分数电荷.
例2 目前普遍认为,质子和中子都是由被称为u夸克和d夸克的两类夸克组成的.u夸克带电荷量为e,d夸克带电荷量为-e,e为元电荷,下列论断中可能正确的是(  )
A.质子由1个u夸克和2个d夸克组成,中子由1个u夸克和2个d夸克组成
B.质子由2个u夸克和1个d夸克组成,中子由1个u夸克和2个d夸克组成
C.质子由1个u夸克和2个d夸克组成,中子由2个u夸克和1个d夸克组成
D.质子由2个u夸克和1个d夸克组成,中子由2个u夸克和1个d夸克组成
答案 B
解析 质子H带电荷量为2×e+(-e)=e,中子n带电荷量为e+2×(-e)=0.可见B正确.
针对训练2 若π+介子、π-介子都是由一个夸克(夸克u或夸克d)和一个反夸克(反夸克或反夸克)组成的,它们的带电荷量如表所示,表中e为元电荷.
粒子
π+
π-
u
d


带电
荷量
+e
-e
+
-
-
+
(1)按最简单的组成,π+介子由谁和谁组成?
(2)按最简单的组成,π-介子由谁和谁组成?
答案 (1)π+介子是由夸克u和反夸克组成的
(2)π-介子由夸克d和反夸克组成
解析 (1)π+介子带有+e的电荷量,且是由一个夸克和一个反夸克组成的,夸克u带+e和反夸克带+e合成电荷量为e.
(2)π-介子带有-e的电荷量,是由一个夸克和一个反夸克组成的,夸克d带-e和反夸克带-e合成电荷量为-e.
1.(多选)下列关于聚变的说法中,正确的是(  )
A.要使聚变产生,必须克服库仑斥力做功
B.轻核聚变需要几百万开尔文的高温,因此聚变又叫做热核反应
C.原子弹爆炸能产生几百万开尔文的高温,所以氢弹可以利用原子弹引发热核反应
D.太阳和许多恒星内部都在进行着剧烈的热核反应,在地球内部也可自发地进行
答案 ABC
解析 轻核聚变时,要使轻核之间距离达到10-15 m,故必须克服库仑斥力做功,A正确;要克服核子间作用力做功,必须使反应的原子核有足够大的动能,方法就是将其加热到几百万开尔文的高温,B正确;热核反应必须在几百万开尔文的高温下进行,这样高的温度可利用原子弹爆炸释放的能量获得,C正确;在太阳和许多恒星内部都存在热核反应,但在地球内部不会自发地进行,D错.
2.(多选)能源是社会发展的基础,发展核能是解决能源问题的途径之一,下列释放核能的反应方程,表述正确的有(  )
A.H+H―→He+n是核聚变反应
B.H+H―→He+n是β衰变
C.U+n―→Ba+Kr+3n是核裂变反应
D.U+n―→Xe+Sr+2n是α衰变
答案 AC
解析 两个轻核聚合成一个较重的核的反应为核聚变反应,故A对,B错;重核被中子轰击后分裂成两个中等质量的原子核并放出若干个中子的反应为核裂变反应,故C对;原子核放出α或β粒子后变成另一种原子核的反应称为原子核的衰变.原子核的衰变的反应物只有一种,故D错.
3.关于粒子,下列说法正确的是(  )
A.电子、质子和中子是组成物质的不可再分的最基本的粒子
B.强子都是带电的粒子
C.夸克模型是探究三大类粒子结构的理论
D.夸克模型说明电子电荷不再是电荷的最小单位
答案 D
解析 由于质子、中子是由不同夸克组成的,它们不是最基本的粒子,不同夸克构成强子,有的强子带电,有的强子不带电,故A、B错误;夸克模型是研究强子结构的理论,不同夸克带电不同,分别为+e和-,说明电子电荷不再是电荷的最小单位,C错误,D正确.
4.太阳内部持续不断地发生着四个质子聚变为一个氦核同时放出两个正电子的热核反应,这个核反应释放出的大量能量就是太阳的能源.(已知质子质量为mH=1.007 3 u,氦核质量为mHe=4.001 5 u,正电子质量为me=0.000 55 u,结果保留两位小数,1 u相当于931.5 MeV的能量)
(1)写出这个核反应方程;
(2)这一核反应能释放多少能量?
(3)已知太阳每秒释放的能量为3.8×1026 J,则太阳每秒减少的质量为多少千克?
答案 (1)4H→He+2e (2)24.78 MeV
(3)4.22×109 kg
解析 (1)由题意可得核反应方程为
4H→He+2e.
(2)反应前的质量m1=4mH=4×1.007 3 u=4.029 2 u,反应后的质量m2=mHe+2me=4.001 5 u+2×0.000 55 u=
4.002 6 u,Δm=m1-m2=0.026 6 u,
由质能方程得,释放能量
ΔE=Δmc2=0.026 6×931.5 MeV≈24.78 MeV.
(3)由质能方程ΔE′=Δm′c2得太阳每秒减少的质量
Δm′== kg≈4.22×109 kg.
一、选择题(1~5题为单选题,6~8题为多选题)
1.下列说法正确的是(  )
A.聚变是裂变的逆反应
B.核聚变反应须将反应物加热到数百万开尔文以上的高温,显然是吸收能量
C.轻核聚变比裂变更为安全、清洁
D.强子是参与强相互作用的粒子,中子是最早发现的强子
答案 C
解析 聚变和裂变的反应物和生成物完全不同,两者无直接关系,并非互为逆反应,故A错;实现聚变反应必须使参加反应的轻核充分接近,需要数百万开尔文的高温,但聚变反应一旦实现,所释放的能量远大于所吸收的能量,所以聚变反应还是释放能量,故B错;实现聚变需要高温,一旦出现故障,高温不能维持,反应就自动终止了,另外,聚变反应比裂变反应生成的废物数量少,容易处理,故C对;质子是最早发现的强子,故D错.
2.关于轻核聚变释放核能,下列说法正确的是(  )
A.一次聚变反应一定比一次裂变反应释放的能量多
B.聚变反应每个核子释放的平均能量一定比裂变反应大
C.聚变反应中粒子的比结合能变小
D.聚变反应中由于形成质量较大的核,故反应后质量增大
答案 B
3.科学家发现在月球上含有丰富的He(氦3),它是一种高效、清洁、安全的核聚变燃料,其参与的一种核聚变反应方程为He+He―→2H+He,关于He聚变下列表述正确的是(  )
A.聚变反应不会释放能量
B.聚变反应产生了新的原子核
C.聚变反应没有质量亏损
D.目前核电站都采用He聚变反应发电
答案 B
解析 核聚变反应中产生新的原子核,同时由于发生了质量亏损,会有核能的释放,这是人类利用核能的途径之一;目前核电站大多采用重核裂变的方法来释放与利用核能发电.
4.我国自行研制了可控热核反应实验装置“超导托卡马克”(英名称:EAST,俗称“人造太阳”).设可控热核实验反应前氘核(H)的质量为m1,氚核(H)的质量为m2,反应后氦核(He)的质量为m3,中子(n)的质量为m4,光速为c,下列说法正确的是(  )
A.这种装置中发生的核反应方程式是H+H―→He+n
B.由核反应过程质量守恒可知m1+m2=m3+m4
C.核反应放出的能量等于(m1-m2-m3-m4)c2
D.这种装置与我国大亚湾核电站所使用装置的核反应原理相同
答案 A
解析 核反应方程为H+H―→He+n,选项A正确;反应过程中向外释放能量,故质量有亏损,且释放的能量ΔE=Δmc2=(m1+m2-m3-m4)c2,选项B、C错误;可控热核反应为核聚变,大亚湾核电站所用核装置反应原理为核裂变,选项D错误.
5.某科学家提出年轻热星体中核聚变的一种理论,其中的两个核反应方程为
H+C―→N+Q1①
H+N―→C+X+Q2②
方程中Q1、Q2表示释放的能量,相关的原子核质量如表:
原子核
H
H
He
C
N
N
质量/u
1.007 8
3.016 6
4.002 6
12.000 0
13.005 7
15.000 1
以下推断正确的是(  )
A.X是He,Q2>Q1
B.X是He,Q2>Q1
C.X是He,Q2D.X是He,Q2答案 B
解析 由质量数守恒和电荷数守恒,可判断X为He,①式的质量亏损为Δm1=1.007 8 u+12.000 0 u-13.005 7 u=0.002 1 u.②式的质量亏损为Δm2=1.007 8 u+15.000 1 u-12.000 0 u-4.002 6 u=0.005 3 u,所以Δm2>Δm1.根据质能方程ΔE=Δmc2可求得Q2>Q1,故选B.
6.关于核反应的类型,下列表述正确的有(  )
A.U―→Th+He是α衰变
B.N+He―→O+H是β衰变
C.H+H―→He+n是轻核聚变
D.Se―→Kr+2e是重核裂变
答案 AC
7.关于轻核聚变,下列说法正确的是(  )
A.两个轻核聚变为中等质量的原子核时要吸收能量
B.物质发生聚变时放出的能量比同样质量的物质裂变时释放的能量大很多
C.聚变反应的条件是聚变物质的体积达到临界体积
D.发生聚变反应时的原子核必须有足够大的动能
答案 BD
解析 根据比结合能图线可知,聚变后比结合能增加,因此聚变反应中会释放能量,故A错误;聚变反应中平均每个核子放出的能量比裂变反应中每个核子放出的能量大3~4倍,故B正确;裂变反应的条件是裂变物质的体积达到临界体积,而聚变反应时,要使轻核之间的距离达到10-15 m以内,这需要原子核有很大的动能才可以实现聚变反应,故C错误,D正确.
8.核聚变的主要原料氘,在海水中含量极其丰富.已知氘核的质量为m1,中子的质量为m2,He的质量为m3,质子的质量为m4,则下列说法中正确的是(  )
A.两个氘核聚变成一个He所产生的另一个粒子是质子
B.两个氘核聚变成一个He所产生的另一个粒子是中子
C.两个氘核聚变成一个He所释放的核能为(m1-m3-m4)c2
D.与受控核聚变比较,现行的核反应堆产生的废物具有放射性
答案 BD
解析 由核反应方程知2H→He+X,X应为中子,释放的核能应为ΔE=(2m1-m3-m2)c2,聚变反应的污染非常小.而现实运行的裂变反应的废料具有很强的放射性,故A、C均错误,B、D正确.
二、非选择题
9.一个原来静止的锂核(Li)俘获一个速度为7.7×104 m/s的中子后,生成一个氚核和一个氦核,已知氚核的速度大小为1.0×103 m/s,方向与中子的运动方向相反.
(1)试写出核反应方程;
(2)求出氦核的速度大小.
答案 (1)Li+n―→H+He (2)2×104 m/s
解析 (1)Li+n―→H+He.
(2)取中子的运动方向为正方向,由动量守恒定律得
mnv0=-mTv1+mHev2
v2==2×104 m/s.
课件36张PPT。第十九章 7 核聚变
8 粒子和宇宙学习目标 
1.了解核聚变及其特点和条件.
2.会判断和书写核聚变反应方程,能计算核聚变释放的能量.
3.知道粒子的分类及其作用,了解夸克模型.
4.了解宇宙起源的大爆炸学说及恒星的演化.内容索引
知识探究
题型探究
达标检测
知识探究一、核聚变1.为什么实现核聚变要使聚变的燃料加热到几百万开尔文的高温?答案 轻核的聚变反应,是较轻的核子聚合成较重的核子,要使得核子的强相互作用发挥作用,必须使核子间接近到发生相互作用的距离,约为10-15 m;同时由于原子核之间在此距离时的库仑斥力十分巨大,因而需要核子有很大的动能,表现在宏观上就是核燃料需要达到极高的温度.答案2.目前人们实现的核聚变是什么?实现热核反应存在的困难是什么?如何实现对热核反应的控制?答案答案 (1)目前人们能实现的热核反应是氢弹的爆炸,是由普通炸药引爆原子弹,再由原子弹爆炸产生的高温高压引发热核反应,但这是不可控制的.
(2)实现热核反应存在的困难是:地球上没有任何容器能够经受住热核反应所需要的高温.
(3)可能实现对热核反应的控制方法:
磁约束:利用磁场来约束参与反应的物质.环流器是目前性能最好的一种磁约束装置.
惯性约束:利用强激光从各个方向照射参加反应的物质,使它们由于惯性还来不及扩散就完成了核反应.对核聚变的认识
1.聚变
两个轻核结合成质量较大的核,释放出核能的反应,称为核聚变,聚变反应又称为热核反应.
2.聚变方程3.聚变发生的条件
要使轻核聚变,必须使轻核接近核力发生作用的距离 m,这要克服电荷间巨大的库仑斥力作用,要求使轻核具有足够大的动能.要使原子核具有足够大的动能,有一种方法就是给它们 ,使物质达到几百万开尔文的高温.10-15加热判断下列说法的正误.
(1)核聚变时吸收能量.(  )
(2)核聚变平均每个核子放出的能量,比裂变反应中平均每个核子放出的能量大.(  )
(3)轻核聚变比裂变更完全、清洁.(  )
(4)实现核聚变的难点是地球上没有任何容器能够经受如此高的温度.
(  )×√√√二、粒子和宇宙强子和夸克的关系是怎样的?夸克分多少种?它的带电性是怎样的?什么是夸克的“禁闭”?答案?对粒子和宇宙的理解
1.“基本粒子”不基本
(1)直到19世纪末,人们都认为原子是组成物质的不可再分的最小微粒,后来人们发现了光子、电子、 、 ,并把它们叫做“基本粒子”.
(2)随着科学的发展,科学们发现了很多的新粒子并不是由以上
组成的,并发现 、 等本身也有复杂结构.质子中子基本粒子质子中子2.发现新粒子
(1)新粒子:1932年发现了 ,1937年发现了 ,1947年发现了K介子和π介子及以后的超子等.
(2)粒子的分类:按照粒子与各种相互作用的关系,可将粒子分为三大类: 、 和 .
3.夸克模型的提出
1964年美国物理学家盖尔曼提出了强子的夸克模型,认为强子是由 构成的.正电子强子轻子媒介子夸克μ子判断下列说法的正误.
(1)质子、中子不能再分.(  )
(2)夸克的带电荷量是电子电荷的整数倍.(  )××
题型探究一、核聚变的特点及应用
1.核聚变的特点
(1)轻核聚变是放能反应:从比结合能的图线看,轻核聚变后比结合能增加,因此聚变反应是一个放能反应.
(2)在消耗相同质量的核燃料时,轻核聚变比重核裂变释放更多的能量.
(3)热核反应一旦发生,就不再需要外界给它能量,靠自身产生的热就可以使反应进行下去.
(4)普遍性:热核反应在宇宙中时时刻刻地进行着,太阳就是一个巨大的热核反应堆.2.核聚变的应用
(1)核武器——氢弹:一种不需要人工控制的轻核聚变反应装置.它利用弹体内的原子弹爆炸产生的高温高压引发热核聚变爆炸.
(2)可控热核反应:目前处于探索阶段.
3.重核裂变与轻核聚变的区别解析17.6答案解析 根据质量数和电荷数守恒可得x是 n(中子).
核反应中的质量亏损为Δm=2.014 1 u+3.016 1 u-4.002 6 u-1.008 7 u=0.018 9 u
所以该反应释放出的能量为ΔE=Δm·c2≈17.6 MeV.√√解析答案根据轻核聚变特点,相同质量的核燃料,轻核聚变释放的能量比裂变反应大得多,故选项C正确.二、粒子的分类和夸克模型
1.粒子的分类??√答案解析解析(1)按最简单的组成,π+介子由谁和谁组成?答案(2)按最简单的组成,π-介子由谁和谁组成?答案解析
达标检测1.(多选)下列关于聚变的说法中,正确的是
A.要使聚变产生,必须克服库仑斥力做功
B.轻核聚变需要几百万开尔文的高温,因此聚变又叫做热核反应
C.原子弹爆炸能产生几百万开尔文的高温,所以氢弹可以利用原子弹引
发热核反应
D.太阳和许多恒星内部都在进行着剧烈的热核反应,在地球内部也可自
发地进行√123答案解析4√√1234解析 轻核聚变时,要使轻核之间距离达到10-15 m,故必须克服库仑斥力做功,A正确;
要克服核子间作用力做功,必须使反应的原子核有足够大的动能,方法就是将其加热到几百万开尔文的高温,B正确;
热核反应必须在几百万开尔文的高温下进行,这样高的温度可利用原子弹爆炸释放的能量获得,C正确;
在太阳和许多恒星内部都存在热核反应,但在地球内部不会自发地进行,D错.2.(多选)能源是社会发展的基础,发展核能是解决能源问题的途径之一,下列释放核能的反应方程,表述正确的有123答案4解析√√解析 两个轻核聚合成一个较重的核的反应为核聚变反应,故A对,B错;
重核被中子轰击后分裂成两个中等质量的原子核并放出若干个中子的反应为核裂变反应,故C对;
原子核放出α或β粒子后变成另一种原子核的反应称为原子核的衰变.原子核的衰变的反应物只有一种,故D错.1234123答案43.关于粒子,下列说法正确的是
A.电子、质子和中子是组成物质的不可再分的最基本的粒子
B.强子都是带电的粒子
C.夸克模型是探究三大类粒子结构的理论
D.夸克模型说明电子电荷不再是电荷的最小单位√?解析12344.太阳内部持续不断地发生着四个质子聚变为一个氦核同时放出两个正电子的热核反应,这个核反应释放出的大量能量就是太阳的能源.(已知质子质量为mH=1.007 3 u,氦核质量为mHe=4.001 5 u,正电子质量为me=0.000 55 u,结果保留两位小数,1 u相当于931.5 MeV的能量)
(1)写出这个核反应方程;答案解析1234(2)这一核反应能释放多少能量?答案解析答案 24.78 MeV解析 反应前的质量m1=4mH=4×1.007 3 u=4.029 2 u,反应后的质量m2=mHe+2me=4.001 5 u+2×0.000 55 u=4.002 6 u,
Δm=m1-m2=0.026 6 u,
由质能方程得,释放能量
ΔE=Δmc2=0.026 6×931.5 MeV≈24.78 MeV.1234(3)已知太阳每秒释放的能量为3.8×1026 J,则太阳每秒减少的质量为多少千克?答案解析答案 4.22×109 kg解析 由质能方程ΔE′=Δm′c2得太阳每秒减少的质量第7节 核聚变 第8节 粒子和宇宙
1.(对应要点一)以下说法正确的是(  )
A.聚变是裂变的逆反应
B.如果裂变释放能量,则聚变反应必定吸收能量
C.聚变必须将反应物加热至数百万摄氏度以上高温,显然是吸收能量
D.裂变与聚变均可释放巨大的能量
解析:A选项,从形式上看,裂变与聚变似乎是互为逆反应,其实不然,因为二者的反应物与生成物全然不同,裂变是重核分裂成中等质量的核,而聚变则是轻核聚合成为较重的核,无直接关联,并非互为逆反应;B选项,既然裂变与聚变不是互为逆反应,则在能量的流向上也不相反;C选项,要实现聚变反应,必须使参加反应的轻核充分接近,需要数百万摄氏度高温,但聚变一旦实现,所释放的能量远大于所吸收的能量,因此,总的说来,聚变反应还是释放能量,故正确答案为D。
答案:D
2.(对应要点二)关于粒子,下列说法正确的是(  )
A.质子和中子是组成物质的不可再分的最基本的粒子
B.质子、中子本身也是复合粒子,它们拥有复杂的结构
C.质子是带电的强子
D.夸克模型说明电子电荷不再是电荷的最小单位
解析:质子和中子是由不同夸克组成的,它们不是最基本的粒子,故A错,B对;不同的夸克组成强子,有的强子带电,有的强子不带电,质子是最早发现的强子,故C正确;夸克模型是研究强子的理论,不同夸克带电不同,分别为+e或-e,这说明电子电荷不再是电荷的最小单位,故D正确。
答案:BCD
3.(对应要点二)(2012·山西太原期末)在β衰变中常伴有一种称为“中微子”的粒子放出,但中微子的性质十分特别,因此在实验中很难探测。1953年,莱尼斯和柯文建造了一个由大水槽和探测器组成的实验系统,利用中微子与水中H的核反应,间接地证实了中微子的存在,中微子与水中H发生核反应,产生中子n和正电子(e),即:中微子+H→n+e,由此可以判定,中微子的质量数和电荷数分别是________(填入正确选项前的字母)。
A.0和0         B.0和1
C.1和0 D.1和1
上述核反应产生的正电子与水中的电子相遇,可以转变为两个能量相同的光子(γ),即e+e→2γ。已知正电子和电子的质量都是9.1×10-31 kg,反应中产生的每个光子的能量约为________ J。(c=3.0×108 m/s)
解析:由核反应方程:中微子+H→n+e,满足质量数守恒和电荷数守恒可得中微子的质量数和电荷数都是0,选项A正确;由爱因斯坦质能方程可得每个光子的能量ΔE=Δmc2=9.1×10-31 kg×(3.0×108 m/s)2=8.19×10-14 J。
答案:A 8.19×10-14
4.(对应要点一)一个质子和两个中子聚变为一个氚核,已知质子质量mH=1.007 3 u,中子质量mn=1.008 7 u,氚核质量m=3.0180 u。
(1)写出聚变方程;
(2)释放出的核能多大?
(3)平均每个核子释放的能量是多大?
解析:(1)聚变方程为H+2n→H。
(2)质量亏损为
Δm=mH+2mn-m=(1. 007 3+2×1.008 7-3.018 0) u=0.006 7 u
释放的核能
ΔE=Δmc2=0.006 7×931.5 MeV≈6.24 MeV。
(3)平均每个核子放出的能量为
MeV=2.08 MeV。
答案:(1)见解析 (2)6.24 MeV (3)2.08 MeV