【备考2018】数学中考一轮复习学案 第23节 特殊的平行四边形

文档属性

名称 【备考2018】数学中考一轮复习学案 第23节 特殊的平行四边形
格式 zip
文件大小 1.8MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2018-01-06 10:54:59

文档简介


第四章 图形的性质 第23节 特殊的平行四边形
■知识点一: 特殊平行四边形的性质与判定
1.性质
(具有平行四边形的一切性质,对边平行且相等)
矩 形
菱 形
正方形
(1)四个角都是直角
(2)对角线相等且互相平分.即
AO=CO=BO=DO.
(3)面积=长×宽
=2S△ABD=4S△AOB.
(1)四边相等
(2)对角线互相垂直、平分,一条对角线平分一组对角
(3)面积=底×高
=对角线乘积的一半
(1)四条边都相等,四个角都是直角
(2)对角线相等且互相垂直平分
(3)面积=边长×边长
=2S△ABD
=4S△AOB
2.判定
(1)定义法:有一个角是直角的平行四边形
(2)有三个角是直角
(3)对角线相等的平行四边形
(1)定义法:有一组邻边相等的平行四边形
(2)对角线互相垂直的平行四边形
(3)四条边都相等的四边形
(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形
(2)一组邻边相等的矩形
(3)一个角是直角的菱形
(4)对角线相等且互相垂直、平分
3.联系
注意:(1)矩形中,Rt△ABD≌Rt△DCA≌Rt△CDB≌Rt△BAC; 两 对全等的等腰三角形.所以经常结合勾股定理、等腰三角形的性质解题.21世纪教育网版权所有
(2)菱形中,有两对全等的等腰三角形;Rt△ABO≌Rt△ADO≌Rt△CBO≌Rt△CDO;若∠ABC=60°,则△ABC和△ADC为 等边 三角形,且四个直角三角形中都有一个30°的锐角.
(3)正方形中有8个等腰直角三角形,解题时结合等腰直角三角形的锐角为45°,斜边=直角边.
■知识点二:特殊平行四边形的拓展
1.中点四边形
(1)任意四边形多得到的中点四边形一定是平行四边形.
(2)对角线相等的四边形所得到的中点四边形是矩形.
(3)对角线互相垂直的四边形所得到的中点四边形是菱形.
(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.
2.特殊四边形中的解题模型
(1)矩形:如图①,E为AD上任意一点,EF过矩形中心O,则△AOE≌△COF,S1=S2.
(2)正方形:如图②,若EF⊥MN,则EF=MN;如图③,P为AD边上任意一
点,则PE+PF=AO. (变式:如图④,四边形ABCD为矩形,则PE+PF的求
法利用面积法,需连接PO.)
图① 图② 图③ 图④

■考点1. 矩形的性质、判定 与应用
◇典例:
1.(2017?西宁)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为(  )【来源:21·世纪·教育·网】
A.5 B.4 C. D.34
【考点】矩形的性质.
【分析】已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.
解:∵四边形ABCD是矩形, ∴∠D=90°, ∵O是矩形ABCD的对角线AC的中点,OM∥AB, ∴OM是△ADC的中位线, ∵OM=3, ∴DC=6, ∵AD=BC=10, ∴AC==2, ∴BO=AC=, 故选D.21教育名师原创作品
2.(2017?临沂)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是(  )21*cnjy*com
A.若AD⊥BC,则四边形AEDF是矩形
B.若AD垂直平分BC,则四边形AEDF是矩形
C.若BD=CD,则四边形AEDF是菱形
D.若AD平分∠BAC,则四边形AEDF是菱形
【考点】矩形的判定;菱形的判定.
【分析】由矩形的判定和菱形的判定即可得出结论.
解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;
若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;
若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;
若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.
◆变式训练
(2017?怀化)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6cm,
则AB的长是(  )
A.3cm B.6cm C.10cm D.12cm
2.(2017?徐州)如图,在?ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线
于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)若∠A=50°,则当∠BOD=   °时,四边形BECD是矩形.
■考点2. 菱形的性质、判定 与应用
◇典例
1.(2017?衡阳)菱形的两条对角线分别是12和16,则此菱形的边长是(  )
A.10 B.8 C.6 D.5
【考点】菱形的性质.
【分析】首先根据题意画出图形,然后由菱形的两条对角线的长分別为12cm和16cm,求得OA与OB,再由勾股定理即可求得菱形的边长.21cnjy.com
解:如图,
∵菱形ABCD中,AC=12,BD=16, ∴OA=AC=6,OB=BD=8,AC⊥BD, ∴AB==10. 即菱形的边长是10. 故选A.21*cnjy*com
2.(2016?宁德)如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是(  )
A.一组邻边相等的平行四边形是菱形
B.四条边相等的四边形是菱形
C.对角线互相垂直的平行四边形是菱形
D.对角线互相垂直的平分四边形是菱形
【考点】菱形的判定.
【分析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.
解:如图所示;
∵将△ABC延底边BC翻折得到△DBC, ∴AB=BD,AC=CD, ∵AB=AC, ∴AB=BD=CD=AC, ∴四边形ABDC是菱形; 故选B.
3.(2017?北京)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,
E为AD的中点,连接BE. (1)求证:四边形BCDE为菱形; (2)连接AC,若AC平分∠BAD,BC=1,求AC的长.
【考点】菱形的判定与性质;直角三角形斜边上的中线.
【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题; (2)在Rt△ACD中只要证明∠ADC=60°,AD=2即可解决问题;
(1)证明:∵AD=2BC,E为AD的中点, ∴DE=BC, ∵AD∥BC, ∴四边形BCDE是平行四边形, ∵∠ABD=90°,AE=DE, ∴BE=DE, ∴四边形BCDE是菱形. (2)解:连接AC.
∵AD∥BC,AC平分∠BAD, ∴∠BAC=∠DAC=∠BCA, ∴AB=BC=1, ∵AD=2BC=2, ∴sin∠ADB=, ∴∠ADB=30°, ∴∠DAC=30°,∠ADC=60°, 在Rt△ACD中,∵AD=2, ∴CD=1,AC=.
◆变式训练
1.(2017?南充)已知菱形的周长为4,两条对角线的和为6,则菱形的面积为(  )
A.2 B. C.3 D.4
2. (2017?聊城)如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要
添加的条件是(  )
A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC
3.(2017?襄阳)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE
于点D,连接CD. (1)求证:四边形ABCD是菱形; (2)若∠ADB=30°,BD=6,求AD的长.21教育网
■考点3. 正方形的性质、判定 与应用
◇典例:
1.(2016?内江)下列命题中,真命题是(  )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线互相垂直平分的四边形是正方形
【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.
【分析】A、根据矩形的定义作出判断; B、根据菱形的性质作出判断; C、根据平行四边形的判定定理作出判断; D、根据正方形的判定定理作出判断.www-2-1-cnjy-com
解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误; B、对角线互相垂直的平行四边形是菱形;故本选项错误; C、对角线互相平分的四边形是平行四边形;故本选项正确; D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误; 故选C.
2.(2017?广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连
接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是(  )
A.①③ B.②③ C.①④ D.②④
【考点】正方形的性质.
【分析】由△AFD≌△AFB,即可推出S△ABF=S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.
解:∵四边形ABCD是正方形,
∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,
在△AFD和△AFB中,

∴△AFD≌△AFB,
∴S△ABF=S△ADF,故①正确,
∵BE=EC=BC=AD,AD∥EC,
∴===,
∴S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,
故②③错误④正确,
故选C.
  
◆变式训练
1.(2016?河北)关于?ABCD的叙述,正确的是(  )
A.若AB⊥BC,则?ABCD是菱形
B.若AC⊥BD,则?ABCD是正方形
C.若AC=BD,则?ABCD是矩形
D.若AB=AD,则?ABCD是正方形
2.(2017?上海)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,
且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
■考点4. 特殊平行四边形的拓展
◇典例:
(2017?遂宁)顺次连接矩形四边中点所形成的四边形是(  )
A.矩形 B.菱形 C.正方形 D.梯形
【考点】中点四边形.
【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.2·1·c·n·j·y
解:连接AC、BD,
在△ABD中, ∵AH=HD,AE=EB, ∴EH=BD, 同理FG=BD,HG=AC,EF=AC, 又∵在矩形ABCD中,AC=BD, ∴EH=HG=GF=FE, ∴四边形EFGH为菱形. 故选B.21·cn·jy·com
◆变式训练
(2017?株洲)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为(  )2-1-c-n-j-y
A.一定不是平行四边形 B.一定不是中心对称图形
C.可能是轴对称图形 D.当AC=BD时它是矩形
1.(2017?绍兴)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图
中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是(  )【来源:21cnj*y.co*m】
A.7° B.21° C.23° D.24°
2.(2017?上海)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,
能判断这个平行四边形为矩形的是(  )
A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB
3.(2017?河南)如图,在?ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定
?ABCD是菱形的只有(  )
A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2
4.(2017?江西)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,
对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是(  )21·世纪*教育网
A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形
B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形
C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形
D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形
5.(2017?菏泽)菱形ABCD中,∠A=60°,其周长为24cm,则菱形的面积为  cm2.
6.(2017?黄冈)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是   .
7.(2017?齐齐哈尔)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条
件   ,使其成为正方形(只填一个即可)
8.(2017?南宁)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
9.(2017?贺州)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.
(1)求证:四边形ABCD是菱形;
(2)若CD=3,BD=2,求四边形ABCD的面积.
10. (2017?贵阳)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,
连接DE并延长至点F,使EF=2DE,连接CE、AF.
(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.
1.(2017年浙江台州市)如图,矩形EFGH四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的 时,则 为(??? )
A. B.2 C. D.4
2.(2017年浙江嘉兴市)如图,在平面直角坐标系 中,已知点 , .若平移点 到点 ,使以点 , , , 为顶点的四边形是菱形,则正确的平移方法是( ??)
2
A.向左平移1个单位,再向下平移1个单位
B、向左平移 个单位,再向上平移1个单位
C、向右平移 个单位,再向上平移1个单位
D、向右平移1个单位,再向上平移1个单位
3.(浙江杭州市开发区期末)如图,在菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为(  )
A.2 B.2 C.4 D.2+2
4.(2016年浙江省杭州市模拟3)如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=(  )
A. B.2 C.2 D.1
5.(2015年浙江台州市中考数学试题 )如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O,当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( )
A.6.5 B.6 C.5.5 D.5
6.(2016年浙江省温州市)七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是      cm.
【考点】七巧板.
【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.
【解答】解:如图所示:图形1:边长分别是:16,8,8;
图形2:边长分别是:16,8,8;
图形3:边长分别是:8,4,4;
图形4:边长是:4;
图形5:边长分别是:8,4,4;
图形6:边长分别是:4,8;
图形7:边长分别是:8,8,8;
∴凸六边形的周长=8+2×8+8+4×4=32+16(cm);
故答案为:32+16.
7.(2016年浙江省丽水市)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=   .
8.(2016年浙江省杭州市)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为      .
9.(浙江杭州市萧山区)如图,在矩形ABCD中,AB=16,BC=12,顺次连结各边中点,得菱形;再顺次连结菱形的各边中点,得矩形;再顺次连结矩形的各边中点,得菱形,……这样继续下去.则图中的四边形的周长等于 ,图中的四边形的面积等于 .
10.(浙江杭州市开发区期末)如图,在菱形ABCD中,边长为10,∠A=60°,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是    ;四边形A2015B2015C2015D2015的周长   .
11.(2016年浙江省绍兴市中考数学)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为      .
12.(2016年浙江省衢州市)如图,已知BD是矩形ABCD的对角线.
(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).【出处:21教育名师】
(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.
13.(2016年浙江杭州市中考数学模拟命题比赛2)如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.
(1)求证:BD=BE;
(2)若∠DBC=30°,BO=4,求四边形ABED的面积.
14.(2017年浙江宁波市中考数学模拟试卷(二))如图,在四边形ABCD中,AD∥BC,∠A=∠C,点P在边AB上.
(1)判断四边形ABCD的形状并加以证明;
(2)若AB=AD,以过点P的直线为轴,将四边形ABCD折叠,使点B、C分别落在点B′、C′上,且B′C′经过点D,折痕与四边形的另一交点为Q.
①在图2中作出四边形PB′C′Q(保留作图痕迹,不必说明作法和理由);
②如果∠C=60°,那么为何值时,B′P⊥AB.
15.(2017年浙江省金华市)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.www.21-cn-jy.com
(1)将?ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段   ,   ;S矩形AEFG:S?ABCD=   .
(2)?ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;【版权所有:21教育】
(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.

第四章 图形的性质 第23节 特殊的平行四边形
■知识点一: 特殊平行四边形的性质与判定
1.性质
(具有平行四边形的一切性质,对边平行且相等)
矩 形
菱 形
正方形
(1)四个角都是直角
(2)对角线相等且互相平分.即
AO=CO=BO=DO.
(3)面积=长×宽
=2S△ABD=4S△AOB.
(1)四边相等
(2)对角线互相垂直、平分,一条对角线平分一组对角
(3)面积=底×高
=对角线乘积的一半
(1)四条边都相等,四个角都是直角
(2)对角线相等且互相垂直平分
(3)面积=边长×边长
=2S△ABD
=4S△AOB
2.判定
(1)定义法:有一个角是直角的平行四边形
(2)有三个角是直角
(3)对角线相等的平行四边形
(1)定义法:有一组邻边相等的平行四边形
(2)对角线互相垂直的平行四边形
(3)四条边都相等的四边形
(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形
(2)一组邻边相等的矩形
(3)一个角是直角的菱形
(4)对角线相等且互相垂直、平分
3.联系
注意:(1)矩形中,Rt△ABD≌Rt△DCA≌Rt△CDB≌Rt△BAC; 两 对全等的等腰三角形.所以经常结合勾股定理、等腰三角形的性质解题.
(2)菱形中,有两对全等的等腰三角形;Rt△ABO≌Rt△ADO≌Rt△CBO≌Rt△CDO;若∠ABC=60°,则△ABC和△ADC为 等边 三角形,且四个直角三角形中都有一个30°的锐角.
(3)正方形中有8个等腰直角三角形,解题时结合等腰直角三角形的锐角为45°,斜边=直角边.
■知识点二:特殊平行四边形的拓展
1.中点四边形
(1)任意四边形多得到的中点四边形一定是平行四边形.
(2)对角线相等的四边形所得到的中点四边形是矩形.
(3)对角线互相垂直的四边形所得到的中点四边形是菱形.
(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.
2.特殊四边形中的解题模型
(1)矩形:如图①,E为AD上任意一点,EF过矩形中心O,则△AOE≌△COF,S1=S2.
(2)正方形:如图②,若EF⊥MN,则EF=MN;如图③,P为AD边上任意一
点,则PE+PF=AO. (变式:如图④,四边形ABCD为矩形,则PE+PF的求
法利用面积法,需连接PO.)
图① 图② 图③ 图④

■考点1. 矩形的性质、判定 与应用
◇典例:
1.(2017?西宁)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为(  )
A.5 B.4 C. D.34
【考点】矩形的性质.
【分析】已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.
解:∵四边形ABCD是矩形, ∴∠D=90°, ∵O是矩形ABCD的对角线AC的中点,OM∥AB, ∴OM是△ADC的中位线, ∵OM=3, ∴DC=6, ∵AD=BC=10, ∴AC==2, ∴BO=AC=, 故选D.
2.(2017?临沂)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是(  )
A.若AD⊥BC,则四边形AEDF是矩形
B.若AD垂直平分BC,则四边形AEDF是矩形
C.若BD=CD,则四边形AEDF是菱形
D.若AD平分∠BAC,则四边形AEDF是菱形
【考点】矩形的判定;菱形的判定.
【分析】由矩形的判定和菱形的判定即可得出结论.
解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;
若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;
若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;
若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.
◆变式训练
(2017?怀化)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6cm,
则AB的长是(  )
A.3cm B.6cm C.10cm D.12cm
【考点】矩形的性质.
【分析】根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB即可.
解:∵四边形ABCD是矩形, ∴OA=OC=OB=OD=3, ∵∠AOB=60°, ∴△AOB是等边三角形, ∴AB=OA=3, 故选A.
2.(2017?徐州)如图,在?ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线
于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)若∠A=50°,则当∠BOD=   °时,四边形BECD是矩形.
【考点】矩形的判定;平行四边形的判定与性质.
【分析】(1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;
(2)由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.
(1)证明:∵四边形ABCD为平行四边形,
∴AB∥DC,AB=CD,
∴∠OEB=∠ODC,
又∵O为BC的中点,
∴BO=CO,
在△BOE和△COD中,,
∴△BOE≌△COD(AAS);
∴OE=OD,
∴四边形BECD是平行四边形;
(2)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:
∵四边形ABCD是平行四边形,
∴∠BCD=∠A=50°,
∵∠BOD=∠BCD+∠ODC,
∴∠ODC=100°﹣50°=50°=∠BCD,
∴OC=OD,
∵BO=CO,OD=OE,
∴DE=BC,
∵四边形BECD是平行四边形,
∴四边形BECD是矩形;
故答案为:100. 
■考点2. 菱形的性质、判定 与应用
◇典例
1.(2017?衡阳)菱形的两条对角线分别是12和16,则此菱形的边长是(  )
A.10 B.8 C.6 D.5
【考点】菱形的性质.
【分析】首先根据题意画出图形,然后由菱形的两条对角线的长分別为12cm和16cm,求得OA与OB,再由勾股定理即可求得菱形的边长.
解:如图,
∵菱形ABCD中,AC=12,BD=16, ∴OA=AC=6,OB=BD=8,AC⊥BD, ∴AB==10. 即菱形的边长是10. 故选A.
2.(2016?宁德)如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是(  )
A.一组邻边相等的平行四边形是菱形
B.四条边相等的四边形是菱形
C.对角线互相垂直的平行四边形是菱形
D.对角线互相垂直的平分四边形是菱形
【考点】菱形的判定.
【分析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.
解:如图所示;
∵将△ABC延底边BC翻折得到△DBC, ∴AB=BD,AC=CD, ∵AB=AC, ∴AB=BD=CD=AC, ∴四边形ABDC是菱形; 故选B.
3.(2017?北京)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,
E为AD的中点,连接BE. (1)求证:四边形BCDE为菱形; (2)连接AC,若AC平分∠BAD,BC=1,求AC的长.
【考点】菱形的判定与性质;直角三角形斜边上的中线.
【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题; (2)在Rt△ACD中只要证明∠ADC=60°,AD=2即可解决问题;
(1)证明:∵AD=2BC,E为AD的中点, ∴DE=BC, ∵AD∥BC, ∴四边形BCDE是平行四边形, ∵∠ABD=90°,AE=DE, ∴BE=DE, ∴四边形BCDE是菱形. (2)解:连接AC.
∵AD∥BC,AC平分∠BAD, ∴∠BAC=∠DAC=∠BCA, ∴AB=BC=1, ∵AD=2BC=2, ∴sin∠ADB=, ∴∠ADB=30°, ∴∠DAC=30°,∠ADC=60°, 在Rt△ACD中,∵AD=2, ∴CD=1,AC=.
◆变式训练
1.(2017?南充)已知菱形的周长为4,两条对角线的和为6,则菱形的面积为(  )
A.2 B. C.3 D.4
【考点】菱形的性质.
【分析】由菱形的性质和勾股定理得出AO+BO=3,AO2+BO2=AB2,(AO+BO)2=9,求出2AO?BO=4,即可得出答案.
解:如图
四边形ABCD是菱形,AC+BD=6, ∴AB=,AC⊥BD,AO=AC,BO=BD, ∴AO+BO=3, ∴AO2+BO2=AB2,(AO+BO)2=9, 即AO2+BO2=5,AO2+2AO?BO+BO2=9, ∴2AO?BO=4, ∴菱形的面积=AC?BD=2AO?BO=4; 故选:D.
2. (2017?聊城)如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要
添加的条件是(  )
A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC
【考点】菱形的判定.
【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.
解:当BE平分∠ABC时,四边形DBFE是菱形,
理由:∵DE∥BC,
∴∠DEB=∠EBC,
∵∠EBC=∠EBD,
∴∠EBD=∠DEB,
∴BD=DE,
∵DE∥BC,EF∥AB,
∴四边形DBEF是平行四边形,
∵BD=DE,
∴四边形DBEF是菱形.
其余选项均无法判断四边形DBEF是菱形,
故选D.
3.(2017?襄阳)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE
于点D,连接CD. (1)求证:四边形ABCD是菱形; (2)若∠ADB=30°,BD=6,求AD的长.
【考点】菱形的判定与性质.
【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论; (2)由菱形的性质得出AC⊥BD,OD=OB= BD=3,再由三角函数即可得出AD的长.
(1)证明:∵AE∥BF, ∴∠ADB=∠CBD, 又∵BD平分∠ABF, ∴∠ABD=∠CBD, ∴∠ABD=∠ADB, ∴AB=AD, 同理:AB=BC, ∴AD=BC, ∴四边形ABCD是平行四边形, 又∵AB=AD, ∴四边形ABCD是菱形; (2)解:∵四边形ABCD是菱形,BD=6, ∴AC⊥BD,OD=OB=BD=3, ∵∠ADB=30°, ∴cos∠ADB==, ∴AD==2.
■考点3. 正方形的性质、判定 与应用
◇典例:
1.(2016?内江)下列命题中,真命题是(  )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线互相垂直平分的四边形是正方形
【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.
【分析】A、根据矩形的定义作出判断; B、根据菱形的性质作出判断; C、根据平行四边形的判定定理作出判断; D、根据正方形的判定定理作出判断.
解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误; B、对角线互相垂直的平行四边形是菱形;故本选项错误; C、对角线互相平分的四边形是平行四边形;故本选项正确; D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误; 故选C.
2.(2017?广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连
接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是(  )
A.①③ B.②③ C.①④ D.②④
【考点】正方形的性质.
【分析】由△AFD≌△AFB,即可推出S△ABF=S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.
解:∵四边形ABCD是正方形,
∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,
在△AFD和△AFB中,

∴△AFD≌△AFB,
∴S△ABF=S△ADF,故①正确,
∵BE=EC=BC=AD,AD∥EC,
∴===,
∴S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,
故②③错误④正确,
故选C.
  
◆变式训练
1.(2016?河北)关于?ABCD的叙述,正确的是(  )
A.若AB⊥BC,则?ABCD是菱形
B.若AC⊥BD,则?ABCD是正方形
C.若AC=BD,则?ABCD是矩形
D.若AB=AD,则?ABCD是正方形
【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.
【分析】由菱形的判定方法、矩形的判定方法、正方形的判定方法得出选项A、B、D错误,C正确;即可得出结论.
解:∵?ABCD中,AB⊥BC, ∴四边形ABCD是矩形,不一定是菱形,选项A错误; ∵?ABCD中,AC⊥BD, ∴四边形ABCD是菱形,不一定是正方形,选项B错误; ∵?ABCD中,AC=BD, ∴四边形ABCD是矩形,选项C正确; ∵?ABCD中,AB=AD, ∴四边形ABCD是菱形,不一定是正方形,选项D错误. 故选:C.
2.(2017?上海)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,
且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
【考点】正方形的判定;菱形的判定与性质.
【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;
(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180×=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.
证明:(1)在△ADE与△CDE中,

∴△ADE≌△CDE,
∴∠ADE=∠CDE,
∵AD∥BC,
∴∠ADE=∠CBD,
∴∠CDE=∠CBD,
∴BC=CD,
∵AD=CD,
∴BC=AD,
∴四边形ABCD为平行四边形,
∵AD=CD,
∴四边形ABCD是菱形;
(2)∵BE=BC
∴∠BCE=∠BEC,
∵∠CBE:∠BCE=2:3,
∴∠CBE=180×=45°,
∵四边形ABCD是菱形,
∴∠ABE=45°,
∴∠ABC=90°,
∴四边形ABCD是正方形.
■考点4. 特殊平行四边形的拓展
◇典例:
(2017?遂宁)顺次连接矩形四边中点所形成的四边形是(  )
A.矩形 B.菱形 C.正方形 D.梯形
【考点】中点四边形.
【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.
解:连接AC、BD,
在△ABD中, ∵AH=HD,AE=EB, ∴EH=BD, 同理FG=BD,HG=AC,EF=AC, 又∵在矩形ABCD中,AC=BD, ∴EH=HG=GF=FE, ∴四边形EFGH为菱形. 故选B.
◆变式训练
(2017?株洲)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为(  )
A.一定不是平行四边形 B.一定不是中心对称图形
C.可能是轴对称图形 D.当AC=BD时它是矩形
【考点】中点四边形;平行四边形的判定;矩形的判定;轴对称图形.
【分析】先连接AC,BD,根据EF=HG= AC,EH=FG= BD,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.
解:连接AC,BD,
∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点, ∴EF=HG=AC,EH=FG=BD, ∴四边形EFGH是平行四边形, ∴四边形EFGH一定是中心对称图形, 当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形, 当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形, ∴四边形EFGH可能是轴对称图形, 故选:C.
1.(2017?绍兴)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图
中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是(  )
A.7° B.21° C.23° D.24°
【考点】矩形的性质;平行线的性质.
【分析】由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.
解:∵四边形ABCD是矩形,
∴∠BCD=90°,AB∥CD,AD∥BC,
∴∠FEA=∠ECD,∠DAC=∠ACB=21°,
∵∠ACF=∠AFC,∠FAE=∠FEA,
∴∠ACF=2∠FEA,
设∠ECD=x,则∠ACF=2x,
∴∠ACD=3x,
∴3x+21°=90°,
解得:x=23°;
故选:C.
2.(2017?上海)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,
能判断这个平行四边形为矩形的是(  )
A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB
【考点】矩形的判定;平行四边形的性质.
【分析】由矩形和菱形的判定方法即可得出答案.
解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;
B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;
C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;
D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;
故选:C.
3.(2017?河南)如图,在?ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定
?ABCD是菱形的只有(  )
A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2
【考点】菱形的判定;平行四边形的性质.
【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.
解:A、正确.对角线垂直的平行四边形的菱形.
B、正确.邻边相等的平行四边形是菱形.
C、错误.对角线相等的平行四边形是矩形,不一定是菱形.
D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.
故选C.
4.(2017?江西)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,
对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是(  )
A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形
B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形
C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形
D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形
【考点】中点四边形.
【分析】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.
解:A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;
B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;
C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,故C正确;
5.(2017?菏泽)菱形ABCD中,∠A=60°,其周长为24cm,则菱形的面积为  cm2.
【考点】菱形的性质.
【分析】根据菱形的性质以及锐角三角函数关系得出BE的长,即可得出菱形的面积.
解:如图所示:过点B作BE⊥DA于点E
∵菱形ABCD中,其周长为24cm,
∴AB=AD=6cm,
∴BE=AB?sin60°=3cm,
∴菱形ABCD的面积S=AD?BE=18cm2.
故答案为:18.
6.(2017?黄冈)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是   .
【考点】正方形的性质;等边三角形的性质.
【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.
解:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°.
∵等边三角形ADE,
∴AD=AE,∠DAE=∠AED=60°.
∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,
∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,
∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,
故答案为:45°.
7.(2017?齐齐哈尔)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条
件   ,使其成为正方形(只填一个即可)
【考点】正方形的判定;矩形的性质.
【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.
解:添加条件:AB=BC,理由如下:
∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,
∴四边形ABCD是正方形,
故答案为:AB=BC(答案不唯一).
8.(2017?南宁)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
【考点】矩形的性质;全等三角形的判定与性质.
【分析】(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;
(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC==6,即可得出矩形ABCD的面积.
(1)证明:∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,∠ABC=90°,
∵BE=DF,
∴OE=OF,
在△AOE和△COF中,,
∴△AOE≌△COF(SAS),
∴AE=CF;
(2)解:∵OA=OC,OB=OD,AC=BD,
∴OA=OB,
∵∠AOB=∠COD=60°,
∴△AOB是等边三角形,
∴OA=AB=6,
∴AC=2OA=12,
在Rt△ABC中,BC==6,
∴矩形ABCD的面积=AB?BC=6×6=36. 
9.(2017?贺州)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.
(1)求证:四边形ABCD是菱形;
(2)若CD=3,BD=2,求四边形ABCD的面积.
【考点】菱形的判定与性质.
【分析】(1)根据等腰三角形的性质得到∠ABD=∠ADB,根据角平分线的定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠CBD,根据全等三角形的性质得到AO=OC,于是得到结论;
(2)根据菱形的性质得到OD=BD=,根据勾股定理得到OC==2,于是得到结论.
(1)证明:∵AB=AD,
∴∠ABD=∠ADB,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠CBD,
∵AC⊥BD,AB=AD,
∴BO=DO,
在△AOD与△COB中,,
∴△AOD≌△COB,
∴AO=OC,
∵AC⊥BD,
∴四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,
∴OD=BD=,
∴OC==2,
∵AC=4,
∴S菱形ABCD=AC?BD=4. 
10. (2017?贵阳)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,
连接DE并延长至点F,使EF=2DE,连接CE、AF.
(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.
【考点】菱形的判定;三角形中位线定理;平行四边形的判定与性质.
【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;
(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.
(1)证明:∵点D,E分别是边BC,AB上的中点,
∴DE∥AC,AC=2DE,
∵EF=2DE,
∴EF∥AC,EF=AC,
∴四边形ACEF是平行四边形,
∴AF=CE;
(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:
∵∠ACB=90°,∠B=30°,
∴∠BAC=60°,AC=AB=AE,
∴△AEC是等边三角形,
∴AC=CE,
又∵四边形ACEF是平行四边形,
∴四边形ACEF是菱形.
1.(2017年浙江台州市)如图,矩形EFGH四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的 时,则 为(??? )
A. B.2 C. D.4
【考点】菱形的性质,翻折变换(折叠问题)
【分析】依题可得阴影部分是菱形.设S菱形ABCD=16,BE=x.从而得出AB=4,阴影部分边长为4-2x.根据(4-2x)2=1求出x,从而得出答案.
解:依题可得阴影部分是菱形.
∴设S菱形ABCD=16,BE=x.
∴AB=4.
∴阴影部分边长为4-2x.
∴(4-2x)2=1.
∴4-2x=1或4-2x=-1.
∴x=或x=(舍去).
∴==.
故答案为A.
2.(2017年浙江嘉兴市)如图,在平面直角坐标系 中,已知点 , .若平移点 到点 ,使以点 , , , 为顶点的四边形是菱形,则正确的平移方法是( ??)
2
A.向左平移1个单位,再向下平移1个单位
B、向左平移 个单位,再向上平移1个单位
C、向右平移 个单位,再向上平移1个单位
D、向右平移1个单位,再向上平移1个单位
【考点】勾股定理,菱形的判定,平移的性质,坐标与图形变化-平移
【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.
解:因为B(1,1)
由勾股定理可得OB=,
所以OA=OB,
而AB故以AB为对角线,OB//AC,
由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,
由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,
故选D.
3.(浙江杭州市开发区期末)如图,在菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为(  )
A.2 B.2 C.4 D.2+2
【考点】轴对称-最短路线问题;菱形的性质.
【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时,PK+QK的最小值,然后求解即可.
解答: 解:作点P关于BD的对称点P′,作P′Q⊥CD交BD于K,交CD于Q,
∵AB=4,∠A=120°,
∴点P′到CD的距离为4×=2,
∴PK+QK的最小值为2,
故选:B.
4.(2016年浙江省杭州市模拟3)如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=(  )
A. B.2 C.2 D.1
【考点】正方形的性质.
【分析】根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.
解:∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,
∴∠ADB=∠CGE=45°,
∴∠GDT=180°﹣90°﹣45°=45°,
∴∠DTG=180°﹣∠GDT﹣∠CGE=180°﹣45°﹣45°=90°,
∴△DGT是等腰直角三角形,
∵两正方形的边长分别为4,8,
∴DG=8﹣4=4,
∴GT=×4=2.
故选B.
点评:本题考查了菱形的性质,轴对称确定最短路线问题,熟记菱形的轴对称性和利用轴对称确定最短路线的方法是解题的关键.
5.(2015年浙江台州市中考数学试题 )如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O,当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( )
A.6.5 B.6 C.5.5 D.5
【考点】菱形的性质
【分析】根据菱形的性质得出AD∥BC,AB∥CD,推出平行四边形ABHF、AEGD、GCHO,得出AF=FO=OE=AE和OH=CH=GC=GO,根据菱形的判定得出四边形AEOF与四边形CGOH是菱形,再解答即可.
解:∵四边形ABCD是菱形, ∴AD=BC=AB=CD,AD∥BC,AB∥CD, ∵EG∥AD,FH∥AB, ∴四边形AEOF与四边形CGOH是平行四边形, ∴AF=OE,AE=OF,OH=GC,CH=OG, ∵AE=AF, ∴OE=OF=AE=AF, ∵AE=AF, ∴BC-BH=CD-DG,即OH=HC=CG=OG, ∴四边形AEOF与四边形CGOH是菱形, ∵四边形AEOF与四边形CGOH的周长之差为12, ∴4AE-4(8-AE)=12, 解得:AE=5.5, 故选C

6.(2016年浙江省温州市)七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是      cm.
【考点】七巧板.
【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.
解:如图所示:图形1:边长分别是:16,8,8;
图形2:边长分别是:16,8,8;
图形3:边长分别是:8,4,4;
图形4:边长是:4;
图形5:边长分别是:8,4,4;
图形6:边长分别是:4,8;
图形7:边长分别是:8,8,8;
∴凸六边形的周长=8+2×8+8+4×4=32+16(cm);
故答案为:32+16.
7.(2016年浙江省丽水市)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=   .
【考点】菱形的性质.
【分析】连接AC、EF,根据菱形的对角线互相垂直平分可得AC⊥BD,根据线段垂直平分线上的点到线段两端点的距离相等可得AB=BD,然后判断出△ABD是等边三角形,再根据等边三角形的三个角都是60°求出∠ADB=60°,设EF与BD相交于点H,AB=4x,然后根据三角形的中位线平行于第三边并且等于第三边的一半求出EH,再求出DH,从而得到GH,利用勾股定理列式求出EG,最后求出比值即可.
解:如图,连接AC、EF,
在菱形ABCD中,AC⊥BD,
∵BE⊥AD,AE=DE,
∴AB=BD,
又∵菱形的边AB=AD,
∴△ABD是等边三角形,
∴∠ADB=60°,
设EF与BD相交于点H,AB=4x,
∵AE=DE,
∴由菱形的对称性,CF=DF,
∴EF是△ACD的中位线,
∴DH=DO=BD=x,
在Rt△EDH中,EH=DH=x,
∵DG=BD,
∴GH=BD+DH=4x+x=5x,
在Rt△EGH中,由勾股定理得,EG===2x,
所以,==.
故答案为:.
8.(2016年浙江省杭州市)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为      .
【考点】菱形的性质;等腰三角形的性质.
【分析】如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.
解:如图,∵四边形ABCD是菱形,
∴AB=AD=BC=CD,∠A=∠C=30°,
∠ABC=∠ADC=150°,
∴∠DBA=∠DBC=75°,
∵ED=EB,∠DEB=120°,
∴∠EBD=∠EDB=30°,
∴∠EBC=∠EBD+∠DBC=105°,
当点E′在BD左侧时,∵∠DBE′=30°,
∴∠E′BC=∠DBC﹣∠DBE′=45°,
∴∠EBC=105°或45°,
故答案为105°或45°.
9.(浙江杭州市萧山区)如图,在矩形ABCD中,AB=16,BC=12,顺次连结各边中点,得菱形;再顺次连结菱形的各边中点,得矩形;再顺次连结矩形的各边中点,得菱形,……这样继续下去.则图中的四边形的周长等于 ,图中的四边形的面积等于 .
解:在矩形ABCD中,AB=16,BC=12,根据题意可得:菱形的两条对角线的长分别等于矩形ABCD的两边长16,12,所以菱形的面积==矩形ABCD的面积;矩形的两边长分别等于矩形ABCD的两边长的,所以矩形的周长=矩形ABCD的周长的=28,,以此类推可得菱形的面积=矩形的面积的=,矩形的的周长=矩形的周长的=矩形ABCD的周长的=14,.....
所以四边形的周长=,四边形的面积=.
10.(浙江杭州市开发区期末)如图,在菱形ABCD中,边长为10,∠A=60°,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是    ;四边形A2015B2015C2015D2015的周长   .
【考点】中点四边形;菱形的性质.
【分析】根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可.
解:∵菱形ABCD中,边长为10,∠A=60°,顺次连结菱形ABCD各边中点,
∴△AA1D1是等边三角形,四边形A2B2C2D2是菱形,
∴A1D1=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=5,
∴四边形A2B2C2D2的周长是:5×4=20,
同理可得出:A3D3=5×,C3D3=C1D1=×5,
A5D5=5×()2,C5D5=C3D3=()2×5,

∴四边形A2015B2015C2015D2015的周长是:
故答案为:20;.
点评:此题主要考查了菱形的性质,矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.
11.(2016年浙江省绍兴市中考数学)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为      .
【考点】矩形的性质;翻折变换(折叠问题).
【分析】当直线l在直线CE上方时,连接DE交直线l于M,只要证明△DFM是等腰直角三角形即可利用DF=DM解决问题,当直线l在直线EC下方时,由∠DEF1=∠BEF1=∠DF1E,
得到DF1=DE,由此即可解决问题.
解:如图,当直线l在直线CE上方时,连接DE交直线l于M,
∵四边形ABCD是矩形,
∴∠A=∠B=90°,AD=BC,
∵AB=4,AD=BC=2,
∴AD=AE=EB=BC=2,
∴△ADE、△ECB是等腰直角三角形,
∴∠AED=∠BEC=45°,
∴∠DEC=90°,
∵l∥EC,
∴ED⊥l,
∴EM=2=AE,
∴点A.点M关于直线EF对称,
∵∠MDF=∠MFD=45°,
∴DM=MF=DE﹣EM=2﹣2,
∴DF=DM=4﹣2.
当直线l在直线EC下方时,
∵∠DEF1=∠BEF1=∠DF1E,
∴DF1=DE=2,
综上所述DF的长为2或4﹣2.
故答案为2或4﹣2.
12.(2016年浙江省衢州市)如图,已知BD是矩形ABCD的对角线.
(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).
(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.
【考点】矩形的性质;作图—基本作图.
【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;
(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.
解:(1)如图所示,EF为所求直线;
(2)四边形BEDF为菱形,理由为:
证明:∵EF垂直平分BD,
∴BE=DE,∠DEF=∠BEF,
∵AD∥BC,
∴∠DEF=∠BFE,
∴∠BEF=∠BFE,
∴BE=BF,
∵BF=DF,
∴BE=ED=DF=BF,
∴四边形BEDF为菱形.
13.(2016年浙江杭州市中考数学模拟命题比赛2)如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.
(1)求证:BD=BE;
(2)若∠DBC=30°,BO=4,求四边形ABED的面积.
【考点】矩形的性质.
【分析】(1)根据矩形的对角线相等可得AC=BD,然后证明四边形ABEC是平行四边形,再根据平行四边形的对边相等可得AC=BE,从而得证;
(2)根据矩形的对角线互相平分求出BD的长度,再根据30°角所对的直角边等于斜边的一半求出CD的长度,然后利用勾股定理求出BC的长度,再利用梯形的面积公式列式计算即可得解.
(1)证明:∵四边形ABCD是矩形,
∴AC=BD,AB∥CD,
又∵BE∥AC,
∴四边形ABEC是平行四边形,
∴AC=BE,
∴BD=BE;
(2)解:∵在矩形ABCD中,BO=4,
∴BD=2BO=2×4=8,
∵∠DBC=30°,
∴CD=BD=×8=4,
∴AB=CD=4,DE=CD+CE=CD+AB=4+4=8,
在Rt△BCD中,BC===4,
14.(2017年浙江宁波市中考数学模拟试卷(二))如图,在四边形ABCD中,AD∥BC,∠A=∠C,点P在边AB上.
(1)判断四边形ABCD的形状并加以证明;
(2)若AB=AD,以过点P的直线为轴,将四边形ABCD折叠,使点B、C分别落在点B′、C′上,且B′C′经过点D,折痕与四边形的另一交点为Q.
①在图2中作出四边形PB′C′Q(保留作图痕迹,不必说明作法和理由);
②如果∠C=60°,那么为何值时,B′P⊥AB.
【考点】四边形综合题
【分析】(1)根据两组对边分别平行的四边形是平行四边形进行判断;(2)①根据轴对称的性质进行作图即可;②先根据折叠得出一些对应边相等,对应角相等,并推导出B′D=B′E,再设AP=a,BP=b,利用解直角三角形将DQ和CQ长用含a的代数式表示出来,最后根据CD=DQ+CQ列出关于a、b的关系式,求得a、b的比值即可.
试题解析:(1)四边形ABCD是平行四边形
证明:∵在四边形ABCD中,AD∥BC,
∴∠A+∠B=180°,
∵∠A=∠C,
∴∠C+∠B=180°,
∴AB∥CD,
∴四边形ABCD是平行四边形;
(2)①作图如下:
②当AB=AD时,平行四边形ABCD是菱形,
由折叠可得,BP=B′P,CQ=C′Q,BC=B′C′,∠C=∠C′=60°=∠A,
当B′P⊥AB时,由B′P∥C′Q,可得C′Q⊥CD,
∴∠PEA=30°=∠DEB′,∠QDC′=30°=∠B′DE,
∴B′D=B′E,
设AP=a,BP=b,则直角三角形APE中,PE=a,且B′P=b,BC=B′C′=CD=a+b,
∴B′E=b﹣a=B′D,
∴C′D=a+b﹣(b﹣a)=a+a,
∴直角三角形C′QD中,C′Q=a=CQ,DQ=C′Q=a,
∵CD=DQ+CQ=a+b,
∴a+a=a+b,
整理得(+1)a=b,
∴==,即=.
∴四边形ABED的面积=(4+8)×4=24.
15.(2017年浙江省金华市)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.
(1)将?ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段   ,   ;S矩形AEFG:S?ABCD=   .
(2)?ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;
(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.
【考点】四边形综合题.
【分析】(1)根据题意得出操作形成的折痕分别是线段AE、GF;由折叠的性质得出△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,得出S矩形AEFG=S?ABCD,即可得出答案;
(2)由矩形的性质和勾股定理求出FH,即可得出答案;
(3)折法1中,由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,由叠合正方形的性质得出BM=FM=4,由勾股定理得出GM=CM==3,得出AD=BG=BM﹣GM=1,BC=BM+CM=7;
折法2中,由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG=NG,NH=CH,BM=FM,MC=CN,求出GH=CD=5,由叠合正方形的性质得出EM=GH=5,正方形EMHG的面积=52=25,由勾股定理求出FM=BM==3,设AD=x,则MN=FM+FN=3+x,由梯形ABCD的面积得出BC=﹣x,求出MC=BC﹣BM=﹣x﹣3,由MN=MC得出方程,解方程求出AD=,BC=;
折法3中,由折叠的性质、正方形的性质、勾股定理即可求出BC、AD的长.
解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;
由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,
∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,
∴S矩形AEFG=S?ABCD,
∴S矩形AEFG:S?ABCD=1:2;
故答案为:AE,GF,1:2;
(2)∵四边形EFGH是矩形,
∴∠HEF=90°,
∴FH==13,
由折叠的性质得:AD=FH=13;
(3)有3种折法,如图4、图5、图6所示:
①折法1中,如图4所示:
由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,
∵四边形EFMB是叠合正方形,
∴BM=FM=4,
∴GM=CM===3,
∴AD=BG=BM﹣GM=1,BC=BM+CM=7;
②折法2中,如图5所示:
由折叠的性质得:四边形EMHG的面积=梯形ABCD的面积,AE=BE=AB=4,DG=NG,NH=CH,BM=FM,MN=MC,
∴GH=CD=5,
∵四边形EMHG是叠合正方形,
∴EM=GH=5,正方形EMHG的面积=52=25,
∵∠B=90°,
∴FM=BM==3,
设AD=x,则MN=FM+FN=3+x,
∵梯形ABCD的面积=(AD+BC)×8=2×25,
∴AD+BC=,
∴BC=﹣x,
∴MC=BC﹣BM=﹣x﹣3,
∵MN=MC,
∴3+x=﹣x﹣3,
解得:x=,
∴AD=,BC=﹣=;
③折法3中,如图6所示,作GM⊥BC于M,
则E、G分别为AB、CD的中点,
则AH=AE=BE=BF=4,CG=CD=5,正方形的边长EF=GF=4,
GM=FM=4,CM==3,
∴BC=BF+FM+CM=11,FN=CF=7,DH=NH=8﹣7=1,
∴AD=5.
 
同课章节目录